]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/fork.c
Merge branch 'next-lockdown' of git://git.kernel.org/pub/scm/linux/kernel/git/jmorris...
[mirror_ubuntu-kernels.git] / kernel / fork.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/kernel/fork.c
4 *
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 */
7
8 /*
9 * 'fork.c' contains the help-routines for the 'fork' system call
10 * (see also entry.S and others).
11 * Fork is rather simple, once you get the hang of it, but the memory
12 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
13 */
14
15 #include <linux/anon_inodes.h>
16 #include <linux/slab.h>
17 #include <linux/sched/autogroup.h>
18 #include <linux/sched/mm.h>
19 #include <linux/sched/coredump.h>
20 #include <linux/sched/user.h>
21 #include <linux/sched/numa_balancing.h>
22 #include <linux/sched/stat.h>
23 #include <linux/sched/task.h>
24 #include <linux/sched/task_stack.h>
25 #include <linux/sched/cputime.h>
26 #include <linux/seq_file.h>
27 #include <linux/rtmutex.h>
28 #include <linux/init.h>
29 #include <linux/unistd.h>
30 #include <linux/module.h>
31 #include <linux/vmalloc.h>
32 #include <linux/completion.h>
33 #include <linux/personality.h>
34 #include <linux/mempolicy.h>
35 #include <linux/sem.h>
36 #include <linux/file.h>
37 #include <linux/fdtable.h>
38 #include <linux/iocontext.h>
39 #include <linux/key.h>
40 #include <linux/binfmts.h>
41 #include <linux/mman.h>
42 #include <linux/mmu_notifier.h>
43 #include <linux/hmm.h>
44 #include <linux/fs.h>
45 #include <linux/mm.h>
46 #include <linux/vmacache.h>
47 #include <linux/nsproxy.h>
48 #include <linux/capability.h>
49 #include <linux/cpu.h>
50 #include <linux/cgroup.h>
51 #include <linux/security.h>
52 #include <linux/hugetlb.h>
53 #include <linux/seccomp.h>
54 #include <linux/swap.h>
55 #include <linux/syscalls.h>
56 #include <linux/jiffies.h>
57 #include <linux/futex.h>
58 #include <linux/compat.h>
59 #include <linux/kthread.h>
60 #include <linux/task_io_accounting_ops.h>
61 #include <linux/rcupdate.h>
62 #include <linux/ptrace.h>
63 #include <linux/mount.h>
64 #include <linux/audit.h>
65 #include <linux/memcontrol.h>
66 #include <linux/ftrace.h>
67 #include <linux/proc_fs.h>
68 #include <linux/profile.h>
69 #include <linux/rmap.h>
70 #include <linux/ksm.h>
71 #include <linux/acct.h>
72 #include <linux/userfaultfd_k.h>
73 #include <linux/tsacct_kern.h>
74 #include <linux/cn_proc.h>
75 #include <linux/freezer.h>
76 #include <linux/delayacct.h>
77 #include <linux/taskstats_kern.h>
78 #include <linux/random.h>
79 #include <linux/tty.h>
80 #include <linux/blkdev.h>
81 #include <linux/fs_struct.h>
82 #include <linux/magic.h>
83 #include <linux/perf_event.h>
84 #include <linux/posix-timers.h>
85 #include <linux/user-return-notifier.h>
86 #include <linux/oom.h>
87 #include <linux/khugepaged.h>
88 #include <linux/signalfd.h>
89 #include <linux/uprobes.h>
90 #include <linux/aio.h>
91 #include <linux/compiler.h>
92 #include <linux/sysctl.h>
93 #include <linux/kcov.h>
94 #include <linux/livepatch.h>
95 #include <linux/thread_info.h>
96 #include <linux/stackleak.h>
97
98 #include <asm/pgtable.h>
99 #include <asm/pgalloc.h>
100 #include <linux/uaccess.h>
101 #include <asm/mmu_context.h>
102 #include <asm/cacheflush.h>
103 #include <asm/tlbflush.h>
104
105 #include <trace/events/sched.h>
106
107 #define CREATE_TRACE_POINTS
108 #include <trace/events/task.h>
109
110 /*
111 * Minimum number of threads to boot the kernel
112 */
113 #define MIN_THREADS 20
114
115 /*
116 * Maximum number of threads
117 */
118 #define MAX_THREADS FUTEX_TID_MASK
119
120 /*
121 * Protected counters by write_lock_irq(&tasklist_lock)
122 */
123 unsigned long total_forks; /* Handle normal Linux uptimes. */
124 int nr_threads; /* The idle threads do not count.. */
125
126 static int max_threads; /* tunable limit on nr_threads */
127
128 #define NAMED_ARRAY_INDEX(x) [x] = __stringify(x)
129
130 static const char * const resident_page_types[] = {
131 NAMED_ARRAY_INDEX(MM_FILEPAGES),
132 NAMED_ARRAY_INDEX(MM_ANONPAGES),
133 NAMED_ARRAY_INDEX(MM_SWAPENTS),
134 NAMED_ARRAY_INDEX(MM_SHMEMPAGES),
135 };
136
137 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
138
139 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
140
141 #ifdef CONFIG_PROVE_RCU
142 int lockdep_tasklist_lock_is_held(void)
143 {
144 return lockdep_is_held(&tasklist_lock);
145 }
146 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
147 #endif /* #ifdef CONFIG_PROVE_RCU */
148
149 int nr_processes(void)
150 {
151 int cpu;
152 int total = 0;
153
154 for_each_possible_cpu(cpu)
155 total += per_cpu(process_counts, cpu);
156
157 return total;
158 }
159
160 void __weak arch_release_task_struct(struct task_struct *tsk)
161 {
162 }
163
164 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
165 static struct kmem_cache *task_struct_cachep;
166
167 static inline struct task_struct *alloc_task_struct_node(int node)
168 {
169 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
170 }
171
172 static inline void free_task_struct(struct task_struct *tsk)
173 {
174 kmem_cache_free(task_struct_cachep, tsk);
175 }
176 #endif
177
178 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
179
180 /*
181 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
182 * kmemcache based allocator.
183 */
184 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
185
186 #ifdef CONFIG_VMAP_STACK
187 /*
188 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
189 * flush. Try to minimize the number of calls by caching stacks.
190 */
191 #define NR_CACHED_STACKS 2
192 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
193
194 static int free_vm_stack_cache(unsigned int cpu)
195 {
196 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
197 int i;
198
199 for (i = 0; i < NR_CACHED_STACKS; i++) {
200 struct vm_struct *vm_stack = cached_vm_stacks[i];
201
202 if (!vm_stack)
203 continue;
204
205 vfree(vm_stack->addr);
206 cached_vm_stacks[i] = NULL;
207 }
208
209 return 0;
210 }
211 #endif
212
213 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
214 {
215 #ifdef CONFIG_VMAP_STACK
216 void *stack;
217 int i;
218
219 for (i = 0; i < NR_CACHED_STACKS; i++) {
220 struct vm_struct *s;
221
222 s = this_cpu_xchg(cached_stacks[i], NULL);
223
224 if (!s)
225 continue;
226
227 /* Clear stale pointers from reused stack. */
228 memset(s->addr, 0, THREAD_SIZE);
229
230 tsk->stack_vm_area = s;
231 tsk->stack = s->addr;
232 return s->addr;
233 }
234
235 /*
236 * Allocated stacks are cached and later reused by new threads,
237 * so memcg accounting is performed manually on assigning/releasing
238 * stacks to tasks. Drop __GFP_ACCOUNT.
239 */
240 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
241 VMALLOC_START, VMALLOC_END,
242 THREADINFO_GFP & ~__GFP_ACCOUNT,
243 PAGE_KERNEL,
244 0, node, __builtin_return_address(0));
245
246 /*
247 * We can't call find_vm_area() in interrupt context, and
248 * free_thread_stack() can be called in interrupt context,
249 * so cache the vm_struct.
250 */
251 if (stack) {
252 tsk->stack_vm_area = find_vm_area(stack);
253 tsk->stack = stack;
254 }
255 return stack;
256 #else
257 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
258 THREAD_SIZE_ORDER);
259
260 if (likely(page)) {
261 tsk->stack = page_address(page);
262 return tsk->stack;
263 }
264 return NULL;
265 #endif
266 }
267
268 static inline void free_thread_stack(struct task_struct *tsk)
269 {
270 #ifdef CONFIG_VMAP_STACK
271 struct vm_struct *vm = task_stack_vm_area(tsk);
272
273 if (vm) {
274 int i;
275
276 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
277 mod_memcg_page_state(vm->pages[i],
278 MEMCG_KERNEL_STACK_KB,
279 -(int)(PAGE_SIZE / 1024));
280
281 memcg_kmem_uncharge(vm->pages[i], 0);
282 }
283
284 for (i = 0; i < NR_CACHED_STACKS; i++) {
285 if (this_cpu_cmpxchg(cached_stacks[i],
286 NULL, tsk->stack_vm_area) != NULL)
287 continue;
288
289 return;
290 }
291
292 vfree_atomic(tsk->stack);
293 return;
294 }
295 #endif
296
297 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
298 }
299 # else
300 static struct kmem_cache *thread_stack_cache;
301
302 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
303 int node)
304 {
305 unsigned long *stack;
306 stack = kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
307 tsk->stack = stack;
308 return stack;
309 }
310
311 static void free_thread_stack(struct task_struct *tsk)
312 {
313 kmem_cache_free(thread_stack_cache, tsk->stack);
314 }
315
316 void thread_stack_cache_init(void)
317 {
318 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
319 THREAD_SIZE, THREAD_SIZE, 0, 0,
320 THREAD_SIZE, NULL);
321 BUG_ON(thread_stack_cache == NULL);
322 }
323 # endif
324 #endif
325
326 /* SLAB cache for signal_struct structures (tsk->signal) */
327 static struct kmem_cache *signal_cachep;
328
329 /* SLAB cache for sighand_struct structures (tsk->sighand) */
330 struct kmem_cache *sighand_cachep;
331
332 /* SLAB cache for files_struct structures (tsk->files) */
333 struct kmem_cache *files_cachep;
334
335 /* SLAB cache for fs_struct structures (tsk->fs) */
336 struct kmem_cache *fs_cachep;
337
338 /* SLAB cache for vm_area_struct structures */
339 static struct kmem_cache *vm_area_cachep;
340
341 /* SLAB cache for mm_struct structures (tsk->mm) */
342 static struct kmem_cache *mm_cachep;
343
344 struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
345 {
346 struct vm_area_struct *vma;
347
348 vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
349 if (vma)
350 vma_init(vma, mm);
351 return vma;
352 }
353
354 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
355 {
356 struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
357
358 if (new) {
359 *new = *orig;
360 INIT_LIST_HEAD(&new->anon_vma_chain);
361 }
362 return new;
363 }
364
365 void vm_area_free(struct vm_area_struct *vma)
366 {
367 kmem_cache_free(vm_area_cachep, vma);
368 }
369
370 static void account_kernel_stack(struct task_struct *tsk, int account)
371 {
372 void *stack = task_stack_page(tsk);
373 struct vm_struct *vm = task_stack_vm_area(tsk);
374
375 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
376
377 if (vm) {
378 int i;
379
380 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
381
382 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
383 mod_zone_page_state(page_zone(vm->pages[i]),
384 NR_KERNEL_STACK_KB,
385 PAGE_SIZE / 1024 * account);
386 }
387 } else {
388 /*
389 * All stack pages are in the same zone and belong to the
390 * same memcg.
