]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/fork.c
Merge branch 'linus' into x86/asm, to pick up recent fixes
[mirror_ubuntu-zesty-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/mm.h>
32 #include <linux/vmacache.h>
33 #include <linux/nsproxy.h>
34 #include <linux/capability.h>
35 #include <linux/cpu.h>
36 #include <linux/cgroup.h>
37 #include <linux/security.h>
38 #include <linux/hugetlb.h>
39 #include <linux/seccomp.h>
40 #include <linux/swap.h>
41 #include <linux/syscalls.h>
42 #include <linux/jiffies.h>
43 #include <linux/futex.h>
44 #include <linux/compat.h>
45 #include <linux/kthread.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/rcupdate.h>
48 #include <linux/ptrace.h>
49 #include <linux/mount.h>
50 #include <linux/audit.h>
51 #include <linux/memcontrol.h>
52 #include <linux/ftrace.h>
53 #include <linux/proc_fs.h>
54 #include <linux/profile.h>
55 #include <linux/rmap.h>
56 #include <linux/ksm.h>
57 #include <linux/acct.h>
58 #include <linux/tsacct_kern.h>
59 #include <linux/cn_proc.h>
60 #include <linux/freezer.h>
61 #include <linux/delayacct.h>
62 #include <linux/taskstats_kern.h>
63 #include <linux/random.h>
64 #include <linux/tty.h>
65 #include <linux/blkdev.h>
66 #include <linux/fs_struct.h>
67 #include <linux/magic.h>
68 #include <linux/perf_event.h>
69 #include <linux/posix-timers.h>
70 #include <linux/user-return-notifier.h>
71 #include <linux/oom.h>
72 #include <linux/khugepaged.h>
73 #include <linux/signalfd.h>
74 #include <linux/uprobes.h>
75 #include <linux/aio.h>
76 #include <linux/compiler.h>
77 #include <linux/sysctl.h>
78 #include <linux/kcov.h>
79
80 #include <asm/pgtable.h>
81 #include <asm/pgalloc.h>
82 #include <asm/uaccess.h>
83 #include <asm/mmu_context.h>
84 #include <asm/cacheflush.h>
85 #include <asm/tlbflush.h>
86
87 #include <trace/events/sched.h>
88
89 #define CREATE_TRACE_POINTS
90 #include <trace/events/task.h>
91
92 /*
93 * Minimum number of threads to boot the kernel
94 */
95 #define MIN_THREADS 20
96
97 /*
98 * Maximum number of threads
99 */
100 #define MAX_THREADS FUTEX_TID_MASK
101
102 /*
103 * Protected counters by write_lock_irq(&tasklist_lock)
104 */
105 unsigned long total_forks; /* Handle normal Linux uptimes. */
106 int nr_threads; /* The idle threads do not count.. */
107
108 int max_threads; /* tunable limit on nr_threads */
109
110 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
111
112 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
113
114 #ifdef CONFIG_PROVE_RCU
115 int lockdep_tasklist_lock_is_held(void)
116 {
117 return lockdep_is_held(&tasklist_lock);
118 }
119 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
120 #endif /* #ifdef CONFIG_PROVE_RCU */
121
122 int nr_processes(void)
123 {
124 int cpu;
125 int total = 0;
126
127 for_each_possible_cpu(cpu)
128 total += per_cpu(process_counts, cpu);
129
130 return total;
131 }
132
133 void __weak arch_release_task_struct(struct task_struct *tsk)
134 {
135 }
136
137 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
138 static struct kmem_cache *task_struct_cachep;
139
140 static inline struct task_struct *alloc_task_struct_node(int node)
141 {
142 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
143 }
144
145 static inline void free_task_struct(struct task_struct *tsk)
146 {
147 kmem_cache_free(task_struct_cachep, tsk);
148 }
149 #endif
150
151 void __weak arch_release_thread_stack(unsigned long *stack)
152 {
153 }
154
155 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
156
157 /*
158 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
159 * kmemcache based allocator.
160 */
161 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
162 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
163 {
164 #ifdef CONFIG_VMAP_STACK
165 void *stack = __vmalloc_node_range(THREAD_SIZE, THREAD_SIZE,
166 VMALLOC_START, VMALLOC_END,
167 THREADINFO_GFP | __GFP_HIGHMEM,
168 PAGE_KERNEL,
169 0, node,
170 __builtin_return_address(0));
171
172 /*
173 * We can't call find_vm_area() in interrupt context, and
174 * free_thread_stack() can be called in interrupt context,
175 * so cache the vm_struct.
176 */
177 if (stack)
178 tsk->stack_vm_area = find_vm_area(stack);
179 return stack;
180 #else
181 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
182 THREAD_SIZE_ORDER);
183
184 return page ? page_address(page) : NULL;
185 #endif
186 }
187
188 static inline void free_thread_stack(struct task_struct *tsk)
189 {
190 if (task_stack_vm_area(tsk))
191 vfree(tsk->stack);
192 else
193 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
194 }
195 # else
196 static struct kmem_cache *thread_stack_cache;
197
198 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
199 int node)
200 {
201 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
202 }
203
204 static void free_thread_stack(struct task_struct *tsk)
205 {
206 kmem_cache_free(thread_stack_cache, tsk->stack);
207 }
208
209 void thread_stack_cache_init(void)
210 {
211 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
212 THREAD_SIZE, 0, NULL);
213 BUG_ON(thread_stack_cache == NULL);
214 }
215 # endif
216 #endif
217
218 /* SLAB cache for signal_struct structures (tsk->signal) */
219 static struct kmem_cache *signal_cachep;
220
221 /* SLAB cache for sighand_struct structures (tsk->sighand) */
222 struct kmem_cache *sighand_cachep;
223
224 /* SLAB cache for files_struct structures (tsk->files) */
225 struct kmem_cache *files_cachep;
226
227 /* SLAB cache for fs_struct structures (tsk->fs) */
228 struct kmem_cache *fs_cachep;
229
230 /* SLAB cache for vm_area_struct structures */
231 struct kmem_cache *vm_area_cachep;
232
233 /* SLAB cache for mm_struct structures (tsk->mm) */
234 static struct kmem_cache *mm_cachep;
235
236 static void account_kernel_stack(struct task_struct *tsk, int account)
237 {
238 void *stack = task_stack_page(tsk);
239 struct vm_struct *vm = task_stack_vm_area(tsk);
240
241 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
242
243 if (vm) {
244 int i;
245
246 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
247
248 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
249 mod_zone_page_state(page_zone(vm->pages[i]),
250 NR_KERNEL_STACK_KB,
251 PAGE_SIZE / 1024 * account);
252 }
253
254 /* All stack pages belong to the same memcg. */
255 memcg_kmem_update_page_stat(vm->pages[0], MEMCG_KERNEL_STACK_KB,
256 account * (THREAD_SIZE / 1024));
257 } else {
258 /*
259 * All stack pages are in the same zone and belong to the
260 * same memcg.
261 */
262 struct page *first_page = virt_to_page(stack);
263
264 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
265 THREAD_SIZE / 1024 * account);
266
267 memcg_kmem_update_page_stat(first_page, MEMCG_KERNEL_STACK_KB,
268 account * (THREAD_SIZE / 1024));
269 }
270 }
271
272 void free_task(struct task_struct *tsk)
273 {
274 account_kernel_stack(tsk, -1);
275 arch_release_thread_stack(tsk->stack);
276 free_thread_stack(tsk);
277 rt_mutex_debug_task_free(tsk);
278 ftrace_graph_exit_task(tsk);
279 put_seccomp_filter(tsk);
280 arch_release_task_struct(tsk);
281 free_task_struct(tsk);
282 }
283 EXPORT_SYMBOL(free_task);
284
285 static inline void free_signal_struct(struct signal_struct *sig)
286 {
287 taskstats_tgid_free(sig);
288 sched_autogroup_exit(sig);
289 kmem_cache_free(signal_cachep, sig);
290 }
291
292 static inline void put_signal_struct(struct signal_struct *sig)
293 {
294 if (atomic_dec_and_test(&sig->sigcnt))
295 free_signal_struct(sig);
296 }
297
298 void __put_task_struct(struct task_struct *tsk)
299 {
300 WARN_ON(!tsk->exit_state);
301 WARN_ON(atomic_read(&tsk->usage));
302 WARN_ON(tsk == current);
303
304 cgroup_free(tsk);
305 task_numa_free(tsk);
306 security_task_free(tsk);
307 exit_creds(tsk);
308 delayacct_tsk_free(tsk);
309 put_signal_struct(tsk->signal);
310
311 if (!profile_handoff_task(tsk))
312 free_task(tsk);
313 }
314 EXPORT_SYMBOL_GPL(__put_task_struct);
315
316 void __init __weak arch_task_cache_init(void) { }
317
318 /*
319 * set_max_threads
320 */
321 static void set_max_threads(unsigned int max_threads_suggested)
322 {
323 u64 threads;
324
325 /*
326 * The number of threads shall be limited such that the thread
327 * structures may only consume a small part of the available memory.
