]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
mm: add rss counters consistency check
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/futex.h>
41 #include <linux/compat.h>
42 #include <linux/kthread.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/blkdev.h>
62 #include <linux/fs_struct.h>
63 #include <linux/magic.h>
64 #include <linux/perf_event.h>
65 #include <linux/posix-timers.h>
66 #include <linux/user-return-notifier.h>
67 #include <linux/oom.h>
68 #include <linux/khugepaged.h>
69 #include <linux/signalfd.h>
70
71 #include <asm/pgtable.h>
72 #include <asm/pgalloc.h>
73 #include <asm/uaccess.h>
74 #include <asm/mmu_context.h>
75 #include <asm/cacheflush.h>
76 #include <asm/tlbflush.h>
77
78 #include <trace/events/sched.h>
79
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/task.h>
82
83 /*
84 * Protected counters by write_lock_irq(&tasklist_lock)
85 */
86 unsigned long total_forks; /* Handle normal Linux uptimes. */
87 int nr_threads; /* The idle threads do not count.. */
88
89 int max_threads; /* tunable limit on nr_threads */
90
91 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
92
93 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
94
95 #ifdef CONFIG_PROVE_RCU
96 int lockdep_tasklist_lock_is_held(void)
97 {
98 return lockdep_is_held(&tasklist_lock);
99 }
100 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
101 #endif /* #ifdef CONFIG_PROVE_RCU */
102
103 int nr_processes(void)
104 {
105 int cpu;
106 int total = 0;
107
108 for_each_possible_cpu(cpu)
109 total += per_cpu(process_counts, cpu);
110
111 return total;
112 }
113
114 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
115 # define alloc_task_struct_node(node) \
116 kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node)
117 # define free_task_struct(tsk) \
118 kmem_cache_free(task_struct_cachep, (tsk))
119 static struct kmem_cache *task_struct_cachep;
120 #endif
121
122 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
123 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
124 int node)
125 {
126 #ifdef CONFIG_DEBUG_STACK_USAGE
127 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
128 #else
129 gfp_t mask = GFP_KERNEL;
130 #endif
131 struct page *page = alloc_pages_node(node, mask, THREAD_SIZE_ORDER);
132
133 return page ? page_address(page) : NULL;
134 }
135
136 static inline void free_thread_info(struct thread_info *ti)
137 {
138 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
139 }
140 #endif
141
142 /* SLAB cache for signal_struct structures (tsk->signal) */
143 static struct kmem_cache *signal_cachep;
144
145 /* SLAB cache for sighand_struct structures (tsk->sighand) */
146 struct kmem_cache *sighand_cachep;
147
148 /* SLAB cache for files_struct structures (tsk->files) */
149 struct kmem_cache *files_cachep;
150
151 /* SLAB cache for fs_struct structures (tsk->fs) */
152 struct kmem_cache *fs_cachep;
153
154 /* SLAB cache for vm_area_struct structures */
155 struct kmem_cache *vm_area_cachep;
156
157 /* SLAB cache for mm_struct structures (tsk->mm) */
158 static struct kmem_cache *mm_cachep;
159
160 static void account_kernel_stack(struct thread_info *ti, int account)
161 {
162 struct zone *zone = page_zone(virt_to_page(ti));
163
164 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
165 }
166
167 void free_task(struct task_struct *tsk)
168 {
169 account_kernel_stack(tsk->stack, -1);
170 free_thread_info(tsk->stack);
171 rt_mutex_debug_task_free(tsk);
172 ftrace_graph_exit_task(tsk);
173 free_task_struct(tsk);
174 }
175 EXPORT_SYMBOL(free_task);
176
177 static inline void free_signal_struct(struct signal_struct *sig)
178 {
179 taskstats_tgid_free(sig);
180 sched_autogroup_exit(sig);
181 kmem_cache_free(signal_cachep, sig);
182 }
183
184 static inline void put_signal_struct(struct signal_struct *sig)
185 {
186 if (atomic_dec_and_test(&sig->sigcnt))
187 free_signal_struct(sig);
188 }
189
190 void __put_task_struct(struct task_struct *tsk)
191 {
192 WARN_ON(!tsk->exit_state);
193 WARN_ON(atomic_read(&tsk->usage));
194 WARN_ON(tsk == current);
195
196 exit_creds(tsk);
197 delayacct_tsk_free(tsk);
198 put_signal_struct(tsk->signal);
199
200 if (!profile_handoff_task(tsk))
201 free_task(tsk);
202 }
203 EXPORT_SYMBOL_GPL(__put_task_struct);
204
205 /*
206 * macro override instead of weak attribute alias, to workaround
207 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
208 */
209 #ifndef arch_task_cache_init
210 #define arch_task_cache_init()
211 #endif
212
213 void __init fork_init(unsigned long mempages)
214 {
215 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
216 #ifndef ARCH_MIN_TASKALIGN
217 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
218 #endif
219 /* create a slab on which task_structs can be allocated */
220 task_struct_cachep =
221 kmem_cache_create("task_struct", sizeof(struct task_struct),
222 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
223 #endif
224
225 /* do the arch specific task caches init */
226 arch_task_cache_init();
227
228 /*
229 * The default maximum number of threads is set to a safe
230 * value: the thread structures can take up at most half
231 * of memory.
