]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
Merge tag 'sound-4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/fs.h>
41 #include <linux/mm.h>
42 #include <linux/vmacache.h>
43 #include <linux/nsproxy.h>
44 #include <linux/capability.h>
45 #include <linux/cpu.h>
46 #include <linux/cgroup.h>
47 #include <linux/security.h>
48 #include <linux/hugetlb.h>
49 #include <linux/seccomp.h>
50 #include <linux/swap.h>
51 #include <linux/syscalls.h>
52 #include <linux/jiffies.h>
53 #include <linux/futex.h>
54 #include <linux/compat.h>
55 #include <linux/kthread.h>
56 #include <linux/task_io_accounting_ops.h>
57 #include <linux/rcupdate.h>
58 #include <linux/ptrace.h>
59 #include <linux/mount.h>
60 #include <linux/audit.h>
61 #include <linux/memcontrol.h>
62 #include <linux/ftrace.h>
63 #include <linux/proc_fs.h>
64 #include <linux/profile.h>
65 #include <linux/rmap.h>
66 #include <linux/ksm.h>
67 #include <linux/acct.h>
68 #include <linux/userfaultfd_k.h>
69 #include <linux/tsacct_kern.h>
70 #include <linux/cn_proc.h>
71 #include <linux/freezer.h>
72 #include <linux/delayacct.h>
73 #include <linux/taskstats_kern.h>
74 #include <linux/random.h>
75 #include <linux/tty.h>
76 #include <linux/blkdev.h>
77 #include <linux/fs_struct.h>
78 #include <linux/magic.h>
79 #include <linux/perf_event.h>
80 #include <linux/posix-timers.h>
81 #include <linux/user-return-notifier.h>
82 #include <linux/oom.h>
83 #include <linux/khugepaged.h>
84 #include <linux/signalfd.h>
85 #include <linux/uprobes.h>
86 #include <linux/aio.h>
87 #include <linux/compiler.h>
88 #include <linux/sysctl.h>
89 #include <linux/kcov.h>
90 #include <linux/livepatch.h>
91 #include <linux/thread_info.h>
92
93 #include <asm/pgtable.h>
94 #include <asm/pgalloc.h>
95 #include <linux/uaccess.h>
96 #include <asm/mmu_context.h>
97 #include <asm/cacheflush.h>
98 #include <asm/tlbflush.h>
99
100 #include <trace/events/sched.h>
101
102 #define CREATE_TRACE_POINTS
103 #include <trace/events/task.h>
104
105 /*
106 * Minimum number of threads to boot the kernel
107 */
108 #define MIN_THREADS 20
109
110 /*
111 * Maximum number of threads
112 */
113 #define MAX_THREADS FUTEX_TID_MASK
114
115 /*
116 * Protected counters by write_lock_irq(&tasklist_lock)
117 */
118 unsigned long total_forks; /* Handle normal Linux uptimes. */
119 int nr_threads; /* The idle threads do not count.. */
120
121 int max_threads; /* tunable limit on nr_threads */
122
123 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
124
125 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
126
127 #ifdef CONFIG_PROVE_RCU
128 int lockdep_tasklist_lock_is_held(void)
129 {
130 return lockdep_is_held(&tasklist_lock);
131 }
132 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
133 #endif /* #ifdef CONFIG_PROVE_RCU */
134
135 int nr_processes(void)
136 {
137 int cpu;
138 int total = 0;
139
140 for_each_possible_cpu(cpu)
141 total += per_cpu(process_counts, cpu);
142
143 return total;
144 }
145
146 void __weak arch_release_task_struct(struct task_struct *tsk)
147 {
148 }
149
150 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
151 static struct kmem_cache *task_struct_cachep;
152
153 static inline struct task_struct *alloc_task_struct_node(int node)
154 {
155 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
156 }
157
158 static inline void free_task_struct(struct task_struct *tsk)
159 {
160 kmem_cache_free(task_struct_cachep, tsk);
161 }
162 #endif
163
164 void __weak arch_release_thread_stack(unsigned long *stack)
165 {
166 }
167
168 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
169
170 /*
171 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
172 * kmemcache based allocator.
173 */
174 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
175
176 #ifdef CONFIG_VMAP_STACK
177 /*
178 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
179 * flush. Try to minimize the number of calls by caching stacks.
180 */
181 #define NR_CACHED_STACKS 2
182 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
183
184 static int free_vm_stack_cache(unsigned int cpu)
185 {
186 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
187 int i;
188
189 for (i = 0; i < NR_CACHED_STACKS; i++) {
190 struct vm_struct *vm_stack = cached_vm_stacks[i];
191
192 if (!vm_stack)
193 continue;
194
195 vfree(vm_stack->addr);
196 cached_vm_stacks[i] = NULL;
197 }
198
199 return 0;
200 }
201 #endif
202
203 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
204 {
205 #ifdef CONFIG_VMAP_STACK
206 void *stack;
207 int i;
208
209 for (i = 0; i < NR_CACHED_STACKS; i++) {
210 struct vm_struct *s;
211
212 s = this_cpu_xchg(cached_stacks[i], NULL);
213
214 if (!s)
215 continue;
216
217 tsk->stack_vm_area = s;
218 return s->addr;
219 }
220
221 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
222 VMALLOC_START, VMALLOC_END,
223 THREADINFO_GFP,
224 PAGE_KERNEL,
225 0, node, __builtin_return_address(0));
226
227 /*
228 * We can't call find_vm_area() in interrupt context, and
229 * free_thread_stack() can be called in interrupt context,
230 * so cache the vm_struct.
