]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
[PATCH] kill SET_LINKS/REMOVE_LINKS
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/config.h>
15 #include <linux/slab.h>
16 #include <linux/init.h>
17 #include <linux/unistd.h>
18 #include <linux/smp_lock.h>
19 #include <linux/module.h>
20 #include <linux/vmalloc.h>
21 #include <linux/completion.h>
22 #include <linux/namespace.h>
23 #include <linux/personality.h>
24 #include <linux/mempolicy.h>
25 #include <linux/sem.h>
26 #include <linux/file.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/fs.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/cn_proc.h>
47
48 #include <asm/pgtable.h>
49 #include <asm/pgalloc.h>
50 #include <asm/uaccess.h>
51 #include <asm/mmu_context.h>
52 #include <asm/cacheflush.h>
53 #include <asm/tlbflush.h>
54
55 /*
56 * Protected counters by write_lock_irq(&tasklist_lock)
57 */
58 unsigned long total_forks; /* Handle normal Linux uptimes. */
59 int nr_threads; /* The idle threads do not count.. */
60
61 int max_threads; /* tunable limit on nr_threads */
62
63 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
64
65 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
66
67 EXPORT_SYMBOL(tasklist_lock);
68
69 int nr_processes(void)
70 {
71 int cpu;
72 int total = 0;
73
74 for_each_online_cpu(cpu)
75 total += per_cpu(process_counts, cpu);
76
77 return total;
78 }
79
80 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
81 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
82 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
83 static kmem_cache_t *task_struct_cachep;
84 #endif
85
86 /* SLAB cache for signal_struct structures (tsk->signal) */
87 kmem_cache_t *signal_cachep;
88
89 /* SLAB cache for sighand_struct structures (tsk->sighand) */
90 kmem_cache_t *sighand_cachep;
91
92 /* SLAB cache for files_struct structures (tsk->files) */
93 kmem_cache_t *files_cachep;
94
95 /* SLAB cache for fs_struct structures (tsk->fs) */
96 kmem_cache_t *fs_cachep;
97
98 /* SLAB cache for vm_area_struct structures */
99 kmem_cache_t *vm_area_cachep;
100
101 /* SLAB cache for mm_struct structures (tsk->mm) */
102 static kmem_cache_t *mm_cachep;
103
104 void free_task(struct task_struct *tsk)
105 {
106 free_thread_info(tsk->thread_info);
107 free_task_struct(tsk);
108 }
109 EXPORT_SYMBOL(free_task);
110
111 void __put_task_struct_cb(struct rcu_head *rhp)
112 {
113 struct task_struct *tsk = container_of(rhp, struct task_struct, rcu);
114
115 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
116 WARN_ON(atomic_read(&tsk->usage));
117 WARN_ON(tsk == current);
118
119 if (unlikely(tsk->audit_context))
120 audit_free(tsk);
121 security_task_free(tsk);
122 free_uid(tsk->user);
123 put_group_info(tsk->group_info);
124
125 if (!profile_handoff_task(tsk))
126 free_task(tsk);
127 }
128
129 void __init fork_init(unsigned long mempages)
130 {
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
134 #endif
135 /* create a slab on which task_structs can be allocated */
136 task_struct_cachep =
137 kmem_cache_create("task_struct", sizeof(struct task_struct),
138 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
140
141 /*
142 * The default maximum number of threads is set to a safe
143 * value: the thread structures can take up at most half
144 * of memory.
145 */
146 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147
148 /*
149 * we need to allow at least 20 threads to boot a system
150 */
151 if(max_threads < 20)
152 max_threads = 20;
153
154 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156 init_task.signal->rlim[RLIMIT_SIGPENDING] =
157 init_task.signal->rlim[RLIMIT_NPROC];
158 }
159
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
161 {
162 struct task_struct *tsk;
163 struct thread_info *ti;
164
165 prepare_to_copy(orig);
166
167 tsk = alloc_task_struct();
168 if (!tsk)
169 return NULL;
170
171 ti = alloc_thread_info(tsk);
172 if (!ti) {
173 free_task_struct(tsk);
174 return NULL;
175 }
176
177 *tsk = *orig;
178 tsk->thread_info = ti;
179 setup_thread_stack(tsk, orig);
180
181 /* One for us, one for whoever does the "release_task()" (usually parent) */
182 atomic_set(&tsk->usage,2);
183 atomic_set(&tsk->fs_excl, 0);
184 tsk->btrace_seq = 0;
185 return tsk;
186 }
187
188 #ifdef CONFIG_MMU
189 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
190 {
191 struct vm_area_struct *mpnt, *tmp, **pprev;
192 struct rb_node **rb_link, *rb_parent;
193 int retval;
194 unsigned long charge;
195 struct mempolicy *pol;
196
197 down_write(&oldmm->mmap_sem);
198 flush_cache_mm(oldmm);
199 down_write(&mm->mmap_sem);
200
201 mm->locked_vm = 0;
202 mm->mmap = NULL;
203 mm->mmap_cache = NULL;
204 mm->free_area_cache = oldmm->mmap_base;
205 mm->cached_hole_size = ~0UL;
206 mm->map_count = 0;
207 cpus_clear(mm->cpu_vm_mask);
208 mm->mm_rb = RB_ROOT;
209 rb_link = &mm->mm_rb.rb_node;
210 rb_parent = NULL;
211 pprev = &mm->mmap;
212
213 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
214 struct file *file;
215
216 if (mpnt->vm_flags & VM_DONTCOPY) {
217 long pages = vma_pages(mpnt);
218 mm->total_vm -= pages;
219 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
220 -pages);
221 continue;
222 }
223 charge = 0;
224 if (mpnt->vm_flags & VM_ACCOUNT) {
225 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
226 if (security_vm_enough_memory(len))
227 goto fail_nomem;
228 charge = len;
229 }
230 tmp = kmem_cache_alloc(vm_area_cachep, SLAB_KERNEL);
231 if (!tmp)
232 goto fail_nomem;
233 *tmp = *mpnt;
234 pol = mpol_copy(vma_policy(mpnt));
235 retval = PTR_ERR(pol);
236 if (IS_ERR(pol))
237 goto fail_nomem_policy;
238 vma_set_policy(tmp, pol);
239 tmp->vm_flags &= ~VM_LOCKED;
240 tmp->vm_mm = mm;
241 tmp->vm_next = NULL;
242 anon_vma_link(tmp);
243 file = tmp->vm_file;
244 if (file) {
245 struct inode *inode = file->f_dentry->d_inode;
246 get_file(file);
247 if (tmp->vm_flags & VM_DENYWRITE)
248 atomic_dec(&inode->i_writecount);
249
250 /* insert tmp into the share list, just after mpnt */
251 spin_lock(&file->f_mapping->i_mmap_lock);
252 tmp->vm_truncate_count = mpnt->vm_truncate_count;
253 flush_dcache_mmap_lock(file->f_mapping);
254 vma_prio_tree_add(tmp, mpnt);
255 flush_dcache_mmap_unlock(file->f_mapping);
256 spin_unlock(&file->f_mapping->i_mmap_lock);
257 }
258
259 /*
260 * Link in the new vma and copy the page table entries.
