]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
Merge branch 'upstream-linus' of master.kernel.org:/pub/scm/linux/kernel/git/jgarzik...
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cpuset.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/rcupdate.h>
39 #include <linux/ptrace.h>
40 #include <linux/mount.h>
41 #include <linux/audit.h>
42 #include <linux/profile.h>
43 #include <linux/rmap.h>
44 #include <linux/acct.h>
45 #include <linux/cn_proc.h>
46 #include <linux/delayacct.h>
47 #include <linux/taskstats_kern.h>
48 #include <linux/random.h>
49
50 #include <asm/pgtable.h>
51 #include <asm/pgalloc.h>
52 #include <asm/uaccess.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cacheflush.h>
55 #include <asm/tlbflush.h>
56
57 /*
58 * Protected counters by write_lock_irq(&tasklist_lock)
59 */
60 unsigned long total_forks; /* Handle normal Linux uptimes. */
61 int nr_threads; /* The idle threads do not count.. */
62
63 int max_threads; /* tunable limit on nr_threads */
64
65 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
66
67 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
68
69 int nr_processes(void)
70 {
71 int cpu;
72 int total = 0;
73
74 for_each_online_cpu(cpu)
75 total += per_cpu(process_counts, cpu);
76
77 return total;
78 }
79
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 static kmem_cache_t *signal_cachep;
88
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103
104 void free_task(struct task_struct *tsk)
105 {
106 free_thread_info(tsk->thread_info);
107 rt_mutex_debug_task_free(tsk);
108 free_task_struct(tsk);
109 }
110 EXPORT_SYMBOL(free_task);
111
112 void __put_task_struct(struct task_struct *tsk)
113 {
114 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
115 WARN_ON(atomic_read(&tsk->usage));
116 WARN_ON(tsk == current);
117
118 security_task_free(tsk);
119 free_uid(tsk->user);
120 put_group_info(tsk->group_info);
121 delayacct_tsk_free(tsk);
122
123 if (!profile_handoff_task(tsk))
124 free_task(tsk);
125 }
126
127 void __init fork_init(unsigned long mempages)
128 {
129 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
130 #ifndef ARCH_MIN_TASKALIGN
131 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
132 #endif
133 /* create a slab on which task_structs can be allocated */
134 task_struct_cachep =
135 kmem_cache_create("task_struct", sizeof(struct task_struct),
136 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
137 #endif
138
139 /*
140 * The default maximum number of threads is set to a safe
141 * value: the thread structures can take up at most half
142 * of memory.
143 */
144 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
145
146 /*
147 * we need to allow at least 20 threads to boot a system
148 */
149 if(max_threads < 20)
150 max_threads = 20;
151
152 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
153 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
154 init_task.signal->rlim[RLIMIT_SIGPENDING] =
155 init_task.signal->rlim[RLIMIT_NPROC];
156 }
157
158 static struct task_struct *dup_task_struct(struct task_struct *orig)
159 {
160 struct task_struct *tsk;
161 struct thread_info *ti;
162
163 prepare_to_copy(orig);
164
165 tsk = alloc_task_struct();
166 if (!tsk)
167 return NULL;
168
169 ti = alloc_thread_info(tsk);
170 if (!ti) {
171 free_task_struct(tsk);
172 return NULL;
173 }
174
175 *tsk = *orig;
176 tsk->thread_info = ti;
177 setup_thread_stack(tsk, orig);
178
179 #ifdef CONFIG_CC_STACKPROTECTOR
180 tsk->stack_canary = get_random_int();
181 #endif
182
183 /* One for us, one for whoever does the "release_task()" (usually parent) */
184 atomic_set(&tsk->usage,2);
185 atomic_set(&tsk->fs_excl, 0);
186 tsk->btrace_seq = 0;
187 tsk->splice_pipe = NULL;
188 return tsk;
189 }
190
191 #ifdef CONFIG_MMU
192 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
193 {
194 struct vm_area_struct *mpnt, *tmp, **pprev;
195 struct rb_node **rb_link, *rb_parent;
196 int retval;
197 unsigned long charge;
198 struct mempolicy *pol;
199
200 down_write(&oldmm->mmap_sem);
201 flush_cache_mm(oldmm);
202 /*
203 * Not linked in yet - no deadlock potential:
204 */
205 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
206
207 mm->locked_vm = 0;
208 mm->mmap = NULL;
209 mm->mmap_cache = NULL;
210 mm->free_area_cache = oldmm->mmap_base;
211 mm->cached_hole_size = ~0UL;
212 mm->map_count = 0;
213 cpus_clear(mm->cpu_vm_mask);
214 mm->mm_rb = RB_ROOT;
215 rb_link = &mm->mm_rb.rb_node;
216 rb_parent = NULL;
217 pprev = &mm->mmap;
218
219 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
220 struct file *file;
221
222 if (mpnt->vm_flags & VM_DONTCOPY) {
223 long pages = vma_pages(mpnt);
224 mm->total_vm -= pages;
225 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
226 -pages);
227 continue;
228 }
229 charge = 0;
230 if (mpnt->vm_flags & VM_ACCOUNT) {
231 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
232 if (security_vm_enough_memory(len))
233 goto fail_nomem;
234 charge = len;
235 }
236 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
237 if (!tmp)
238 goto fail_nomem;
239 *tmp = *mpnt;
240 pol = mpol_copy(vma_policy(mpnt));
241 retval = PTR_ERR(pol);
242 if (IS_ERR(pol))
243 goto fail_nomem_policy;
244 vma_set_policy(tmp, pol);
245 tmp->vm_flags &= ~VM_LOCKED;
246 tmp->vm_mm = mm;
247 tmp->vm_next = NULL;
248 anon_vma_link(tmp);
249 file = tmp->vm_file;
250 if (file) {
251 struct inode *inode = file->f_dentry->d_inode;
252 get_file(file);
253 if (tmp->vm_flags & VM_DENYWRITE)
254 atomic_dec(&inode->i_writecount);
255
256 /* insert tmp into the share list, just after mpnt */
257 spin_lock(&file->f_mapping->i_mmap_lock);
258 tmp->vm_truncate_count = mpnt->vm_truncate_count;
259 flush_dcache_mmap_lock(file->f_mapping);
260 vma_prio_tree_add(tmp, mpnt);
261 flush_dcache_mmap_unlock(file->f_mapping);
262 spin_unlock(&file->f_mapping->i_mmap_lock);
263 }
264
265 /*
266 * Link in the new vma and copy the page table entries.