232 */
233 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
234
235 /*
236 * we need to allow at least 20 threads to boot a system
237 */
238 if (max_threads < 20)
239 max_threads = 20;
240
241 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
242 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
243 init_task.signal->rlim[RLIMIT_SIGPENDING] =
244 init_task.signal->rlim[RLIMIT_NPROC];
245 }
246
247 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
248 struct task_struct *src)
249 {
250 *dst = *src;
251 return 0;
252 }
253
254 static struct task_struct *dup_task_struct(struct task_struct *orig)
255 {
256 struct task_struct *tsk;
257 struct thread_info *ti;
258 unsigned long *stackend;
259 int node = tsk_fork_get_node(orig);
260 int err;
261
262 prepare_to_copy(orig);
263
264 tsk = alloc_task_struct_node(node);
265 if (!tsk)
266 return NULL;
267
268 ti = alloc_thread_info_node(tsk, node);
269 if (!ti) {
270 free_task_struct(tsk);
271 return NULL;
272 }
273
274 err = arch_dup_task_struct(tsk, orig);
275 if (err)
276 goto out;
277
278 tsk->stack = ti;
279
280 setup_thread_stack(tsk, orig);
281 clear_user_return_notifier(tsk);
282 clear_tsk_need_resched(tsk);
283 stackend = end_of_stack(tsk);
284 *stackend = STACK_END_MAGIC; /* for overflow detection */
285
286 #ifdef CONFIG_CC_STACKPROTECTOR
287 tsk->stack_canary = get_random_int();
288 #endif
289
290 /*
291 * One for us, one for whoever does the "release_task()" (usually
292 * parent)
293 */
294 atomic_set(&tsk->usage, 2);
295 #ifdef CONFIG_BLK_DEV_IO_TRACE
296 tsk->btrace_seq = 0;
297 #endif
298 tsk->splice_pipe = NULL;
299
300 account_kernel_stack(ti, 1);
301
302 return tsk;
303
304 out:
305 free_thread_info(ti);
306 free_task_struct(tsk);
307 return NULL;
308 }
309
310 #ifdef CONFIG_MMU
311 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
312 {
313 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
314 struct rb_node **rb_link, *rb_parent;
315 int retval;
316 unsigned long charge;
317 struct mempolicy *pol;
318
319 down_write(&oldmm->mmap_sem);
320 flush_cache_dup_mm(oldmm);
321 /*
322 * Not linked in yet - no deadlock potential:
323 */
324 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
325
326 mm->locked_vm = 0;
327 mm->mmap = NULL;
328 mm->mmap_cache = NULL;
329 mm->free_area_cache = oldmm->mmap_base;
330 mm->cached_hole_size = ~0UL;
331 mm->map_count = 0;
332 cpumask_clear(mm_cpumask(mm));
333 mm->mm_rb = RB_ROOT;
334 rb_link = &mm->mm_rb.rb_node;
335 rb_parent = NULL;
336 pprev = &mm->mmap;
337 retval = ksm_fork(mm, oldmm);
338 if (retval)
339 goto out;
340 retval = khugepaged_fork(mm, oldmm);
341 if (retval)
342 goto out;
343
344 prev = NULL;
345 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
346 struct file *file;
347
348 if (mpnt->vm_flags & VM_DONTCOPY) {
349 long pages = vma_pages(mpnt);
350 mm->total_vm -= pages;
351 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
352 -pages);
353 continue;
354 }
355 charge = 0;
356 if (mpnt->vm_flags & VM_ACCOUNT) {
357 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
358 if (security_vm_enough_memory(len))
359 goto fail_nomem;
360 charge = len;
361 }
362 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
363 if (!tmp)
364 goto fail_nomem;
365 *tmp = *mpnt;
366 INIT_LIST_HEAD(&tmp->anon_vma_chain);
367 pol = mpol_dup(vma_policy(mpnt));
368 retval = PTR_ERR(pol);
369 if (IS_ERR(pol))
370 goto fail_nomem_policy;
371 vma_set_policy(tmp, pol);
372 tmp->vm_mm = mm;
373 if (anon_vma_fork(tmp, mpnt))
374 goto fail_nomem_anon_vma_fork;
375 tmp->vm_flags &= ~VM_LOCKED;
376 tmp->vm_next = tmp->vm_prev = NULL;
377 file = tmp->vm_file;
378 if (file) {
379 struct inode *inode = file->f_path.dentry->d_inode;
380 struct address_space *mapping = file->f_mapping;
381
382 get_file(file);
383 if (tmp->vm_flags & VM_DENYWRITE)
384 atomic_dec(&inode->i_writecount);
385 mutex_lock(&mapping->i_mmap_mutex);
386 if (tmp->vm_flags & VM_SHARED)
387 mapping->i_mmap_writable++;
388 flush_dcache_mmap_lock(mapping);
389 /* insert tmp into the share list, just after mpnt */
390 vma_prio_tree_add(tmp, mpnt);
391 flush_dcache_mmap_unlock(mapping);
392 mutex_unlock(&mapping->i_mmap_mutex);
393 }
394
395 /*
396 * Clear hugetlb-related page reserves for children. This only
397 * affects MAP_PRIVATE mappings. Faults generated by the child
398 * are not guaranteed to succeed, even if read-only
399 */
400 if (is_vm_hugetlb_page(tmp))
401 reset_vma_resv_huge_pages(tmp);
402
403 /*
404 * Link in the new vma and copy the page table entries.
405 */
406 *pprev = tmp;
407 pprev = &tmp->vm_next;
408 tmp->vm_prev = prev;
409 prev = tmp;
410
411 __vma_link_rb(mm, tmp, rb_link, rb_parent);
412 rb_link = &tmp->vm_rb.rb_right;
413 rb_parent = &tmp->vm_rb;
414
415 mm->map_count++;
416 retval = copy_page_range(mm, oldmm, mpnt);
417
418 if (tmp->vm_ops && tmp->vm_ops->open)
419 tmp->vm_ops->open(tmp);
420
421 if (retval)
422 goto out;
423 }
424 /* a new mm has just been created */
425 arch_dup_mmap(oldmm, mm);
426 retval = 0;
427 out:
428 up_write(&mm->mmap_sem);
429 flush_tlb_mm(oldmm);
430 up_write(&oldmm->mmap_sem);
431 return retval;
432 fail_nomem_anon_vma_fork:
433 mpol_put(pol);
434 fail_nomem_policy:
435 kmem_cache_free(vm_area_cachep, tmp);
436 fail_nomem:
437 retval = -ENOMEM;
438 vm_unacct_memory(charge);
439 goto out;
440 }
441
442 static inline int mm_alloc_pgd(struct mm_struct *mm)
443 {
444 mm->pgd = pgd_alloc(mm);
445 if (unlikely(!mm->pgd))
446 return -ENOMEM;
447 return 0;
448 }
449
450 static inline void mm_free_pgd(struct mm_struct *mm)
451 {
452 pgd_free(mm, mm->pgd);
453 }
454 #else
455 #define dup_mmap(mm, oldmm) (0)
456 #define mm_alloc_pgd(mm) (0)
457 #define mm_free_pgd(mm)
458 #endif /* CONFIG_MMU */
459
460 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
461
462 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
463 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
464
465 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
466
467 static int __init coredump_filter_setup(char *s)
468 {
469 default_dump_filter =
470 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
471 MMF_DUMP_FILTER_MASK;
472 return 1;
473 }
474
475 __setup("coredump_filter=", coredump_filter_setup);
476
477 #include <linux/init_task.h>
478
479 static void mm_init_aio(struct mm_struct *mm)
480 {
481 #ifdef CONFIG_AIO
482 spin_lock_init(&mm->ioctx_lock);
483 INIT_HLIST_HEAD(&mm->ioctx_list);
484 #endif
485 }
486
487 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
488 {
489 atomic_set(&mm->mm_users, 1);
490 atomic_set(&mm->mm_count, 1);
491 init_rwsem(&mm->mmap_sem);
492 INIT_LIST_HEAD(&mm->mmlist);
493 mm->flags = (current->mm) ?