328 */
329 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
330 threads = MAX_THREADS;
331 else
332 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
333 (u64) THREAD_SIZE * 8UL);
334
335 if (threads > max_threads_suggested)
336 threads = max_threads_suggested;
337
338 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
339 }
340
341 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
342 /* Initialized by the architecture: */
343 int arch_task_struct_size __read_mostly;
344 #endif
345
346 void __init fork_init(void)
347 {
348 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
349 #ifndef ARCH_MIN_TASKALIGN
350 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
351 #endif
352 /* create a slab on which task_structs can be allocated */
353 task_struct_cachep = kmem_cache_create("task_struct",
354 arch_task_struct_size, ARCH_MIN_TASKALIGN,
355 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
356 #endif
357
358 /* do the arch specific task caches init */
359 arch_task_cache_init();
360
361 set_max_threads(MAX_THREADS);
362
363 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
364 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
365 init_task.signal->rlim[RLIMIT_SIGPENDING] =
366 init_task.signal->rlim[RLIMIT_NPROC];
367 }
368
369 int __weak arch_dup_task_struct(struct task_struct *dst,
370 struct task_struct *src)
371 {
372 *dst = *src;
373 return 0;
374 }
375
376 void set_task_stack_end_magic(struct task_struct *tsk)
377 {
378 unsigned long *stackend;
379
380 stackend = end_of_stack(tsk);
381 *stackend = STACK_END_MAGIC; /* for overflow detection */
382 }
383
384 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
385 {
386 struct task_struct *tsk;
387 unsigned long *stack;
388 struct vm_struct *stack_vm_area;
389 int err;
390
391 if (node == NUMA_NO_NODE)
392 node = tsk_fork_get_node(orig);
393 tsk = alloc_task_struct_node(node);
394 if (!tsk)
395 return NULL;
396
397 stack = alloc_thread_stack_node(tsk, node);
398 if (!stack)
399 goto free_tsk;
400
401 stack_vm_area = task_stack_vm_area(tsk);
402
403 err = arch_dup_task_struct(tsk, orig);
404
405 /*
406 * arch_dup_task_struct() clobbers the stack-related fields. Make
407 * sure they're properly initialized before using any stack-related
408 * functions again.
409 */
410 tsk->stack = stack;
411 #ifdef CONFIG_VMAP_STACK
412 tsk->stack_vm_area = stack_vm_area;
413 #endif
414
415 if (err)
416 goto free_stack;
417
418 #ifdef CONFIG_SECCOMP
419 /*
420 * We must handle setting up seccomp filters once we're under
421 * the sighand lock in case orig has changed between now and
422 * then. Until then, filter must be NULL to avoid messing up
423 * the usage counts on the error path calling free_task.
424 */
425 tsk->seccomp.filter = NULL;
426 #endif
427
428 setup_thread_stack(tsk, orig);
429 clear_user_return_notifier(tsk);
430 clear_tsk_need_resched(tsk);
431 set_task_stack_end_magic(tsk);
432
433 #ifdef CONFIG_CC_STACKPROTECTOR
434 tsk->stack_canary = get_random_int();
435 #endif
436
437 /*
438 * One for us, one for whoever does the "release_task()" (usually
439 * parent)
440 */
441 atomic_set(&tsk->usage, 2);
442 #ifdef CONFIG_BLK_DEV_IO_TRACE
443 tsk->btrace_seq = 0;
444 #endif
445 tsk->splice_pipe = NULL;
446 tsk->task_frag.page = NULL;
447 tsk->wake_q.next = NULL;
448
449 account_kernel_stack(tsk, 1);
450
451 kcov_task_init(tsk);
452
453 return tsk;
454
455 free_stack:
456 free_thread_stack(tsk);
457 free_tsk:
458 free_task_struct(tsk);
459 return NULL;
460 }
461
462 #ifdef CONFIG_MMU
463 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
464 {
465 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
466 struct rb_node **rb_link, *rb_parent;
467 int retval;
468 unsigned long charge;
469
470 uprobe_start_dup_mmap();
471 if (down_write_killable(&oldmm->mmap_sem)) {
472 retval = -EINTR;
473 goto fail_uprobe_end;
474 }
475 flush_cache_dup_mm(oldmm);
476 uprobe_dup_mmap(oldmm, mm);
477 /*
478 * Not linked in yet - no deadlock potential:
479 */
480 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
481
482 /* No ordering required: file already has been exposed. */
483 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
484
485 mm->total_vm = oldmm->total_vm;
486 mm->data_vm = oldmm->data_vm;
487 mm->exec_vm = oldmm->exec_vm;
488 mm->stack_vm = oldmm->stack_vm;
489
490 rb_link = &mm->mm_rb.rb_node;
491 rb_parent = NULL;
492 pprev = &mm->mmap;
493 retval = ksm_fork(mm, oldmm);
494 if (retval)
495 goto out;
496 retval = khugepaged_fork(mm, oldmm);
497 if (retval)
498 goto out;
499
500 prev = NULL;
501 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
502 struct file *file;
503
504 if (mpnt->vm_flags & VM_DONTCOPY) {
505 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
506 continue;
507 }
508 charge = 0;
509 if (mpnt->vm_flags & VM_ACCOUNT) {
510 unsigned long len = vma_pages(mpnt);
511
512 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
513 goto fail_nomem;
514 charge = len;
515 }
516 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
517 if (!tmp)
518 goto fail_nomem;
519 *tmp = *mpnt;
520 INIT_LIST_HEAD(&tmp->anon_vma_chain);
521 retval = vma_dup_policy(mpnt, tmp);
522 if (retval)
523 goto fail_nomem_policy;
524 tmp->vm_mm = mm;
525 if (anon_vma_fork(tmp, mpnt))
526 goto fail_nomem_anon_vma_fork;
527 tmp->vm_flags &=
528 ~(VM_LOCKED|VM_LOCKONFAULT|VM_UFFD_MISSING|VM_UFFD_WP);
529 tmp->vm_next = tmp->vm_prev = NULL;
530 tmp->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
531 file = tmp->vm_file;
532 if (file) {
533 struct inode *inode = file_inode(file);
534 struct address_space *mapping = file->f_mapping;
535
536 get_file(file);
537 if (tmp->vm_flags & VM_DENYWRITE)
538 atomic_dec(&inode->i_writecount);
539 i_mmap_lock_write(mapping);
540 if (tmp->vm_flags & VM_SHARED)
541 atomic_inc(&mapping->i_mmap_writable);
542 flush_dcache_mmap_lock(mapping);
543 /* insert tmp into the share list, just after mpnt */
544 vma_interval_tree_insert_after(tmp, mpnt,
545 &mapping->i_mmap);
546 flush_dcache_mmap_unlock(mapping);
547 i_mmap_unlock_write(mapping);
548 }
549
550 /*
551 * Clear hugetlb-related page reserves for children. This only
552 * affects MAP_PRIVATE mappings. Faults generated by the child
553 * are not guaranteed to succeed, even if read-only
554 */
555 if (is_vm_hugetlb_page(tmp))
556 reset_vma_resv_huge_pages(tmp);
557
558 /*
559 * Link in the new vma and copy the page table entries.