267 */
268 *pprev = tmp;
269 pprev = &tmp->vm_next;
270
271 __vma_link_rb(mm, tmp, rb_link, rb_parent);
272 rb_link = &tmp->vm_rb.rb_right;
273 rb_parent = &tmp->vm_rb;
274
275 mm->map_count++;
276 retval = copy_page_range(mm, oldmm, mpnt);
277
278 if (tmp->vm_ops && tmp->vm_ops->open)
279 tmp->vm_ops->open(tmp);
280
281 if (retval)
282 goto out;
283 }
284 retval = 0;
285 out:
286 up_write(&mm->mmap_sem);
287 flush_tlb_mm(oldmm);
288 up_write(&oldmm->mmap_sem);
289 return retval;
290 fail_nomem_policy:
291 kmem_cache_free(vm_area_cachep, tmp);
292 fail_nomem:
293 retval = -ENOMEM;
294 vm_unacct_memory(charge);
295 goto out;
296 }
297
298 static inline int mm_alloc_pgd(struct mm_struct * mm)
299 {
300 mm->pgd = pgd_alloc(mm);
301 if (unlikely(!mm->pgd))
302 return -ENOMEM;
303 return 0;
304 }
305
306 static inline void mm_free_pgd(struct mm_struct * mm)
307 {
308 pgd_free(mm->pgd);
309 }
310 #else
311 #define dup_mmap(mm, oldmm) (0)
312 #define mm_alloc_pgd(mm) (0)
313 #define mm_free_pgd(mm)
314 #endif /* CONFIG_MMU */
315
316 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
317
318 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
319 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
320
321 #include <linux/init_task.h>
322
323 static struct mm_struct * mm_init(struct mm_struct * mm)
324 {
325 atomic_set(&mm->mm_users, 1);
326 atomic_set(&mm->mm_count, 1);
327 init_rwsem(&mm->mmap_sem);
328 INIT_LIST_HEAD(&mm->mmlist);
329 mm->core_waiters = 0;
330 mm->nr_ptes = 0;
331 set_mm_counter(mm, file_rss, 0);
332 set_mm_counter(mm, anon_rss, 0);
333 spin_lock_init(&mm->page_table_lock);
334 rwlock_init(&mm->ioctx_list_lock);
335 mm->ioctx_list = NULL;
336 mm->free_area_cache = TASK_UNMAPPED_BASE;
337 mm->cached_hole_size = ~0UL;
338
339 if (likely(!mm_alloc_pgd(mm))) {
340 mm->def_flags = 0;
341 return mm;
342 }
343 free_mm(mm);
344 return NULL;
345 }
346
347 /*
348 * Allocate and initialize an mm_struct.
349 */
350 struct mm_struct * mm_alloc(void)
351 {
352 struct mm_struct * mm;
353
354 mm = allocate_mm();
355 if (mm) {
356 memset(mm, 0, sizeof(*mm));
357 mm = mm_init(mm);
358 }
359 return mm;
360 }
361
362 /*
363 * Called when the last reference to the mm
364 * is dropped: either by a lazy thread or by
365 * mmput. Free the page directory and the mm.
366 */
367 void fastcall __mmdrop(struct mm_struct *mm)
368 {
369 BUG_ON(mm == &init_mm);
370 mm_free_pgd(mm);
371 destroy_context(mm);
372 free_mm(mm);
373 }
374
375 /*
376 * Decrement the use count and release all resources for an mm.
377 */
378 void mmput(struct mm_struct *mm)
379 {
380 might_sleep();
381
382 if (atomic_dec_and_test(&mm->mm_users)) {
383 exit_aio(mm);
384 exit_mmap(mm);
385 if (!list_empty(&mm->mmlist)) {
386 spin_lock(&mmlist_lock);
387 list_del(&mm->mmlist);
388 spin_unlock(&mmlist_lock);
389 }
390 put_swap_token(mm);
391 mmdrop(mm);
392 }
393 }
394 EXPORT_SYMBOL_GPL(mmput);
395
396 /**
397 * get_task_mm - acquire a reference to the task's mm
398 *
399 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
400 * this kernel workthread has transiently adopted a user mm with use_mm,
401 * to do its AIO) is not set and if so returns a reference to it, after
402 * bumping up the use count. User must release the mm via mmput()
403 * after use. Typically used by /proc and ptrace.
404 */
405 struct mm_struct *get_task_mm(struct task_struct *task)
406 {
407 struct mm_struct *mm;
408
409 task_lock(task);
410 mm = task->mm;
411 if (mm) {
412 if (task->flags & PF_BORROWED_MM)
413 mm = NULL;
414 else
415 atomic_inc(&mm->mm_users);
416 }
417 task_unlock(task);
418 return mm;
419 }
420 EXPORT_SYMBOL_GPL(get_task_mm);
421
422 /* Please note the differences between mmput and mm_release.
423 * mmput is called whenever we stop holding onto a mm_struct,
424 * error success whatever.
425 *
426 * mm_release is called after a mm_struct has been removed
427 * from the current process.
428 *
429 * This difference is important for error handling, when we
430 * only half set up a mm_struct for a new process and need to restore
431 * the old one. Because we mmput the new mm_struct before
432 * restoring the old one. . .
433 * Eric Biederman 10 January 1998
434 */
435 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
436 {
437 struct completion *vfork_done = tsk->vfork_done;
438
439 /* Get rid of any cached register state */
440 deactivate_mm(tsk, mm);
441
442 /* notify parent sleeping on vfork() */
443 if (vfork_done) {
444 tsk->vfork_done = NULL;
445 complete(vfork_done);
446 }
447 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
448 u32 __user * tidptr = tsk->clear_child_tid;
449 tsk->clear_child_tid = NULL;
450
451 /*
452 * We don't check the error code - if userspace has
453 * not set up a proper pointer then tough luck.
454 */
455 put_user(0, tidptr);
456 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
457 }
458 }
459
460 /*
461 * Allocate a new mm structure and copy contents from the
462 * mm structure of the passed in task structure.