391 */
392 struct page *first_page = virt_to_page(stack);
393
394 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
395 THREAD_SIZE / 1024 * account);
396
397 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
398 account * (THREAD_SIZE / 1024));
399 }
400 }
401
402 static int memcg_charge_kernel_stack(struct task_struct *tsk)
403 {
404 #ifdef CONFIG_VMAP_STACK
405 struct vm_struct *vm = task_stack_vm_area(tsk);
406 int ret;
407
408 if (vm) {
409 int i;
410
411 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
412 /*
413 * If memcg_kmem_charge() fails, page->mem_cgroup
414 * pointer is NULL, and both memcg_kmem_uncharge()
415 * and mod_memcg_page_state() in free_thread_stack()
416 * will ignore this page. So it's safe.
417 */
418 ret = memcg_kmem_charge(vm->pages[i], GFP_KERNEL, 0);
419 if (ret)
420 return ret;
421
422 mod_memcg_page_state(vm->pages[i],
423 MEMCG_KERNEL_STACK_KB,
424 PAGE_SIZE / 1024);
425 }
426 }
427 #endif
428 return 0;
429 }
430
431 static void release_task_stack(struct task_struct *tsk)
432 {
433 if (WARN_ON(tsk->state != TASK_DEAD))
434 return; /* Better to leak the stack than to free prematurely */
435
436 account_kernel_stack(tsk, -1);
437 free_thread_stack(tsk);
438 tsk->stack = NULL;
439 #ifdef CONFIG_VMAP_STACK
440 tsk->stack_vm_area = NULL;
441 #endif
442 }
443
444 #ifdef CONFIG_THREAD_INFO_IN_TASK
445 void put_task_stack(struct task_struct *tsk)
446 {
447 if (refcount_dec_and_test(&tsk->stack_refcount))
448 release_task_stack(tsk);
449 }
450 #endif
451
452 void free_task(struct task_struct *tsk)
453 {
454 #ifndef CONFIG_THREAD_INFO_IN_TASK
455 /*
456 * The task is finally done with both the stack and thread_info,
457 * so free both.
458 */
459 release_task_stack(tsk);
460 #else
461 /*
462 * If the task had a separate stack allocation, it should be gone
463 * by now.
464 */
465 WARN_ON_ONCE(refcount_read(&tsk->stack_refcount) != 0);
466 #endif
467 rt_mutex_debug_task_free(tsk);
468 ftrace_graph_exit_task(tsk);
469 put_seccomp_filter(tsk);
470 arch_release_task_struct(tsk);
471 if (tsk->flags & PF_KTHREAD)
472 free_kthread_struct(tsk);
473 free_task_struct(tsk);
474 }
475 EXPORT_SYMBOL(free_task);
476
477 #ifdef CONFIG_MMU
478 static __latent_entropy int dup_mmap(struct mm_struct *mm,
479 struct mm_struct *oldmm)
480 {
481 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
482 struct rb_node **rb_link, *rb_parent;
483 int retval;
484 unsigned long charge;
485 LIST_HEAD(uf);
486
487 uprobe_start_dup_mmap();
488 if (down_write_killable(&oldmm->mmap_sem)) {
489 retval = -EINTR;
490 goto fail_uprobe_end;
491 }
492 flush_cache_dup_mm(oldmm);
493 uprobe_dup_mmap(oldmm, mm);
494 /*
495 * Not linked in yet - no deadlock potential:
496 */
497 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
498
499 /* No ordering required: file already has been exposed. */
500 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
501
502 mm->total_vm = oldmm->total_vm;
503 mm->data_vm = oldmm->data_vm;
504 mm->exec_vm = oldmm->exec_vm;
505 mm->stack_vm = oldmm->stack_vm;
506
507 rb_link = &mm->mm_rb.rb_node;
508 rb_parent = NULL;
509 pprev = &mm->mmap;
510 retval = ksm_fork(mm, oldmm);
511 if (retval)
512 goto out;
513 retval = khugepaged_fork(mm, oldmm);
514 if (retval)
515 goto out;
516
517 prev = NULL;
518 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
519 struct file *file;
520
521 if (mpnt->vm_flags & VM_DONTCOPY) {
522 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
523 continue;
524 }
525 charge = 0;
526 /*
527 * Don't duplicate many vmas if we've been oom-killed (for
528 * example)
529 */
530 if (fatal_signal_pending(current)) {
531 retval = -EINTR;
532 goto out;
533 }
534 if (mpnt->vm_flags & VM_ACCOUNT) {
535 unsigned long len = vma_pages(mpnt);
536
537 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
538 goto fail_nomem;
539 charge = len;
540 }
541 tmp = vm_area_dup(mpnt);
542 if (!tmp)
543 goto fail_nomem;
544 retval = vma_dup_policy(mpnt, tmp);
545 if (retval)
546 goto fail_nomem_policy;
547 tmp->vm_mm = mm;
548 retval = dup_userfaultfd(tmp, &uf);
549 if (retval)
550 goto fail_nomem_anon_vma_fork;
551 if (tmp->vm_flags & VM_WIPEONFORK) {
552 /* VM_WIPEONFORK gets a clean slate in the child. */
553 tmp->anon_vma = NULL;
554 if (anon_vma_prepare(tmp))
555 goto fail_nomem_anon_vma_fork;
556 } else if (anon_vma_fork(tmp, mpnt))
557 goto fail_nomem_anon_vma_fork;
558 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
559 tmp->vm_next = tmp->vm_prev = NULL;
560 file = tmp->vm_file;
561 if (file) {
562 struct inode *inode = file_inode(file);
563 struct address_space *mapping = file->f_mapping;
564
565 get_file(file);
566 if (tmp->vm_flags & VM_DENYWRITE)
567 atomic_dec(&inode->i_writecount);
568 i_mmap_lock_write(mapping);
569 if (tmp->vm_flags & VM_SHARED)
570 atomic_inc(&mapping->i_mmap_writable);
571 flush_dcache_mmap_lock(mapping);
572 /* insert tmp into the share list, just after mpnt */
573 vma_interval_tree_insert_after(tmp, mpnt,
574 &mapping->i_mmap);
575 flush_dcache_mmap_unlock(mapping);
576 i_mmap_unlock_write(mapping);
577 }
578
579 /*
580 * Clear hugetlb-related page reserves for children. This only
581 * affects MAP_PRIVATE mappings. Faults generated by the child
582 * are not guaranteed to succeed, even if read-only
583 */
584 if (is_vm_hugetlb_page(tmp))
585 reset_vma_resv_huge_pages(tmp);
586
587 /*
588 * Link in the new vma and copy the page table entries.
589 */
590 *pprev = tmp;
591 pprev = &tmp->vm_next;
592 tmp->vm_prev = prev;
593 prev = tmp;
594
595 __vma_link_rb(mm, tmp, rb_link, rb_parent);
596 rb_link = &tmp->vm_rb.rb_right;
597 rb_parent = &tmp->vm_rb;
598
599 mm->map_count++;
600 if (!(tmp->vm_flags & VM_WIPEONFORK))
601 retval = copy_page_range(mm, oldmm, mpnt);
602
603 if (tmp->vm_ops && tmp->vm_ops->open)
604 tmp->vm_ops->open(tmp);
605
606 if (retval)
607 goto out;
608 }
609 /* a new mm has just been created */
610 retval = arch_dup_mmap(oldmm, mm);
611 out:
612 up_write(&mm->mmap_sem);
613 flush_tlb_mm(oldmm);
614 up_write(&oldmm->mmap_sem);
615 dup_userfaultfd_complete(&uf);
616 fail_uprobe_end:
617 uprobe_end_dup_mmap();
618 return retval;
619 fail_nomem_anon_vma_fork:
620 mpol_put(vma_policy(tmp));
621 fail_nomem_policy:
622 vm_area_free(tmp);
623 fail_nomem:
624 retval = -ENOMEM;
625 vm_unacct_memory(charge);
626 goto out;
627 }
628
629 static inline int mm_alloc_pgd(struct mm_struct *mm)
630 {
631 mm->pgd = pgd_alloc(mm);
632 if (unlikely(!mm->pgd))
633 return -ENOMEM;
634 return 0;
635 }
636
637 static inline void mm_free_pgd(struct mm_struct *mm)
638 {
639 pgd_free(mm, mm->pgd);
640 }
641 #else
642 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
643 {
644 down_write(&oldmm->mmap_sem);
645 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
646 up_write(&oldmm->mmap_sem);
647 return 0;
648 }
649 #define mm_alloc_pgd(mm) (0)
650 #define mm_free_pgd(mm)
651 #endif /* CONFIG_MMU */
652
653 static void check_mm(struct mm_struct *mm)
654 {
655 int i;
656
657 BUILD_BUG_ON_MSG(ARRAY_SIZE(resident_page_types) != NR_MM_COUNTERS,
658 "Please make sure 'struct resident_page_types[]' is updated as well");
659
660 for (i = 0; i < NR_MM_COUNTERS; i++) {
661 long x = atomic_long_read(&mm->rss_stat.count[i]);
662
663 if (unlikely(x))
664 pr_alert("BUG: Bad rss-counter state mm:%p type:%s val:%ld\n",
665 mm, resident_page_types[i], x);
666 }
667
668 if (mm_pgtables_bytes(mm))
669 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
670 mm_pgtables_bytes(mm));
671
672 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
673 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
674 #endif
675 }
676
677 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
678 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
679
680 /*
681 * Called when the last reference to the mm
682 * is dropped: either by a lazy thread or by
683 * mmput. Free the page directory and the mm.
684 */
685 void __mmdrop(struct mm_struct *mm)
686 {
687 BUG_ON(mm == &init_mm);
688 WARN_ON_ONCE(mm == current->mm);
689 WARN_ON_ONCE(mm == current->active_mm);
690 mm_free_pgd(mm);
691 destroy_context(mm);
692 mmu_notifier_mm_destroy(mm);
693 check_mm(mm);
694 put_user_ns(mm->user_ns);
695 free_mm(mm);
696 }
697 EXPORT_SYMBOL_GPL(__mmdrop);
698
699 static void mmdrop_async_fn(struct work_struct *work)
700 {
701 struct mm_struct *mm;
702
703 mm = container_of(work, struct mm_struct, async_put_work);
704 __mmdrop(mm);
705 }
706
707 static void mmdrop_async(struct mm_struct *mm)
708 {
709 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
710 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
711 schedule_work(&mm->async_put_work);
712 }
713 }
714
715 static inline void free_signal_struct(struct signal_struct *sig)
716 {
717 taskstats_tgid_free(sig);
718 sched_autogroup_exit(sig);
719 /*
720 * __mmdrop is not safe to call from softirq context on x86 due to
721 * pgd_dtor so postpone it to the async context
722 */
723 if (sig->oom_mm)
724 mmdrop_async(sig->oom_mm);
725 kmem_cache_free(signal_cachep, sig);
726 }
727
728 static inline void put_signal_struct(struct signal_struct *sig)
729 {
730 if (refcount_dec_and_test(&sig->sigcnt))
731 free_signal_struct(sig);
732 }
733
734 void __put_task_struct(struct task_struct *tsk)
735 {
736 WARN_ON(!tsk->exit_state);
737 WARN_ON(refcount_read(&tsk->usage));
738 WARN_ON(tsk == current);
739
740 cgroup_free(tsk);
741 task_numa_free(tsk, true);
742 security_task_free(tsk);
743 exit_creds(tsk);
744 delayacct_tsk_free(tsk);
745 put_signal_struct(tsk->signal);
746
747 if (!profile_handoff_task(tsk))
748 free_task(tsk);
749 }
750 EXPORT_SYMBOL_GPL(__put_task_struct);
751
752 void __init __weak arch_task_cache_init(void) { }
753
754 /*
755 * set_max_threads
756 */
757 static void set_max_threads(unsigned int max_threads_suggested)
758 {
759 u64 threads;
760 unsigned long nr_pages = totalram_pages();
761
762 /*
763 * The number of threads shall be limited such that the thread
764 * structures may only consume a small part of the available memory.