560 */
561 *pprev = tmp;
562 pprev = &tmp->vm_next;
563 tmp->vm_prev = prev;
564 prev = tmp;
565
566 __vma_link_rb(mm, tmp, rb_link, rb_parent);
567 rb_link = &tmp->vm_rb.rb_right;
568 rb_parent = &tmp->vm_rb;
569
570 mm->map_count++;
571 retval = copy_page_range(mm, oldmm, mpnt);
572
573 if (tmp->vm_ops && tmp->vm_ops->open)
574 tmp->vm_ops->open(tmp);
575
576 if (retval)
577 goto out;
578 }
579 /* a new mm has just been created */
580 arch_dup_mmap(oldmm, mm);
581 retval = 0;
582 out:
583 up_write(&mm->mmap_sem);
584 flush_tlb_mm(oldmm);
585 up_write(&oldmm->mmap_sem);
586 fail_uprobe_end:
587 uprobe_end_dup_mmap();
588 return retval;
589 fail_nomem_anon_vma_fork:
590 mpol_put(vma_policy(tmp));
591 fail_nomem_policy:
592 kmem_cache_free(vm_area_cachep, tmp);
593 fail_nomem:
594 retval = -ENOMEM;
595 vm_unacct_memory(charge);
596 goto out;
597 }
598
599 static inline int mm_alloc_pgd(struct mm_struct *mm)
600 {
601 mm->pgd = pgd_alloc(mm);
602 if (unlikely(!mm->pgd))
603 return -ENOMEM;
604 return 0;
605 }
606
607 static inline void mm_free_pgd(struct mm_struct *mm)
608 {
609 pgd_free(mm, mm->pgd);
610 }
611 #else
612 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
613 {
614 down_write(&oldmm->mmap_sem);
615 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
616 up_write(&oldmm->mmap_sem);
617 return 0;
618 }
619 #define mm_alloc_pgd(mm) (0)
620 #define mm_free_pgd(mm)
621 #endif /* CONFIG_MMU */
622
623 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
624
625 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
626 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
627
628 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
629
630 static int __init coredump_filter_setup(char *s)
631 {
632 default_dump_filter =
633 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
634 MMF_DUMP_FILTER_MASK;
635 return 1;
636 }
637
638 __setup("coredump_filter=", coredump_filter_setup);
639
640 #include <linux/init_task.h>
641
642 static void mm_init_aio(struct mm_struct *mm)
643 {
644 #ifdef CONFIG_AIO
645 spin_lock_init(&mm->ioctx_lock);
646 mm->ioctx_table = NULL;
647 #endif
648 }
649
650 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
651 {
652 #ifdef CONFIG_MEMCG
653 mm->owner = p;
654 #endif
655 }
656
657 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
658 {
659 mm->mmap = NULL;
660 mm->mm_rb = RB_ROOT;
661 mm->vmacache_seqnum = 0;
662 atomic_set(&mm->mm_users, 1);
663 atomic_set(&mm->mm_count, 1);
664 init_rwsem(&mm->mmap_sem);
665 INIT_LIST_HEAD(&mm->mmlist);
666 mm->core_state = NULL;
667 atomic_long_set(&mm->nr_ptes, 0);
668 mm_nr_pmds_init(mm);
669 mm->map_count = 0;
670 mm->locked_vm = 0;
671 mm->pinned_vm = 0;
672 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
673 spin_lock_init(&mm->page_table_lock);
674 mm_init_cpumask(mm);
675 mm_init_aio(mm);
676 mm_init_owner(mm, p);
677 mmu_notifier_mm_init(mm);
678 clear_tlb_flush_pending(mm);
679 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
680 mm->pmd_huge_pte = NULL;
681 #endif
682
683 if (current->mm) {
684 mm->flags = current->mm->flags & MMF_INIT_MASK;
685 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
686 } else {
687 mm->flags = default_dump_filter;
688 mm->def_flags = 0;
689 }
690
691 if (mm_alloc_pgd(mm))
692 goto fail_nopgd;
693
694 if (init_new_context(p, mm))
695 goto fail_nocontext;
696
697 return mm;
698
699 fail_nocontext:
700 mm_free_pgd(mm);
701 fail_nopgd:
702 free_mm(mm);
703 return NULL;
704 }
705
706 static void check_mm(struct mm_struct *mm)
707 {
708 int i;
709
710 for (i = 0; i < NR_MM_COUNTERS; i++) {
711 long x = atomic_long_read(&mm->rss_stat.count[i]);
712
713 if (unlikely(x))
714 printk(KERN_ALERT "BUG: Bad rss-counter state "
715 "mm:%p idx:%d val:%ld\n", mm, i, x);
716 }
717
718 if (atomic_long_read(&mm->nr_ptes))
719 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
720 atomic_long_read(&mm->nr_ptes));
721 if (mm_nr_pmds(mm))
722 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
723 mm_nr_pmds(mm));
724
725 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
726 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
727 #endif
728 }
729
730 /*
731 * Allocate and initialize an mm_struct.
732 */
733 struct mm_struct *mm_alloc(void)
734 {
735 struct mm_struct *mm;
736
737 mm = allocate_mm();
738 if (!mm)
739 return NULL;
740
741 memset(mm, 0, sizeof(*mm));
742 return mm_init(mm, current);
743 }
744
745 /*
746 * Called when the last reference to the mm
747 * is dropped: either by a lazy thread or by
748 * mmput. Free the page directory and the mm.
749 */
750 void __mmdrop(struct mm_struct *mm)
751 {
752 BUG_ON(mm == &init_mm);
753 mm_free_pgd(mm);
754 destroy_context(mm);
755 mmu_notifier_mm_destroy(mm);
756 check_mm(mm);
757 free_mm(mm);
758 }
759 EXPORT_SYMBOL_GPL(__mmdrop);
760
761 static inline void __mmput(struct mm_struct *mm)
762 {
763 VM_BUG_ON(atomic_read(&mm->mm_users));
764
765 uprobe_clear_state(mm);
766 exit_aio(mm);
767 ksm_exit(mm);
768 khugepaged_exit(mm); /* must run before exit_mmap */
769 exit_mmap(mm);
770 set_mm_exe_file(mm, NULL);
771 if (!list_empty(&mm->mmlist)) {
772 spin_lock(&mmlist_lock);
773 list_del(&mm->mmlist);
774 spin_unlock(&mmlist_lock);
775 }
776 if (mm->binfmt)
777 module_put(mm->binfmt->module);
778 mmdrop(mm);
779 }
780
781 /*
782 * Decrement the use count and release all resources for an mm.
783 */
784 void mmput(struct mm_struct *mm)
785 {
786 might_sleep();
787
788 if (atomic_dec_and_test(&mm->mm_users))
789 __mmput(mm);
790 }
791 EXPORT_SYMBOL_GPL(mmput);
792
793 #ifdef CONFIG_MMU
794 static void mmput_async_fn(struct work_struct *work)
795 {
796 struct mm_struct *mm = container_of(work, struct mm_struct, async_put_work);
797 __mmput(mm);
798 }
799
800 void mmput_async(struct mm_struct *mm)
801 {
802 if (atomic_dec_and_test(&mm->mm_users)) {
803 INIT_WORK(&mm->async_put_work, mmput_async_fn);
804 schedule_work(&mm->async_put_work);
805 }
806 }
807 #endif
808
809 /**
810 * set_mm_exe_file - change a reference to the mm's executable file
811 *
812 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
813 *
814 * Main users are mmput() and sys_execve(). Callers prevent concurrent
815 * invocations: in mmput() nobody alive left, in execve task is single
816 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
817 * mm->exe_file, but does so without using set_mm_exe_file() in order
818 * to do avoid the need for any locks.
819 */
820 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
821 {
822 struct file *old_exe_file;
823
824 /*
825 * It is safe to dereference the exe_file without RCU as
826 * this function is only called if nobody else can access
827 * this mm -- see comment above for justification.
828 */
829 old_exe_file = rcu_dereference_raw(mm->exe_file);
830
831 if (new_exe_file)
832 get_file(new_exe_file);
833 rcu_assign_pointer(mm->exe_file, new_exe_file);
834 if (old_exe_file)
835 fput(old_exe_file);
836 }
837
838 /**
839 * get_mm_exe_file - acquire a reference to the mm's executable file
840 *
841 * Returns %NULL if mm has no associated executable file.
842 * User must release file via fput().
843 */
844 struct file *get_mm_exe_file(struct mm_struct *mm)
845 {
846 struct file *exe_file;
847
848 rcu_read_lock();
849 exe_file = rcu_dereference(mm->exe_file);
850 if (exe_file && !get_file_rcu(exe_file))
851 exe_file = NULL;
852 rcu_read_unlock();
853 return exe_file;
854 }
855 EXPORT_SYMBOL(get_mm_exe_file);
856
857 /**
858 * get_task_exe_file - acquire a reference to the task's executable file
859 *
860 * Returns %NULL if task's mm (if any) has no associated executable file or
861 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
862 * User must release file via fput().