261 */
262 *pprev = tmp;
263 pprev = &tmp->vm_next;
264
265 __vma_link_rb(mm, tmp, rb_link, rb_parent);
266 rb_link = &tmp->vm_rb.rb_right;
267 rb_parent = &tmp->vm_rb;
268
269 mm->map_count++;
270 retval = copy_page_range(mm, oldmm, mpnt);
271
272 if (tmp->vm_ops && tmp->vm_ops->open)
273 tmp->vm_ops->open(tmp);
274
275 if (retval)
276 goto out;
277 }
278 retval = 0;
279 out:
280 up_write(&mm->mmap_sem);
281 flush_tlb_mm(oldmm);
282 up_write(&oldmm->mmap_sem);
283 return retval;
284 fail_nomem_policy:
285 kmem_cache_free(vm_area_cachep, tmp);
286 fail_nomem:
287 retval = -ENOMEM;
288 vm_unacct_memory(charge);
289 goto out;
290 }
291
292 static inline int mm_alloc_pgd(struct mm_struct * mm)
293 {
294 mm->pgd = pgd_alloc(mm);
295 if (unlikely(!mm->pgd))
296 return -ENOMEM;
297 return 0;
298 }
299
300 static inline void mm_free_pgd(struct mm_struct * mm)
301 {
302 pgd_free(mm->pgd);
303 }
304 #else
305 #define dup_mmap(mm, oldmm) (0)
306 #define mm_alloc_pgd(mm) (0)
307 #define mm_free_pgd(mm)
308 #endif /* CONFIG_MMU */
309
310 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
311
312 #define allocate_mm() (kmem_cache_alloc(mm_cachep, SLAB_KERNEL))
313 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
314
315 #include <linux/init_task.h>
316
317 static struct mm_struct * mm_init(struct mm_struct * mm)
318 {
319 atomic_set(&mm->mm_users, 1);
320 atomic_set(&mm->mm_count, 1);
321 init_rwsem(&mm->mmap_sem);
322 INIT_LIST_HEAD(&mm->mmlist);
323 mm->core_waiters = 0;
324 mm->nr_ptes = 0;
325 set_mm_counter(mm, file_rss, 0);
326 set_mm_counter(mm, anon_rss, 0);
327 spin_lock_init(&mm->page_table_lock);
328 rwlock_init(&mm->ioctx_list_lock);
329 mm->ioctx_list = NULL;
330 mm->free_area_cache = TASK_UNMAPPED_BASE;
331 mm->cached_hole_size = ~0UL;
332
333 if (likely(!mm_alloc_pgd(mm))) {
334 mm->def_flags = 0;
335 return mm;
336 }
337 free_mm(mm);
338 return NULL;
339 }
340
341 /*
342 * Allocate and initialize an mm_struct.
343 */
344 struct mm_struct * mm_alloc(void)
345 {
346 struct mm_struct * mm;
347
348 mm = allocate_mm();
349 if (mm) {
350 memset(mm, 0, sizeof(*mm));
351 mm = mm_init(mm);
352 }
353 return mm;
354 }
355
356 /*
357 * Called when the last reference to the mm
358 * is dropped: either by a lazy thread or by
359 * mmput. Free the page directory and the mm.
360 */
361 void fastcall __mmdrop(struct mm_struct *mm)
362 {
363 BUG_ON(mm == &init_mm);
364 mm_free_pgd(mm);
365 destroy_context(mm);
366 free_mm(mm);
367 }
368
369 /*
370 * Decrement the use count and release all resources for an mm.
371 */
372 void mmput(struct mm_struct *mm)
373 {
374 if (atomic_dec_and_test(&mm->mm_users)) {
375 exit_aio(mm);
376 exit_mmap(mm);
377 if (!list_empty(&mm->mmlist)) {
378 spin_lock(&mmlist_lock);
379 list_del(&mm->mmlist);
380 spin_unlock(&mmlist_lock);
381 }
382 put_swap_token(mm);
383 mmdrop(mm);
384 }
385 }
386 EXPORT_SYMBOL_GPL(mmput);
387
388 /**
389 * get_task_mm - acquire a reference to the task's mm
390 *
391 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
392 * this kernel workthread has transiently adopted a user mm with use_mm,
393 * to do its AIO) is not set and if so returns a reference to it, after
394 * bumping up the use count. User must release the mm via mmput()
395 * after use. Typically used by /proc and ptrace.
396 */
397 struct mm_struct *get_task_mm(struct task_struct *task)
398 {
399 struct mm_struct *mm;
400
401 task_lock(task);
402 mm = task->mm;
403 if (mm) {
404 if (task->flags & PF_BORROWED_MM)
405 mm = NULL;
406 else
407 atomic_inc(&mm->mm_users);
408 }
409 task_unlock(task);
410 return mm;
411 }
412 EXPORT_SYMBOL_GPL(get_task_mm);
413
414 /* Please note the differences between mmput and mm_release.
415 * mmput is called whenever we stop holding onto a mm_struct,
416 * error success whatever.
417 *
418 * mm_release is called after a mm_struct has been removed
419 * from the current process.
420 *
421 * This difference is important for error handling, when we
422 * only half set up a mm_struct for a new process and need to restore
423 * the old one. Because we mmput the new mm_struct before
424 * restoring the old one. . .