765 */
766 if (fls64(nr_pages) + fls64(PAGE_SIZE) > 64)
767 threads = MAX_THREADS;
768 else
769 threads = div64_u64((u64) nr_pages * (u64) PAGE_SIZE,
770 (u64) THREAD_SIZE * 8UL);
771
772 if (threads > max_threads_suggested)
773 threads = max_threads_suggested;
774
775 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
776 }
777
778 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
779 /* Initialized by the architecture: */
780 int arch_task_struct_size __read_mostly;
781 #endif
782
783 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
784 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
785 {
786 /* Fetch thread_struct whitelist for the architecture. */
787 arch_thread_struct_whitelist(offset, size);
788
789 /*
790 * Handle zero-sized whitelist or empty thread_struct, otherwise
791 * adjust offset to position of thread_struct in task_struct.
792 */
793 if (unlikely(*size == 0))
794 *offset = 0;
795 else
796 *offset += offsetof(struct task_struct, thread);
797 }
798 #endif /* CONFIG_ARCH_TASK_STRUCT_ALLOCATOR */
799
800 void __init fork_init(void)
801 {
802 int i;
803 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
804 #ifndef ARCH_MIN_TASKALIGN
805 #define ARCH_MIN_TASKALIGN 0
806 #endif
807 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
808 unsigned long useroffset, usersize;
809
810 /* create a slab on which task_structs can be allocated */
811 task_struct_whitelist(&useroffset, &usersize);
812 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
813 arch_task_struct_size, align,
814 SLAB_PANIC|SLAB_ACCOUNT,
815 useroffset, usersize, NULL);
816 #endif
817
818 /* do the arch specific task caches init */
819 arch_task_cache_init();
820
821 set_max_threads(MAX_THREADS);
822
823 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
824 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
825 init_task.signal->rlim[RLIMIT_SIGPENDING] =
826 init_task.signal->rlim[RLIMIT_NPROC];
827
828 for (i = 0; i < UCOUNT_COUNTS; i++) {
829 init_user_ns.ucount_max[i] = max_threads/2;
830 }
831
832 #ifdef CONFIG_VMAP_STACK
833 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
834 NULL, free_vm_stack_cache);
835 #endif
836
837 lockdep_init_task(&init_task);
838 uprobes_init();
839 }
840
841 int __weak arch_dup_task_struct(struct task_struct *dst,
842 struct task_struct *src)
843 {
844 *dst = *src;
845 return 0;
846 }
847
848 void set_task_stack_end_magic(struct task_struct *tsk)
849 {
850 unsigned long *stackend;
851
852 stackend = end_of_stack(tsk);
853 *stackend = STACK_END_MAGIC; /* for overflow detection */
854 }
855
856 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
857 {
858 struct task_struct *tsk;
859 unsigned long *stack;
860 struct vm_struct *stack_vm_area __maybe_unused;
861 int err;
862
863 if (node == NUMA_NO_NODE)
864 node = tsk_fork_get_node(orig);
865 tsk = alloc_task_struct_node(node);
866 if (!tsk)
867 return NULL;
868
869 stack = alloc_thread_stack_node(tsk, node);
870 if (!stack)
871 goto free_tsk;
872
873 if (memcg_charge_kernel_stack(tsk))
874 goto free_stack;
875
876 stack_vm_area = task_stack_vm_area(tsk);
877
878 err = arch_dup_task_struct(tsk, orig);
879
880 /*
881 * arch_dup_task_struct() clobbers the stack-related fields. Make
882 * sure they're properly initialized before using any stack-related
883 * functions again.
884 */
885 tsk->stack = stack;
886 #ifdef CONFIG_VMAP_STACK
887 tsk->stack_vm_area = stack_vm_area;
888 #endif
889 #ifdef CONFIG_THREAD_INFO_IN_TASK
890 refcount_set(&tsk->stack_refcount, 1);
891 #endif
892
893 if (err)
894 goto free_stack;
895
896 #ifdef CONFIG_SECCOMP
897 /*
898 * We must handle setting up seccomp filters once we're under
899 * the sighand lock in case orig has changed between now and
900 * then. Until then, filter must be NULL to avoid messing up
901 * the usage counts on the error path calling free_task.
902 */
903 tsk->seccomp.filter = NULL;
904 #endif
905
906 setup_thread_stack(tsk, orig);
907 clear_user_return_notifier(tsk);
908 clear_tsk_need_resched(tsk);
909 set_task_stack_end_magic(tsk);
910
911 #ifdef CONFIG_STACKPROTECTOR
912 tsk->stack_canary = get_random_canary();
913 #endif
914 if (orig->cpus_ptr == &orig->cpus_mask)
915 tsk->cpus_ptr = &tsk->cpus_mask;
916
917 /*
918 * One for us, one for whoever does the "release_task()" (usually
919 * parent)
920 */
921 refcount_set(&tsk->usage, 2);
922 #ifdef CONFIG_BLK_DEV_IO_TRACE
923 tsk->btrace_seq = 0;
924 #endif
925 tsk->splice_pipe = NULL;
926 tsk->task_frag.page = NULL;
927 tsk->wake_q.next = NULL;
928
929 account_kernel_stack(tsk, 1);
930
931 kcov_task_init(tsk);
932
933 #ifdef CONFIG_FAULT_INJECTION
934 tsk->fail_nth = 0;
935 #endif
936
937 #ifdef CONFIG_BLK_CGROUP
938 tsk->throttle_queue = NULL;
939 tsk->use_memdelay = 0;
940 #endif
941
942 #ifdef CONFIG_MEMCG
943 tsk->active_memcg = NULL;
944 #endif
945 return tsk;
946
947 free_stack:
948 free_thread_stack(tsk);
949 free_tsk:
950 free_task_struct(tsk);
951 return NULL;
952 }
953
954 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
955
956 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
957
958 static int __init coredump_filter_setup(char *s)
959 {
960 default_dump_filter =
961 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
962 MMF_DUMP_FILTER_MASK;
963 return 1;
964 }
965
966 __setup("coredump_filter=", coredump_filter_setup);
967
968 #include <linux/init_task.h>
969
970 static void mm_init_aio(struct mm_struct *mm)
971 {
972 #ifdef CONFIG_AIO
973 spin_lock_init(&mm->ioctx_lock);
974 mm->ioctx_table = NULL;
975 #endif
976 }
977
978 static __always_inline void mm_clear_owner(struct mm_struct *mm,
979 struct task_struct *p)
980 {
981 #ifdef CONFIG_MEMCG
982 if (mm->owner == p)
983 WRITE_ONCE(mm->owner, NULL);
984 #endif
985 }
986
987 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
988 {
989 #ifdef CONFIG_MEMCG
990 mm->owner = p;
991 #endif
992 }
993
994 static void mm_init_uprobes_state(struct mm_struct *mm)
995 {
996 #ifdef CONFIG_UPROBES
997 mm->uprobes_state.xol_area = NULL;
998 #endif
999 }
1000
1001 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
1002 struct user_namespace *user_ns)
1003 {
1004 mm->mmap = NULL;
1005 mm->mm_rb = RB_ROOT;
1006 mm->vmacache_seqnum = 0;
1007 atomic_set(&mm->mm_users, 1);
1008 atomic_set(&mm->mm_count, 1);
1009 init_rwsem(&mm->mmap_sem);
1010 INIT_LIST_HEAD(&mm->mmlist);
1011 mm->core_state = NULL;
1012 mm_pgtables_bytes_init(mm);
1013 mm->map_count = 0;
1014 mm->locked_vm = 0;
1015 atomic64_set(&mm->pinned_vm, 0);
1016 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
1017 spin_lock_init(&mm->page_table_lock);
1018 spin_lock_init(&mm->arg_lock);
1019 mm_init_cpumask(mm);
1020 mm_init_aio(mm);
1021 mm_init_owner(mm, p);
1022 RCU_INIT_POINTER(mm->exe_file, NULL);
1023 mmu_notifier_mm_init(mm);
1024 init_tlb_flush_pending(mm);
1025 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
1026 mm->pmd_huge_pte = NULL;
1027 #endif
1028 mm_init_uprobes_state(mm);
1029
1030 if (current->mm) {
1031 mm->flags = current->mm->flags & MMF_INIT_MASK;
1032 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
1033 } else {
1034 mm->flags = default_dump_filter;
1035 mm->def_flags = 0;
1036 }
1037
1038 if (mm_alloc_pgd(mm))
1039 goto fail_nopgd;
1040
1041 if (init_new_context(p, mm))
1042 goto fail_nocontext;
1043
1044 mm->user_ns = get_user_ns(user_ns);
1045 return mm;
1046
1047 fail_nocontext:
1048 mm_free_pgd(mm);
1049 fail_nopgd:
1050 free_mm(mm);
1051 return NULL;
1052 }
1053
1054 /*
1055 * Allocate and initialize an mm_struct.
1056 */
1057 struct mm_struct *mm_alloc(void)
1058 {
1059 struct mm_struct *mm;
1060
1061 mm = allocate_mm();
1062 if (!mm)
1063 return NULL;
1064
1065 memset(mm, 0, sizeof(*mm));
1066 return mm_init(mm, current, current_user_ns());
1067 }
1068
1069 static inline void __mmput(struct mm_struct *mm)
1070 {
1071 VM_BUG_ON(atomic_read(&mm->mm_users));
1072
1073 uprobe_clear_state(mm);
1074 exit_aio(mm);
1075 ksm_exit(mm);
1076 khugepaged_exit(mm); /* must run before exit_mmap */
1077 exit_mmap(mm);
1078 mm_put_huge_zero_page(mm);
1079 set_mm_exe_file(mm, NULL);
1080 if (!list_empty(&mm->mmlist)) {
1081 spin_lock(&mmlist_lock);
1082 list_del(&mm->mmlist);
1083 spin_unlock(&mmlist_lock);
1084 }
1085 if (mm->binfmt)
1086 module_put(mm->binfmt->module);
1087 mmdrop(mm);
1088 }
1089
1090 /*
1091 * Decrement the use count and release all resources for an mm.
1092 */
1093 void mmput(struct mm_struct *mm)
1094 {
1095 might_sleep();
1096
1097 if (atomic_dec_and_test(&mm->mm_users))
1098 __mmput(mm);
1099 }
1100 EXPORT_SYMBOL_GPL(mmput);
1101
1102 #ifdef CONFIG_MMU
1103 static void mmput_async_fn(struct work_struct *work)
1104 {
1105 struct mm_struct *mm = container_of(work, struct mm_struct,
1106 async_put_work);
1107
1108 __mmput(mm);
1109 }
1110
1111 void mmput_async(struct mm_struct *mm)
1112 {
1113 if (atomic_dec_and_test(&mm->mm_users)) {
1114 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1115 schedule_work(&mm->async_put_work);
1116 }
1117 }
1118 #endif
1119
1120 /**
1121 * set_mm_exe_file - change a reference to the mm's executable file
1122 *
1123 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1124 *
1125 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1126 * invocations: in mmput() nobody alive left, in execve task is single
1127 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1128 * mm->exe_file, but does so without using set_mm_exe_file() in order
1129 * to do avoid the need for any locks.
1130 */
1131 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1132 {
1133 struct file *old_exe_file;
1134
1135 /*
1136 * It is safe to dereference the exe_file without RCU as
1137 * this function is only called if nobody else can access
1138 * this mm -- see comment above for justification.