863 */
864 struct file *get_task_exe_file(struct task_struct *task)
865 {
866 struct file *exe_file = NULL;
867 struct mm_struct *mm;
868
869 task_lock(task);
870 mm = task->mm;
871 if (mm) {
872 if (!(task->flags & PF_KTHREAD))
873 exe_file = get_mm_exe_file(mm);
874 }
875 task_unlock(task);
876 return exe_file;
877 }
878 EXPORT_SYMBOL(get_task_exe_file);
879
880 /**
881 * get_task_mm - acquire a reference to the task's mm
882 *
883 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
884 * this kernel workthread has transiently adopted a user mm with use_mm,
885 * to do its AIO) is not set and if so returns a reference to it, after
886 * bumping up the use count. User must release the mm via mmput()
887 * after use. Typically used by /proc and ptrace.
888 */
889 struct mm_struct *get_task_mm(struct task_struct *task)
890 {
891 struct mm_struct *mm;
892
893 task_lock(task);
894 mm = task->mm;
895 if (mm) {
896 if (task->flags & PF_KTHREAD)
897 mm = NULL;
898 else
899 atomic_inc(&mm->mm_users);
900 }
901 task_unlock(task);
902 return mm;
903 }
904 EXPORT_SYMBOL_GPL(get_task_mm);
905
906 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
907 {
908 struct mm_struct *mm;
909 int err;
910
911 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
912 if (err)
913 return ERR_PTR(err);
914
915 mm = get_task_mm(task);
916 if (mm && mm != current->mm &&
917 !ptrace_may_access(task, mode)) {
918 mmput(mm);
919 mm = ERR_PTR(-EACCES);
920 }
921 mutex_unlock(&task->signal->cred_guard_mutex);
922
923 return mm;
924 }
925
926 static void complete_vfork_done(struct task_struct *tsk)
927 {
928 struct completion *vfork;
929
930 task_lock(tsk);
931 vfork = tsk->vfork_done;
932 if (likely(vfork)) {
933 tsk->vfork_done = NULL;
934 complete(vfork);
935 }
936 task_unlock(tsk);
937 }
938
939 static int wait_for_vfork_done(struct task_struct *child,
940 struct completion *vfork)
941 {
942 int killed;
943
944 freezer_do_not_count();
945 killed = wait_for_completion_killable(vfork);
946 freezer_count();
947
948 if (killed) {
949 task_lock(child);
950 child->vfork_done = NULL;
951 task_unlock(child);
952 }
953
954 put_task_struct(child);
955 return killed;
956 }
957
958 /* Please note the differences between mmput and mm_release.
959 * mmput is called whenever we stop holding onto a mm_struct,
960 * error success whatever.
961 *
962 * mm_release is called after a mm_struct has been removed
963 * from the current process.
964 *
965 * This difference is important for error handling, when we
966 * only half set up a mm_struct for a new process and need to restore
967 * the old one. Because we mmput the new mm_struct before
968 * restoring the old one. . .
969 * Eric Biederman 10 January 1998
970 */
971 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
972 {
973 /* Get rid of any futexes when releasing the mm */
974 #ifdef CONFIG_FUTEX
975 if (unlikely(tsk->robust_list)) {
976 exit_robust_list(tsk);
977 tsk->robust_list = NULL;
978 }
979 #ifdef CONFIG_COMPAT
980 if (unlikely(tsk->compat_robust_list)) {
981 compat_exit_robust_list(tsk);
982 tsk->compat_robust_list = NULL;
983 }
984 #endif
985 if (unlikely(!list_empty(&tsk->pi_state_list)))
986 exit_pi_state_list(tsk);
987 #endif
988
989 uprobe_free_utask(tsk);
990
991 /* Get rid of any cached register state */
992 deactivate_mm(tsk, mm);
993
994 /*
995 * Signal userspace if we're not exiting with a core dump
996 * because we want to leave the value intact for debugging
997 * purposes.
998 */
999 if (tsk->clear_child_tid) {
1000 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1001 atomic_read(&mm->mm_users) > 1) {
1002 /*
1003 * We don't check the error code - if userspace has
1004 * not set up a proper pointer then tough luck.
1005 */
1006 put_user(0, tsk->clear_child_tid);
1007 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1008 1, NULL, NULL, 0);
1009 }
1010 tsk->clear_child_tid = NULL;
1011 }
1012
1013 /*
1014 * All done, finally we can wake up parent and return this mm to him.
1015 * Also kthread_stop() uses this completion for synchronization.
1016 */
1017 if (tsk->vfork_done)
1018 complete_vfork_done(tsk);
1019 }
1020
1021 /*
1022 * Allocate a new mm structure and copy contents from the
1023 * mm structure of the passed in task structure.
1024 */
1025 static struct mm_struct *dup_mm(struct task_struct *tsk)
1026 {
1027 struct mm_struct *mm, *oldmm = current->mm;
1028 int err;
1029
1030 mm = allocate_mm();
1031 if (!mm)
1032 goto fail_nomem;
1033
1034 memcpy(mm, oldmm, sizeof(*mm));
1035
1036 if (!mm_init(mm, tsk))
1037 goto fail_nomem;
1038
1039 err = dup_mmap(mm, oldmm);
1040 if (err)
1041 goto free_pt;
1042
1043 mm->hiwater_rss = get_mm_rss(mm);
1044 mm->hiwater_vm = mm->total_vm;
1045
1046 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1047 goto free_pt;
1048
1049 return mm;
1050
1051 free_pt:
1052 /* don't put binfmt in mmput, we haven't got module yet */
1053 mm->binfmt = NULL;
1054 mmput(mm);
1055
1056 fail_nomem:
1057 return NULL;
1058 }
1059
1060 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1061 {
1062 struct mm_struct *mm, *oldmm;
1063 int retval;
1064
1065 tsk->min_flt = tsk->maj_flt = 0;
1066 tsk->nvcsw = tsk->nivcsw = 0;
1067 #ifdef CONFIG_DETECT_HUNG_TASK
1068 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1069 #endif
1070
1071 tsk->mm = NULL;
1072 tsk->active_mm = NULL;
1073
1074 /*
1075 * Are we cloning a kernel thread?
1076 *
1077 * We need to steal a active VM for that..
1078 */
1079 oldmm = current->mm;
1080 if (!oldmm)
1081 return 0;
1082
1083 /* initialize the new vmacache entries */
1084 vmacache_flush(tsk);
1085
1086 if (clone_flags & CLONE_VM) {
1087 atomic_inc(&oldmm->mm_users);
1088 mm = oldmm;
1089 goto good_mm;
1090 }
1091
1092 retval = -ENOMEM;
1093 mm = dup_mm(tsk);
1094 if (!mm)
1095 goto fail_nomem;
1096
1097 good_mm:
1098 tsk->mm = mm;
1099 tsk->active_mm = mm;
1100 return 0;
1101
1102 fail_nomem:
1103 return retval;
1104 }
1105
1106 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1107 {
1108 struct fs_struct *fs = current->fs;
1109 if (clone_flags & CLONE_FS) {
1110 /* tsk->fs is already what we want */
1111 spin_lock(&fs->lock);
1112 if (fs->in_exec) {
1113 spin_unlock(&fs->lock);
1114 return -EAGAIN;
1115 }
1116 fs->users++;
1117 spin_unlock(&fs->lock);
1118 return 0;
1119 }
1120 tsk->fs = copy_fs_struct(fs);
1121 if (!tsk->fs)
1122 return -ENOMEM;
1123 return 0;
1124 }
1125
1126 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1127 {
1128 struct files_struct *oldf, *newf;
1129 int error = 0;
1130
1131 /*
1132 * A background process may not have any files ...
1133 */
1134 oldf = current->files;
1135 if (!oldf)
1136 goto out;
1137
1138 if (clone_flags & CLONE_FILES) {
1139 atomic_inc(&oldf->count);
1140 goto out;
1141 }
1142
1143 newf = dup_fd(oldf, &error);
1144 if (!newf)
1145 goto out;
1146
1147 tsk->files = newf;
1148 error = 0;
1149 out:
1150 return error;
1151 }
1152
1153 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1154 {
1155 #ifdef CONFIG_BLOCK
1156 struct io_context *ioc = current->io_context;
1157 struct io_context *new_ioc;
1158
1159 if (!ioc)
1160 return 0;
1161 /*
1162 * Share io context with parent, if CLONE_IO is set
1163 */
1164 if (clone_flags & CLONE_IO) {
1165 ioc_task_link(ioc);
1166 tsk->io_context = ioc;
1167 } else if (ioprio_valid(ioc->ioprio)) {
1168 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1169 if (unlikely(!new_ioc))
1170 return -ENOMEM;
1171
1172 new_ioc->ioprio = ioc->ioprio;
1173 put_io_context(new_ioc);
1174 }
1175 #endif
1176 return 0;
1177 }
1178
1179 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1180 {
1181 struct sighand_struct *sig;
1182
1183 if (clone_flags & CLONE_SIGHAND) {
1184 atomic_inc(&current->sighand->count);
1185 return 0;
1186 }
1187 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1188 rcu_assign_pointer(tsk->sighand, sig);
1189 if (!sig)
1190 return -ENOMEM;
1191
1192 atomic_set(&sig->count, 1);
1193 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1194 return 0;
1195 }
1196
1197 void __cleanup_sighand(struct sighand_struct *sighand)
1198 {
1199 if (atomic_dec_and_test(&sighand->count)) {
1200 signalfd_cleanup(sighand);
1201 /*
1202 * sighand_cachep is SLAB_DESTROY_BY_RCU so we can free it
1203 * without an RCU grace period, see __lock_task_sighand().