463 */
464 static struct mm_struct *dup_mm(struct task_struct *tsk)
465 {
466 struct mm_struct *mm, *oldmm = current->mm;
467 int err;
468
469 if (!oldmm)
470 return NULL;
471
472 mm = allocate_mm();
473 if (!mm)
474 goto fail_nomem;
475
476 memcpy(mm, oldmm, sizeof(*mm));
477
478 if (!mm_init(mm))
479 goto fail_nomem;
480
481 if (init_new_context(tsk, mm))
482 goto fail_nocontext;
483
484 err = dup_mmap(mm, oldmm);
485 if (err)
486 goto free_pt;
487
488 mm->hiwater_rss = get_mm_rss(mm);
489 mm->hiwater_vm = mm->total_vm;
490
491 return mm;
492
493 free_pt:
494 mmput(mm);
495
496 fail_nomem:
497 return NULL;
498
499 fail_nocontext:
500 /*
501 * If init_new_context() failed, we cannot use mmput() to free the mm
502 * because it calls destroy_context()
503 */
504 mm_free_pgd(mm);
505 free_mm(mm);
506 return NULL;
507 }
508
509 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
510 {
511 struct mm_struct * mm, *oldmm;
512 int retval;
513
514 tsk->min_flt = tsk->maj_flt = 0;
515 tsk->nvcsw = tsk->nivcsw = 0;
516
517 tsk->mm = NULL;
518 tsk->active_mm = NULL;
519
520 /*
521 * Are we cloning a kernel thread?
522 *
523 * We need to steal a active VM for that..
524 */
525 oldmm = current->mm;
526 if (!oldmm)
527 return 0;
528
529 if (clone_flags & CLONE_VM) {
530 atomic_inc(&oldmm->mm_users);
531 mm = oldmm;
532 goto good_mm;
533 }
534
535 retval = -ENOMEM;
536 mm = dup_mm(tsk);
537 if (!mm)
538 goto fail_nomem;
539
540 good_mm:
541 tsk->mm = mm;
542 tsk->active_mm = mm;
543 return 0;
544
545 fail_nomem:
546 return retval;
547 }
548
549 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
550 {
551 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
552 /* We don't need to lock fs - think why ;-) */
553 if (fs) {
554 atomic_set(&fs->count, 1);
555 rwlock_init(&fs->lock);
556 fs->umask = old->umask;
557 read_lock(&old->lock);
558 fs->rootmnt = mntget(old->rootmnt);
559 fs->root = dget(old->root);
560 fs->pwdmnt = mntget(old->pwdmnt);
561 fs->pwd = dget(old->pwd);
562 if (old->altroot) {
563 fs->altrootmnt = mntget(old->altrootmnt);
564 fs->altroot = dget(old->altroot);
565 } else {
566 fs->altrootmnt = NULL;
567 fs->altroot = NULL;
568 }
569 read_unlock(&old->lock);
570 }
571 return fs;
572 }
573
574 struct fs_struct *copy_fs_struct(struct fs_struct *old)
575 {
576 return __copy_fs_struct(old);
577 }
578
579 EXPORT_SYMBOL_GPL(copy_fs_struct);
580
581 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
582 {
583 if (clone_flags & CLONE_FS) {
584 atomic_inc(&current->fs->count);
585 return 0;
586 }
587 tsk->fs = __copy_fs_struct(current->fs);
588 if (!tsk->fs)
589 return -ENOMEM;
590 return 0;
591 }
592
593 static int count_open_files(struct fdtable *fdt)
594 {
595 int size = fdt->max_fdset;
596 int i;
597
598 /* Find the last open fd */
599 for (i = size/(8*sizeof(long)); i > 0; ) {
600 if (fdt->open_fds->fds_bits[--i])
601 break;
602 }
603 i = (i+1) * 8 * sizeof(long);
604 return i;
605 }
606
607 static struct files_struct *alloc_files(void)
608 {
609 struct files_struct *newf;
610 struct fdtable *fdt;
611
612 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
613 if (!newf)
614 goto out;
615
616 atomic_set(&newf->count, 1);
617
618 spin_lock_init(&newf->file_lock);
619 newf->next_fd = 0;
620 fdt = &newf->fdtab;
621 fdt->max_fds = NR_OPEN_DEFAULT;
622 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
623 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
624 fdt->open_fds = (fd_set *)&newf->open_fds_init;
625 fdt->fd = &newf->fd_array[0];
626 INIT_RCU_HEAD(&fdt->rcu);
627 fdt->free_files = NULL;
628 fdt->next = NULL;
629 rcu_assign_pointer(newf->fdt, fdt);
630 out:
631 return newf;
632 }
633
634 /*
635 * Allocate a new files structure and copy contents from the
636 * passed in files structure.
637 * errorp will be valid only when the returned files_struct is NULL.
638 */
639 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
640 {
641 struct files_struct *newf;
642 struct file **old_fds, **new_fds;
643 int open_files, size, i, expand;
644 struct fdtable *old_fdt, *new_fdt;
645
646 *errorp = -ENOMEM;
647 newf = alloc_files();
648 if (!newf)
649 goto out;
650
651 spin_lock(&oldf->file_lock);
652 old_fdt = files_fdtable(oldf);
653 new_fdt = files_fdtable(newf);
654 size = old_fdt->max_fdset;
655 open_files = count_open_files(old_fdt);
656 expand = 0;
657
658 /*
659 * Check whether we need to allocate a larger fd array or fd set.
660 * Note: we're not a clone task, so the open count won't change.
661 */
662 if (open_files > new_fdt->max_fdset) {
663 new_fdt->max_fdset = 0;
664 expand = 1;
665 }
666 if (open_files > new_fdt->max_fds) {
667 new_fdt->max_fds = 0;
668 expand = 1;
669 }
670
671 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
672 if (expand) {
673 spin_unlock(&oldf->file_lock);
674 spin_lock(&newf->file_lock);
675 *errorp = expand_files(newf, open_files-1);
676 spin_unlock(&newf->file_lock);
677 if (*errorp < 0)
678 goto out_release;
679 new_fdt = files_fdtable(newf);
680 /*
681 * Reacquire the oldf lock and a pointer to its fd table
682 * who knows it may have a new bigger fd table. We need
683 * the latest pointer.
684 */
685 spin_lock(&oldf->file_lock);
686 old_fdt = files_fdtable(oldf);
687 }
688
689 old_fds = old_fdt->fd;
690 new_fds = new_fdt->fd;
691
692 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
693 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
694
695 for (i = open_files; i != 0; i--) {
696 struct file *f = *old_fds++;
697 if (f) {
698 get_file(f);
699 } else {
700 /*
701 * The fd may be claimed in the fd bitmap but not yet
702 * instantiated in the files array if a sibling thread
703 * is partway through open(). So make sure that this
704 * fd is available to the new process.