494 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
495 mm->core_state = NULL;
496 mm->nr_ptes = 0;
497 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
498 spin_lock_init(&mm->page_table_lock);
499 mm->free_area_cache = TASK_UNMAPPED_BASE;
500 mm->cached_hole_size = ~0UL;
501 mm_init_aio(mm);
502 mm_init_owner(mm, p);
503
504 if (likely(!mm_alloc_pgd(mm))) {
505 mm->def_flags = 0;
506 mmu_notifier_mm_init(mm);
507 return mm;
508 }
509
510 free_mm(mm);
511 return NULL;
512 }
513
514 static void check_mm(struct mm_struct *mm)
515 {
516 int i;
517
518 for (i = 0; i < NR_MM_COUNTERS; i++) {
519 long x = atomic_long_read(&mm->rss_stat.count[i]);
520
521 if (unlikely(x))
522 printk(KERN_ALERT "BUG: Bad rss-counter state "
523 "mm:%p idx:%d val:%ld\n", mm, i, x);
524 }
525
526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
527 VM_BUG_ON(mm->pmd_huge_pte);
528 #endif
529 }
530
531 /*
532 * Allocate and initialize an mm_struct.
533 */
534 struct mm_struct *mm_alloc(void)
535 {
536 struct mm_struct *mm;
537
538 mm = allocate_mm();
539 if (!mm)
540 return NULL;
541
542 memset(mm, 0, sizeof(*mm));
543 mm_init_cpumask(mm);
544 return mm_init(mm, current);
545 }
546
547 /*
548 * Called when the last reference to the mm
549 * is dropped: either by a lazy thread or by
550 * mmput. Free the page directory and the mm.
551 */
552 void __mmdrop(struct mm_struct *mm)
553 {
554 BUG_ON(mm == &init_mm);
555 mm_free_pgd(mm);
556 destroy_context(mm);
557 mmu_notifier_mm_destroy(mm);
558 check_mm(mm);
559 free_mm(mm);
560 }
561 EXPORT_SYMBOL_GPL(__mmdrop);
562
563 /*
564 * Decrement the use count and release all resources for an mm.
565 */
566 void mmput(struct mm_struct *mm)
567 {
568 might_sleep();
569
570 if (atomic_dec_and_test(&mm->mm_users)) {
571 exit_aio(mm);
572 ksm_exit(mm);
573 khugepaged_exit(mm); /* must run before exit_mmap */
574 exit_mmap(mm);
575 set_mm_exe_file(mm, NULL);
576 if (!list_empty(&mm->mmlist)) {
577 spin_lock(&mmlist_lock);
578 list_del(&mm->mmlist);
579 spin_unlock(&mmlist_lock);
580 }
581 put_swap_token(mm);
582 if (mm->binfmt)
583 module_put(mm->binfmt->module);
584 mmdrop(mm);
585 }
586 }
587 EXPORT_SYMBOL_GPL(mmput);
588
589 /*
590 * We added or removed a vma mapping the executable. The vmas are only mapped
591 * during exec and are not mapped with the mmap system call.
592 * Callers must hold down_write() on the mm's mmap_sem for these
593 */
594 void added_exe_file_vma(struct mm_struct *mm)
595 {
596 mm->num_exe_file_vmas++;
597 }
598
599 void removed_exe_file_vma(struct mm_struct *mm)
600 {
601 mm->num_exe_file_vmas--;
602 if ((mm->num_exe_file_vmas == 0) && mm->exe_file) {
603 fput(mm->exe_file);
604 mm->exe_file = NULL;
605 }
606
607 }
608
609 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
610 {
611 if (new_exe_file)
612 get_file(new_exe_file);
613 if (mm->exe_file)
614 fput(mm->exe_file);
615 mm->exe_file = new_exe_file;
616 mm->num_exe_file_vmas = 0;
617 }
618
619 struct file *get_mm_exe_file(struct mm_struct *mm)
620 {
621 struct file *exe_file;
622
623 /* We need mmap_sem to protect against races with removal of
624 * VM_EXECUTABLE vmas */
625 down_read(&mm->mmap_sem);
626 exe_file = mm->exe_file;
627 if (exe_file)
628 get_file(exe_file);
629 up_read(&mm->mmap_sem);
630 return exe_file;
631 }
632
633 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
634 {
635 /* It's safe to write the exe_file pointer without exe_file_lock because
636 * this is called during fork when the task is not yet in /proc */
637 newmm->exe_file = get_mm_exe_file(oldmm);
638 }
639
640 /**
641 * get_task_mm - acquire a reference to the task's mm
642 *
643 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
644 * this kernel workthread has transiently adopted a user mm with use_mm,
645 * to do its AIO) is not set and if so returns a reference to it, after
646 * bumping up the use count. User must release the mm via mmput()
647 * after use. Typically used by /proc and ptrace.
648 */
649 struct mm_struct *get_task_mm(struct task_struct *task)
650 {
651 struct mm_struct *mm;
652
653 task_lock(task);
654 mm = task->mm;
655 if (mm) {
656 if (task->flags & PF_KTHREAD)
657 mm = NULL;
658 else
659 atomic_inc(&mm->mm_users);
660 }
661 task_unlock(task);
662 return mm;
663 }
664 EXPORT_SYMBOL_GPL(get_task_mm);
665
666 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
667 {
668 struct mm_struct *mm;
669 int err;
670
671 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
672 if (err)
673 return ERR_PTR(err);
674
675 mm = get_task_mm(task);
676 if (mm && mm != current->mm &&
677 !ptrace_may_access(task, mode)) {
678 mmput(mm);
679 mm = ERR_PTR(-EACCES);
680 }
681 mutex_unlock(&task->signal->cred_guard_mutex);
682
683 return mm;
684 }
685
686 static void complete_vfork_done(struct task_struct *tsk)
687 {
688 struct completion *vfork;
689
690 task_lock(tsk);
691 vfork = tsk->vfork_done;
692 if (likely(vfork)) {
693 tsk->vfork_done = NULL;
694 complete(vfork);
695 }
696 task_unlock(tsk);
697 }
698
699 static int wait_for_vfork_done(struct task_struct *child,
700 struct completion *vfork)
701 {
702 int killed;
703
704 freezer_do_not_count();
705 killed = wait_for_completion_killable(vfork);
706 freezer_count();
707
708 if (killed) {
709 task_lock(child);
710 child->vfork_done = NULL;
711 task_unlock(child);
712 }
713
714 put_task_struct(child);
715 return killed;
716 }
717
718 /* Please note the differences between mmput and mm_release.
719 * mmput is called whenever we stop holding onto a mm_struct,
720 * error success whatever.
721 *
722 * mm_release is called after a mm_struct has been removed
723 * from the current process.
724 *
725 * This difference is important for error handling, when we
726 * only half set up a mm_struct for a new process and need to restore
727 * the old one. Because we mmput the new mm_struct before
728 * restoring the old one. . .