1204 */
1205 kmem_cache_free(sighand_cachep, sighand);
1206 }
1207 }
1208
1209 /*
1210 * Initialize POSIX timer handling for a thread group.
1211 */
1212 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1213 {
1214 unsigned long cpu_limit;
1215
1216 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1217 if (cpu_limit != RLIM_INFINITY) {
1218 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1219 sig->cputimer.running = true;
1220 }
1221
1222 /* The timer lists. */
1223 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1224 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1225 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1226 }
1227
1228 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1229 {
1230 struct signal_struct *sig;
1231
1232 if (clone_flags & CLONE_THREAD)
1233 return 0;
1234
1235 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1236 tsk->signal = sig;
1237 if (!sig)
1238 return -ENOMEM;
1239
1240 sig->nr_threads = 1;
1241 atomic_set(&sig->live, 1);
1242 atomic_set(&sig->sigcnt, 1);
1243
1244 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1245 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1246 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1247
1248 init_waitqueue_head(&sig->wait_chldexit);
1249 sig->curr_target = tsk;
1250 init_sigpending(&sig->shared_pending);
1251 INIT_LIST_HEAD(&sig->posix_timers);
1252 seqlock_init(&sig->stats_lock);
1253 prev_cputime_init(&sig->prev_cputime);
1254
1255 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1256 sig->real_timer.function = it_real_fn;
1257
1258 task_lock(current->group_leader);
1259 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1260 task_unlock(current->group_leader);
1261
1262 posix_cpu_timers_init_group(sig);
1263
1264 tty_audit_fork(sig);
1265 sched_autogroup_fork(sig);
1266
1267 sig->oom_score_adj = current->signal->oom_score_adj;
1268 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1269
1270 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1271 current->signal->is_child_subreaper;
1272
1273 mutex_init(&sig->cred_guard_mutex);
1274
1275 return 0;
1276 }
1277
1278 static void copy_seccomp(struct task_struct *p)
1279 {
1280 #ifdef CONFIG_SECCOMP
1281 /*
1282 * Must be called with sighand->lock held, which is common to
1283 * all threads in the group. Holding cred_guard_mutex is not
1284 * needed because this new task is not yet running and cannot
1285 * be racing exec.
1286 */
1287 assert_spin_locked(&current->sighand->siglock);
1288
1289 /* Ref-count the new filter user, and assign it. */
1290 get_seccomp_filter(current);
1291 p->seccomp = current->seccomp;
1292
1293 /*
1294 * Explicitly enable no_new_privs here in case it got set
1295 * between the task_struct being duplicated and holding the
1296 * sighand lock. The seccomp state and nnp must be in sync.
1297 */
1298 if (task_no_new_privs(current))
1299 task_set_no_new_privs(p);
1300
1301 /*
1302 * If the parent gained a seccomp mode after copying thread
1303 * flags and between before we held the sighand lock, we have
1304 * to manually enable the seccomp thread flag here.
1305 */
1306 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1307 set_tsk_thread_flag(p, TIF_SECCOMP);
1308 #endif
1309 }
1310
1311 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1312 {
1313 current->clear_child_tid = tidptr;
1314
1315 return task_pid_vnr(current);
1316 }
1317
1318 static void rt_mutex_init_task(struct task_struct *p)
1319 {
1320 raw_spin_lock_init(&p->pi_lock);
1321 #ifdef CONFIG_RT_MUTEXES
1322 p->pi_waiters = RB_ROOT;
1323 p->pi_waiters_leftmost = NULL;
1324 p->pi_blocked_on = NULL;
1325 #endif
1326 }
1327
1328 /*
1329 * Initialize POSIX timer handling for a single task.
1330 */
1331 static void posix_cpu_timers_init(struct task_struct *tsk)
1332 {
1333 tsk->cputime_expires.prof_exp = 0;
1334 tsk->cputime_expires.virt_exp = 0;
1335 tsk->cputime_expires.sched_exp = 0;
1336 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1337 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1338 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1339 }
1340
1341 static inline void
1342 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1343 {
1344 task->pids[type].pid = pid;
1345 }
1346
1347 /*
1348 * This creates a new process as a copy of the old one,
1349 * but does not actually start it yet.
1350 *
1351 * It copies the registers, and all the appropriate
1352 * parts of the process environment (as per the clone
1353 * flags). The actual kick-off is left to the caller.
1354 */
1355 static struct task_struct *copy_process(unsigned long clone_flags,
1356 unsigned long stack_start,
1357 unsigned long stack_size,
1358 int __user *child_tidptr,
1359 struct pid *pid,
1360 int trace,
1361 unsigned long tls,
1362 int node)
1363 {
1364 int retval;
1365 struct task_struct *p;
1366
1367 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1368 return ERR_PTR(-EINVAL);
1369
1370 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1371 return ERR_PTR(-EINVAL);
1372
1373 /*
1374 * Thread groups must share signals as well, and detached threads
1375 * can only be started up within the thread group.
1376 */
1377 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1378 return ERR_PTR(-EINVAL);
1379
1380 /*
1381 * Shared signal handlers imply shared VM. By way of the above,
1382 * thread groups also imply shared VM. Blocking this case allows
1383 * for various simplifications in other code.
1384 */
1385 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1386 return ERR_PTR(-EINVAL);
1387
1388 /*
1389 * Siblings of global init remain as zombies on exit since they are
1390 * not reaped by their parent (swapper). To solve this and to avoid
1391 * multi-rooted process trees, prevent global and container-inits
1392 * from creating siblings.
1393 */
1394 if ((clone_flags & CLONE_PARENT) &&
1395 current->signal->flags & SIGNAL_UNKILLABLE)
1396 return ERR_PTR(-EINVAL);
1397
1398 /*
1399 * If the new process will be in a different pid or user namespace
1400 * do not allow it to share a thread group with the forking task.
1401 */
1402 if (clone_flags & CLONE_THREAD) {
1403 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1404 (task_active_pid_ns(current) !=
1405 current->nsproxy->pid_ns_for_children))
1406 return ERR_PTR(-EINVAL);
1407 }
1408
1409 retval = security_task_create(clone_flags);
1410 if (retval)
1411 goto fork_out;
1412
1413 retval = -ENOMEM;
1414 p = dup_task_struct(current, node);
1415 if (!p)
1416 goto fork_out;
1417
1418 ftrace_graph_init_task(p);
1419
1420 rt_mutex_init_task(p);
1421
1422 #ifdef CONFIG_PROVE_LOCKING
1423 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1424 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1425 #endif
1426 retval = -EAGAIN;
1427 if (atomic_read(&p->real_cred->user->processes) >=
1428 task_rlimit(p, RLIMIT_NPROC)) {
1429 if (p->real_cred->user != INIT_USER &&
1430 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1431 goto bad_fork_free;
1432 }
1433 current->flags &= ~PF_NPROC_EXCEEDED;
1434
1435 retval = copy_creds(p, clone_flags);
1436 if (retval < 0)
1437 goto bad_fork_free;
1438
1439 /*
1440 * If multiple threads are within copy_process(), then this check
1441 * triggers too late. This doesn't hurt, the check is only there
1442 * to stop root fork bombs.