705 */
706 FD_CLR(open_files - i, new_fdt->open_fds);
707 }
708 rcu_assign_pointer(*new_fds++, f);
709 }
710 spin_unlock(&oldf->file_lock);
711
712 /* compute the remainder to be cleared */
713 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
714
715 /* This is long word aligned thus could use a optimized version */
716 memset(new_fds, 0, size);
717
718 if (new_fdt->max_fdset > open_files) {
719 int left = (new_fdt->max_fdset-open_files)/8;
720 int start = open_files / (8 * sizeof(unsigned long));
721
722 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
723 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
724 }
725
726 out:
727 return newf;
728
729 out_release:
730 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
731 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
732 free_fd_array(new_fdt->fd, new_fdt->max_fds);
733 kmem_cache_free(files_cachep, newf);
734 return NULL;
735 }
736
737 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
738 {
739 struct files_struct *oldf, *newf;
740 int error = 0;
741
742 /*
743 * A background process may not have any files ...
744 */
745 oldf = current->files;
746 if (!oldf)
747 goto out;
748
749 if (clone_flags & CLONE_FILES) {
750 atomic_inc(&oldf->count);
751 goto out;
752 }
753
754 /*
755 * Note: we may be using current for both targets (See exec.c)
756 * This works because we cache current->files (old) as oldf. Don't
757 * break this.
758 */
759 tsk->files = NULL;
760 newf = dup_fd(oldf, &error);
761 if (!newf)
762 goto out;
763
764 tsk->files = newf;
765 error = 0;
766 out:
767 return error;
768 }
769
770 /*
771 * Helper to unshare the files of the current task.
772 * We don't want to expose copy_files internals to
773 * the exec layer of the kernel.
774 */
775
776 int unshare_files(void)
777 {
778 struct files_struct *files = current->files;
779 int rc;
780
781 BUG_ON(!files);
782
783 /* This can race but the race causes us to copy when we don't
784 need to and drop the copy */
785 if(atomic_read(&files->count) == 1)
786 {
787 atomic_inc(&files->count);
788 return 0;
789 }
790 rc = copy_files(0, current);
791 if(rc)
792 current->files = files;
793 return rc;
794 }
795
796 EXPORT_SYMBOL(unshare_files);
797
798 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
799 {
800 struct sighand_struct *sig;
801
802 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
803 atomic_inc(&current->sighand->count);
804 return 0;
805 }
806 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
807 rcu_assign_pointer(tsk->sighand, sig);
808 if (!sig)
809 return -ENOMEM;
810 atomic_set(&sig->count, 1);
811 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
812 return 0;
813 }
814
815 void __cleanup_sighand(struct sighand_struct *sighand)
816 {
817 if (atomic_dec_and_test(&sighand->count))
818 kmem_cache_free(sighand_cachep, sighand);
819 }
820
821 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
822 {
823 struct signal_struct *sig;
824 int ret;
825
826 if (clone_flags & CLONE_THREAD) {
827 atomic_inc(&current->signal->count);
828 atomic_inc(&current->signal->live);
829 taskstats_tgid_alloc(current->signal);
830 return 0;
831 }
832 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
833 tsk->signal = sig;
834 if (!sig)
835 return -ENOMEM;
836
837 ret = copy_thread_group_keys(tsk);
838 if (ret < 0) {
839 kmem_cache_free(signal_cachep, sig);
840 return ret;
841 }
842
843 atomic_set(&sig->count, 1);
844 atomic_set(&sig->live, 1);
845 init_waitqueue_head(&sig->wait_chldexit);
846 sig->flags = 0;
847 sig->group_exit_code = 0;
848 sig->group_exit_task = NULL;
849 sig->group_stop_count = 0;
850 sig->curr_target = NULL;
851 init_sigpending(&sig->shared_pending);
852 INIT_LIST_HEAD(&sig->posix_timers);
853
854 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
855 sig->it_real_incr.tv64 = 0;
856 sig->real_timer.function = it_real_fn;
857 sig->tsk = tsk;
858
859 sig->it_virt_expires = cputime_zero;
860 sig->it_virt_incr = cputime_zero;
861 sig->it_prof_expires = cputime_zero;
862 sig->it_prof_incr = cputime_zero;
863
864 sig->leader = 0; /* session leadership doesn't inherit */
865 sig->tty_old_pgrp = 0;
866
867 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
868 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
869 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
870 sig->sched_time = 0;
871 INIT_LIST_HEAD(&sig->cpu_timers[0]);
872 INIT_LIST_HEAD(&sig->cpu_timers[1]);
873 INIT_LIST_HEAD(&sig->cpu_timers[2]);
874 taskstats_tgid_init(sig);
875
876 task_lock(current->group_leader);
877 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
878 task_unlock(current->group_leader);
879
880 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
881 /*
882 * New sole thread in the process gets an expiry time
883 * of the whole CPU time limit.
884 */
885 tsk->it_prof_expires =
886 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
887 }
888 acct_init_pacct(&sig->pacct);
889
890 return 0;
891 }
892
893 void __cleanup_signal(struct signal_struct *sig)
894 {
895 exit_thread_group_keys(sig);
896 taskstats_tgid_free(sig);
897 kmem_cache_free(signal_cachep, sig);
898 }
899
900 static inline void cleanup_signal(struct task_struct *tsk)
901 {
902 struct signal_struct *sig = tsk->signal;
903
904 atomic_dec(&sig->live);
905
906 if (atomic_dec_and_test(&sig->count))
907 __cleanup_signal(sig);
908 }
909
910 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
911 {
912 unsigned long new_flags = p->flags;
913
914 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
915 new_flags |= PF_FORKNOEXEC;
916 if (!(clone_flags & CLONE_PTRACE))
917 p->ptrace = 0;
918 p->flags = new_flags;
919 }
920
921 asmlinkage long sys_set_tid_address(int __user *tidptr)
922 {
923 current->clear_child_tid = tidptr;
924
925 return current->pid;
926 }
927
928 static inline void rt_mutex_init_task(struct task_struct *p)
929 {
930 #ifdef CONFIG_RT_MUTEXES
931 spin_lock_init(&p->pi_lock);
932 plist_head_init(&p->pi_waiters, &p->pi_lock);
933 p->pi_blocked_on = NULL;
934 #endif
935 }
936
937 /*
938 * This creates a new process as a copy of the old one,
939 * but does not actually start it yet.