729 * Eric Biederman 10 January 1998
730 */
731 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
732 {
733 /* Get rid of any futexes when releasing the mm */
734 #ifdef CONFIG_FUTEX
735 if (unlikely(tsk->robust_list)) {
736 exit_robust_list(tsk);
737 tsk->robust_list = NULL;
738 }
739 #ifdef CONFIG_COMPAT
740 if (unlikely(tsk->compat_robust_list)) {
741 compat_exit_robust_list(tsk);
742 tsk->compat_robust_list = NULL;
743 }
744 #endif
745 if (unlikely(!list_empty(&tsk->pi_state_list)))
746 exit_pi_state_list(tsk);
747 #endif
748
749 /* Get rid of any cached register state */
750 deactivate_mm(tsk, mm);
751
752 if (tsk->vfork_done)
753 complete_vfork_done(tsk);
754
755 /*
756 * If we're exiting normally, clear a user-space tid field if
757 * requested. We leave this alone when dying by signal, to leave
758 * the value intact in a core dump, and to save the unnecessary
759 * trouble, say, a killed vfork parent shouldn't touch this mm.
760 * Userland only wants this done for a sys_exit.
761 */
762 if (tsk->clear_child_tid) {
763 if (!(tsk->flags & PF_SIGNALED) &&
764 atomic_read(&mm->mm_users) > 1) {
765 /*
766 * We don't check the error code - if userspace has
767 * not set up a proper pointer then tough luck.
768 */
769 put_user(0, tsk->clear_child_tid);
770 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
771 1, NULL, NULL, 0);
772 }
773 tsk->clear_child_tid = NULL;
774 }
775 }
776
777 /*
778 * Allocate a new mm structure and copy contents from the
779 * mm structure of the passed in task structure.
780 */
781 struct mm_struct *dup_mm(struct task_struct *tsk)
782 {
783 struct mm_struct *mm, *oldmm = current->mm;
784 int err;
785
786 if (!oldmm)
787 return NULL;
788
789 mm = allocate_mm();
790 if (!mm)
791 goto fail_nomem;
792
793 memcpy(mm, oldmm, sizeof(*mm));
794 mm_init_cpumask(mm);
795
796 /* Initializing for Swap token stuff */
797 mm->token_priority = 0;
798 mm->last_interval = 0;
799
800 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
801 mm->pmd_huge_pte = NULL;
802 #endif
803
804 if (!mm_init(mm, tsk))
805 goto fail_nomem;
806
807 if (init_new_context(tsk, mm))
808 goto fail_nocontext;
809
810 dup_mm_exe_file(oldmm, mm);
811
812 err = dup_mmap(mm, oldmm);
813 if (err)
814 goto free_pt;
815
816 mm->hiwater_rss = get_mm_rss(mm);
817 mm->hiwater_vm = mm->total_vm;
818
819 if (mm->binfmt && !try_module_get(mm->binfmt->module))
820 goto free_pt;
821
822 return mm;
823
824 free_pt:
825 /* don't put binfmt in mmput, we haven't got module yet */
826 mm->binfmt = NULL;
827 mmput(mm);
828
829 fail_nomem:
830 return NULL;
831
832 fail_nocontext:
833 /*
834 * If init_new_context() failed, we cannot use mmput() to free the mm
835 * because it calls destroy_context()
836 */
837 mm_free_pgd(mm);
838 free_mm(mm);
839 return NULL;
840 }
841
842 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
843 {
844 struct mm_struct *mm, *oldmm;
845 int retval;
846
847 tsk->min_flt = tsk->maj_flt = 0;
848 tsk->nvcsw = tsk->nivcsw = 0;
849 #ifdef CONFIG_DETECT_HUNG_TASK
850 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
851 #endif
852
853 tsk->mm = NULL;
854 tsk->active_mm = NULL;
855
856 /*
857 * Are we cloning a kernel thread?
858 *
859 * We need to steal a active VM for that..
860 */
861 oldmm = current->mm;
862 if (!oldmm)
863 return 0;
864
865 if (clone_flags & CLONE_VM) {
866 atomic_inc(&oldmm->mm_users);
867 mm = oldmm;
868 goto good_mm;
869 }
870
871 retval = -ENOMEM;
872 mm = dup_mm(tsk);
873 if (!mm)
874 goto fail_nomem;
875
876 good_mm:
877 /* Initializing for Swap token stuff */
878 mm->token_priority = 0;
879 mm->last_interval = 0;
880
881 tsk->mm = mm;
882 tsk->active_mm = mm;
883 return 0;
884
885 fail_nomem:
886 return retval;
887 }
888
889 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
890 {
891 struct fs_struct *fs = current->fs;
892 if (clone_flags & CLONE_FS) {
893 /* tsk->fs is already what we want */
894 spin_lock(&fs->lock);
895 if (fs->in_exec) {
896 spin_unlock(&fs->lock);
897 return -EAGAIN;
898 }
899 fs->users++;
900 spin_unlock(&fs->lock);
901 return 0;
902 }
903 tsk->fs = copy_fs_struct(fs);
904 if (!tsk->fs)
905 return -ENOMEM;
906 return 0;
907 }
908
909 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
910 {
911 struct files_struct *oldf, *newf;
912 int error = 0;
913
914 /*
915 * A background process may not have any files ...
916 */
917 oldf = current->files;
918 if (!oldf)
919 goto out;
920
921 if (clone_flags & CLONE_FILES) {
922 atomic_inc(&oldf->count);
923 goto out;
924 }
925
926 newf = dup_fd(oldf, &error);
927 if (!newf)
928 goto out;
929
930 tsk->files = newf;
931 error = 0;
932 out:
933 return error;
934 }
935
936 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
937 {
938 #ifdef CONFIG_BLOCK
939 struct io_context *ioc = current->io_context;
940 struct io_context *new_ioc;
941
942 if (!ioc)
943 return 0;
944 /*
945 * Share io context with parent, if CLONE_IO is set
946 */
947 if (clone_flags & CLONE_IO) {
948 tsk->io_context = ioc_task_link(ioc);
949 if (unlikely(!tsk->io_context))
950 return -ENOMEM;
951 } else if (ioprio_valid(ioc->ioprio)) {
952 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
953 if (unlikely(!new_ioc))
954 return -ENOMEM;
955
956 new_ioc->ioprio = ioc->ioprio;
957 put_io_context(new_ioc);
958 }
959 #endif
960 return 0;
961 }
962
963 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
964 {
965 struct sighand_struct *sig;
966
967 if (clone_flags & CLONE_SIGHAND) {
968 atomic_inc(&current->sighand->count);
969 return 0;
970 }
971 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
972 rcu_assign_pointer(tsk->sighand, sig);
973 if (!sig)
974 return -ENOMEM;
975 atomic_set(&sig->count, 1);
976 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
977 return 0;
978 }
979
980 void __cleanup_sighand(struct sighand_struct *sighand)
981 {
982 if (atomic_dec_and_test(&sighand->count)) {
983 signalfd_cleanup(sighand);
984 kmem_cache_free(sighand_cachep, sighand);
985 }
986 }
987
988
989 /*
990 * Initialize POSIX timer handling for a thread group.