231 */
232 if (stack)
233 tsk->stack_vm_area = find_vm_area(stack);
234 return stack;
235 #else
236 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
237 THREAD_SIZE_ORDER);
238
239 return page ? page_address(page) : NULL;
240 #endif
241 }
242
243 static inline void free_thread_stack(struct task_struct *tsk)
244 {
245 #ifdef CONFIG_VMAP_STACK
246 if (task_stack_vm_area(tsk)) {
247 int i;
248
249 for (i = 0; i < NR_CACHED_STACKS; i++) {
250 if (this_cpu_cmpxchg(cached_stacks[i],
251 NULL, tsk->stack_vm_area) != NULL)
252 continue;
253
254 return;
255 }
256
257 vfree_atomic(tsk->stack);
258 return;
259 }
260 #endif
261
262 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
263 }
264 # else
265 static struct kmem_cache *thread_stack_cache;
266
267 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
268 int node)
269 {
270 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
271 }
272
273 static void free_thread_stack(struct task_struct *tsk)
274 {
275 kmem_cache_free(thread_stack_cache, tsk->stack);
276 }
277
278 void thread_stack_cache_init(void)
279 {
280 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
281 THREAD_SIZE, 0, NULL);
282 BUG_ON(thread_stack_cache == NULL);
283 }
284 # endif
285 #endif
286
287 /* SLAB cache for signal_struct structures (tsk->signal) */
288 static struct kmem_cache *signal_cachep;
289
290 /* SLAB cache for sighand_struct structures (tsk->sighand) */
291 struct kmem_cache *sighand_cachep;
292
293 /* SLAB cache for files_struct structures (tsk->files) */
294 struct kmem_cache *files_cachep;
295
296 /* SLAB cache for fs_struct structures (tsk->fs) */
297 struct kmem_cache *fs_cachep;
298
299 /* SLAB cache for vm_area_struct structures */
300 struct kmem_cache *vm_area_cachep;
301
302 /* SLAB cache for mm_struct structures (tsk->mm) */
303 static struct kmem_cache *mm_cachep;
304
305 static void account_kernel_stack(struct task_struct *tsk, int account)
306 {
307 void *stack = task_stack_page(tsk);
308 struct vm_struct *vm = task_stack_vm_area(tsk);
309
310 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
311
312 if (vm) {
313 int i;
314
315 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
316
317 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
318 mod_zone_page_state(page_zone(vm->pages[i]),
319 NR_KERNEL_STACK_KB,
320 PAGE_SIZE / 1024 * account);
321 }
322
323 /* All stack pages belong to the same memcg. */
324 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
325 account * (THREAD_SIZE / 1024));
326 } else {
327 /*
328 * All stack pages are in the same zone and belong to the
329 * same memcg.
330 */
331 struct page *first_page = virt_to_page(stack);
332
333 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
334 THREAD_SIZE / 1024 * account);
335
336 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
337 account * (THREAD_SIZE / 1024));
338 }
339 }
340
341 static void release_task_stack(struct task_struct *tsk)
342 {
343 if (WARN_ON(tsk->state != TASK_DEAD))
344 return; /* Better to leak the stack than to free prematurely */
345
346 account_kernel_stack(tsk, -1);
347 arch_release_thread_stack(tsk->stack);
348 free_thread_stack(tsk);
349 tsk->stack = NULL;
350 #ifdef CONFIG_VMAP_STACK
351 tsk->stack_vm_area = NULL;
352 #endif
353 }
354
355 #ifdef CONFIG_THREAD_INFO_IN_TASK
356 void put_task_stack(struct task_struct *tsk)
357 {
358 if (atomic_dec_and_test(&tsk->stack_refcount))
359 release_task_stack(tsk);
360 }
361 #endif
362
363 void free_task(struct task_struct *tsk)
364 {
365 #ifndef CONFIG_THREAD_INFO_IN_TASK
366 /*
367 * The task is finally done with both the stack and thread_info,
368 * so free both.
369 */
370 release_task_stack(tsk);
371 #else
372 /*
373 * If the task had a separate stack allocation, it should be gone
374 * by now.