425 * Eric Biederman 10 January 1998
426 */
427 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
428 {
429 struct completion *vfork_done = tsk->vfork_done;
430
431 /* Get rid of any cached register state */
432 deactivate_mm(tsk, mm);
433
434 /* notify parent sleeping on vfork() */
435 if (vfork_done) {
436 tsk->vfork_done = NULL;
437 complete(vfork_done);
438 }
439 if (tsk->clear_child_tid && atomic_read(&mm->mm_users) > 1) {
440 u32 __user * tidptr = tsk->clear_child_tid;
441 tsk->clear_child_tid = NULL;
442
443 /*
444 * We don't check the error code - if userspace has
445 * not set up a proper pointer then tough luck.
446 */
447 put_user(0, tidptr);
448 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
449 }
450 }
451
452 /*
453 * Allocate a new mm structure and copy contents from the
454 * mm structure of the passed in task structure.
455 */
456 static struct mm_struct *dup_mm(struct task_struct *tsk)
457 {
458 struct mm_struct *mm, *oldmm = current->mm;
459 int err;
460
461 if (!oldmm)
462 return NULL;
463
464 mm = allocate_mm();
465 if (!mm)
466 goto fail_nomem;
467
468 memcpy(mm, oldmm, sizeof(*mm));
469
470 if (!mm_init(mm))
471 goto fail_nomem;
472
473 if (init_new_context(tsk, mm))
474 goto fail_nocontext;
475
476 err = dup_mmap(mm, oldmm);
477 if (err)
478 goto free_pt;
479
480 mm->hiwater_rss = get_mm_rss(mm);
481 mm->hiwater_vm = mm->total_vm;
482
483 return mm;
484
485 free_pt:
486 mmput(mm);
487
488 fail_nomem:
489 return NULL;
490
491 fail_nocontext:
492 /*
493 * If init_new_context() failed, we cannot use mmput() to free the mm
494 * because it calls destroy_context()
495 */
496 mm_free_pgd(mm);
497 free_mm(mm);
498 return NULL;
499 }
500
501 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
502 {
503 struct mm_struct * mm, *oldmm;
504 int retval;
505
506 tsk->min_flt = tsk->maj_flt = 0;
507 tsk->nvcsw = tsk->nivcsw = 0;
508
509 tsk->mm = NULL;
510 tsk->active_mm = NULL;
511
512 /*
513 * Are we cloning a kernel thread?
514 *
515 * We need to steal a active VM for that..
516 */
517 oldmm = current->mm;
518 if (!oldmm)
519 return 0;
520
521 if (clone_flags & CLONE_VM) {
522 atomic_inc(&oldmm->mm_users);
523 mm = oldmm;
524 goto good_mm;
525 }
526
527 retval = -ENOMEM;
528 mm = dup_mm(tsk);
529 if (!mm)
530 goto fail_nomem;
531
532 good_mm:
533 tsk->mm = mm;
534 tsk->active_mm = mm;
535 return 0;
536
537 fail_nomem:
538 return retval;
539 }
540
541 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
542 {
543 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
544 /* We don't need to lock fs - think why ;-) */
545 if (fs) {
546 atomic_set(&fs->count, 1);
547 rwlock_init(&fs->lock);
548 fs->umask = old->umask;
549 read_lock(&old->lock);
550 fs->rootmnt = mntget(old->rootmnt);
551 fs->root = dget(old->root);
552 fs->pwdmnt = mntget(old->pwdmnt);
553 fs->pwd = dget(old->pwd);
554 if (old->altroot) {
555 fs->altrootmnt = mntget(old->altrootmnt);
556 fs->altroot = dget(old->altroot);
557 } else {
558 fs->altrootmnt = NULL;
559 fs->altroot = NULL;
560 }
561 read_unlock(&old->lock);
562 }
563 return fs;
564 }
565
566 struct fs_struct *copy_fs_struct(struct fs_struct *old)
567 {
568 return __copy_fs_struct(old);
569 }
570
571 EXPORT_SYMBOL_GPL(copy_fs_struct);
572
573 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
574 {
575 if (clone_flags & CLONE_FS) {
576 atomic_inc(&current->fs->count);
577 return 0;
578 }
579 tsk->fs = __copy_fs_struct(current->fs);
580 if (!tsk->fs)
581 return -ENOMEM;
582 return 0;
583 }
584
585 static int count_open_files(struct fdtable *fdt)
586 {
587 int size = fdt->max_fdset;
588 int i;
589
590 /* Find the last open fd */
591 for (i = size/(8*sizeof(long)); i > 0; ) {
592 if (fdt->open_fds->fds_bits[--i])
593 break;
594 }
595 i = (i+1) * 8 * sizeof(long);
596 return i;
597 }
598
599 static struct files_struct *alloc_files(void)
600 {
601 struct files_struct *newf;
602 struct fdtable *fdt;
603
604 newf = kmem_cache_alloc(files_cachep, SLAB_KERNEL);
605 if (!newf)
606 goto out;
607
608 atomic_set(&newf->count, 1);
609
610 spin_lock_init(&newf->file_lock);
611 newf->next_fd = 0;
612 fdt = &newf->fdtab;
613 fdt->max_fds = NR_OPEN_DEFAULT;
614 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
615 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
616 fdt->open_fds = (fd_set *)&newf->open_fds_init;
617 fdt->fd = &newf->fd_array[0];
618 INIT_RCU_HEAD(&fdt->rcu);
619 fdt->free_files = NULL;
620 fdt->next = NULL;
621 rcu_assign_pointer(newf->fdt, fdt);
622 out:
623 return newf;
624 }
625
626 /*
627 * Allocate a new files structure and copy contents from the
628 * passed in files structure.
629 */
630 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
631 {
632 struct files_struct *newf;
633 struct file **old_fds, **new_fds;
634 int open_files, size, i, expand;
635 struct fdtable *old_fdt, *new_fdt;
636
637 newf = alloc_files();
638 if (!newf)
639 goto out;
640
641 spin_lock(&oldf->file_lock);
642 old_fdt = files_fdtable(oldf);
643 new_fdt = files_fdtable(newf);
644 size = old_fdt->max_fdset;
645 open_files = count_open_files(old_fdt);
646 expand = 0;
647
648 /*
649 * Check whether we need to allocate a larger fd array or fd set.