991 */
992 static void posix_cpu_timers_init_group(struct signal_struct *sig)
993 {
994 unsigned long cpu_limit;
995
996 /* Thread group counters. */
997 thread_group_cputime_init(sig);
998
999 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1000 if (cpu_limit != RLIM_INFINITY) {
1001 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1002 sig->cputimer.running = 1;
1003 }
1004
1005 /* The timer lists. */
1006 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1007 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1008 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1009 }
1010
1011 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1012 {
1013 struct signal_struct *sig;
1014
1015 if (clone_flags & CLONE_THREAD)
1016 return 0;
1017
1018 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1019 tsk->signal = sig;
1020 if (!sig)
1021 return -ENOMEM;
1022
1023 sig->nr_threads = 1;
1024 atomic_set(&sig->live, 1);
1025 atomic_set(&sig->sigcnt, 1);
1026 init_waitqueue_head(&sig->wait_chldexit);
1027 if (clone_flags & CLONE_NEWPID)
1028 sig->flags |= SIGNAL_UNKILLABLE;
1029 sig->curr_target = tsk;
1030 init_sigpending(&sig->shared_pending);
1031 INIT_LIST_HEAD(&sig->posix_timers);
1032
1033 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1034 sig->real_timer.function = it_real_fn;
1035
1036 task_lock(current->group_leader);
1037 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1038 task_unlock(current->group_leader);
1039
1040 posix_cpu_timers_init_group(sig);
1041
1042 tty_audit_fork(sig);
1043 sched_autogroup_fork(sig);
1044
1045 #ifdef CONFIG_CGROUPS
1046 init_rwsem(&sig->group_rwsem);
1047 #endif
1048
1049 sig->oom_adj = current->signal->oom_adj;
1050 sig->oom_score_adj = current->signal->oom_score_adj;
1051 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1052
1053 mutex_init(&sig->cred_guard_mutex);
1054
1055 return 0;
1056 }
1057
1058 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1059 {
1060 unsigned long new_flags = p->flags;
1061
1062 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1063 new_flags |= PF_FORKNOEXEC;
1064 p->flags = new_flags;
1065 }
1066
1067 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1068 {
1069 current->clear_child_tid = tidptr;
1070
1071 return task_pid_vnr(current);
1072 }
1073
1074 static void rt_mutex_init_task(struct task_struct *p)
1075 {
1076 raw_spin_lock_init(&p->pi_lock);
1077 #ifdef CONFIG_RT_MUTEXES
1078 plist_head_init(&p->pi_waiters);
1079 p->pi_blocked_on = NULL;
1080 #endif
1081 }
1082
1083 #ifdef CONFIG_MM_OWNER
1084 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1085 {
1086 mm->owner = p;
1087 }
1088 #endif /* CONFIG_MM_OWNER */
1089
1090 /*
1091 * Initialize POSIX timer handling for a single task.
1092 */
1093 static void posix_cpu_timers_init(struct task_struct *tsk)
1094 {
1095 tsk->cputime_expires.prof_exp = 0;
1096 tsk->cputime_expires.virt_exp = 0;
1097 tsk->cputime_expires.sched_exp = 0;
1098 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1099 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1100 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1101 }
1102
1103 /*
1104 * This creates a new process as a copy of the old one,
1105 * but does not actually start it yet.
1106 *
1107 * It copies the registers, and all the appropriate
1108 * parts of the process environment (as per the clone
1109 * flags). The actual kick-off is left to the caller.
1110 */
1111 static struct task_struct *copy_process(unsigned long clone_flags,
1112 unsigned long stack_start,
1113 struct pt_regs *regs,
1114 unsigned long stack_size,
1115 int __user *child_tidptr,
1116 struct pid *pid,
1117 int trace)
1118 {
1119 int retval;
1120 struct task_struct *p;
1121 int cgroup_callbacks_done = 0;
1122
1123 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1124 return ERR_PTR(-EINVAL);
1125
1126 /*
1127 * Thread groups must share signals as well, and detached threads
1128 * can only be started up within the thread group.
1129 */
1130 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1131 return ERR_PTR(-EINVAL);
1132
1133 /*
1134 * Shared signal handlers imply shared VM. By way of the above,
1135 * thread groups also imply shared VM. Blocking this case allows
1136 * for various simplifications in other code.
1137 */
1138 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1139 return ERR_PTR(-EINVAL);
1140
1141 /*
1142 * Siblings of global init remain as zombies on exit since they are
1143 * not reaped by their parent (swapper). To solve this and to avoid
1144 * multi-rooted process trees, prevent global and container-inits
1145 * from creating siblings.
1146 */
1147 if ((clone_flags & CLONE_PARENT) &&
1148 current->signal->flags & SIGNAL_UNKILLABLE)
1149 return ERR_PTR(-EINVAL);
1150
1151 retval = security_task_create(clone_flags);
1152 if (retval)
1153 goto fork_out;
1154
1155 retval = -ENOMEM;
1156 p = dup_task_struct(current);
1157 if (!p)
1158 goto fork_out;
1159
1160 ftrace_graph_init_task(p);
1161
1162 rt_mutex_init_task(p);
1163
1164 #ifdef CONFIG_PROVE_LOCKING
1165 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1166 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1167 #endif
1168 retval = -EAGAIN;
1169 if (atomic_read(&p->real_cred->user->processes) >=
1170 task_rlimit(p, RLIMIT_NPROC)) {
1171 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1172 p->real_cred->user != INIT_USER)
1173 goto bad_fork_free;
1174 }
1175 current->flags &= ~PF_NPROC_EXCEEDED;
1176
1177 retval = copy_creds(p, clone_flags);
1178 if (retval < 0)
1179 goto bad_fork_free;
1180
1181 /*
1182 * If multiple threads are within copy_process(), then this check
1183 * triggers too late. This doesn't hurt, the check is only there
1184 * to stop root fork bombs.