940 *
941 * It copies the registers, and all the appropriate
942 * parts of the process environment (as per the clone
943 * flags). The actual kick-off is left to the caller.
944 */
945 static struct task_struct *copy_process(unsigned long clone_flags,
946 unsigned long stack_start,
947 struct pt_regs *regs,
948 unsigned long stack_size,
949 int __user *parent_tidptr,
950 int __user *child_tidptr,
951 int pid)
952 {
953 int retval;
954 struct task_struct *p = NULL;
955
956 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
957 return ERR_PTR(-EINVAL);
958
959 /*
960 * Thread groups must share signals as well, and detached threads
961 * can only be started up within the thread group.
962 */
963 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
964 return ERR_PTR(-EINVAL);
965
966 /*
967 * Shared signal handlers imply shared VM. By way of the above,
968 * thread groups also imply shared VM. Blocking this case allows
969 * for various simplifications in other code.
970 */
971 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
972 return ERR_PTR(-EINVAL);
973
974 retval = security_task_create(clone_flags);
975 if (retval)
976 goto fork_out;
977
978 retval = -ENOMEM;
979 p = dup_task_struct(current);
980 if (!p)
981 goto fork_out;
982
983 #ifdef CONFIG_TRACE_IRQFLAGS
984 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
985 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
986 #endif
987 retval = -EAGAIN;
988 if (atomic_read(&p->user->processes) >=
989 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
990 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
991 p->user != &root_user)
992 goto bad_fork_free;
993 }
994
995 atomic_inc(&p->user->__count);
996 atomic_inc(&p->user->processes);
997 get_group_info(p->group_info);
998
999 /*
1000 * If multiple threads are within copy_process(), then this check
1001 * triggers too late. This doesn't hurt, the check is only there
1002 * to stop root fork bombs.
1003 */
1004 if (nr_threads >= max_threads)
1005 goto bad_fork_cleanup_count;
1006
1007 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1008 goto bad_fork_cleanup_count;
1009
1010 if (p->binfmt && !try_module_get(p->binfmt->module))
1011 goto bad_fork_cleanup_put_domain;
1012
1013 p->did_exec = 0;
1014 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1015 copy_flags(clone_flags, p);
1016 p->pid = pid;
1017 retval = -EFAULT;
1018 if (clone_flags & CLONE_PARENT_SETTID)
1019 if (put_user(p->pid, parent_tidptr))
1020 goto bad_fork_cleanup_delays_binfmt;
1021
1022 INIT_LIST_HEAD(&p->children);
1023 INIT_LIST_HEAD(&p->sibling);
1024 p->vfork_done = NULL;
1025 spin_lock_init(&p->alloc_lock);
1026
1027 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1028 init_sigpending(&p->pending);
1029
1030 p->utime = cputime_zero;
1031 p->stime = cputime_zero;
1032 p->sched_time = 0;
1033 p->rchar = 0; /* I/O counter: bytes read */
1034 p->wchar = 0; /* I/O counter: bytes written */
1035 p->syscr = 0; /* I/O counter: read syscalls */
1036 p->syscw = 0; /* I/O counter: write syscalls */
1037 acct_clear_integrals(p);
1038
1039 p->it_virt_expires = cputime_zero;
1040 p->it_prof_expires = cputime_zero;
1041 p->it_sched_expires = 0;
1042 INIT_LIST_HEAD(&p->cpu_timers[0]);
1043 INIT_LIST_HEAD(&p->cpu_timers[1]);
1044 INIT_LIST_HEAD(&p->cpu_timers[2]);
1045
1046 p->lock_depth = -1; /* -1 = no lock */
1047 do_posix_clock_monotonic_gettime(&p->start_time);
1048 p->security = NULL;
1049 p->io_context = NULL;
1050 p->io_wait = NULL;
1051 p->audit_context = NULL;
1052 cpuset_fork(p);
1053 #ifdef CONFIG_NUMA
1054 p->mempolicy = mpol_copy(p->mempolicy);
1055 if (IS_ERR(p->mempolicy)) {
1056 retval = PTR_ERR(p->mempolicy);
1057 p->mempolicy = NULL;
1058 goto bad_fork_cleanup_cpuset;
1059 }
1060 mpol_fix_fork_child_flag(p);
1061 #endif
1062 #ifdef CONFIG_TRACE_IRQFLAGS
1063 p->irq_events = 0;
1064 p->hardirqs_enabled = 0;
1065 p->hardirq_enable_ip = 0;
1066 p->hardirq_enable_event = 0;
1067 p->hardirq_disable_ip = _THIS_IP_;
1068 p->hardirq_disable_event = 0;
1069 p->softirqs_enabled = 1;
1070 p->softirq_enable_ip = _THIS_IP_;
1071 p->softirq_enable_event = 0;
1072 p->softirq_disable_ip = 0;
1073 p->softirq_disable_event = 0;
1074 p->hardirq_context = 0;
1075 p->softirq_context = 0;
1076 #endif
1077 #ifdef CONFIG_LOCKDEP
1078 p->lockdep_depth = 0; /* no locks held yet */
1079 p->curr_chain_key = 0;
1080 p->lockdep_recursion = 0;
1081 #endif
1082
1083 rt_mutex_init_task(p);
1084
1085 #ifdef CONFIG_DEBUG_MUTEXES
1086 p->blocked_on = NULL; /* not blocked yet */
1087 #endif
1088
1089 p->tgid = p->pid;
1090 if (clone_flags & CLONE_THREAD)
1091 p->tgid = current->tgid;
1092
1093 if ((retval = security_task_alloc(p)))
1094 goto bad_fork_cleanup_policy;
1095 if ((retval = audit_alloc(p)))
1096 goto bad_fork_cleanup_security;
1097 /* copy all the process information */
1098 if ((retval = copy_semundo(clone_flags, p)))
1099 goto bad_fork_cleanup_audit;
1100 if ((retval = copy_files(clone_flags, p)))
1101 goto bad_fork_cleanup_semundo;
1102 if ((retval = copy_fs(clone_flags, p)))
1103 goto bad_fork_cleanup_files;
1104 if ((retval = copy_sighand(clone_flags, p)))
1105 goto bad_fork_cleanup_fs;
1106 if ((retval = copy_signal(clone_flags, p)))
1107 goto bad_fork_cleanup_sighand;
1108 if ((retval = copy_mm(clone_flags, p)))
1109 goto bad_fork_cleanup_signal;
1110 if ((retval = copy_keys(clone_flags, p)))
1111 goto bad_fork_cleanup_mm;
1112 if ((retval = copy_namespace(clone_flags, p)))
1113 goto bad_fork_cleanup_keys;
1114 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1115 if (retval)
1116 goto bad_fork_cleanup_namespace;
1117
1118 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1119 /*
1120 * Clear TID on mm_release()?