650 * Note: we're not a clone task, so the open count won't change.
651 */
652 if (open_files > new_fdt->max_fdset) {
653 new_fdt->max_fdset = 0;
654 expand = 1;
655 }
656 if (open_files > new_fdt->max_fds) {
657 new_fdt->max_fds = 0;
658 expand = 1;
659 }
660
661 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
662 if (expand) {
663 spin_unlock(&oldf->file_lock);
664 spin_lock(&newf->file_lock);
665 *errorp = expand_files(newf, open_files-1);
666 spin_unlock(&newf->file_lock);
667 if (*errorp < 0)
668 goto out_release;
669 new_fdt = files_fdtable(newf);
670 /*
671 * Reacquire the oldf lock and a pointer to its fd table
672 * who knows it may have a new bigger fd table. We need
673 * the latest pointer.
674 */
675 spin_lock(&oldf->file_lock);
676 old_fdt = files_fdtable(oldf);
677 }
678
679 old_fds = old_fdt->fd;
680 new_fds = new_fdt->fd;
681
682 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
683 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
684
685 for (i = open_files; i != 0; i--) {
686 struct file *f = *old_fds++;
687 if (f) {
688 get_file(f);
689 } else {
690 /*
691 * The fd may be claimed in the fd bitmap but not yet
692 * instantiated in the files array if a sibling thread
693 * is partway through open(). So make sure that this
694 * fd is available to the new process.
695 */
696 FD_CLR(open_files - i, new_fdt->open_fds);
697 }
698 rcu_assign_pointer(*new_fds++, f);
699 }
700 spin_unlock(&oldf->file_lock);
701
702 /* compute the remainder to be cleared */
703 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
704
705 /* This is long word aligned thus could use a optimized version */
706 memset(new_fds, 0, size);
707
708 if (new_fdt->max_fdset > open_files) {
709 int left = (new_fdt->max_fdset-open_files)/8;
710 int start = open_files / (8 * sizeof(unsigned long));
711
712 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
713 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
714 }
715
716 out:
717 return newf;
718
719 out_release:
720 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
721 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
722 free_fd_array(new_fdt->fd, new_fdt->max_fds);
723 kmem_cache_free(files_cachep, newf);
724 goto out;
725 }
726
727 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
728 {
729 struct files_struct *oldf, *newf;
730 int error = 0;
731
732 /*
733 * A background process may not have any files ...
734 */
735 oldf = current->files;
736 if (!oldf)
737 goto out;
738
739 if (clone_flags & CLONE_FILES) {
740 atomic_inc(&oldf->count);
741 goto out;
742 }
743
744 /*
745 * Note: we may be using current for both targets (See exec.c)
746 * This works because we cache current->files (old) as oldf. Don't
747 * break this.
748 */
749 tsk->files = NULL;
750 error = -ENOMEM;
751 newf = dup_fd(oldf, &error);
752 if (!newf)
753 goto out;
754
755 tsk->files = newf;
756 error = 0;
757 out:
758 return error;
759 }
760
761 /*
762 * Helper to unshare the files of the current task.
763 * We don't want to expose copy_files internals to
764 * the exec layer of the kernel.
765 */
766
767 int unshare_files(void)
768 {
769 struct files_struct *files = current->files;
770 int rc;
771
772 BUG_ON(!files);
773
774 /* This can race but the race causes us to copy when we don't
775 need to and drop the copy */
776 if(atomic_read(&files->count) == 1)
777 {
778 atomic_inc(&files->count);
779 return 0;
780 }
781 rc = copy_files(0, current);
782 if(rc)
783 current->files = files;
784 return rc;
785 }
786
787 EXPORT_SYMBOL(unshare_files);
788
789 void sighand_free_cb(struct rcu_head *rhp)
790 {
791 struct sighand_struct *sp;
792
793 sp = container_of(rhp, struct sighand_struct, rcu);
794 kmem_cache_free(sighand_cachep, sp);
795 }
796
797 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
798 {
799 struct sighand_struct *sig;
800
801 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
802 atomic_inc(&current->sighand->count);
803 return 0;
804 }
805 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
806 rcu_assign_pointer(tsk->sighand, sig);
807 if (!sig)
808 return -ENOMEM;
809 spin_lock_init(&sig->siglock);
810 atomic_set(&sig->count, 1);
811 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
812 return 0;
813 }
814
815 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
816 {
817 struct signal_struct *sig;
818 int ret;
819
820 if (clone_flags & CLONE_THREAD) {
821 atomic_inc(&current->signal->count);
822 atomic_inc(&current->signal->live);
823 return 0;
824 }
825 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
826 tsk->signal = sig;
827 if (!sig)
828 return -ENOMEM;
829
830 ret = copy_thread_group_keys(tsk);
831 if (ret < 0) {
832 kmem_cache_free(signal_cachep, sig);
833 return ret;
834 }
835
836 atomic_set(&sig->count, 1);
837 atomic_set(&sig->live, 1);
838 init_waitqueue_head(&sig->wait_chldexit);
839 sig->flags = 0;
840 sig->group_exit_code = 0;
841 sig->group_exit_task = NULL;
842 sig->group_stop_count = 0;
843 sig->curr_target = NULL;
844 init_sigpending(&sig->shared_pending);
845 INIT_LIST_HEAD(&sig->posix_timers);
846
847 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
848 sig->it_real_incr.tv64 = 0;
849 sig->real_timer.function = it_real_fn;
850 sig->tsk = tsk;
851
852 sig->it_virt_expires = cputime_zero;
853 sig->it_virt_incr = cputime_zero;
854 sig->it_prof_expires = cputime_zero;
855 sig->it_prof_incr = cputime_zero;
856
857 sig->leader = 0; /* session leadership doesn't inherit */
858 sig->tty_old_pgrp = 0;
859
860 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
861 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
862 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
863 sig->sched_time = 0;
864 INIT_LIST_HEAD(&sig->cpu_timers[0]);
865 INIT_LIST_HEAD(&sig->cpu_timers[1]);
866 INIT_LIST_HEAD(&sig->cpu_timers[2]);
867
868 task_lock(current->group_leader);
869 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
870 task_unlock(current->group_leader);
871
872 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
873 /*
874 * New sole thread in the process gets an expiry time
875 * of the whole CPU time limit.