1185 */
1186 retval = -EAGAIN;
1187 if (nr_threads >= max_threads)
1188 goto bad_fork_cleanup_count;
1189
1190 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1191 goto bad_fork_cleanup_count;
1192
1193 p->did_exec = 0;
1194 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1195 copy_flags(clone_flags, p);
1196 INIT_LIST_HEAD(&p->children);
1197 INIT_LIST_HEAD(&p->sibling);
1198 rcu_copy_process(p);
1199 p->vfork_done = NULL;
1200 spin_lock_init(&p->alloc_lock);
1201
1202 init_sigpending(&p->pending);
1203
1204 p->utime = p->stime = p->gtime = 0;
1205 p->utimescaled = p->stimescaled = 0;
1206 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1207 p->prev_utime = p->prev_stime = 0;
1208 #endif
1209 #if defined(SPLIT_RSS_COUNTING)
1210 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1211 #endif
1212
1213 p->default_timer_slack_ns = current->timer_slack_ns;
1214
1215 task_io_accounting_init(&p->ioac);
1216 acct_clear_integrals(p);
1217
1218 posix_cpu_timers_init(p);
1219
1220 do_posix_clock_monotonic_gettime(&p->start_time);
1221 p->real_start_time = p->start_time;
1222 monotonic_to_bootbased(&p->real_start_time);
1223 p->io_context = NULL;
1224 p->audit_context = NULL;
1225 if (clone_flags & CLONE_THREAD)
1226 threadgroup_change_begin(current);
1227 cgroup_fork(p);
1228 #ifdef CONFIG_NUMA
1229 p->mempolicy = mpol_dup(p->mempolicy);
1230 if (IS_ERR(p->mempolicy)) {
1231 retval = PTR_ERR(p->mempolicy);
1232 p->mempolicy = NULL;
1233 goto bad_fork_cleanup_cgroup;
1234 }
1235 mpol_fix_fork_child_flag(p);
1236 #endif
1237 #ifdef CONFIG_CPUSETS
1238 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1239 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1240 #endif
1241 #ifdef CONFIG_TRACE_IRQFLAGS
1242 p->irq_events = 0;
1243 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1244 p->hardirqs_enabled = 1;
1245 #else
1246 p->hardirqs_enabled = 0;
1247 #endif
1248 p->hardirq_enable_ip = 0;
1249 p->hardirq_enable_event = 0;
1250 p->hardirq_disable_ip = _THIS_IP_;
1251 p->hardirq_disable_event = 0;
1252 p->softirqs_enabled = 1;
1253 p->softirq_enable_ip = _THIS_IP_;
1254 p->softirq_enable_event = 0;
1255 p->softirq_disable_ip = 0;
1256 p->softirq_disable_event = 0;
1257 p->hardirq_context = 0;
1258 p->softirq_context = 0;
1259 #endif
1260 #ifdef CONFIG_LOCKDEP
1261 p->lockdep_depth = 0; /* no locks held yet */
1262 p->curr_chain_key = 0;
1263 p->lockdep_recursion = 0;
1264 #endif
1265
1266 #ifdef CONFIG_DEBUG_MUTEXES
1267 p->blocked_on = NULL; /* not blocked yet */
1268 #endif
1269 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1270 p->memcg_batch.do_batch = 0;
1271 p->memcg_batch.memcg = NULL;
1272 #endif
1273
1274 /* Perform scheduler related setup. Assign this task to a CPU. */
1275 sched_fork(p);
1276
1277 retval = perf_event_init_task(p);
1278 if (retval)
1279 goto bad_fork_cleanup_policy;
1280 retval = audit_alloc(p);
1281 if (retval)
1282 goto bad_fork_cleanup_policy;
1283 /* copy all the process information */
1284 retval = copy_semundo(clone_flags, p);
1285 if (retval)
1286 goto bad_fork_cleanup_audit;
1287 retval = copy_files(clone_flags, p);
1288 if (retval)
1289 goto bad_fork_cleanup_semundo;
1290 retval = copy_fs(clone_flags, p);
1291 if (retval)
1292 goto bad_fork_cleanup_files;
1293 retval = copy_sighand(clone_flags, p);
1294 if (retval)
1295 goto bad_fork_cleanup_fs;
1296 retval = copy_signal(clone_flags, p);
1297 if (retval)
1298 goto bad_fork_cleanup_sighand;
1299 retval = copy_mm(clone_flags, p);
1300 if (retval)
1301 goto bad_fork_cleanup_signal;
1302 retval = copy_namespaces(clone_flags, p);
1303 if (retval)
1304 goto bad_fork_cleanup_mm;
1305 retval = copy_io(clone_flags, p);
1306 if (retval)
1307 goto bad_fork_cleanup_namespaces;
1308 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1309 if (retval)
1310 goto bad_fork_cleanup_io;
1311
1312 if (pid != &init_struct_pid) {
1313 retval = -ENOMEM;
1314 pid = alloc_pid(p->nsproxy->pid_ns);
1315 if (!pid)
1316 goto bad_fork_cleanup_io;
1317 }
1318
1319 p->pid = pid_nr(pid);
1320 p->tgid = p->pid;
1321 if (clone_flags & CLONE_THREAD)
1322 p->tgid = current->tgid;
1323
1324 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1325 /*
1326 * Clear TID on mm_release()?
1327 */
1328 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1329 #ifdef CONFIG_BLOCK
1330 p->plug = NULL;
1331 #endif
1332 #ifdef CONFIG_FUTEX
1333 p->robust_list = NULL;
1334 #ifdef CONFIG_COMPAT
1335 p->compat_robust_list = NULL;
1336 #endif
1337 INIT_LIST_HEAD(&p->pi_state_list);
1338 p->pi_state_cache = NULL;
1339 #endif
1340 /*
1341 * sigaltstack should be cleared when sharing the same VM
1342 */
1343 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1344 p->sas_ss_sp = p->sas_ss_size = 0;
1345
1346 /*
1347 * Syscall tracing and stepping should be turned off in the
1348 * child regardless of CLONE_PTRACE.
1349 */
1350 user_disable_single_step(p);
1351 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1352 #ifdef TIF_SYSCALL_EMU
1353 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1354 #endif
1355 clear_all_latency_tracing(p);
1356
1357 /* ok, now we should be set up.. */
1358 if (clone_flags & CLONE_THREAD)
1359 p->exit_signal = -1;
1360 else if (clone_flags & CLONE_PARENT)
1361 p->exit_signal = current->group_leader->exit_signal;
1362 else
1363 p->exit_signal = (clone_flags & CSIGNAL);
1364
1365 p->pdeath_signal = 0;
1366 p->exit_state = 0;
1367
1368 p->nr_dirtied = 0;
1369 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1370 p->dirty_paused_when = 0;
1371
1372 /*
1373 * Ok, make it visible to the rest of the system.
1374 * We dont wake it up yet.
1375 */
1376 p->group_leader = p;
1377 INIT_LIST_HEAD(&p->thread_group);
1378
1379 /* Now that the task is set up, run cgroup callbacks if
1380 * necessary. We need to run them before the task is visible
1381 * on the tasklist. */
1382 cgroup_fork_callbacks(p);
1383 cgroup_callbacks_done = 1;
1384
1385 /* Need tasklist lock for parent etc handling! */
1386 write_lock_irq(&tasklist_lock);
1387
1388 /* CLONE_PARENT re-uses the old parent */
1389 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1390 p->real_parent = current->real_parent;
1391 p->parent_exec_id = current->parent_exec_id;
1392 } else {
1393 p->real_parent = current;
1394 p->parent_exec_id = current->self_exec_id;
1395 }
1396
1397 spin_lock(&current->sighand->siglock);
1398
1399 /*
1400 * Process group and session signals need to be delivered to just the
1401 * parent before the fork or both the parent and the child after the
1402 * fork. Restart if a signal comes in before we add the new process to
1403 * it's process group.