1443 */
1444 retval = -EAGAIN;
1445 if (nr_threads >= max_threads)
1446 goto bad_fork_cleanup_count;
1447
1448 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1449 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1450 p->flags |= PF_FORKNOEXEC;
1451 INIT_LIST_HEAD(&p->children);
1452 INIT_LIST_HEAD(&p->sibling);
1453 rcu_copy_process(p);
1454 p->vfork_done = NULL;
1455 spin_lock_init(&p->alloc_lock);
1456
1457 init_sigpending(&p->pending);
1458
1459 p->utime = p->stime = p->gtime = 0;
1460 p->utimescaled = p->stimescaled = 0;
1461 prev_cputime_init(&p->prev_cputime);
1462
1463 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1464 seqcount_init(&p->vtime_seqcount);
1465 p->vtime_snap = 0;
1466 p->vtime_snap_whence = VTIME_INACTIVE;
1467 #endif
1468
1469 #if defined(SPLIT_RSS_COUNTING)
1470 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1471 #endif
1472
1473 p->default_timer_slack_ns = current->timer_slack_ns;
1474
1475 task_io_accounting_init(&p->ioac);
1476 acct_clear_integrals(p);
1477
1478 posix_cpu_timers_init(p);
1479
1480 p->start_time = ktime_get_ns();
1481 p->real_start_time = ktime_get_boot_ns();
1482 p->io_context = NULL;
1483 p->audit_context = NULL;
1484 cgroup_fork(p);
1485 #ifdef CONFIG_NUMA
1486 p->mempolicy = mpol_dup(p->mempolicy);
1487 if (IS_ERR(p->mempolicy)) {
1488 retval = PTR_ERR(p->mempolicy);
1489 p->mempolicy = NULL;
1490 goto bad_fork_cleanup_threadgroup_lock;
1491 }
1492 #endif
1493 #ifdef CONFIG_CPUSETS
1494 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1495 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1496 seqcount_init(&p->mems_allowed_seq);
1497 #endif
1498 #ifdef CONFIG_TRACE_IRQFLAGS
1499 p->irq_events = 0;
1500 p->hardirqs_enabled = 0;
1501 p->hardirq_enable_ip = 0;
1502 p->hardirq_enable_event = 0;
1503 p->hardirq_disable_ip = _THIS_IP_;
1504 p->hardirq_disable_event = 0;
1505 p->softirqs_enabled = 1;
1506 p->softirq_enable_ip = _THIS_IP_;
1507 p->softirq_enable_event = 0;
1508 p->softirq_disable_ip = 0;
1509 p->softirq_disable_event = 0;
1510 p->hardirq_context = 0;
1511 p->softirq_context = 0;
1512 #endif
1513
1514 p->pagefault_disabled = 0;
1515
1516 #ifdef CONFIG_LOCKDEP
1517 p->lockdep_depth = 0; /* no locks held yet */
1518 p->curr_chain_key = 0;
1519 p->lockdep_recursion = 0;
1520 #endif
1521
1522 #ifdef CONFIG_DEBUG_MUTEXES
1523 p->blocked_on = NULL; /* not blocked yet */
1524 #endif
1525 #ifdef CONFIG_BCACHE
1526 p->sequential_io = 0;
1527 p->sequential_io_avg = 0;
1528 #endif
1529
1530 /* Perform scheduler related setup. Assign this task to a CPU. */
1531 retval = sched_fork(clone_flags, p);
1532 if (retval)
1533 goto bad_fork_cleanup_policy;
1534
1535 retval = perf_event_init_task(p);
1536 if (retval)
1537 goto bad_fork_cleanup_policy;
1538 retval = audit_alloc(p);
1539 if (retval)
1540 goto bad_fork_cleanup_perf;
1541 /* copy all the process information */
1542 shm_init_task(p);
1543 retval = copy_semundo(clone_flags, p);
1544 if (retval)
1545 goto bad_fork_cleanup_audit;
1546 retval = copy_files(clone_flags, p);
1547 if (retval)
1548 goto bad_fork_cleanup_semundo;
1549 retval = copy_fs(clone_flags, p);
1550 if (retval)
1551 goto bad_fork_cleanup_files;
1552 retval = copy_sighand(clone_flags, p);
1553 if (retval)
1554 goto bad_fork_cleanup_fs;
1555 retval = copy_signal(clone_flags, p);
1556 if (retval)
1557 goto bad_fork_cleanup_sighand;
1558 retval = copy_mm(clone_flags, p);
1559 if (retval)
1560 goto bad_fork_cleanup_signal;
1561 retval = copy_namespaces(clone_flags, p);
1562 if (retval)
1563 goto bad_fork_cleanup_mm;
1564 retval = copy_io(clone_flags, p);
1565 if (retval)
1566 goto bad_fork_cleanup_namespaces;
1567 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1568 if (retval)
1569 goto bad_fork_cleanup_io;
1570
1571 if (pid != &init_struct_pid) {
1572 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1573 if (IS_ERR(pid)) {
1574 retval = PTR_ERR(pid);
1575 goto bad_fork_cleanup_thread;
1576 }
1577 }
1578
1579 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1580 /*
1581 * Clear TID on mm_release()?
1582 */
1583 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1584 #ifdef CONFIG_BLOCK
1585 p->plug = NULL;
1586 #endif
1587 #ifdef CONFIG_FUTEX
1588 p->robust_list = NULL;
1589 #ifdef CONFIG_COMPAT
1590 p->compat_robust_list = NULL;
1591 #endif
1592 INIT_LIST_HEAD(&p->pi_state_list);
1593 p->pi_state_cache = NULL;
1594 #endif
1595 /*
1596 * sigaltstack should be cleared when sharing the same VM
1597 */
1598 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1599 sas_ss_reset(p);
1600
1601 /*
1602 * Syscall tracing and stepping should be turned off in the
1603 * child regardless of CLONE_PTRACE.
1604 */
1605 user_disable_single_step(p);
1606 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1607 #ifdef TIF_SYSCALL_EMU
1608 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1609 #endif
1610 clear_all_latency_tracing(p);
1611
1612 /* ok, now we should be set up.. */
1613 p->pid = pid_nr(pid);
1614 if (clone_flags & CLONE_THREAD) {
1615 p->exit_signal = -1;
1616 p->group_leader = current->group_leader;
1617 p->tgid = current->tgid;
1618 } else {
1619 if (clone_flags & CLONE_PARENT)
1620 p->exit_signal = current->group_leader->exit_signal;
1621 else
1622 p->exit_signal = (clone_flags & CSIGNAL);
1623 p->group_leader = p;
1624 p->tgid = p->pid;
1625 }
1626
1627 p->nr_dirtied = 0;
1628 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1629 p->dirty_paused_when = 0;
1630
1631 p->pdeath_signal = 0;
1632 INIT_LIST_HEAD(&p->thread_group);
1633 p->task_works = NULL;
1634
1635 threadgroup_change_begin(current);
1636 /*
1637 * Ensure that the cgroup subsystem policies allow the new process to be
1638 * forked. It should be noted the the new process's css_set can be changed
1639 * between here and cgroup_post_fork() if an organisation operation is in
1640 * progress.
1641 */
1642 retval = cgroup_can_fork(p);
1643 if (retval)
1644 goto bad_fork_free_pid;
1645
1646 /*
1647 * Make it visible to the rest of the system, but dont wake it up yet.
1648 * Need tasklist lock for parent etc handling!
1649 */
1650 write_lock_irq(&tasklist_lock);
1651
1652 /* CLONE_PARENT re-uses the old parent */
1653 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1654 p->real_parent = current->real_parent;
1655 p->parent_exec_id = current->parent_exec_id;
1656 } else {
1657 p->real_parent = current;
1658 p->parent_exec_id = current->self_exec_id;
1659 }
1660
1661 spin_lock(&current->sighand->siglock);
1662
1663 /*
1664 * Copy seccomp details explicitly here, in case they were changed
1665 * before holding sighand lock.
1666 */
1667 copy_seccomp(p);
1668
1669 /*
1670 * Process group and session signals need to be delivered to just the
1671 * parent before the fork or both the parent and the child after the
1672 * fork. Restart if a signal comes in before we add the new process to
1673 * it's process group.
1674 * A fatal signal pending means that current will exit, so the new
1675 * thread can't slip out of an OOM kill (or normal SIGKILL).