876 */
877 tsk->it_prof_expires =
878 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
879 }
880
881 return 0;
882 }
883
884 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
885 {
886 unsigned long new_flags = p->flags;
887
888 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
889 new_flags |= PF_FORKNOEXEC;
890 if (!(clone_flags & CLONE_PTRACE))
891 p->ptrace = 0;
892 p->flags = new_flags;
893 }
894
895 asmlinkage long sys_set_tid_address(int __user *tidptr)
896 {
897 current->clear_child_tid = tidptr;
898
899 return current->pid;
900 }
901
902 /*
903 * This creates a new process as a copy of the old one,
904 * but does not actually start it yet.
905 *
906 * It copies the registers, and all the appropriate
907 * parts of the process environment (as per the clone
908 * flags). The actual kick-off is left to the caller.
909 */
910 static task_t *copy_process(unsigned long clone_flags,
911 unsigned long stack_start,
912 struct pt_regs *regs,
913 unsigned long stack_size,
914 int __user *parent_tidptr,
915 int __user *child_tidptr,
916 int pid)
917 {
918 int retval;
919 struct task_struct *p = NULL;
920
921 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
922 return ERR_PTR(-EINVAL);
923
924 /*
925 * Thread groups must share signals as well, and detached threads
926 * can only be started up within the thread group.
927 */
928 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
929 return ERR_PTR(-EINVAL);
930
931 /*
932 * Shared signal handlers imply shared VM. By way of the above,
933 * thread groups also imply shared VM. Blocking this case allows
934 * for various simplifications in other code.
935 */
936 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
937 return ERR_PTR(-EINVAL);
938
939 retval = security_task_create(clone_flags);
940 if (retval)
941 goto fork_out;
942
943 retval = -ENOMEM;
944 p = dup_task_struct(current);
945 if (!p)
946 goto fork_out;
947
948 retval = -EAGAIN;
949 if (atomic_read(&p->user->processes) >=
950 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
951 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
952 p->user != &root_user)
953 goto bad_fork_free;
954 }
955
956 atomic_inc(&p->user->__count);
957 atomic_inc(&p->user->processes);
958 get_group_info(p->group_info);
959
960 /*
961 * If multiple threads are within copy_process(), then this check
962 * triggers too late. This doesn't hurt, the check is only there
963 * to stop root fork bombs.
964 */
965 if (nr_threads >= max_threads)
966 goto bad_fork_cleanup_count;
967
968 if (!try_module_get(task_thread_info(p)->exec_domain->module))
969 goto bad_fork_cleanup_count;
970
971 if (p->binfmt && !try_module_get(p->binfmt->module))
972 goto bad_fork_cleanup_put_domain;
973
974 p->did_exec = 0;
975 copy_flags(clone_flags, p);
976 p->pid = pid;
977 retval = -EFAULT;
978 if (clone_flags & CLONE_PARENT_SETTID)
979 if (put_user(p->pid, parent_tidptr))
980 goto bad_fork_cleanup;
981
982 p->proc_dentry = NULL;
983
984 INIT_LIST_HEAD(&p->children);
985 INIT_LIST_HEAD(&p->sibling);
986 p->vfork_done = NULL;
987 spin_lock_init(&p->alloc_lock);
988 spin_lock_init(&p->proc_lock);
989
990 clear_tsk_thread_flag(p, TIF_SIGPENDING);
991 init_sigpending(&p->pending);
992
993 p->utime = cputime_zero;
994 p->stime = cputime_zero;
995 p->sched_time = 0;
996 p->rchar = 0; /* I/O counter: bytes read */
997 p->wchar = 0; /* I/O counter: bytes written */
998 p->syscr = 0; /* I/O counter: read syscalls */
999 p->syscw = 0; /* I/O counter: write syscalls */
1000 acct_clear_integrals(p);
1001
1002 p->it_virt_expires = cputime_zero;
1003 p->it_prof_expires = cputime_zero;
1004 p->it_sched_expires = 0;
1005 INIT_LIST_HEAD(&p->cpu_timers[0]);
1006 INIT_LIST_HEAD(&p->cpu_timers[1]);
1007 INIT_LIST_HEAD(&p->cpu_timers[2]);
1008
1009 p->lock_depth = -1; /* -1 = no lock */
1010 do_posix_clock_monotonic_gettime(&p->start_time);
1011 p->security = NULL;
1012 p->io_context = NULL;
1013 p->io_wait = NULL;
1014 p->audit_context = NULL;
1015 cpuset_fork(p);
1016 #ifdef CONFIG_NUMA
1017 p->mempolicy = mpol_copy(p->mempolicy);
1018 if (IS_ERR(p->mempolicy)) {
1019 retval = PTR_ERR(p->mempolicy);
1020 p->mempolicy = NULL;
1021 goto bad_fork_cleanup_cpuset;
1022 }
1023 mpol_fix_fork_child_flag(p);
1024 #endif
1025
1026 #ifdef CONFIG_DEBUG_MUTEXES
1027 p->blocked_on = NULL; /* not blocked yet */
1028 #endif
1029
1030 p->tgid = p->pid;
1031 if (clone_flags & CLONE_THREAD)
1032 p->tgid = current->tgid;
1033
1034 if ((retval = security_task_alloc(p)))
1035 goto bad_fork_cleanup_policy;
1036 if ((retval = audit_alloc(p)))
1037 goto bad_fork_cleanup_security;
1038 /* copy all the process information */
1039 if ((retval = copy_semundo(clone_flags, p)))
1040 goto bad_fork_cleanup_audit;
1041 if ((retval = copy_files(clone_flags, p)))
1042 goto bad_fork_cleanup_semundo;
1043 if ((retval = copy_fs(clone_flags, p)))
1044 goto bad_fork_cleanup_files;
1045 if ((retval = copy_sighand(clone_flags, p)))
1046 goto bad_fork_cleanup_fs;
1047 if ((retval = copy_signal(clone_flags, p)))
1048 goto bad_fork_cleanup_sighand;
1049 if ((retval = copy_mm(clone_flags, p)))
1050 goto bad_fork_cleanup_signal;
1051 if ((retval = copy_keys(clone_flags, p)))
1052 goto bad_fork_cleanup_mm;
1053 if ((retval = copy_namespace(clone_flags, p)))
1054 goto bad_fork_cleanup_keys;
1055 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1056 if (retval)
1057 goto bad_fork_cleanup_namespace;
1058
1059 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1060 /*
1061 * Clear TID on mm_release()?