1404 * A fatal signal pending means that current will exit, so the new
1405 * thread can't slip out of an OOM kill (or normal SIGKILL).
1406 */
1407 recalc_sigpending();
1408 if (signal_pending(current)) {
1409 spin_unlock(&current->sighand->siglock);
1410 write_unlock_irq(&tasklist_lock);
1411 retval = -ERESTARTNOINTR;
1412 goto bad_fork_free_pid;
1413 }
1414
1415 if (clone_flags & CLONE_THREAD) {
1416 current->signal->nr_threads++;
1417 atomic_inc(&current->signal->live);
1418 atomic_inc(&current->signal->sigcnt);
1419 p->group_leader = current->group_leader;
1420 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1421 }
1422
1423 if (likely(p->pid)) {
1424 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1425
1426 if (thread_group_leader(p)) {
1427 if (is_child_reaper(pid))
1428 p->nsproxy->pid_ns->child_reaper = p;
1429
1430 p->signal->leader_pid = pid;
1431 p->signal->tty = tty_kref_get(current->signal->tty);
1432 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1433 attach_pid(p, PIDTYPE_SID, task_session(current));
1434 list_add_tail(&p->sibling, &p->real_parent->children);
1435 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1436 __this_cpu_inc(process_counts);
1437 }
1438 attach_pid(p, PIDTYPE_PID, pid);
1439 nr_threads++;
1440 }
1441
1442 total_forks++;
1443 spin_unlock(&current->sighand->siglock);
1444 write_unlock_irq(&tasklist_lock);
1445 proc_fork_connector(p);
1446 cgroup_post_fork(p);
1447 if (clone_flags & CLONE_THREAD)
1448 threadgroup_change_end(current);
1449 perf_event_fork(p);
1450
1451 trace_task_newtask(p, clone_flags);
1452
1453 return p;
1454
1455 bad_fork_free_pid:
1456 if (pid != &init_struct_pid)
1457 free_pid(pid);
1458 bad_fork_cleanup_io:
1459 if (p->io_context)
1460 exit_io_context(p);
1461 bad_fork_cleanup_namespaces:
1462 exit_task_namespaces(p);
1463 bad_fork_cleanup_mm:
1464 if (p->mm)
1465 mmput(p->mm);
1466 bad_fork_cleanup_signal:
1467 if (!(clone_flags & CLONE_THREAD))
1468 free_signal_struct(p->signal);
1469 bad_fork_cleanup_sighand:
1470 __cleanup_sighand(p->sighand);
1471 bad_fork_cleanup_fs:
1472 exit_fs(p); /* blocking */
1473 bad_fork_cleanup_files:
1474 exit_files(p); /* blocking */
1475 bad_fork_cleanup_semundo:
1476 exit_sem(p);
1477 bad_fork_cleanup_audit:
1478 audit_free(p);
1479 bad_fork_cleanup_policy:
1480 perf_event_free_task(p);
1481 #ifdef CONFIG_NUMA
1482 mpol_put(p->mempolicy);
1483 bad_fork_cleanup_cgroup:
1484 #endif
1485 if (clone_flags & CLONE_THREAD)
1486 threadgroup_change_end(current);
1487 cgroup_exit(p, cgroup_callbacks_done);
1488 delayacct_tsk_free(p);
1489 module_put(task_thread_info(p)->exec_domain->module);
1490 bad_fork_cleanup_count:
1491 atomic_dec(&p->cred->user->processes);
1492 exit_creds(p);
1493 bad_fork_free:
1494 free_task(p);
1495 fork_out:
1496 return ERR_PTR(retval);
1497 }
1498
1499 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1500 {
1501 memset(regs, 0, sizeof(struct pt_regs));
1502 return regs;
1503 }
1504
1505 static inline void init_idle_pids(struct pid_link *links)
1506 {
1507 enum pid_type type;
1508
1509 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1510 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1511 links[type].pid = &init_struct_pid;
1512 }
1513 }
1514
1515 struct task_struct * __cpuinit fork_idle(int cpu)
1516 {
1517 struct task_struct *task;
1518 struct pt_regs regs;
1519
1520 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1521 &init_struct_pid, 0);
1522 if (!IS_ERR(task)) {
1523 init_idle_pids(task->pids);
1524 init_idle(task, cpu);
1525 }
1526
1527 return task;
1528 }
1529
1530 /*
1531 * Ok, this is the main fork-routine.
1532 *
1533 * It copies the process, and if successful kick-starts
1534 * it and waits for it to finish using the VM if required.
1535 */
1536 long do_fork(unsigned long clone_flags,
1537 unsigned long stack_start,
1538 struct pt_regs *regs,
1539 unsigned long stack_size,
1540 int __user *parent_tidptr,
1541 int __user *child_tidptr)
1542 {
1543 struct task_struct *p;
1544 int trace = 0;
1545 long nr;
1546
1547 /*
1548 * Do some preliminary argument and permissions checking before we
1549 * actually start allocating stuff
1550 */
1551 if (clone_flags & CLONE_NEWUSER) {
1552 if (clone_flags & CLONE_THREAD)
1553 return -EINVAL;
1554 /* hopefully this check will go away when userns support is
1555 * complete
1556 */
1557 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1558 !capable(CAP_SETGID))
1559 return -EPERM;
1560 }
1561
1562 /*
1563 * Determine whether and which event to report to ptracer. When
1564 * called from kernel_thread or CLONE_UNTRACED is explicitly
1565 * requested, no event is reported; otherwise, report if the event
1566 * for the type of forking is enabled.
1567 */
1568 if (likely(user_mode(regs)) && !(clone_flags & CLONE_UNTRACED)) {
1569 if (clone_flags & CLONE_VFORK)
1570 trace = PTRACE_EVENT_VFORK;
1571 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1572 trace = PTRACE_EVENT_CLONE;
1573 else
1574 trace = PTRACE_EVENT_FORK;
1575
1576 if (likely(!ptrace_event_enabled(current, trace)))
1577 trace = 0;
1578 }
1579
1580 p = copy_process(clone_flags, stack_start, regs, stack_size,
1581 child_tidptr, NULL, trace);
1582 /*
1583 * Do this prior waking up the new thread - the thread pointer
1584 * might get invalid after that point, if the thread exits quickly.