1121 */
1122 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1123 p->robust_list = NULL;
1124 #ifdef CONFIG_COMPAT
1125 p->compat_robust_list = NULL;
1126 #endif
1127 INIT_LIST_HEAD(&p->pi_state_list);
1128 p->pi_state_cache = NULL;
1129
1130 /*
1131 * sigaltstack should be cleared when sharing the same VM
1132 */
1133 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1134 p->sas_ss_sp = p->sas_ss_size = 0;
1135
1136 /*
1137 * Syscall tracing should be turned off in the child regardless
1138 * of CLONE_PTRACE.
1139 */
1140 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1141 #ifdef TIF_SYSCALL_EMU
1142 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1143 #endif
1144
1145 /* Our parent execution domain becomes current domain
1146 These must match for thread signalling to apply */
1147
1148 p->parent_exec_id = p->self_exec_id;
1149
1150 /* ok, now we should be set up.. */
1151 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1152 p->pdeath_signal = 0;
1153 p->exit_state = 0;
1154
1155 /*
1156 * Ok, make it visible to the rest of the system.
1157 * We dont wake it up yet.
1158 */
1159 p->group_leader = p;
1160 INIT_LIST_HEAD(&p->thread_group);
1161 INIT_LIST_HEAD(&p->ptrace_children);
1162 INIT_LIST_HEAD(&p->ptrace_list);
1163
1164 /* Perform scheduler related setup. Assign this task to a CPU. */
1165 sched_fork(p, clone_flags);
1166
1167 /* Need tasklist lock for parent etc handling! */
1168 write_lock_irq(&tasklist_lock);
1169
1170 /*
1171 * The task hasn't been attached yet, so its cpus_allowed mask will
1172 * not be changed, nor will its assigned CPU.
1173 *
1174 * The cpus_allowed mask of the parent may have changed after it was
1175 * copied first time - so re-copy it here, then check the child's CPU
1176 * to ensure it is on a valid CPU (and if not, just force it back to
1177 * parent's CPU). This avoids alot of nasty races.
1178 */
1179 p->cpus_allowed = current->cpus_allowed;
1180 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1181 !cpu_online(task_cpu(p))))
1182 set_task_cpu(p, smp_processor_id());
1183
1184 /* CLONE_PARENT re-uses the old parent */
1185 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1186 p->real_parent = current->real_parent;
1187 else
1188 p->real_parent = current;
1189 p->parent = p->real_parent;
1190
1191 spin_lock(&current->sighand->siglock);
1192
1193 /*
1194 * Process group and session signals need to be delivered to just the
1195 * parent before the fork or both the parent and the child after the
1196 * fork. Restart if a signal comes in before we add the new process to
1197 * it's process group.
1198 * A fatal signal pending means that current will exit, so the new
1199 * thread can't slip out of an OOM kill (or normal SIGKILL).
1200 */
1201 recalc_sigpending();
1202 if (signal_pending(current)) {
1203 spin_unlock(&current->sighand->siglock);
1204 write_unlock_irq(&tasklist_lock);
1205 retval = -ERESTARTNOINTR;
1206 goto bad_fork_cleanup_namespace;
1207 }
1208
1209 if (clone_flags & CLONE_THREAD) {
1210 p->group_leader = current->group_leader;
1211 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1212
1213 if (!cputime_eq(current->signal->it_virt_expires,
1214 cputime_zero) ||
1215 !cputime_eq(current->signal->it_prof_expires,
1216 cputime_zero) ||
1217 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1218 !list_empty(&current->signal->cpu_timers[0]) ||
1219 !list_empty(&current->signal->cpu_timers[1]) ||
1220 !list_empty(&current->signal->cpu_timers[2])) {
1221 /*
1222 * Have child wake up on its first tick to check
1223 * for process CPU timers.
1224 */
1225 p->it_prof_expires = jiffies_to_cputime(1);
1226 }
1227 }
1228
1229 /*
1230 * inherit ioprio
1231 */
1232 p->ioprio = current->ioprio;
1233
1234 if (likely(p->pid)) {
1235 add_parent(p);
1236 if (unlikely(p->ptrace & PT_PTRACED))
1237 __ptrace_link(p, current->parent);
1238
1239 if (thread_group_leader(p)) {
1240 p->signal->tty = current->signal->tty;
1241 p->signal->pgrp = process_group(current);
1242 p->signal->session = current->signal->session;
1243 attach_pid(p, PIDTYPE_PGID, process_group(p));
1244 attach_pid(p, PIDTYPE_SID, p->signal->session);
1245
1246 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1247 __get_cpu_var(process_counts)++;
1248 }
1249 attach_pid(p, PIDTYPE_PID, p->pid);
1250 nr_threads++;
1251 }
1252
1253 total_forks++;
1254 spin_unlock(&current->sighand->siglock);
1255 write_unlock_irq(&tasklist_lock);
1256 proc_fork_connector(p);
1257 return p;
1258
1259 bad_fork_cleanup_namespace:
1260 exit_namespace(p);
1261 bad_fork_cleanup_keys:
1262 exit_keys(p);
1263 bad_fork_cleanup_mm:
1264 if (p->mm)
1265 mmput(p->mm);
1266 bad_fork_cleanup_signal:
1267 cleanup_signal(p);
1268 bad_fork_cleanup_sighand:
1269 __cleanup_sighand(p->sighand);
1270 bad_fork_cleanup_fs:
1271 exit_fs(p); /* blocking */
1272 bad_fork_cleanup_files:
1273 exit_files(p); /* blocking */
1274 bad_fork_cleanup_semundo:
1275 exit_sem(p);
1276 bad_fork_cleanup_audit:
1277 audit_free(p);
1278 bad_fork_cleanup_security:
1279 security_task_free(p);
1280 bad_fork_cleanup_policy:
1281 #ifdef CONFIG_NUMA
1282 mpol_free(p->mempolicy);
1283 bad_fork_cleanup_cpuset:
1284 #endif
1285 cpuset_exit(p);
1286 bad_fork_cleanup_delays_binfmt:
1287 delayacct_tsk_free(p);
1288 if (p->binfmt)
1289 module_put(p->binfmt->module);
1290 bad_fork_cleanup_put_domain:
1291 module_put(task_thread_info(p)->exec_domain->module);
1292 bad_fork_cleanup_count:
1293 put_group_info(p->group_info);
1294 atomic_dec(&p->user->processes);
1295 free_uid(p->user);
1296 bad_fork_free:
1297 free_task(p);
1298 fork_out:
1299 return ERR_PTR(retval);
1300 }
1301
1302 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1303 {
1304 memset(regs, 0, sizeof(struct pt_regs));
1305 return regs;
1306 }
1307
1308 struct task_struct * __devinit fork_idle(int cpu)
1309 {
1310 struct task_struct *task;
1311 struct pt_regs regs;
1312
1313 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1314 if (!task)
1315 return ERR_PTR(-ENOMEM);
1316 init_idle(task, cpu);
1317
1318 return task;
1319 }
1320
1321 static inline int fork_traceflag (unsigned clone_flags)
1322 {
1323 if (clone_flags & CLONE_UNTRACED)
1324 return 0;
1325 else if (clone_flags & CLONE_VFORK) {
1326 if (current->ptrace & PT_TRACE_VFORK)
1327 return PTRACE_EVENT_VFORK;
1328 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1329 if (current->ptrace & PT_TRACE_CLONE)
1330 return PTRACE_EVENT_CLONE;
1331 } else if (current->ptrace & PT_TRACE_FORK)
1332 return PTRACE_EVENT_FORK;
1333
1334 return 0;
1335 }
1336
1337 /*
1338 * Ok, this is the main fork-routine.
1339 *
1340 * It copies the process, and if successful kick-starts
1341 * it and waits for it to finish using the VM if required.
1342 */
1343 long do_fork(unsigned long clone_flags,
1344 unsigned long stack_start,
1345 struct pt_regs *regs,
1346 unsigned long stack_size,
1347 int __user *parent_tidptr,
1348 int __user *child_tidptr)
1349 {
1350 struct task_struct *p;
1351 int trace = 0;
1352 struct pid *pid = alloc_pid();
1353 long nr;
1354
1355 if (!pid)
1356 return -EAGAIN;
1357 nr = pid->nr;
1358 if (unlikely(current->ptrace)) {
1359 trace = fork_traceflag (clone_flags);
1360 if (trace)
1361 clone_flags |= CLONE_PTRACE;
1362 }
1363
1364 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1365 /*
1366 * Do this prior waking up the new thread - the thread pointer
1367 * might get invalid after that point, if the thread exits quickly.
1368 */
1369 if (!IS_ERR(p)) {
1370 struct completion vfork;
1371
1372 if (clone_flags & CLONE_VFORK) {
1373 p->vfork_done = &vfork;
1374 init_completion(&vfork);
1375 }
1376
1377 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1378 /*
1379 * We'll start up with an immediate SIGSTOP.
1380 */
1381 sigaddset(&p->pending.signal, SIGSTOP);
1382 set_tsk_thread_flag(p, TIF_SIGPENDING);
1383 }
1384
1385 if (!(clone_flags & CLONE_STOPPED))
1386 wake_up_new_task(p, clone_flags);
1387 else
1388 p->state = TASK_STOPPED;
1389
1390 if (unlikely (trace)) {
1391 current->ptrace_message = nr;
1392 ptrace_notify ((trace << 8) | SIGTRAP);
1393 }
1394
1395 if (clone_flags & CLONE_VFORK) {
1396 wait_for_completion(&vfork);
1397 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1398 current->ptrace_message = nr;
1399 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1400 }
1401 }
1402 } else {
1403 free_pid(pid);
1404 nr = PTR_ERR(p);
1405 }
1406 return nr;
1407 }
1408
1409 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1410 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1411 #endif
1412
1413 static void sighand_ctor(void *data, kmem_cache_t *cachep, unsigned long flags)
1414 {
1415 struct sighand_struct *sighand = data;
1416
1417 if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1418 SLAB_CTOR_CONSTRUCTOR)
1419 spin_lock_init(&sighand->siglock);
1420 }
1421
1422 void __init proc_caches_init(void)
1423 {
1424 sighand_cachep = kmem_cache_create("sighand_cache",
1425 sizeof(struct sighand_struct), 0,
1426 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1427 sighand_ctor, NULL);
1428 signal_cachep = kmem_cache_create("signal_cache",
1429 sizeof(struct signal_struct), 0,
1430 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1431 files_cachep = kmem_cache_create("files_cache",
1432 sizeof(struct files_struct), 0,
1433 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1434 fs_cachep = kmem_cache_create("fs_cache",
1435 sizeof(struct fs_struct), 0,
1436 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1437 vm_area_cachep = kmem_cache_create("vm_area_struct",
1438 sizeof(struct vm_area_struct), 0,
1439 SLAB_PANIC, NULL, NULL);
1440 mm_cachep = kmem_cache_create("mm_struct",
1441 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1442 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1443 }
1444
1445
1446 /*
1447 * Check constraints on flags passed to the unshare system call and
1448 * force unsharing of additional process context as appropriate.
1449 */
1450 static inline void check_unshare_flags(unsigned long *flags_ptr)
1451 {
1452 /*
1453 * If unsharing a thread from a thread group, must also
1454 * unshare vm.
1455 */
1456 if (*flags_ptr & CLONE_THREAD)
1457 *flags_ptr |= CLONE_VM;
1458
1459 /*
1460 * If unsharing vm, must also unshare signal handlers.
1461 */
1462 if (*flags_ptr & CLONE_VM)
1463 *flags_ptr |= CLONE_SIGHAND;
1464
1465 /*
1466 * If unsharing signal handlers and the task was created
1467 * using CLONE_THREAD, then must unshare the thread
1468 */
1469 if ((*flags_ptr & CLONE_SIGHAND) &&
1470 (atomic_read(&current->signal->count) > 1))
1471 *flags_ptr |= CLONE_THREAD;
1472
1473 /*
1474 * If unsharing namespace, must also unshare filesystem information.