1062 */
1063 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1064 p->robust_list = NULL;
1065 #ifdef CONFIG_COMPAT
1066 p->compat_robust_list = NULL;
1067 #endif
1068 /*
1069 * sigaltstack should be cleared when sharing the same VM
1070 */
1071 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1072 p->sas_ss_sp = p->sas_ss_size = 0;
1073
1074 /*
1075 * Syscall tracing should be turned off in the child regardless
1076 * of CLONE_PTRACE.
1077 */
1078 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1079 #ifdef TIF_SYSCALL_EMU
1080 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1081 #endif
1082
1083 /* Our parent execution domain becomes current domain
1084 These must match for thread signalling to apply */
1085
1086 p->parent_exec_id = p->self_exec_id;
1087
1088 /* ok, now we should be set up.. */
1089 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1090 p->pdeath_signal = 0;
1091 p->exit_state = 0;
1092
1093 /*
1094 * Ok, make it visible to the rest of the system.
1095 * We dont wake it up yet.
1096 */
1097 p->group_leader = p;
1098 INIT_LIST_HEAD(&p->ptrace_children);
1099 INIT_LIST_HEAD(&p->ptrace_list);
1100
1101 /* Perform scheduler related setup. Assign this task to a CPU. */
1102 sched_fork(p, clone_flags);
1103
1104 /* Need tasklist lock for parent etc handling! */
1105 write_lock_irq(&tasklist_lock);
1106
1107 /*
1108 * The task hasn't been attached yet, so its cpus_allowed mask will
1109 * not be changed, nor will its assigned CPU.
1110 *
1111 * The cpus_allowed mask of the parent may have changed after it was
1112 * copied first time - so re-copy it here, then check the child's CPU
1113 * to ensure it is on a valid CPU (and if not, just force it back to
1114 * parent's CPU). This avoids alot of nasty races.
1115 */
1116 p->cpus_allowed = current->cpus_allowed;
1117 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1118 !cpu_online(task_cpu(p))))
1119 set_task_cpu(p, smp_processor_id());
1120
1121 /*
1122 * Check for pending SIGKILL! The new thread should not be allowed
1123 * to slip out of an OOM kill. (or normal SIGKILL.)
1124 */
1125 if (sigismember(&current->pending.signal, SIGKILL)) {
1126 write_unlock_irq(&tasklist_lock);
1127 retval = -EINTR;
1128 goto bad_fork_cleanup_namespace;
1129 }
1130
1131 /* CLONE_PARENT re-uses the old parent */
1132 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1133 p->real_parent = current->real_parent;
1134 else
1135 p->real_parent = current;
1136 p->parent = p->real_parent;
1137
1138 spin_lock(&current->sighand->siglock);
1139 if (clone_flags & CLONE_THREAD) {
1140 /*
1141 * Important: if an exit-all has been started then
1142 * do not create this new thread - the whole thread
1143 * group is supposed to exit anyway.
1144 */
1145 if (current->signal->flags & SIGNAL_GROUP_EXIT) {
1146 spin_unlock(&current->sighand->siglock);
1147 write_unlock_irq(&tasklist_lock);
1148 retval = -EAGAIN;
1149 goto bad_fork_cleanup_namespace;
1150 }
1151 p->group_leader = current->group_leader;
1152
1153 if (current->signal->group_stop_count > 0) {
1154 /*
1155 * There is an all-stop in progress for the group.
1156 * We ourselves will stop as soon as we check signals.
1157 * Make the new thread part of that group stop too.
1158 */
1159 current->signal->group_stop_count++;
1160 set_tsk_thread_flag(p, TIF_SIGPENDING);
1161 }
1162
1163 if (!cputime_eq(current->signal->it_virt_expires,
1164 cputime_zero) ||
1165 !cputime_eq(current->signal->it_prof_expires,
1166 cputime_zero) ||
1167 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1168 !list_empty(&current->signal->cpu_timers[0]) ||
1169 !list_empty(&current->signal->cpu_timers[1]) ||
1170 !list_empty(&current->signal->cpu_timers[2])) {
1171 /*
1172 * Have child wake up on its first tick to check
1173 * for process CPU timers.
1174 */
1175 p->it_prof_expires = jiffies_to_cputime(1);
1176 }
1177 }
1178
1179 /*
1180 * inherit ioprio
1181 */
1182 p->ioprio = current->ioprio;
1183
1184 add_parent(p);
1185 if (unlikely(p->ptrace & PT_PTRACED))
1186 __ptrace_link(p, current->parent);
1187
1188 if (thread_group_leader(p)) {
1189 p->signal->tty = current->signal->tty;
1190 p->signal->pgrp = process_group(current);
1191 p->signal->session = current->signal->session;
1192 attach_pid(p, PIDTYPE_PGID, process_group(p));
1193 attach_pid(p, PIDTYPE_SID, p->signal->session);
1194
1195 list_add_tail(&p->tasks, &init_task.tasks);
1196 if (p->pid)
1197 __get_cpu_var(process_counts)++;
1198 }
1199 attach_pid(p, PIDTYPE_TGID, p->tgid);
1200 attach_pid(p, PIDTYPE_PID, p->pid);
1201
1202 nr_threads++;
1203 total_forks++;
1204 spin_unlock(&current->sighand->siglock);
1205 write_unlock_irq(&tasklist_lock);
1206 proc_fork_connector(p);
1207 return p;
1208
1209 bad_fork_cleanup_namespace:
1210 exit_namespace(p);
1211 bad_fork_cleanup_keys:
1212 exit_keys(p);
1213 bad_fork_cleanup_mm:
1214 if (p->mm)
1215 mmput(p->mm);
1216 bad_fork_cleanup_signal:
1217 exit_signal(p);
1218 bad_fork_cleanup_sighand:
1219 exit_sighand(p);
1220 bad_fork_cleanup_fs:
1221 exit_fs(p); /* blocking */
1222 bad_fork_cleanup_files:
1223 exit_files(p); /* blocking */
1224 bad_fork_cleanup_semundo:
1225 exit_sem(p);
1226 bad_fork_cleanup_audit:
1227 audit_free(p);
1228 bad_fork_cleanup_security:
1229 security_task_free(p);
1230 bad_fork_cleanup_policy:
1231 #ifdef CONFIG_NUMA
1232 mpol_free(p->mempolicy);
1233 bad_fork_cleanup_cpuset:
1234 #endif
1235 cpuset_exit(p);
1236 bad_fork_cleanup:
1237 if (p->binfmt)
1238 module_put(p->binfmt->module);
1239 bad_fork_cleanup_put_domain:
1240 module_put(task_thread_info(p)->exec_domain->module);
1241 bad_fork_cleanup_count:
1242 put_group_info(p->group_info);
1243 atomic_dec(&p->user->processes);
1244 free_uid(p->user);
1245 bad_fork_free:
1246 free_task(p);
1247 fork_out:
1248 return ERR_PTR(retval);
1249 }
1250
1251 struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1252 {
1253 memset(regs, 0, sizeof(struct pt_regs));
1254 return regs;
1255 }
1256
1257 task_t * __devinit fork_idle(int cpu)
1258 {
1259 task_t *task;
1260 struct pt_regs regs;
1261
1262 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1263 if (!task)
1264 return ERR_PTR(-ENOMEM);
1265 init_idle(task, cpu);
1266 unhash_process(task);
1267 return task;
1268 }
1269
1270 static inline int fork_traceflag (unsigned clone_flags)
1271 {
1272 if (clone_flags & CLONE_UNTRACED)
1273 return 0;
1274 else if (clone_flags & CLONE_VFORK) {
1275 if (current->ptrace & PT_TRACE_VFORK)
1276 return PTRACE_EVENT_VFORK;
1277 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1278 if (current->ptrace & PT_TRACE_CLONE)
1279 return PTRACE_EVENT_CLONE;
1280 } else if (current->ptrace & PT_TRACE_FORK)
1281 return PTRACE_EVENT_FORK;
1282
1283 return 0;
1284 }
1285
1286 /*
1287 * Ok, this is the main fork-routine.
1288 *
1289 * It copies the process, and if successful kick-starts
1290 * it and waits for it to finish using the VM if required.
1291 */
1292 long do_fork(unsigned long clone_flags,
1293 unsigned long stack_start,
1294 struct pt_regs *regs,
1295 unsigned long stack_size,
1296 int __user *parent_tidptr,
1297 int __user *child_tidptr)
1298 {
1299 struct task_struct *p;
1300 int trace = 0;
1301 long pid = alloc_pidmap();
1302
1303 if (pid < 0)
1304 return -EAGAIN;
1305 if (unlikely(current->ptrace)) {
1306 trace = fork_traceflag (clone_flags);
1307 if (trace)
1308 clone_flags |= CLONE_PTRACE;
1309 }
1310
1311 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, pid);
1312 /*
1313 * Do this prior waking up the new thread - the thread pointer
1314 * might get invalid after that point, if the thread exits quickly.
1315 */
1316 if (!IS_ERR(p)) {
1317 struct completion vfork;
1318
1319 if (clone_flags & CLONE_VFORK) {
1320 p->vfork_done = &vfork;
1321 init_completion(&vfork);
1322 }
1323
1324 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1325 /*
1326 * We'll start up with an immediate SIGSTOP.
1327 */
1328 sigaddset(&p->pending.signal, SIGSTOP);
1329 set_tsk_thread_flag(p, TIF_SIGPENDING);
1330 }
1331
1332 if (!(clone_flags & CLONE_STOPPED))
1333 wake_up_new_task(p, clone_flags);
1334 else
1335 p->state = TASK_STOPPED;
1336
1337 if (unlikely (trace)) {
1338 current->ptrace_message = pid;
1339 ptrace_notify ((trace << 8) | SIGTRAP);
1340 }
1341
1342 if (clone_flags & CLONE_VFORK) {
1343 wait_for_completion(&vfork);
1344 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE))
1345 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1346 }
1347 } else {
1348 free_pidmap(pid);
1349 pid = PTR_ERR(p);
1350 }
1351 return pid;
1352 }
1353
1354 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1355 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1356 #endif
1357
1358 void __init proc_caches_init(void)
1359 {
1360 sighand_cachep = kmem_cache_create("sighand_cache",
1361 sizeof(struct sighand_struct), 0,
1362 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1363 signal_cachep = kmem_cache_create("signal_cache",
1364 sizeof(struct signal_struct), 0,
1365 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1366 files_cachep = kmem_cache_create("files_cache",
1367 sizeof(struct files_struct), 0,
1368 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1369 fs_cachep = kmem_cache_create("fs_cache",
1370 sizeof(struct fs_struct), 0,
1371 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1372 vm_area_cachep = kmem_cache_create("vm_area_struct",
1373 sizeof(struct vm_area_struct), 0,
1374 SLAB_PANIC, NULL, NULL);
1375 mm_cachep = kmem_cache_create("mm_struct",
1376 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1377 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1378 }
1379
1380
1381 /*
1382 * Check constraints on flags passed to the unshare system call and
1383 * force unsharing of additional process context as appropriate.
1384 */
1385 static inline void check_unshare_flags(unsigned long *flags_ptr)
1386 {
1387 /*
1388 * If unsharing a thread from a thread group, must also
1389 * unshare vm.
1390 */
1391 if (*flags_ptr & CLONE_THREAD)
1392 *flags_ptr |= CLONE_VM;
1393
1394 /*
1395 * If unsharing vm, must also unshare signal handlers.
1396 */
1397 if (*flags_ptr & CLONE_VM)
1398 *flags_ptr |= CLONE_SIGHAND;
1399
1400 /*
1401 * If unsharing signal handlers and the task was created
1402 * using CLONE_THREAD, then must unshare the thread
1403 */
1404 if ((*flags_ptr & CLONE_SIGHAND) &&
1405 (atomic_read(&current->signal->count) > 1))
1406 *flags_ptr |= CLONE_THREAD;
1407
1408 /*
1409 * If unsharing namespace, must also unshare filesystem information.