1139 */
1140 old_exe_file = rcu_dereference_raw(mm->exe_file);
1141
1142 if (new_exe_file)
1143 get_file(new_exe_file);
1144 rcu_assign_pointer(mm->exe_file, new_exe_file);
1145 if (old_exe_file)
1146 fput(old_exe_file);
1147 }
1148
1149 /**
1150 * get_mm_exe_file - acquire a reference to the mm's executable file
1151 *
1152 * Returns %NULL if mm has no associated executable file.
1153 * User must release file via fput().
1154 */
1155 struct file *get_mm_exe_file(struct mm_struct *mm)
1156 {
1157 struct file *exe_file;
1158
1159 rcu_read_lock();
1160 exe_file = rcu_dereference(mm->exe_file);
1161 if (exe_file && !get_file_rcu(exe_file))
1162 exe_file = NULL;
1163 rcu_read_unlock();
1164 return exe_file;
1165 }
1166 EXPORT_SYMBOL(get_mm_exe_file);
1167
1168 /**
1169 * get_task_exe_file - acquire a reference to the task's executable file
1170 *
1171 * Returns %NULL if task's mm (if any) has no associated executable file or
1172 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1173 * User must release file via fput().
1174 */
1175 struct file *get_task_exe_file(struct task_struct *task)
1176 {
1177 struct file *exe_file = NULL;
1178 struct mm_struct *mm;
1179
1180 task_lock(task);
1181 mm = task->mm;
1182 if (mm) {
1183 if (!(task->flags & PF_KTHREAD))
1184 exe_file = get_mm_exe_file(mm);
1185 }
1186 task_unlock(task);
1187 return exe_file;
1188 }
1189 EXPORT_SYMBOL(get_task_exe_file);
1190
1191 /**
1192 * get_task_mm - acquire a reference to the task's mm
1193 *
1194 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1195 * this kernel workthread has transiently adopted a user mm with use_mm,
1196 * to do its AIO) is not set and if so returns a reference to it, after
1197 * bumping up the use count. User must release the mm via mmput()
1198 * after use. Typically used by /proc and ptrace.
1199 */
1200 struct mm_struct *get_task_mm(struct task_struct *task)
1201 {
1202 struct mm_struct *mm;
1203
1204 task_lock(task);
1205 mm = task->mm;
1206 if (mm) {
1207 if (task->flags & PF_KTHREAD)
1208 mm = NULL;
1209 else
1210 mmget(mm);
1211 }
1212 task_unlock(task);
1213 return mm;
1214 }
1215 EXPORT_SYMBOL_GPL(get_task_mm);
1216
1217 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1218 {
1219 struct mm_struct *mm;
1220 int err;
1221
1222 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1223 if (err)
1224 return ERR_PTR(err);
1225
1226 mm = get_task_mm(task);
1227 if (mm && mm != current->mm &&
1228 !ptrace_may_access(task, mode)) {
1229 mmput(mm);
1230 mm = ERR_PTR(-EACCES);
1231 }
1232 mutex_unlock(&task->signal->cred_guard_mutex);
1233
1234 return mm;
1235 }
1236
1237 static void complete_vfork_done(struct task_struct *tsk)
1238 {
1239 struct completion *vfork;
1240
1241 task_lock(tsk);
1242 vfork = tsk->vfork_done;
1243 if (likely(vfork)) {
1244 tsk->vfork_done = NULL;
1245 complete(vfork);
1246 }
1247 task_unlock(tsk);
1248 }
1249
1250 static int wait_for_vfork_done(struct task_struct *child,
1251 struct completion *vfork)
1252 {
1253 int killed;
1254
1255 freezer_do_not_count();
1256 cgroup_enter_frozen();
1257 killed = wait_for_completion_killable(vfork);
1258 cgroup_leave_frozen(false);
1259 freezer_count();
1260
1261 if (killed) {
1262 task_lock(child);
1263 child->vfork_done = NULL;
1264 task_unlock(child);
1265 }
1266
1267 put_task_struct(child);
1268 return killed;
1269 }
1270
1271 /* Please note the differences between mmput and mm_release.
1272 * mmput is called whenever we stop holding onto a mm_struct,
1273 * error success whatever.
1274 *
1275 * mm_release is called after a mm_struct has been removed
1276 * from the current process.
1277 *
1278 * This difference is important for error handling, when we
1279 * only half set up a mm_struct for a new process and need to restore
1280 * the old one. Because we mmput the new mm_struct before
1281 * restoring the old one. . .
1282 * Eric Biederman 10 January 1998
1283 */
1284 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1285 {
1286 /* Get rid of any futexes when releasing the mm */
1287 #ifdef CONFIG_FUTEX
1288 if (unlikely(tsk->robust_list)) {
1289 exit_robust_list(tsk);
1290 tsk->robust_list = NULL;
1291 }
1292 #ifdef CONFIG_COMPAT
1293 if (unlikely(tsk->compat_robust_list)) {
1294 compat_exit_robust_list(tsk);
1295 tsk->compat_robust_list = NULL;
1296 }
1297 #endif
1298 if (unlikely(!list_empty(&tsk->pi_state_list)))
1299 exit_pi_state_list(tsk);
1300 #endif
1301
1302 uprobe_free_utask(tsk);
1303
1304 /* Get rid of any cached register state */
1305 deactivate_mm(tsk, mm);
1306
1307 /*
1308 * Signal userspace if we're not exiting with a core dump
1309 * because we want to leave the value intact for debugging
1310 * purposes.
1311 */
1312 if (tsk->clear_child_tid) {
1313 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1314 atomic_read(&mm->mm_users) > 1) {
1315 /*
1316 * We don't check the error code - if userspace has
1317 * not set up a proper pointer then tough luck.
1318 */
1319 put_user(0, tsk->clear_child_tid);
1320 do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1321 1, NULL, NULL, 0, 0);
1322 }
1323 tsk->clear_child_tid = NULL;
1324 }
1325
1326 /*
1327 * All done, finally we can wake up parent and return this mm to him.
1328 * Also kthread_stop() uses this completion for synchronization.
1329 */
1330 if (tsk->vfork_done)
1331 complete_vfork_done(tsk);
1332 }
1333
1334 /**
1335 * dup_mm() - duplicates an existing mm structure
1336 * @tsk: the task_struct with which the new mm will be associated.
1337 * @oldmm: the mm to duplicate.
1338 *
1339 * Allocates a new mm structure and duplicates the provided @oldmm structure
1340 * content into it.
1341 *
1342 * Return: the duplicated mm or NULL on failure.
1343 */
1344 static struct mm_struct *dup_mm(struct task_struct *tsk,
1345 struct mm_struct *oldmm)
1346 {
1347 struct mm_struct *mm;
1348 int err;
1349
1350 mm = allocate_mm();
1351 if (!mm)
1352 goto fail_nomem;
1353
1354 memcpy(mm, oldmm, sizeof(*mm));
1355
1356 if (!mm_init(mm, tsk, mm->user_ns))
1357 goto fail_nomem;
1358
1359 err = dup_mmap(mm, oldmm);
1360 if (err)
1361 goto free_pt;
1362
1363 mm->hiwater_rss = get_mm_rss(mm);
1364 mm->hiwater_vm = mm->total_vm;
1365
1366 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1367 goto free_pt;
1368
1369 return mm;
1370
1371 free_pt:
1372 /* don't put binfmt in mmput, we haven't got module yet */
1373 mm->binfmt = NULL;
1374 mm_init_owner(mm, NULL);
1375 mmput(mm);
1376
1377 fail_nomem:
1378 return NULL;
1379 }
1380
1381 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1382 {
1383 struct mm_struct *mm, *oldmm;
1384 int retval;
1385
1386 tsk->min_flt = tsk->maj_flt = 0;
1387 tsk->nvcsw = tsk->nivcsw = 0;
1388 #ifdef CONFIG_DETECT_HUNG_TASK
1389 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1390 tsk->last_switch_time = 0;
1391 #endif
1392
1393 tsk->mm = NULL;
1394 tsk->active_mm = NULL;
1395
1396 /*
1397 * Are we cloning a kernel thread?
1398 *
1399 * We need to steal a active VM for that..
1400 */
1401 oldmm = current->mm;
1402 if (!oldmm)
1403 return 0;
1404
1405 /* initialize the new vmacache entries */
1406 vmacache_flush(tsk);
1407
1408 if (clone_flags & CLONE_VM) {
1409 mmget(oldmm);
1410 mm = oldmm;
1411 goto good_mm;
1412 }
1413
1414 retval = -ENOMEM;
1415 mm = dup_mm(tsk, current->mm);
1416 if (!mm)
1417 goto fail_nomem;
1418
1419 good_mm:
1420 tsk->mm = mm;
1421 tsk->active_mm = mm;
1422 return 0;
1423
1424 fail_nomem:
1425 return retval;
1426 }
1427
1428 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1429 {
1430 struct fs_struct *fs = current->fs;
1431 if (clone_flags & CLONE_FS) {
1432 /* tsk->fs is already what we want */
1433 spin_lock(&fs->lock);
1434 if (fs->in_exec) {
1435 spin_unlock(&fs->lock);
1436 return -EAGAIN;
1437 }
1438 fs->users++;
1439 spin_unlock(&fs->lock);
1440 return 0;
1441 }
1442 tsk->fs = copy_fs_struct(fs);
1443 if (!tsk->fs)
1444 return -ENOMEM;
1445 return 0;
1446 }
1447
1448 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1449 {
1450 struct files_struct *oldf, *newf;
1451 int error = 0;
1452
1453 /*
1454 * A background process may not have any files ...
1455 */
1456 oldf = current->files;
1457 if (!oldf)
1458 goto out;
1459
1460 if (clone_flags & CLONE_FILES) {
1461 atomic_inc(&oldf->count);
1462 goto out;
1463 }
1464
1465 newf = dup_fd(oldf, &error);
1466 if (!newf)
1467 goto out;
1468
1469 tsk->files = newf;
1470 error = 0;
1471 out:
1472 return error;
1473 }
1474
1475 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1476 {
1477 #ifdef CONFIG_BLOCK
1478 struct io_context *ioc = current->io_context;
1479 struct io_context *new_ioc;
1480
1481 if (!ioc)
1482 return 0;
1483 /*
1484 * Share io context with parent, if CLONE_IO is set
1485 */
1486 if (clone_flags & CLONE_IO) {
1487 ioc_task_link(ioc);
1488 tsk->io_context = ioc;
1489 } else if (ioprio_valid(ioc->ioprio)) {
1490 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1491 if (unlikely(!new_ioc))
1492 return -ENOMEM;
1493
1494 new_ioc->ioprio = ioc->ioprio;
1495 put_io_context(new_ioc);
1496 }
1497 #endif
1498 return 0;
1499 }
1500
1501 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1502 {
1503 struct sighand_struct *sig;
1504
1505 if (clone_flags & CLONE_SIGHAND) {
1506 refcount_inc(&current->sighand->count);
1507 return 0;
1508 }
1509 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1510 rcu_assign_pointer(tsk->sighand, sig);
1511 if (!sig)
1512 return -ENOMEM;
1513
1514 refcount_set(&sig->count, 1);
1515 spin_lock_irq(&current->sighand->siglock);
1516 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1517 spin_unlock_irq(&current->sighand->siglock);
1518 return 0;
1519 }
1520
1521 void __cleanup_sighand(struct sighand_struct *sighand)
1522 {
1523 if (refcount_dec_and_test(&sighand->count)) {
1524 signalfd_cleanup(sighand);
1525 /*
1526 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1527 * without an RCU grace period, see __lock_task_sighand().
1528 */
1529 kmem_cache_free(sighand_cachep, sighand);
1530 }
1531 }
1532
1533 /*
1534 * Initialize POSIX timer handling for a thread group.