1676 */
1677 recalc_sigpending();
1678 if (signal_pending(current)) {
1679 spin_unlock(&current->sighand->siglock);
1680 write_unlock_irq(&tasklist_lock);
1681 retval = -ERESTARTNOINTR;
1682 goto bad_fork_cancel_cgroup;
1683 }
1684
1685 if (likely(p->pid)) {
1686 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1687
1688 init_task_pid(p, PIDTYPE_PID, pid);
1689 if (thread_group_leader(p)) {
1690 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1691 init_task_pid(p, PIDTYPE_SID, task_session(current));
1692
1693 if (is_child_reaper(pid)) {
1694 ns_of_pid(pid)->child_reaper = p;
1695 p->signal->flags |= SIGNAL_UNKILLABLE;
1696 }
1697
1698 p->signal->leader_pid = pid;
1699 p->signal->tty = tty_kref_get(current->signal->tty);
1700 list_add_tail(&p->sibling, &p->real_parent->children);
1701 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1702 attach_pid(p, PIDTYPE_PGID);
1703 attach_pid(p, PIDTYPE_SID);
1704 __this_cpu_inc(process_counts);
1705 } else {
1706 current->signal->nr_threads++;
1707 atomic_inc(&current->signal->live);
1708 atomic_inc(&current->signal->sigcnt);
1709 list_add_tail_rcu(&p->thread_group,
1710 &p->group_leader->thread_group);
1711 list_add_tail_rcu(&p->thread_node,
1712 &p->signal->thread_head);
1713 }
1714 attach_pid(p, PIDTYPE_PID);
1715 nr_threads++;
1716 }
1717
1718 total_forks++;
1719 spin_unlock(&current->sighand->siglock);
1720 syscall_tracepoint_update(p);
1721 write_unlock_irq(&tasklist_lock);
1722
1723 proc_fork_connector(p);
1724 cgroup_post_fork(p);
1725 threadgroup_change_end(current);
1726 perf_event_fork(p);
1727
1728 trace_task_newtask(p, clone_flags);
1729 uprobe_copy_process(p, clone_flags);
1730
1731 return p;
1732
1733 bad_fork_cancel_cgroup:
1734 cgroup_cancel_fork(p);
1735 bad_fork_free_pid:
1736 threadgroup_change_end(current);
1737 if (pid != &init_struct_pid)
1738 free_pid(pid);
1739 bad_fork_cleanup_thread:
1740 exit_thread(p);
1741 bad_fork_cleanup_io:
1742 if (p->io_context)
1743 exit_io_context(p);
1744 bad_fork_cleanup_namespaces:
1745 exit_task_namespaces(p);
1746 bad_fork_cleanup_mm:
1747 if (p->mm)
1748 mmput(p->mm);
1749 bad_fork_cleanup_signal:
1750 if (!(clone_flags & CLONE_THREAD))
1751 free_signal_struct(p->signal);
1752 bad_fork_cleanup_sighand:
1753 __cleanup_sighand(p->sighand);
1754 bad_fork_cleanup_fs:
1755 exit_fs(p); /* blocking */
1756 bad_fork_cleanup_files:
1757 exit_files(p); /* blocking */
1758 bad_fork_cleanup_semundo:
1759 exit_sem(p);
1760 bad_fork_cleanup_audit:
1761 audit_free(p);
1762 bad_fork_cleanup_perf:
1763 perf_event_free_task(p);
1764 bad_fork_cleanup_policy:
1765 #ifdef CONFIG_NUMA
1766 mpol_put(p->mempolicy);
1767 bad_fork_cleanup_threadgroup_lock:
1768 #endif
1769 delayacct_tsk_free(p);
1770 bad_fork_cleanup_count:
1771 atomic_dec(&p->cred->user->processes);
1772 exit_creds(p);
1773 bad_fork_free:
1774 free_task(p);
1775 fork_out:
1776 return ERR_PTR(retval);
1777 }
1778
1779 static inline void init_idle_pids(struct pid_link *links)
1780 {
1781 enum pid_type type;
1782
1783 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1784 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1785 links[type].pid = &init_struct_pid;
1786 }
1787 }
1788
1789 struct task_struct *fork_idle(int cpu)
1790 {
1791 struct task_struct *task;
1792 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1793 cpu_to_node(cpu));
1794 if (!IS_ERR(task)) {
1795 init_idle_pids(task->pids);
1796 init_idle(task, cpu);
1797 }
1798
1799 return task;
1800 }
1801
1802 /*
1803 * Ok, this is the main fork-routine.
1804 *
1805 * It copies the process, and if successful kick-starts
1806 * it and waits for it to finish using the VM if required.
1807 */
1808 long _do_fork(unsigned long clone_flags,
1809 unsigned long stack_start,
1810 unsigned long stack_size,
1811 int __user *parent_tidptr,
1812 int __user *child_tidptr,
1813 unsigned long tls)
1814 {
1815 struct task_struct *p;
1816 int trace = 0;
1817 long nr;
1818
1819 /*
1820 * Determine whether and which event to report to ptracer. When
1821 * called from kernel_thread or CLONE_UNTRACED is explicitly
1822 * requested, no event is reported; otherwise, report if the event
1823 * for the type of forking is enabled.
1824 */
1825 if (!(clone_flags & CLONE_UNTRACED)) {
1826 if (clone_flags & CLONE_VFORK)
1827 trace = PTRACE_EVENT_VFORK;
1828 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1829 trace = PTRACE_EVENT_CLONE;
1830 else
1831 trace = PTRACE_EVENT_FORK;
1832
1833 if (likely(!ptrace_event_enabled(current, trace)))
1834 trace = 0;
1835 }
1836
1837 p = copy_process(clone_flags, stack_start, stack_size,
1838 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
1839 /*
1840 * Do this prior waking up the new thread - the thread pointer
1841 * might get invalid after that point, if the thread exits quickly.
1842 */
1843 if (!IS_ERR(p)) {
1844 struct completion vfork;
1845 struct pid *pid;
1846
1847 trace_sched_process_fork(current, p);
1848
1849 pid = get_task_pid(p, PIDTYPE_PID);
1850 nr = pid_vnr(pid);
1851
1852 if (clone_flags & CLONE_PARENT_SETTID)
1853 put_user(nr, parent_tidptr);
1854
1855 if (clone_flags & CLONE_VFORK) {
1856 p->vfork_done = &vfork;
1857 init_completion(&vfork);
1858 get_task_struct(p);
1859 }
1860
1861 wake_up_new_task(p);
1862
1863 /* forking complete and child started to run, tell ptracer */
1864 if (unlikely(trace))
1865 ptrace_event_pid(trace, pid);
1866
1867 if (clone_flags & CLONE_VFORK) {
1868 if (!wait_for_vfork_done(p, &vfork))
1869 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
1870 }
1871
1872 put_pid(pid);
1873 } else {
1874 nr = PTR_ERR(p);
1875 }
1876 return nr;
1877 }
1878
1879 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
1880 /* For compatibility with architectures that call do_fork directly rather than
1881 * using the syscall entry points below. */
1882 long do_fork(unsigned long clone_flags,
1883 unsigned long stack_start,
1884 unsigned long stack_size,
1885 int __user *parent_tidptr,
1886 int __user *child_tidptr)
1887 {
1888 return _do_fork(clone_flags, stack_start, stack_size,
1889 parent_tidptr, child_tidptr, 0);
1890 }
1891 #endif
1892
1893 /*
1894 * Create a kernel thread.
1895 */
1896 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1897 {
1898 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1899 (unsigned long)arg, NULL, NULL, 0);
1900 }
1901
1902 #ifdef __ARCH_WANT_SYS_FORK
1903 SYSCALL_DEFINE0(fork)
1904 {
1905 #ifdef CONFIG_MMU
1906 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
1907 #else
1908 /* can not support in nommu mode */
1909 return -EINVAL;
1910 #endif
1911 }
1912 #endif
1913
1914 #ifdef __ARCH_WANT_SYS_VFORK
1915 SYSCALL_DEFINE0(vfork)
1916 {
1917 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1918 0, NULL, NULL, 0);
1919 }
1920 #endif
1921
1922 #ifdef __ARCH_WANT_SYS_CLONE
1923 #ifdef CONFIG_CLONE_BACKWARDS
1924 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1925 int __user *, parent_tidptr,
1926 unsigned long, tls,
1927 int __user *, child_tidptr)
1928 #elif defined(CONFIG_CLONE_BACKWARDS2)
1929 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1930 int __user *, parent_tidptr,
1931 int __user *, child_tidptr,
1932 unsigned long, tls)
1933 #elif defined(CONFIG_CLONE_BACKWARDS3)
1934 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1935 int, stack_size,
1936 int __user *, parent_tidptr,
1937 int __user *, child_tidptr,
1938 unsigned long, tls)
1939 #else
1940 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1941 int __user *, parent_tidptr,
1942 int __user *, child_tidptr,
1943 unsigned long, tls)
1944 #endif
1945 {
1946 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
1947 }
1948 #endif
1949
1950 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1951 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1952 #endif
1953
1954 static void sighand_ctor(void *data)
1955 {
1956 struct sighand_struct *sighand = data;
1957
1958 spin_lock_init(&sighand->siglock);
1959 init_waitqueue_head(&sighand->signalfd_wqh);
1960 }
1961
1962 void __init proc_caches_init(void)
1963 {
1964 sighand_cachep = kmem_cache_create("sighand_cache",
1965 sizeof(struct sighand_struct), 0,
1966 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1967 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
1968 signal_cachep = kmem_cache_create("signal_cache",
1969 sizeof(struct signal_struct), 0,
1970 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1971 NULL);
1972 files_cachep = kmem_cache_create("files_cache",
1973 sizeof(struct files_struct), 0,
1974 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1975 NULL);
1976 fs_cachep = kmem_cache_create("fs_cache",
1977 sizeof(struct fs_struct), 0,
1978 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1979 NULL);
1980 /*
1981 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1982 * whole struct cpumask for the OFFSTACK case. We could change
1983 * this to *only* allocate as much of it as required by the
1984 * maximum number of CPU's we can ever have. The cpumask_allocation
1985 * is at the end of the structure, exactly for that reason.