1410 */
1411 if (*flags_ptr & CLONE_NEWNS)
1412 *flags_ptr |= CLONE_FS;
1413 }
1414
1415 /*
1416 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1417 */
1418 static int unshare_thread(unsigned long unshare_flags)
1419 {
1420 if (unshare_flags & CLONE_THREAD)
1421 return -EINVAL;
1422
1423 return 0;
1424 }
1425
1426 /*
1427 * Unshare the filesystem structure if it is being shared
1428 */
1429 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1430 {
1431 struct fs_struct *fs = current->fs;
1432
1433 if ((unshare_flags & CLONE_FS) &&
1434 (fs && atomic_read(&fs->count) > 1)) {
1435 *new_fsp = __copy_fs_struct(current->fs);
1436 if (!*new_fsp)
1437 return -ENOMEM;
1438 }
1439
1440 return 0;
1441 }
1442
1443 /*
1444 * Unshare the namespace structure if it is being shared
1445 */
1446 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1447 {
1448 struct namespace *ns = current->namespace;
1449
1450 if ((unshare_flags & CLONE_NEWNS) &&
1451 (ns && atomic_read(&ns->count) > 1)) {
1452 if (!capable(CAP_SYS_ADMIN))
1453 return -EPERM;
1454
1455 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1456 if (!*new_nsp)
1457 return -ENOMEM;
1458 }
1459
1460 return 0;
1461 }
1462
1463 /*
1464 * Unsharing of sighand for tasks created with CLONE_SIGHAND is not
1465 * supported yet
1466 */
1467 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1468 {
1469 struct sighand_struct *sigh = current->sighand;
1470
1471 if ((unshare_flags & CLONE_SIGHAND) &&
1472 (sigh && atomic_read(&sigh->count) > 1))
1473 return -EINVAL;
1474 else
1475 return 0;
1476 }
1477
1478 /*
1479 * Unshare vm if it is being shared
1480 */
1481 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1482 {
1483 struct mm_struct *mm = current->mm;
1484
1485 if ((unshare_flags & CLONE_VM) &&
1486 (mm && atomic_read(&mm->mm_users) > 1)) {
1487 return -EINVAL;
1488 }
1489
1490 return 0;
1491 }
1492
1493 /*
1494 * Unshare file descriptor table if it is being shared
1495 */
1496 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1497 {
1498 struct files_struct *fd = current->files;
1499 int error = 0;
1500
1501 if ((unshare_flags & CLONE_FILES) &&
1502 (fd && atomic_read(&fd->count) > 1)) {
1503 *new_fdp = dup_fd(fd, &error);
1504 if (!*new_fdp)
1505 return error;
1506 }
1507
1508 return 0;
1509 }
1510
1511 /*
1512 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1513 * supported yet
1514 */
1515 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1516 {
1517 if (unshare_flags & CLONE_SYSVSEM)
1518 return -EINVAL;
1519
1520 return 0;
1521 }
1522
1523 /*
1524 * unshare allows a process to 'unshare' part of the process
1525 * context which was originally shared using clone. copy_*
1526 * functions used by do_fork() cannot be used here directly
1527 * because they modify an inactive task_struct that is being
1528 * constructed. Here we are modifying the current, active,
1529 * task_struct.
1530 */
1531 asmlinkage long sys_unshare(unsigned long unshare_flags)
1532 {
1533 int err = 0;
1534 struct fs_struct *fs, *new_fs = NULL;
1535 struct namespace *ns, *new_ns = NULL;
1536 struct sighand_struct *sigh, *new_sigh = NULL;
1537 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1538 struct files_struct *fd, *new_fd = NULL;
1539 struct sem_undo_list *new_ulist = NULL;
1540
1541 check_unshare_flags(&unshare_flags);
1542
1543 /* Return -EINVAL for all unsupported flags */
1544 err = -EINVAL;
1545 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1546 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM))
1547 goto bad_unshare_out;
1548
1549 if ((err = unshare_thread(unshare_flags)))
1550 goto bad_unshare_out;
1551 if ((err = unshare_fs(unshare_flags, &new_fs)))
1552 goto bad_unshare_cleanup_thread;
1553 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1554 goto bad_unshare_cleanup_fs;
1555 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1556 goto bad_unshare_cleanup_ns;
1557 if ((err = unshare_vm(unshare_flags, &new_mm)))
1558 goto bad_unshare_cleanup_sigh;
1559 if ((err = unshare_fd(unshare_flags, &new_fd)))
1560 goto bad_unshare_cleanup_vm;
1561 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1562 goto bad_unshare_cleanup_fd;
1563
1564 if (new_fs || new_ns || new_sigh || new_mm || new_fd || new_ulist) {
1565
1566 task_lock(current);
1567
1568 if (new_fs) {
1569 fs = current->fs;
1570 current->fs = new_fs;
1571 new_fs = fs;
1572 }
1573
1574 if (new_ns) {
1575 ns = current->namespace;
1576 current->namespace = new_ns;
1577 new_ns = ns;
1578 }
1579
1580 if (new_sigh) {
1581 sigh = current->sighand;
1582 rcu_assign_pointer(current->sighand, new_sigh);
1583 new_sigh = sigh;
1584 }
1585
1586 if (new_mm) {
1587 mm = current->mm;
1588 active_mm = current->active_mm;
1589 current->mm = new_mm;
1590 current->active_mm = new_mm;
1591 activate_mm(active_mm, new_mm);
1592 new_mm = mm;
1593 }
1594
1595 if (new_fd) {
1596 fd = current->files;
1597 current->files = new_fd;
1598 new_fd = fd;
1599 }
1600
1601 task_unlock(current);
1602 }
1603
1604 bad_unshare_cleanup_fd:
1605 if (new_fd)
1606 put_files_struct(new_fd);
1607
1608 bad_unshare_cleanup_vm:
1609 if (new_mm)
1610 mmput(new_mm);
1611
1612 bad_unshare_cleanup_sigh:
1613 if (new_sigh)
1614 if (atomic_dec_and_test(&new_sigh->count))
1615 kmem_cache_free(sighand_cachep, new_sigh);
1616
1617 bad_unshare_cleanup_ns:
1618 if (new_ns)
1619 put_namespace(new_ns);
1620
1621 bad_unshare_cleanup_fs:
1622 if (new_fs)
1623 put_fs_struct(new_fs);
1624
1625 bad_unshare_cleanup_thread:
1626 bad_unshare_out:
1627 return err;
1628 }