1535 */
1536 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1537 {
1538 struct posix_cputimers *pct = &sig->posix_cputimers;
1539 unsigned long cpu_limit;
1540
1541 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1542 posix_cputimers_group_init(pct, cpu_limit);
1543 }
1544
1545 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1546 {
1547 struct signal_struct *sig;
1548
1549 if (clone_flags & CLONE_THREAD)
1550 return 0;
1551
1552 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1553 tsk->signal = sig;
1554 if (!sig)
1555 return -ENOMEM;
1556
1557 sig->nr_threads = 1;
1558 atomic_set(&sig->live, 1);
1559 refcount_set(&sig->sigcnt, 1);
1560
1561 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1562 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1563 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1564
1565 init_waitqueue_head(&sig->wait_chldexit);
1566 sig->curr_target = tsk;
1567 init_sigpending(&sig->shared_pending);
1568 INIT_HLIST_HEAD(&sig->multiprocess);
1569 seqlock_init(&sig->stats_lock);
1570 prev_cputime_init(&sig->prev_cputime);
1571
1572 #ifdef CONFIG_POSIX_TIMERS
1573 INIT_LIST_HEAD(&sig->posix_timers);
1574 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1575 sig->real_timer.function = it_real_fn;
1576 #endif
1577
1578 task_lock(current->group_leader);
1579 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1580 task_unlock(current->group_leader);
1581
1582 posix_cpu_timers_init_group(sig);
1583
1584 tty_audit_fork(sig);
1585 sched_autogroup_fork(sig);
1586
1587 sig->oom_score_adj = current->signal->oom_score_adj;
1588 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1589
1590 mutex_init(&sig->cred_guard_mutex);
1591
1592 return 0;
1593 }
1594
1595 static void copy_seccomp(struct task_struct *p)
1596 {
1597 #ifdef CONFIG_SECCOMP
1598 /*
1599 * Must be called with sighand->lock held, which is common to
1600 * all threads in the group. Holding cred_guard_mutex is not
1601 * needed because this new task is not yet running and cannot
1602 * be racing exec.
1603 */
1604 assert_spin_locked(&current->sighand->siglock);
1605
1606 /* Ref-count the new filter user, and assign it. */
1607 get_seccomp_filter(current);
1608 p->seccomp = current->seccomp;
1609
1610 /*
1611 * Explicitly enable no_new_privs here in case it got set
1612 * between the task_struct being duplicated and holding the
1613 * sighand lock. The seccomp state and nnp must be in sync.
1614 */
1615 if (task_no_new_privs(current))
1616 task_set_no_new_privs(p);
1617
1618 /*
1619 * If the parent gained a seccomp mode after copying thread
1620 * flags and between before we held the sighand lock, we have
1621 * to manually enable the seccomp thread flag here.
1622 */
1623 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1624 set_tsk_thread_flag(p, TIF_SECCOMP);
1625 #endif
1626 }
1627
1628 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1629 {
1630 current->clear_child_tid = tidptr;
1631
1632 return task_pid_vnr(current);
1633 }
1634
1635 static void rt_mutex_init_task(struct task_struct *p)
1636 {
1637 raw_spin_lock_init(&p->pi_lock);
1638 #ifdef CONFIG_RT_MUTEXES
1639 p->pi_waiters = RB_ROOT_CACHED;
1640 p->pi_top_task = NULL;
1641 p->pi_blocked_on = NULL;
1642 #endif
1643 }
1644
1645 static inline void init_task_pid_links(struct task_struct *task)
1646 {
1647 enum pid_type type;
1648
1649 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1650 INIT_HLIST_NODE(&task->pid_links[type]);
1651 }
1652 }
1653
1654 static inline void
1655 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1656 {
1657 if (type == PIDTYPE_PID)
1658 task->thread_pid = pid;
1659 else
1660 task->signal->pids[type] = pid;
1661 }
1662
1663 static inline void rcu_copy_process(struct task_struct *p)
1664 {
1665 #ifdef CONFIG_PREEMPT_RCU
1666 p->rcu_read_lock_nesting = 0;
1667 p->rcu_read_unlock_special.s = 0;
1668 p->rcu_blocked_node = NULL;
1669 INIT_LIST_HEAD(&p->rcu_node_entry);
1670 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1671 #ifdef CONFIG_TASKS_RCU
1672 p->rcu_tasks_holdout = false;
1673 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1674 p->rcu_tasks_idle_cpu = -1;
1675 #endif /* #ifdef CONFIG_TASKS_RCU */
1676 }
1677
1678 struct pid *pidfd_pid(const struct file *file)
1679 {
1680 if (file->f_op == &pidfd_fops)
1681 return file->private_data;
1682
1683 return ERR_PTR(-EBADF);
1684 }
1685
1686 static int pidfd_release(struct inode *inode, struct file *file)
1687 {
1688 struct pid *pid = file->private_data;
1689
1690 file->private_data = NULL;
1691 put_pid(pid);
1692 return 0;
1693 }
1694
1695 #ifdef CONFIG_PROC_FS
1696 static void pidfd_show_fdinfo(struct seq_file *m, struct file *f)
1697 {
1698 struct pid_namespace *ns = proc_pid_ns(file_inode(m->file));
1699 struct pid *pid = f->private_data;
1700
1701 seq_put_decimal_ull(m, "Pid:\t", pid_nr_ns(pid, ns));
1702 seq_putc(m, '\n');
1703 }
1704 #endif
1705
1706 /*
1707 * Poll support for process exit notification.
1708 */
1709 static unsigned int pidfd_poll(struct file *file, struct poll_table_struct *pts)
1710 {
1711 struct task_struct *task;
1712 struct pid *pid = file->private_data;
1713 int poll_flags = 0;
1714
1715 poll_wait(file, &pid->wait_pidfd, pts);
1716
1717 rcu_read_lock();
1718 task = pid_task(pid, PIDTYPE_PID);
1719 /*
1720 * Inform pollers only when the whole thread group exits.
1721 * If the thread group leader exits before all other threads in the
1722 * group, then poll(2) should block, similar to the wait(2) family.
1723 */
1724 if (!task || (task->exit_state && thread_group_empty(task)))
1725 poll_flags = POLLIN | POLLRDNORM;
1726 rcu_read_unlock();
1727
1728 return poll_flags;
1729 }
1730
1731 const struct file_operations pidfd_fops = {
1732 .release = pidfd_release,
1733 .poll = pidfd_poll,
1734 #ifdef CONFIG_PROC_FS
1735 .show_fdinfo = pidfd_show_fdinfo,
1736 #endif
1737 };
1738
1739 static void __delayed_free_task(struct rcu_head *rhp)
1740 {
1741 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
1742
1743 free_task(tsk);
1744 }
1745
1746 static __always_inline void delayed_free_task(struct task_struct *tsk)
1747 {
1748 if (IS_ENABLED(CONFIG_MEMCG))
1749 call_rcu(&tsk->rcu, __delayed_free_task);
1750 else
1751 free_task(tsk);
1752 }
1753
1754 /*
1755 * This creates a new process as a copy of the old one,
1756 * but does not actually start it yet.
1757 *
1758 * It copies the registers, and all the appropriate
1759 * parts of the process environment (as per the clone
1760 * flags). The actual kick-off is left to the caller.
1761 */
1762 static __latent_entropy struct task_struct *copy_process(
1763 struct pid *pid,
1764 int trace,
1765 int node,
1766 struct kernel_clone_args *args)
1767 {
1768 int pidfd = -1, retval;
1769 struct task_struct *p;
1770 struct multiprocess_signals delayed;
1771 struct file *pidfile = NULL;
1772 u64 clone_flags = args->flags;
1773
1774 /*
1775 * Don't allow sharing the root directory with processes in a different
1776 * namespace
1777 */
1778 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1779 return ERR_PTR(-EINVAL);
1780
1781 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1782 return ERR_PTR(-EINVAL);
1783
1784 /*
1785 * Thread groups must share signals as well, and detached threads
1786 * can only be started up within the thread group.
1787 */
1788 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1789 return ERR_PTR(-EINVAL);
1790
1791 /*
1792 * Shared signal handlers imply shared VM. By way of the above,
1793 * thread groups also imply shared VM. Blocking this case allows
1794 * for various simplifications in other code.
1795 */
1796 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1797 return ERR_PTR(-EINVAL);
1798
1799 /*
1800 * Siblings of global init remain as zombies on exit since they are
1801 * not reaped by their parent (swapper). To solve this and to avoid
1802 * multi-rooted process trees, prevent global and container-inits
1803 * from creating siblings.
1804 */
1805 if ((clone_flags & CLONE_PARENT) &&
1806 current->signal->flags & SIGNAL_UNKILLABLE)
1807 return ERR_PTR(-EINVAL);
1808
1809 /*
1810 * If the new process will be in a different pid or user namespace
1811 * do not allow it to share a thread group with the forking task.
1812 */
1813 if (clone_flags & CLONE_THREAD) {
1814 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1815 (task_active_pid_ns(current) !=
1816 current->nsproxy->pid_ns_for_children))
1817 return ERR_PTR(-EINVAL);
1818 }
1819
1820 if (clone_flags & CLONE_PIDFD) {
1821 /*
1822 * - CLONE_DETACHED is blocked so that we can potentially
1823 * reuse it later for CLONE_PIDFD.
1824 * - CLONE_THREAD is blocked until someone really needs it.
1825 */
1826 if (clone_flags & (CLONE_DETACHED | CLONE_THREAD))
1827 return ERR_PTR(-EINVAL);
1828 }
1829
1830 /*
1831 * Force any signals received before this point to be delivered
1832 * before the fork happens. Collect up signals sent to multiple
1833 * processes that happen during the fork and delay them so that
1834 * they appear to happen after the fork.
1835 */
1836 sigemptyset(&delayed.signal);
1837 INIT_HLIST_NODE(&delayed.node);
1838
1839 spin_lock_irq(&current->sighand->siglock);
1840 if (!(clone_flags & CLONE_THREAD))
1841 hlist_add_head(&delayed.node, &current->signal->multiprocess);
1842 recalc_sigpending();
1843 spin_unlock_irq(&current->sighand->siglock);
1844 retval = -ERESTARTNOINTR;
1845 if (signal_pending(current))
1846 goto fork_out;
1847
1848 retval = -ENOMEM;
1849 p = dup_task_struct(current, node);
1850 if (!p)
1851 goto fork_out;
1852
1853 /*
1854 * This _must_ happen before we call free_task(), i.e. before we jump
1855 * to any of the bad_fork_* labels. This is to avoid freeing
1856 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1857 * kernel threads (PF_KTHREAD).
1858 */
1859 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? args->child_tid : NULL;
1860 /*
1861 * Clear TID on mm_release()?
1862 */
1863 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? args->child_tid : NULL;
1864
1865 ftrace_graph_init_task(p);
1866
1867 rt_mutex_init_task(p);
1868
1869 #ifdef CONFIG_PROVE_LOCKING
1870 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1871 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1872 #endif
1873 retval = -EAGAIN;
1874 if (atomic_read(&p->real_cred->user->processes) >=
1875 task_rlimit(p, RLIMIT_NPROC)) {
1876 if (p->real_cred->user != INIT_USER &&
1877 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1878 goto bad_fork_free;
1879 }
1880 current->flags &= ~PF_NPROC_EXCEEDED;
1881
1882 retval = copy_creds(p, clone_flags);
1883 if (retval < 0)
1884 goto bad_fork_free;
1885
1886 /*
1887 * If multiple threads are within copy_process(), then this check
1888 * triggers too late. This doesn't hurt, the check is only there
1889 * to stop root fork bombs.