1475 */
1476 if (*flags_ptr & CLONE_NEWNS)
1477 *flags_ptr |= CLONE_FS;
1478 }
1479
1480 /*
1481 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1482 */
1483 static int unshare_thread(unsigned long unshare_flags)
1484 {
1485 if (unshare_flags & CLONE_THREAD)
1486 return -EINVAL;
1487
1488 return 0;
1489 }
1490
1491 /*
1492 * Unshare the filesystem structure if it is being shared
1493 */
1494 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1495 {
1496 struct fs_struct *fs = current->fs;
1497
1498 if ((unshare_flags & CLONE_FS) &&
1499 (fs && atomic_read(&fs->count) > 1)) {
1500 *new_fsp = __copy_fs_struct(current->fs);
1501 if (!*new_fsp)
1502 return -ENOMEM;
1503 }
1504
1505 return 0;
1506 }
1507
1508 /*
1509 * Unshare the namespace structure if it is being shared
1510 */
1511 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1512 {
1513 struct namespace *ns = current->namespace;
1514
1515 if ((unshare_flags & CLONE_NEWNS) &&
1516 (ns && atomic_read(&ns->count) > 1)) {
1517 if (!capable(CAP_SYS_ADMIN))
1518 return -EPERM;
1519
1520 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1521 if (!*new_nsp)
1522 return -ENOMEM;
1523 }
1524
1525 return 0;
1526 }
1527
1528 /*
1529 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1530 * supported yet
1531 */
1532 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1533 {
1534 struct sighand_struct *sigh = current->sighand;
1535
1536 if ((unshare_flags & CLONE_SIGHAND) &&
1537 (sigh && atomic_read(&sigh->count) > 1))
1538 return -EINVAL;
1539 else
1540 return 0;
1541 }
1542
1543 /*
1544 * Unshare vm if it is being shared
1545 */
1546 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1547 {
1548 struct mm_struct *mm = current->mm;
1549
1550 if ((unshare_flags & CLONE_VM) &&
1551 (mm && atomic_read(&mm->mm_users) > 1)) {
1552 return -EINVAL;
1553 }
1554
1555 return 0;
1556 }
1557
1558 /*
1559 * Unshare file descriptor table if it is being shared
1560 */
1561 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1562 {
1563 struct files_struct *fd = current->files;
1564 int error = 0;
1565
1566 if ((unshare_flags & CLONE_FILES) &&
1567 (fd && atomic_read(&fd->count) > 1)) {
1568 *new_fdp = dup_fd(fd, &error);
1569 if (!*new_fdp)
1570 return error;
1571 }
1572
1573 return 0;
1574 }
1575
1576 /*
1577 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1578 * supported yet
1579 */
1580 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1581 {
1582 if (unshare_flags & CLONE_SYSVSEM)
1583 return -EINVAL;
1584
1585 return 0;
1586 }
1587
1588 /*
1589 * unshare allows a process to 'unshare' part of the process
1590 * context which was originally shared using clone. copy_*
1591 * functions used by do_fork() cannot be used here directly
1592 * because they modify an inactive task_struct that is being
1593 * constructed. Here we are modifying the current, active,
1594 * task_struct.
1595 */
1596 asmlinkage long sys_unshare(unsigned long unshare_flags)
1597 {
1598 int err = 0;
1599 struct fs_struct *fs, *new_fs = NULL;
1600 struct namespace *ns, *new_ns = NULL;
1601 struct sighand_struct *sigh, *new_sigh = NULL;
1602 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1603 struct files_struct *fd, *new_fd = NULL;
1604 struct sem_undo_list *new_ulist = NULL;
1605
1606 check_unshare_flags(&unshare_flags);
1607
1608 /* Return -EINVAL for all unsupported flags */
1609 err = -EINVAL;
1610 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1611 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1612 goto bad_unshare_out;
1613
1614 if ((err = unshare_thread(unshare_flags)))
1615 goto bad_unshare_out;
1616 if ((err = unshare_fs(unshare_flags, &new_fs)))
1617 goto bad_unshare_cleanup_thread;
1618 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1619 goto bad_unshare_cleanup_fs;
1620 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1621 goto bad_unshare_cleanup_ns;
1622 if ((err = unshare_vm(unshare_flags, &new_mm)))
1623 goto bad_unshare_cleanup_sigh;
1624 if ((err = unshare_fd(unshare_flags, &new_fd)))
1625 goto bad_unshare_cleanup_vm;
1626 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1627 goto bad_unshare_cleanup_fd;
1628
1629 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1630
1631 task_lock(current);
1632
1633 if (new_fs) {
1634 fs = current->fs;
1635 current->fs = new_fs;
1636 new_fs = fs;
1637 }
1638
1639 if (new_ns) {
1640 ns = current->namespace;
1641 current->namespace = new_ns;
1642 new_ns = ns;
1643 }
1644
1645 if (new_sigh) {
1646 sigh = current->sighand;
1647 rcu_assign_pointer(current->sighand, new_sigh);
1648 new_sigh = sigh;
1649 }
1650
1651 if (new_mm) {
1652 mm = current->mm;
1653 active_mm = current->active_mm;
1654 current->mm = new_mm;
1655 current->active_mm = new_mm;
1656 activate_mm(active_mm, new_mm);
1657 new_mm = mm;
1658 }
1659
1660 if (new_fd) {
1661 fd = current->files;
1662 current->files = new_fd;
1663 new_fd = fd;
1664 }
1665
1666 task_unlock(current);
1667 }
1668
1669 bad_unshare_cleanup_fd:
1670 if (new_fd)
1671 put_files_struct(new_fd);
1672
1673 bad_unshare_cleanup_vm:
1674 if (new_mm)
1675 mmput(new_mm);
1676
1677 bad_unshare_cleanup_sigh:
1678 if (new_sigh)
1679 if (atomic_dec_and_test(&new_sigh->count))
1680 kmem_cache_free(sighand_cachep, new_sigh);
1681
1682 bad_unshare_cleanup_ns:
1683 if (new_ns)
1684 put_namespace(new_ns);
1685
1686 bad_unshare_cleanup_fs:
1687 if (new_fs)
1688 put_fs_struct(new_fs);
1689
1690 bad_unshare_cleanup_thread:
1691 bad_unshare_out:
1692 return err;
1693 }