1585 */
1586 if (!IS_ERR(p)) {
1587 struct completion vfork;
1588
1589 trace_sched_process_fork(current, p);
1590
1591 nr = task_pid_vnr(p);
1592
1593 if (clone_flags & CLONE_PARENT_SETTID)
1594 put_user(nr, parent_tidptr);
1595
1596 if (clone_flags & CLONE_VFORK) {
1597 p->vfork_done = &vfork;
1598 init_completion(&vfork);
1599 get_task_struct(p);
1600 }
1601
1602 wake_up_new_task(p);
1603
1604 /* forking complete and child started to run, tell ptracer */
1605 if (unlikely(trace))
1606 ptrace_event(trace, nr);
1607
1608 if (clone_flags & CLONE_VFORK) {
1609 if (!wait_for_vfork_done(p, &vfork))
1610 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1611 }
1612 } else {
1613 nr = PTR_ERR(p);
1614 }
1615 return nr;
1616 }
1617
1618 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1619 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1620 #endif
1621
1622 static void sighand_ctor(void *data)
1623 {
1624 struct sighand_struct *sighand = data;
1625
1626 spin_lock_init(&sighand->siglock);
1627 init_waitqueue_head(&sighand->signalfd_wqh);
1628 }
1629
1630 void __init proc_caches_init(void)
1631 {
1632 sighand_cachep = kmem_cache_create("sighand_cache",
1633 sizeof(struct sighand_struct), 0,
1634 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1635 SLAB_NOTRACK, sighand_ctor);
1636 signal_cachep = kmem_cache_create("signal_cache",
1637 sizeof(struct signal_struct), 0,
1638 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1639 files_cachep = kmem_cache_create("files_cache",
1640 sizeof(struct files_struct), 0,
1641 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1642 fs_cachep = kmem_cache_create("fs_cache",
1643 sizeof(struct fs_struct), 0,
1644 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1645 /*
1646 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1647 * whole struct cpumask for the OFFSTACK case. We could change
1648 * this to *only* allocate as much of it as required by the
1649 * maximum number of CPU's we can ever have. The cpumask_allocation
1650 * is at the end of the structure, exactly for that reason.
1651 */
1652 mm_cachep = kmem_cache_create("mm_struct",
1653 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1654 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1655 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1656 mmap_init();
1657 nsproxy_cache_init();
1658 }
1659
1660 /*
1661 * Check constraints on flags passed to the unshare system call.
1662 */
1663 static int check_unshare_flags(unsigned long unshare_flags)
1664 {
1665 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1666 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1667 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1668 return -EINVAL;
1669 /*
1670 * Not implemented, but pretend it works if there is nothing to
1671 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1672 * needs to unshare vm.
1673 */
1674 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1675 /* FIXME: get_task_mm() increments ->mm_users */
1676 if (atomic_read(&current->mm->mm_users) > 1)
1677 return -EINVAL;
1678 }
1679
1680 return 0;
1681 }
1682
1683 /*
1684 * Unshare the filesystem structure if it is being shared
1685 */
1686 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1687 {
1688 struct fs_struct *fs = current->fs;
1689
1690 if (!(unshare_flags & CLONE_FS) || !fs)
1691 return 0;
1692
1693 /* don't need lock here; in the worst case we'll do useless copy */
1694 if (fs->users == 1)
1695 return 0;
1696
1697 *new_fsp = copy_fs_struct(fs);
1698 if (!*new_fsp)
1699 return -ENOMEM;
1700
1701 return 0;
1702 }
1703
1704 /*
1705 * Unshare file descriptor table if it is being shared
1706 */
1707 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1708 {
1709 struct files_struct *fd = current->files;
1710 int error = 0;
1711
1712 if ((unshare_flags & CLONE_FILES) &&
1713 (fd && atomic_read(&fd->count) > 1)) {
1714 *new_fdp = dup_fd(fd, &error);
1715 if (!*new_fdp)
1716 return error;
1717 }
1718
1719 return 0;
1720 }
1721
1722 /*
1723 * unshare allows a process to 'unshare' part of the process
1724 * context which was originally shared using clone. copy_*
1725 * functions used by do_fork() cannot be used here directly
1726 * because they modify an inactive task_struct that is being
1727 * constructed. Here we are modifying the current, active,
1728 * task_struct.
1729 */
1730 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1731 {
1732 struct fs_struct *fs, *new_fs = NULL;
1733 struct files_struct *fd, *new_fd = NULL;
1734 struct nsproxy *new_nsproxy = NULL;
1735 int do_sysvsem = 0;
1736 int err;
1737
1738 err = check_unshare_flags(unshare_flags);
1739 if (err)
1740 goto bad_unshare_out;
1741
1742 /*
1743 * If unsharing namespace, must also unshare filesystem information.
1744 */
1745 if (unshare_flags & CLONE_NEWNS)
1746 unshare_flags |= CLONE_FS;
1747 /*
1748 * CLONE_NEWIPC must also detach from the undolist: after switching
1749 * to a new ipc namespace, the semaphore arrays from the old
1750 * namespace are unreachable.
1751 */
1752 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1753 do_sysvsem = 1;
1754 err = unshare_fs(unshare_flags, &new_fs);
1755 if (err)
1756 goto bad_unshare_out;
1757 err = unshare_fd(unshare_flags, &new_fd);
1758 if (err)
1759 goto bad_unshare_cleanup_fs;
1760 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy, new_fs);
1761 if (err)
1762 goto bad_unshare_cleanup_fd;
1763
1764 if (new_fs || new_fd || do_sysvsem || new_nsproxy) {
1765 if (do_sysvsem) {
1766 /*
1767 * CLONE_SYSVSEM is equivalent to sys_exit().
1768 */
1769 exit_sem(current);
1770 }
1771
1772 if (new_nsproxy) {
1773 switch_task_namespaces(current, new_nsproxy);
1774 new_nsproxy = NULL;
1775 }
1776
1777 task_lock(current);
1778
1779 if (new_fs) {
1780 fs = current->fs;
1781 spin_lock(&fs->lock);
1782 current->fs = new_fs;
1783 if (--fs->users)
1784 new_fs = NULL;
1785 else
1786 new_fs = fs;
1787 spin_unlock(&fs->lock);
1788 }
1789
1790 if (new_fd) {
1791 fd = current->files;
1792 current->files = new_fd;
1793 new_fd = fd;
1794 }
1795
1796 task_unlock(current);
1797 }
1798
1799 if (new_nsproxy)
1800 put_nsproxy(new_nsproxy);
1801
1802 bad_unshare_cleanup_fd:
1803 if (new_fd)
1804 put_files_struct(new_fd);
1805
1806 bad_unshare_cleanup_fs:
1807 if (new_fs)
1808 free_fs_struct(new_fs);
1809
1810 bad_unshare_out:
1811 return err;
1812 }
1813
1814 /*
1815 * Helper to unshare the files of the current task.
1816 * We don't want to expose copy_files internals to
1817 * the exec layer of the kernel.
1818 */
1819
1820 int unshare_files(struct files_struct **displaced)
1821 {
1822 struct task_struct *task = current;
1823 struct files_struct *copy = NULL;
1824 int error;
1825
1826 error = unshare_fd(CLONE_FILES, &copy);
1827 if (error || !copy) {
1828 *displaced = NULL;
1829 return error;
1830 }
1831 *displaced = task->files;
1832 task_lock(task);
1833 task->files = copy;
1834 task_unlock(task);
1835 return 0;
1836 }