1890 */
1891 retval = -EAGAIN;
1892 if (nr_threads >= max_threads)
1893 goto bad_fork_cleanup_count;
1894
1895 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1896 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1897 p->flags |= PF_FORKNOEXEC;
1898 INIT_LIST_HEAD(&p->children);
1899 INIT_LIST_HEAD(&p->sibling);
1900 rcu_copy_process(p);
1901 p->vfork_done = NULL;
1902 spin_lock_init(&p->alloc_lock);
1903
1904 init_sigpending(&p->pending);
1905
1906 p->utime = p->stime = p->gtime = 0;
1907 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1908 p->utimescaled = p->stimescaled = 0;
1909 #endif
1910 prev_cputime_init(&p->prev_cputime);
1911
1912 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1913 seqcount_init(&p->vtime.seqcount);
1914 p->vtime.starttime = 0;
1915 p->vtime.state = VTIME_INACTIVE;
1916 #endif
1917
1918 #if defined(SPLIT_RSS_COUNTING)
1919 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1920 #endif
1921
1922 p->default_timer_slack_ns = current->timer_slack_ns;
1923
1924 #ifdef CONFIG_PSI
1925 p->psi_flags = 0;
1926 #endif
1927
1928 task_io_accounting_init(&p->ioac);
1929 acct_clear_integrals(p);
1930
1931 posix_cputimers_init(&p->posix_cputimers);
1932
1933 p->io_context = NULL;
1934 audit_set_context(p, NULL);
1935 cgroup_fork(p);
1936 #ifdef CONFIG_NUMA
1937 p->mempolicy = mpol_dup(p->mempolicy);
1938 if (IS_ERR(p->mempolicy)) {
1939 retval = PTR_ERR(p->mempolicy);
1940 p->mempolicy = NULL;
1941 goto bad_fork_cleanup_threadgroup_lock;
1942 }
1943 #endif
1944 #ifdef CONFIG_CPUSETS
1945 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1946 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1947 seqcount_init(&p->mems_allowed_seq);
1948 #endif
1949 #ifdef CONFIG_TRACE_IRQFLAGS
1950 p->irq_events = 0;
1951 p->hardirqs_enabled = 0;
1952 p->hardirq_enable_ip = 0;
1953 p->hardirq_enable_event = 0;
1954 p->hardirq_disable_ip = _THIS_IP_;
1955 p->hardirq_disable_event = 0;
1956 p->softirqs_enabled = 1;
1957 p->softirq_enable_ip = _THIS_IP_;
1958 p->softirq_enable_event = 0;
1959 p->softirq_disable_ip = 0;
1960 p->softirq_disable_event = 0;
1961 p->hardirq_context = 0;
1962 p->softirq_context = 0;
1963 #endif
1964
1965 p->pagefault_disabled = 0;
1966
1967 #ifdef CONFIG_LOCKDEP
1968 lockdep_init_task(p);
1969 #endif
1970
1971 #ifdef CONFIG_DEBUG_MUTEXES
1972 p->blocked_on = NULL; /* not blocked yet */
1973 #endif
1974 #ifdef CONFIG_BCACHE
1975 p->sequential_io = 0;
1976 p->sequential_io_avg = 0;
1977 #endif
1978
1979 /* Perform scheduler related setup. Assign this task to a CPU. */
1980 retval = sched_fork(clone_flags, p);
1981 if (retval)
1982 goto bad_fork_cleanup_policy;
1983
1984 retval = perf_event_init_task(p);
1985 if (retval)
1986 goto bad_fork_cleanup_policy;
1987 retval = audit_alloc(p);
1988 if (retval)
1989 goto bad_fork_cleanup_perf;
1990 /* copy all the process information */
1991 shm_init_task(p);
1992 retval = security_task_alloc(p, clone_flags);
1993 if (retval)
1994 goto bad_fork_cleanup_audit;
1995 retval = copy_semundo(clone_flags, p);
1996 if (retval)
1997 goto bad_fork_cleanup_security;
1998 retval = copy_files(clone_flags, p);
1999 if (retval)
2000 goto bad_fork_cleanup_semundo;
2001 retval = copy_fs(clone_flags, p);
2002 if (retval)
2003 goto bad_fork_cleanup_files;
2004 retval = copy_sighand(clone_flags, p);
2005 if (retval)
2006 goto bad_fork_cleanup_fs;
2007 retval = copy_signal(clone_flags, p);
2008 if (retval)
2009 goto bad_fork_cleanup_sighand;
2010 retval = copy_mm(clone_flags, p);
2011 if (retval)
2012 goto bad_fork_cleanup_signal;
2013 retval = copy_namespaces(clone_flags, p);
2014 if (retval)
2015 goto bad_fork_cleanup_mm;
2016 retval = copy_io(clone_flags, p);
2017 if (retval)
2018 goto bad_fork_cleanup_namespaces;
2019 retval = copy_thread_tls(clone_flags, args->stack, args->stack_size, p,
2020 args->tls);
2021 if (retval)
2022 goto bad_fork_cleanup_io;
2023
2024 stackleak_task_init(p);
2025
2026 if (pid != &init_struct_pid) {
2027 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
2028 if (IS_ERR(pid)) {
2029 retval = PTR_ERR(pid);
2030 goto bad_fork_cleanup_thread;
2031 }
2032 }
2033
2034 /*
2035 * This has to happen after we've potentially unshared the file
2036 * descriptor table (so that the pidfd doesn't leak into the child
2037 * if the fd table isn't shared).
2038 */
2039 if (clone_flags & CLONE_PIDFD) {
2040 retval = get_unused_fd_flags(O_RDWR | O_CLOEXEC);
2041 if (retval < 0)
2042 goto bad_fork_free_pid;
2043
2044 pidfd = retval;
2045
2046 pidfile = anon_inode_getfile("[pidfd]", &pidfd_fops, pid,
2047 O_RDWR | O_CLOEXEC);
2048 if (IS_ERR(pidfile)) {
2049 put_unused_fd(pidfd);
2050 retval = PTR_ERR(pidfile);
2051 goto bad_fork_free_pid;
2052 }
2053 get_pid(pid); /* held by pidfile now */
2054
2055 retval = put_user(pidfd, args->pidfd);
2056 if (retval)
2057 goto bad_fork_put_pidfd;
2058 }
2059
2060 #ifdef CONFIG_BLOCK
2061 p->plug = NULL;
2062 #endif
2063 #ifdef CONFIG_FUTEX
2064 p->robust_list = NULL;
2065 #ifdef CONFIG_COMPAT
2066 p->compat_robust_list = NULL;
2067 #endif
2068 INIT_LIST_HEAD(&p->pi_state_list);
2069 p->pi_state_cache = NULL;
2070 #endif
2071 /*
2072 * sigaltstack should be cleared when sharing the same VM
2073 */
2074 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
2075 sas_ss_reset(p);
2076
2077 /*
2078 * Syscall tracing and stepping should be turned off in the
2079 * child regardless of CLONE_PTRACE.
2080 */
2081 user_disable_single_step(p);
2082 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
2083 #ifdef TIF_SYSCALL_EMU
2084 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
2085 #endif
2086 clear_tsk_latency_tracing(p);
2087
2088 /* ok, now we should be set up.. */
2089 p->pid = pid_nr(pid);
2090 if (clone_flags & CLONE_THREAD) {
2091 p->exit_signal = -1;
2092 p->group_leader = current->group_leader;
2093 p->tgid = current->tgid;
2094 } else {
2095 if (clone_flags & CLONE_PARENT)
2096 p->exit_signal = current->group_leader->exit_signal;
2097 else
2098 p->exit_signal = args->exit_signal;
2099 p->group_leader = p;
2100 p->tgid = p->pid;
2101 }
2102
2103 p->nr_dirtied = 0;
2104 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
2105 p->dirty_paused_when = 0;
2106
2107 p->pdeath_signal = 0;
2108 INIT_LIST_HEAD(&p->thread_group);
2109 p->task_works = NULL;
2110
2111 cgroup_threadgroup_change_begin(current);
2112 /*
2113 * Ensure that the cgroup subsystem policies allow the new process to be
2114 * forked. It should be noted the the new process's css_set can be changed
2115 * between here and cgroup_post_fork() if an organisation operation is in
2116 * progress.
2117 */
2118 retval = cgroup_can_fork(p);
2119 if (retval)
2120 goto bad_fork_cgroup_threadgroup_change_end;
2121
2122 /*
2123 * From this point on we must avoid any synchronous user-space
2124 * communication until we take the tasklist-lock. In particular, we do
2125 * not want user-space to be able to predict the process start-time by
2126 * stalling fork(2) after we recorded the start_time but before it is
2127 * visible to the system.
2128 */
2129
2130 p->start_time = ktime_get_ns();
2131 p->real_start_time = ktime_get_boottime_ns();
2132
2133 /*
2134 * Make it visible to the rest of the system, but dont wake it up yet.
2135 * Need tasklist lock for parent etc handling!
2136 */
2137 write_lock_irq(&tasklist_lock);
2138
2139 /* CLONE_PARENT re-uses the old parent */
2140 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
2141 p->real_parent = current->real_parent;
2142 p->parent_exec_id = current->parent_exec_id;
2143 } else {
2144 p->real_parent = current;
2145 p->parent_exec_id = current->self_exec_id;
2146 }
2147
2148 klp_copy_process(p);
2149
2150 spin_lock(&current->sighand->siglock);
2151
2152 /*
2153 * Copy seccomp details explicitly here, in case they were changed
2154 * before holding sighand lock.
2155 */
2156 copy_seccomp(p);
2157
2158 rseq_fork(p, clone_flags);
2159
2160 /* Don't start children in a dying pid namespace */
2161 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
2162 retval = -ENOMEM;
2163 goto bad_fork_cancel_cgroup;
2164 }
2165
2166 /* Let kill terminate clone/fork in the middle */
2167 if (fatal_signal_pending(current)) {
2168 retval = -EINTR;
2169 goto bad_fork_cancel_cgroup;
2170 }
2171
2172 /* past the last point of failure */
2173 if (pidfile)
2174 fd_install(pidfd, pidfile);
2175
2176 init_task_pid_links(p);
2177 if (likely(p->pid)) {
2178 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
2179
2180 init_task_pid(p, PIDTYPE_PID, pid);
2181 if (thread_group_leader(p)) {
2182 init_task_pid(p, PIDTYPE_TGID, pid);
2183 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2184 init_task_pid(p, PIDTYPE_SID, task_session(current));
2185
2186 if (is_child_reaper(pid)) {
2187 ns_of_pid(pid)->child_reaper = p;
2188 p->signal->flags |= SIGNAL_UNKILLABLE;
2189 }
2190 p->signal->shared_pending.signal = delayed.signal;
2191 p->signal->tty = tty_kref_get(current->signal->tty);
2192 /*
2193 * Inherit has_child_subreaper flag under the same
2194 * tasklist_lock with adding child to the process tree
2195 * for propagate_has_child_subreaper optimization.