1986 */
1987 mm_cachep = kmem_cache_create("mm_struct",
1988 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1989 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
1990 NULL);
1991 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
1992 mmap_init();
1993 nsproxy_cache_init();
1994 }
1995
1996 /*
1997 * Check constraints on flags passed to the unshare system call.
1998 */
1999 static int check_unshare_flags(unsigned long unshare_flags)
2000 {
2001 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2002 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2003 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2004 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2005 return -EINVAL;
2006 /*
2007 * Not implemented, but pretend it works if there is nothing
2008 * to unshare. Note that unsharing the address space or the
2009 * signal handlers also need to unshare the signal queues (aka
2010 * CLONE_THREAD).
2011 */
2012 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2013 if (!thread_group_empty(current))
2014 return -EINVAL;
2015 }
2016 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2017 if (atomic_read(&current->sighand->count) > 1)
2018 return -EINVAL;
2019 }
2020 if (unshare_flags & CLONE_VM) {
2021 if (!current_is_single_threaded())
2022 return -EINVAL;
2023 }
2024
2025 return 0;
2026 }
2027
2028 /*
2029 * Unshare the filesystem structure if it is being shared
2030 */
2031 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2032 {
2033 struct fs_struct *fs = current->fs;
2034
2035 if (!(unshare_flags & CLONE_FS) || !fs)
2036 return 0;
2037
2038 /* don't need lock here; in the worst case we'll do useless copy */
2039 if (fs->users == 1)
2040 return 0;
2041
2042 *new_fsp = copy_fs_struct(fs);
2043 if (!*new_fsp)
2044 return -ENOMEM;
2045
2046 return 0;
2047 }
2048
2049 /*
2050 * Unshare file descriptor table if it is being shared
2051 */
2052 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2053 {
2054 struct files_struct *fd = current->files;
2055 int error = 0;
2056
2057 if ((unshare_flags & CLONE_FILES) &&
2058 (fd && atomic_read(&fd->count) > 1)) {
2059 *new_fdp = dup_fd(fd, &error);
2060 if (!*new_fdp)
2061 return error;
2062 }
2063
2064 return 0;
2065 }
2066
2067 /*
2068 * unshare allows a process to 'unshare' part of the process
2069 * context which was originally shared using clone. copy_*
2070 * functions used by do_fork() cannot be used here directly
2071 * because they modify an inactive task_struct that is being
2072 * constructed. Here we are modifying the current, active,
2073 * task_struct.
2074 */
2075 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2076 {
2077 struct fs_struct *fs, *new_fs = NULL;
2078 struct files_struct *fd, *new_fd = NULL;
2079 struct cred *new_cred = NULL;
2080 struct nsproxy *new_nsproxy = NULL;
2081 int do_sysvsem = 0;
2082 int err;
2083
2084 /*
2085 * If unsharing a user namespace must also unshare the thread group
2086 * and unshare the filesystem root and working directories.
2087 */
2088 if (unshare_flags & CLONE_NEWUSER)
2089 unshare_flags |= CLONE_THREAD | CLONE_FS;
2090 /*
2091 * If unsharing vm, must also unshare signal handlers.
2092 */
2093 if (unshare_flags & CLONE_VM)
2094 unshare_flags |= CLONE_SIGHAND;
2095 /*
2096 * If unsharing a signal handlers, must also unshare the signal queues.
2097 */
2098 if (unshare_flags & CLONE_SIGHAND)
2099 unshare_flags |= CLONE_THREAD;
2100 /*
2101 * If unsharing namespace, must also unshare filesystem information.
2102 */
2103 if (unshare_flags & CLONE_NEWNS)
2104 unshare_flags |= CLONE_FS;
2105
2106 err = check_unshare_flags(unshare_flags);
2107 if (err)
2108 goto bad_unshare_out;
2109 /*
2110 * CLONE_NEWIPC must also detach from the undolist: after switching
2111 * to a new ipc namespace, the semaphore arrays from the old
2112 * namespace are unreachable.
2113 */
2114 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2115 do_sysvsem = 1;
2116 err = unshare_fs(unshare_flags, &new_fs);
2117 if (err)
2118 goto bad_unshare_out;
2119 err = unshare_fd(unshare_flags, &new_fd);
2120 if (err)
2121 goto bad_unshare_cleanup_fs;
2122 err = unshare_userns(unshare_flags, &new_cred);
2123 if (err)
2124 goto bad_unshare_cleanup_fd;
2125 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2126 new_cred, new_fs);
2127 if (err)
2128 goto bad_unshare_cleanup_cred;
2129
2130 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2131 if (do_sysvsem) {
2132 /*
2133 * CLONE_SYSVSEM is equivalent to sys_exit().
2134 */
2135 exit_sem(current);
2136 }
2137 if (unshare_flags & CLONE_NEWIPC) {
2138 /* Orphan segments in old ns (see sem above). */
2139 exit_shm(current);
2140 shm_init_task(current);
2141 }
2142
2143 if (new_nsproxy)
2144 switch_task_namespaces(current, new_nsproxy);
2145
2146 task_lock(current);
2147
2148 if (new_fs) {
2149 fs = current->fs;
2150 spin_lock(&fs->lock);
2151 current->fs = new_fs;
2152 if (--fs->users)
2153 new_fs = NULL;
2154 else
2155 new_fs = fs;
2156 spin_unlock(&fs->lock);
2157 }
2158
2159 if (new_fd) {
2160 fd = current->files;
2161 current->files = new_fd;
2162 new_fd = fd;
2163 }
2164
2165 task_unlock(current);
2166
2167 if (new_cred) {
2168 /* Install the new user namespace */
2169 commit_creds(new_cred);
2170 new_cred = NULL;
2171 }
2172 }
2173
2174 bad_unshare_cleanup_cred:
2175 if (new_cred)
2176 put_cred(new_cred);
2177 bad_unshare_cleanup_fd:
2178 if (new_fd)
2179 put_files_struct(new_fd);
2180
2181 bad_unshare_cleanup_fs:
2182 if (new_fs)
2183 free_fs_struct(new_fs);
2184
2185 bad_unshare_out:
2186 return err;
2187 }
2188
2189 /*
2190 * Helper to unshare the files of the current task.
2191 * We don't want to expose copy_files internals to
2192 * the exec layer of the kernel.
2193 */
2194
2195 int unshare_files(struct files_struct **displaced)
2196 {
2197 struct task_struct *task = current;
2198 struct files_struct *copy = NULL;
2199 int error;
2200
2201 error = unshare_fd(CLONE_FILES, &copy);
2202 if (error || !copy) {
2203 *displaced = NULL;
2204 return error;
2205 }
2206 *displaced = task->files;
2207 task_lock(task);
2208 task->files = copy;
2209 task_unlock(task);
2210 return 0;
2211 }
2212
2213 int sysctl_max_threads(struct ctl_table *table, int write,
2214 void __user *buffer, size_t *lenp, loff_t *ppos)
2215 {
2216 struct ctl_table t;
2217 int ret;
2218 int threads = max_threads;
2219 int min = MIN_THREADS;
2220 int max = MAX_THREADS;
2221
2222 t = *table;
2223 t.data = &threads;
2224 t.extra1 = &min;
2225 t.extra2 = &max;
2226
2227 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2228 if (ret || !write)
2229 return ret;
2230
2231 set_max_threads(threads);
2232
2233 return 0;
2234 }