2196 */
2197 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2198 p->real_parent->signal->is_child_subreaper;
2199 list_add_tail(&p->sibling, &p->real_parent->children);
2200 list_add_tail_rcu(&p->tasks, &init_task.tasks);
2201 attach_pid(p, PIDTYPE_TGID);
2202 attach_pid(p, PIDTYPE_PGID);
2203 attach_pid(p, PIDTYPE_SID);
2204 __this_cpu_inc(process_counts);
2205 } else {
2206 current->signal->nr_threads++;
2207 atomic_inc(&current->signal->live);
2208 refcount_inc(&current->signal->sigcnt);
2209 task_join_group_stop(p);
2210 list_add_tail_rcu(&p->thread_group,
2211 &p->group_leader->thread_group);
2212 list_add_tail_rcu(&p->thread_node,
2213 &p->signal->thread_head);
2214 }
2215 attach_pid(p, PIDTYPE_PID);
2216 nr_threads++;
2217 }
2218 total_forks++;
2219 hlist_del_init(&delayed.node);
2220 spin_unlock(&current->sighand->siglock);
2221 syscall_tracepoint_update(p);
2222 write_unlock_irq(&tasklist_lock);
2223
2224 proc_fork_connector(p);
2225 cgroup_post_fork(p);
2226 cgroup_threadgroup_change_end(current);
2227 perf_event_fork(p);
2228
2229 trace_task_newtask(p, clone_flags);
2230 uprobe_copy_process(p, clone_flags);
2231
2232 return p;
2233
2234 bad_fork_cancel_cgroup:
2235 spin_unlock(&current->sighand->siglock);
2236 write_unlock_irq(&tasklist_lock);
2237 cgroup_cancel_fork(p);
2238 bad_fork_cgroup_threadgroup_change_end:
2239 cgroup_threadgroup_change_end(current);
2240 bad_fork_put_pidfd:
2241 if (clone_flags & CLONE_PIDFD) {
2242 fput(pidfile);
2243 put_unused_fd(pidfd);
2244 }
2245 bad_fork_free_pid:
2246 if (pid != &init_struct_pid)
2247 free_pid(pid);
2248 bad_fork_cleanup_thread:
2249 exit_thread(p);
2250 bad_fork_cleanup_io:
2251 if (p->io_context)
2252 exit_io_context(p);
2253 bad_fork_cleanup_namespaces:
2254 exit_task_namespaces(p);
2255 bad_fork_cleanup_mm:
2256 if (p->mm) {
2257 mm_clear_owner(p->mm, p);
2258 mmput(p->mm);
2259 }
2260 bad_fork_cleanup_signal:
2261 if (!(clone_flags & CLONE_THREAD))
2262 free_signal_struct(p->signal);
2263 bad_fork_cleanup_sighand:
2264 __cleanup_sighand(p->sighand);
2265 bad_fork_cleanup_fs:
2266 exit_fs(p); /* blocking */
2267 bad_fork_cleanup_files:
2268 exit_files(p); /* blocking */
2269 bad_fork_cleanup_semundo:
2270 exit_sem(p);
2271 bad_fork_cleanup_security:
2272 security_task_free(p);
2273 bad_fork_cleanup_audit:
2274 audit_free(p);
2275 bad_fork_cleanup_perf:
2276 perf_event_free_task(p);
2277 bad_fork_cleanup_policy:
2278 lockdep_free_task(p);
2279 #ifdef CONFIG_NUMA
2280 mpol_put(p->mempolicy);
2281 bad_fork_cleanup_threadgroup_lock:
2282 #endif
2283 delayacct_tsk_free(p);
2284 bad_fork_cleanup_count:
2285 atomic_dec(&p->cred->user->processes);
2286 exit_creds(p);
2287 bad_fork_free:
2288 p->state = TASK_DEAD;
2289 put_task_stack(p);
2290 delayed_free_task(p);
2291 fork_out:
2292 spin_lock_irq(&current->sighand->siglock);
2293 hlist_del_init(&delayed.node);
2294 spin_unlock_irq(&current->sighand->siglock);
2295 return ERR_PTR(retval);
2296 }
2297
2298 static inline void init_idle_pids(struct task_struct *idle)
2299 {
2300 enum pid_type type;
2301
2302 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2303 INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2304 init_task_pid(idle, type, &init_struct_pid);
2305 }
2306 }
2307
2308 struct task_struct *fork_idle(int cpu)
2309 {
2310 struct task_struct *task;
2311 struct kernel_clone_args args = {
2312 .flags = CLONE_VM,
2313 };
2314
2315 task = copy_process(&init_struct_pid, 0, cpu_to_node(cpu), &args);
2316 if (!IS_ERR(task)) {
2317 init_idle_pids(task);
2318 init_idle(task, cpu);
2319 }
2320
2321 return task;
2322 }
2323
2324 struct mm_struct *copy_init_mm(void)
2325 {
2326 return dup_mm(NULL, &init_mm);
2327 }
2328
2329 /*
2330 * Ok, this is the main fork-routine.
2331 *
2332 * It copies the process, and if successful kick-starts
2333 * it and waits for it to finish using the VM if required.
2334 *
2335 * args->exit_signal is expected to be checked for sanity by the caller.
2336 */
2337 long _do_fork(struct kernel_clone_args *args)
2338 {
2339 u64 clone_flags = args->flags;
2340 struct completion vfork;
2341 struct pid *pid;
2342 struct task_struct *p;
2343 int trace = 0;
2344 long nr;
2345
2346 /*
2347 * Determine whether and which event to report to ptracer. When
2348 * called from kernel_thread or CLONE_UNTRACED is explicitly
2349 * requested, no event is reported; otherwise, report if the event
2350 * for the type of forking is enabled.
2351 */
2352 if (!(clone_flags & CLONE_UNTRACED)) {
2353 if (clone_flags & CLONE_VFORK)
2354 trace = PTRACE_EVENT_VFORK;
2355 else if (args->exit_signal != SIGCHLD)
2356 trace = PTRACE_EVENT_CLONE;
2357 else
2358 trace = PTRACE_EVENT_FORK;
2359
2360 if (likely(!ptrace_event_enabled(current, trace)))
2361 trace = 0;
2362 }
2363
2364 p = copy_process(NULL, trace, NUMA_NO_NODE, args);
2365 add_latent_entropy();
2366
2367 if (IS_ERR(p))
2368 return PTR_ERR(p);
2369
2370 /*
2371 * Do this prior waking up the new thread - the thread pointer
2372 * might get invalid after that point, if the thread exits quickly.
2373 */
2374 trace_sched_process_fork(current, p);
2375
2376 pid = get_task_pid(p, PIDTYPE_PID);
2377 nr = pid_vnr(pid);
2378
2379 if (clone_flags & CLONE_PARENT_SETTID)
2380 put_user(nr, args->parent_tid);
2381
2382 if (clone_flags & CLONE_VFORK) {
2383 p->vfork_done = &vfork;
2384 init_completion(&vfork);
2385 get_task_struct(p);
2386 }
2387
2388 wake_up_new_task(p);
2389
2390 /* forking complete and child started to run, tell ptracer */
2391 if (unlikely(trace))
2392 ptrace_event_pid(trace, pid);
2393
2394 if (clone_flags & CLONE_VFORK) {
2395 if (!wait_for_vfork_done(p, &vfork))
2396 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2397 }
2398
2399 put_pid(pid);
2400 return nr;
2401 }
2402
2403 bool legacy_clone_args_valid(const struct kernel_clone_args *kargs)
2404 {
2405 /* clone(CLONE_PIDFD) uses parent_tidptr to return a pidfd */
2406 if ((kargs->flags & CLONE_PIDFD) &&
2407 (kargs->flags & CLONE_PARENT_SETTID))
2408 return false;
2409
2410 return true;
2411 }
2412
2413 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2414 /* For compatibility with architectures that call do_fork directly rather than
2415 * using the syscall entry points below. */
2416 long do_fork(unsigned long clone_flags,
2417 unsigned long stack_start,
2418 unsigned long stack_size,
2419 int __user *parent_tidptr,
2420 int __user *child_tidptr)
2421 {
2422 struct kernel_clone_args args = {
2423 .flags = (clone_flags & ~CSIGNAL),
2424 .pidfd = parent_tidptr,
2425 .child_tid = child_tidptr,
2426 .parent_tid = parent_tidptr,
2427 .exit_signal = (clone_flags & CSIGNAL),
2428 .stack = stack_start,
2429 .stack_size = stack_size,
2430 };
2431
2432 if (!legacy_clone_args_valid(&args))
2433 return -EINVAL;
2434
2435 return _do_fork(&args);
2436 }
2437 #endif
2438
2439 /*
2440 * Create a kernel thread.
2441 */
2442 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2443 {
2444 struct kernel_clone_args args = {
2445 .flags = ((flags | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
2446 .exit_signal = (flags & CSIGNAL),
2447 .stack = (unsigned long)fn,
2448 .stack_size = (unsigned long)arg,
2449 };
2450
2451 return _do_fork(&args);
2452 }
2453
2454 #ifdef __ARCH_WANT_SYS_FORK
2455 SYSCALL_DEFINE0(fork)
2456 {
2457 #ifdef CONFIG_MMU
2458 struct kernel_clone_args args = {
2459 .exit_signal = SIGCHLD,
2460 };
2461
2462 return _do_fork(&args);
2463 #else
2464 /* can not support in nommu mode */
2465 return -EINVAL;
2466 #endif
2467 }
2468 #endif
2469
2470 #ifdef __ARCH_WANT_SYS_VFORK
2471 SYSCALL_DEFINE0(vfork)
2472 {
2473 struct kernel_clone_args args = {
2474 .flags = CLONE_VFORK | CLONE_VM,
2475 .exit_signal = SIGCHLD,
2476 };
2477
2478 return _do_fork(&args);
2479 }
2480 #endif
2481
2482 #ifdef __ARCH_WANT_SYS_CLONE
2483 #ifdef CONFIG_CLONE_BACKWARDS
2484 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2485 int __user *, parent_tidptr,
2486 unsigned long, tls,
2487 int __user *, child_tidptr)
2488 #elif defined(CONFIG_CLONE_BACKWARDS2)
2489 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2490 int __user *, parent_tidptr,
2491 int __user *, child_tidptr,
2492 unsigned long, tls)
2493 #elif defined(CONFIG_CLONE_BACKWARDS3)
2494 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2495 int, stack_size,
2496 int __user *, parent_tidptr,
2497 int __user *, child_tidptr,
2498 unsigned long, tls)
2499 #else
2500 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2501 int __user *, parent_tidptr,
2502 int __user *, child_tidptr,
2503 unsigned long, tls)
2504 #endif
2505 {
2506 struct kernel_clone_args args = {
2507 .flags = (clone_flags & ~CSIGNAL),
2508 .pidfd = parent_tidptr,
2509 .child_tid = child_tidptr,
2510 .parent_tid = parent_tidptr,
2511 .exit_signal = (clone_flags & CSIGNAL),
2512 .stack = newsp,
2513 .tls = tls,
2514 };
2515
2516 if (!legacy_clone_args_valid(&args))
2517 return -EINVAL;
2518
2519 return _do_fork(&args);
2520 }
2521 #endif
2522
2523 #ifdef __ARCH_WANT_SYS_CLONE3
2524 noinline static int copy_clone_args_from_user(struct kernel_clone_args *kargs,
2525 struct clone_args __user *uargs,
2526 size_t size)
2527 {
2528 struct clone_args args;
2529
2530 if (unlikely(size > PAGE_SIZE))
2531 return -E2BIG;
2532
2533 if (unlikely(size < sizeof(struct clone_args)))
2534 return -EINVAL;
2535
2536 if (unlikely(!access_ok(uargs, size)))
2537 return -EFAULT;
2538
2539 if (size > sizeof(struct clone_args)) {
2540 unsigned char __user *addr;
2541 unsigned char __user *end;
2542 unsigned char val;
2543
2544 addr = (void __user *)uargs + sizeof(struct clone_args);
2545 end = (void __user *)uargs + size;
2546
2547 for (; addr < end; addr++) {
2548 if (get_user(val, addr))
2549 return -EFAULT;
2550 if (val)
2551 return -E2BIG;
2552 }
2553
2554 size = sizeof(struct clone_args);
2555 }
2556
2557 if (copy_from_user(&args, uargs, size))
2558 return -EFAULT;
2559
2560 /*
2561 * Verify that higher 32bits of exit_signal are unset and that
2562 * it is a valid signal
2563 */
2564 if (unlikely((args.exit_signal & ~((u64)CSIGNAL)) ||
2565 !valid_signal(args.exit_signal)))
2566 return -EINVAL;
2567
2568 *kargs = (struct kernel_clone_args){
2569 .flags = args.flags,
2570 .pidfd = u64_to_user_ptr(args.pidfd),
2571 .child_tid = u64_to_user_ptr(args.child_tid),
2572 .parent_tid = u64_to_user_ptr(args.parent_tid),
2573 .exit_signal = args.exit_signal,
2574 .stack = args.stack,
2575 .stack_size = args.stack_size,
2576 .tls = args.tls,
2577 };
2578
2579 return 0;
2580 }
2581
2582 static bool clone3_args_valid(const struct kernel_clone_args *kargs)
2583 {
2584 /*
2585 * All lower bits of the flag word are taken.
2586 * Verify that no other unknown flags are passed along.
2587 */
2588 if (kargs->flags & ~CLONE_LEGACY_FLAGS)
2589 return false;
2590
2591 /*
2592 * - make the CLONE_DETACHED bit reuseable for clone3
2593 * - make the CSIGNAL bits reuseable for clone3
2594 */
2595 if (kargs->flags & (CLONE_DETACHED | CSIGNAL))
2596 return false;
2597
2598 if ((kargs->flags & (CLONE_THREAD | CLONE_PARENT)) &&
2599 kargs->exit_signal)
2600 return false;
2601
2602 return true;
2603 }
2604
2605 SYSCALL_DEFINE2(clone3, struct clone_args __user *, uargs, size_t, size)
2606 {
2607 int err;
2608
2609 struct kernel_clone_args kargs;
2610
2611 err = copy_clone_args_from_user(&kargs, uargs, size);
2612 if (err)
2613 return err;
2614
2615 if (!clone3_args_valid(&kargs))
2616 return -EINVAL;
2617
2618 return _do_fork(&kargs);
2619 }
2620 #endif
2621
2622 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2623 {
2624 struct task_struct *leader, *parent, *child;
2625 int res;
2626
2627 read_lock(&tasklist_lock);
2628 leader = top = top->group_leader;
2629 down:
2630 for_each_thread(leader, parent) {
2631 list_for_each_entry(child, &parent->children, sibling) {
2632 res = visitor(child, data);
2633 if (res) {
2634 if (res < 0)
2635 goto out;
2636 leader = child;
2637 goto down;
2638 }
2639 up:
2640 ;
2641 }
2642 }
2643
2644 if (leader != top) {
2645 child = leader;
2646 parent = child->real_parent;
2647 leader = parent->group_leader;
2648 goto up;
2649 }
2650 out:
2651 read_unlock(&tasklist_lock);
2652 }
2653
2654 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2655 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2656 #endif
2657
2658 static void sighand_ctor(void *data)
2659 {
2660 struct sighand_struct *sighand = data;
2661
2662 spin_lock_init(&sighand->siglock);
2663 init_waitqueue_head(&sighand->signalfd_wqh);
2664 }
2665
2666 void __init proc_caches_init(void)
2667 {
2668 unsigned int mm_size;
2669
2670 sighand_cachep = kmem_cache_create("sighand_cache",
2671 sizeof(struct sighand_struct), 0,
2672 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2673 SLAB_ACCOUNT, sighand_ctor);
2674 signal_cachep = kmem_cache_create("signal_cache",
2675 sizeof(struct signal_struct), 0,
2676 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2677 NULL);
2678 files_cachep = kmem_cache_create("files_cache",
2679 sizeof(struct files_struct), 0,
2680 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2681 NULL);
2682 fs_cachep = kmem_cache_create("fs_cache",
2683 sizeof(struct fs_struct), 0,
2684 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2685 NULL);
2686
2687 /*
2688 * The mm_cpumask is located at the end of mm_struct, and is
2689 * dynamically sized based on the maximum CPU number this system
2690 * can have, taking hotplug into account (nr_cpu_ids).
2691 */
2692 mm_size = sizeof(struct mm_struct) + cpumask_size();
2693
2694 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2695 mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2696 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2697 offsetof(struct mm_struct, saved_auxv),
2698 sizeof_field(struct mm_struct, saved_auxv),
2699 NULL);
2700 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2701 mmap_init();
2702 nsproxy_cache_init();
2703 }
2704
2705 /*
2706 * Check constraints on flags passed to the unshare system call.
2707 */
2708 static int check_unshare_flags(unsigned long unshare_flags)
2709 {
2710 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2711 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2712 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2713 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2714 return -EINVAL;
2715 /*
2716 * Not implemented, but pretend it works if there is nothing
2717 * to unshare. Note that unsharing the address space or the
2718 * signal handlers also need to unshare the signal queues (aka
2719 * CLONE_THREAD).
2720 */
2721 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2722 if (!thread_group_empty(current))
2723 return -EINVAL;
2724 }
2725 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2726 if (refcount_read(&current->sighand->count) > 1)
2727 return -EINVAL;
2728 }
2729 if (unshare_flags & CLONE_VM) {
2730 if (!current_is_single_threaded())
2731 return -EINVAL;
2732 }
2733
2734 return 0;
2735 }
2736
2737 /*
2738 * Unshare the filesystem structure if it is being shared
2739 */
2740 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2741 {
2742 struct fs_struct *fs = current->fs;
2743
2744 if (!(unshare_flags & CLONE_FS) || !fs)
2745 return 0;
2746
2747 /* don't need lock here; in the worst case we'll do useless copy */
2748 if (fs->users == 1)
2749 return 0;
2750
2751 *new_fsp = copy_fs_struct(fs);
2752 if (!*new_fsp)
2753 return -ENOMEM;
2754
2755 return 0;
2756 }
2757
2758 /*
2759 * Unshare file descriptor table if it is being shared
2760 */
2761 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2762 {
2763 struct files_struct *fd = current->files;
2764 int error = 0;
2765
2766 if ((unshare_flags & CLONE_FILES) &&
2767 (fd && atomic_read(&fd->count) > 1)) {
2768 *new_fdp = dup_fd(fd, &error);
2769 if (!*new_fdp)
2770 return error;
2771 }
2772
2773 return 0;
2774 }
2775
2776 /*
2777 * unshare allows a process to 'unshare' part of the process
2778 * context which was originally shared using clone. copy_*
2779 * functions used by do_fork() cannot be used here directly
2780 * because they modify an inactive task_struct that is being
2781 * constructed. Here we are modifying the current, active,
2782 * task_struct.
2783 */
2784 int ksys_unshare(unsigned long unshare_flags)
2785 {
2786 struct fs_struct *fs, *new_fs = NULL;
2787 struct files_struct *fd, *new_fd = NULL;
2788 struct cred *new_cred = NULL;
2789 struct nsproxy *new_nsproxy = NULL;
2790 int do_sysvsem = 0;
2791 int err;
2792
2793 /*
2794 * If unsharing a user namespace must also unshare the thread group
2795 * and unshare the filesystem root and working directories.
2796 */
2797 if (unshare_flags & CLONE_NEWUSER)
2798 unshare_flags |= CLONE_THREAD | CLONE_FS;
2799 /*
2800 * If unsharing vm, must also unshare signal handlers.
2801 */
2802 if (unshare_flags & CLONE_VM)
2803 unshare_flags |= CLONE_SIGHAND;
2804 /*
2805 * If unsharing a signal handlers, must also unshare the signal queues.
2806 */
2807 if (unshare_flags & CLONE_SIGHAND)
2808 unshare_flags |= CLONE_THREAD;
2809 /*
2810 * If unsharing namespace, must also unshare filesystem information.
2811 */
2812 if (unshare_flags & CLONE_NEWNS)
2813 unshare_flags |= CLONE_FS;
2814
2815 err = check_unshare_flags(unshare_flags);
2816 if (err)
2817 goto bad_unshare_out;
2818 /*
2819 * CLONE_NEWIPC must also detach from the undolist: after switching
2820 * to a new ipc namespace, the semaphore arrays from the old
2821 * namespace are unreachable.
2822 */
2823 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2824 do_sysvsem = 1;
2825 err = unshare_fs(unshare_flags, &new_fs);
2826 if (err)
2827 goto bad_unshare_out;
2828 err = unshare_fd(unshare_flags, &new_fd);
2829 if (err)
2830 goto bad_unshare_cleanup_fs;
2831 err = unshare_userns(unshare_flags, &new_cred);
2832 if (err)
2833 goto bad_unshare_cleanup_fd;
2834 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2835 new_cred, new_fs);
2836 if (err)
2837 goto bad_unshare_cleanup_cred;
2838
2839 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2840 if (do_sysvsem) {
2841 /*
2842 * CLONE_SYSVSEM is equivalent to sys_exit().
2843 */
2844 exit_sem(current);
2845 }
2846 if (unshare_flags & CLONE_NEWIPC) {
2847 /* Orphan segments in old ns (see sem above). */
2848 exit_shm(current);
2849 shm_init_task(current);
2850 }
2851
2852 if (new_nsproxy)
2853 switch_task_namespaces(current, new_nsproxy);
2854
2855 task_lock(current);
2856
2857 if (new_fs) {
2858 fs = current->fs;
2859 spin_lock(&fs->lock);
2860 current->fs = new_fs;
2861 if (--fs->users)
2862 new_fs = NULL;
2863 else
2864 new_fs = fs;
2865 spin_unlock(&fs->lock);
2866 }
2867
2868 if (new_fd) {
2869 fd = current->files;
2870 current->files = new_fd;
2871 new_fd = fd;
2872 }
2873
2874 task_unlock(current);
2875
2876 if (new_cred) {
2877 /* Install the new user namespace */
2878 commit_creds(new_cred);
2879 new_cred = NULL;
2880 }
2881 }
2882
2883 perf_event_namespaces(current);
2884
2885 bad_unshare_cleanup_cred:
2886 if (new_cred)
2887 put_cred(new_cred);
2888 bad_unshare_cleanup_fd:
2889 if (new_fd)
2890 put_files_struct(new_fd);
2891
2892 bad_unshare_cleanup_fs:
2893 if (new_fs)
2894 free_fs_struct(new_fs);
2895
2896 bad_unshare_out:
2897 return err;
2898 }
2899
2900 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2901 {
2902 return ksys_unshare(unshare_flags);
2903 }
2904
2905 /*
2906 * Helper to unshare the files of the current task.
2907 * We don't want to expose copy_files internals to
2908 * the exec layer of the kernel.
2909 */
2910
2911 int unshare_files(struct files_struct **displaced)
2912 {
2913 struct task_struct *task = current;
2914 struct files_struct *copy = NULL;
2915 int error;
2916
2917 error = unshare_fd(CLONE_FILES, &copy);
2918 if (error || !copy) {
2919 *displaced = NULL;
2920 return error;
2921 }
2922 *displaced = task->files;
2923 task_lock(task);
2924 task->files = copy;
2925 task_unlock(task);
2926 return 0;
2927 }
2928
2929 int sysctl_max_threads(struct ctl_table *table, int write,
2930 void __user *buffer, size_t *lenp, loff_t *ppos)
2931 {
2932 struct ctl_table t;
2933 int ret;
2934 int threads = max_threads;
2935 int min = MIN_THREADS;
2936 int max = MAX_THREADS;
2937
2938 t = *table;
2939 t.data = &threads;
2940 t.extra1 = &min;
2941 t.extra2 = &max;
2942
2943 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2944 if (ret || !write)
2945 return ret;
2946
2947 set_max_threads(threads);
2948
2949 return 0;
2950 }