375 */
376 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
377 #endif
378 rt_mutex_debug_task_free(tsk);
379 ftrace_graph_exit_task(tsk);
380 put_seccomp_filter(tsk);
381 arch_release_task_struct(tsk);
382 if (tsk->flags & PF_KTHREAD)
383 free_kthread_struct(tsk);
384 free_task_struct(tsk);
385 }
386 EXPORT_SYMBOL(free_task);
387
388 static inline void free_signal_struct(struct signal_struct *sig)
389 {
390 taskstats_tgid_free(sig);
391 sched_autogroup_exit(sig);
392 /*
393 * __mmdrop is not safe to call from softirq context on x86 due to
394 * pgd_dtor so postpone it to the async context
395 */
396 if (sig->oom_mm)
397 mmdrop_async(sig->oom_mm);
398 kmem_cache_free(signal_cachep, sig);
399 }
400
401 static inline void put_signal_struct(struct signal_struct *sig)
402 {
403 if (atomic_dec_and_test(&sig->sigcnt))
404 free_signal_struct(sig);
405 }
406
407 void __put_task_struct(struct task_struct *tsk)
408 {
409 WARN_ON(!tsk->exit_state);
410 WARN_ON(atomic_read(&tsk->usage));
411 WARN_ON(tsk == current);
412
413 cgroup_free(tsk);
414 task_numa_free(tsk);
415 security_task_free(tsk);
416 exit_creds(tsk);
417 delayacct_tsk_free(tsk);
418 put_signal_struct(tsk->signal);
419
420 if (!profile_handoff_task(tsk))
421 free_task(tsk);
422 }
423 EXPORT_SYMBOL_GPL(__put_task_struct);
424
425 void __init __weak arch_task_cache_init(void) { }
426
427 /*
428 * set_max_threads
429 */
430 static void set_max_threads(unsigned int max_threads_suggested)
431 {
432 u64 threads;
433
434 /*
435 * The number of threads shall be limited such that the thread
436 * structures may only consume a small part of the available memory.
437 */
438 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
439 threads = MAX_THREADS;
440 else
441 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
442 (u64) THREAD_SIZE * 8UL);
443
444 if (threads > max_threads_suggested)
445 threads = max_threads_suggested;
446
447 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
448 }
449
450 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
451 /* Initialized by the architecture: */
452 int arch_task_struct_size __read_mostly;
453 #endif
454
455 void __init fork_init(void)
456 {
457 int i;
458 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
459 #ifndef ARCH_MIN_TASKALIGN
460 #define ARCH_MIN_TASKALIGN 0
461 #endif
462 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
463
464 /* create a slab on which task_structs can be allocated */
465 task_struct_cachep = kmem_cache_create("task_struct",
466 arch_task_struct_size, align,
467 SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT, NULL);
468 #endif
469
470 /* do the arch specific task caches init */
471 arch_task_cache_init();
472
473 set_max_threads(MAX_THREADS);
474
475 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
476 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
477 init_task.signal->rlim[RLIMIT_SIGPENDING] =
478 init_task.signal->rlim[RLIMIT_NPROC];
479
480 for (i = 0; i < UCOUNT_COUNTS; i++) {
481 init_user_ns.ucount_max[i] = max_threads/2;
482 }
483
484 #ifdef CONFIG_VMAP_STACK
485 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
486 NULL, free_vm_stack_cache);
487 #endif
488
489 lockdep_init_task(&init_task);
490 }
491
492 int __weak arch_dup_task_struct(struct task_struct *dst,
493 struct task_struct *src)
494 {
495 *dst = *src;
496 return 0;
497 }
498
499 void set_task_stack_end_magic(struct task_struct *tsk)
500 {
501 unsigned long *stackend;
502
503 stackend = end_of_stack(tsk);
504 *stackend = STACK_END_MAGIC; /* for overflow detection */
505 }
506
507 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
508 {
509 struct task_struct *tsk;
510 unsigned long *stack;
511 struct vm_struct *stack_vm_area;
512 int err;
513
514 if (node == NUMA_NO_NODE)
515 node = tsk_fork_get_node(orig);
516 tsk = alloc_task_struct_node(node);
517 if (!tsk)
518 return NULL;
519
520 stack = alloc_thread_stack_node(tsk, node);
521 if (!stack)
522 goto free_tsk;
523
524 stack_vm_area = task_stack_vm_area(tsk);
525
526 err = arch_dup_task_struct(tsk, orig);
527
528 /*
529 * arch_dup_task_struct() clobbers the stack-related fields. Make
530 * sure they're properly initialized before using any stack-related
531 * functions again.
532 */
533 tsk->stack = stack;
534 #ifdef CONFIG_VMAP_STACK
535 tsk->stack_vm_area = stack_vm_area;
536 #endif
537 #ifdef CONFIG_THREAD_INFO_IN_TASK
538 atomic_set(&tsk->stack_refcount, 1);
539 #endif
540
541 if (err)
542 goto free_stack;
543
544 #ifdef CONFIG_SECCOMP
545 /*
546 * We must handle setting up seccomp filters once we're under
547 * the sighand lock in case orig has changed between now and
548 * then. Until then, filter must be NULL to avoid messing up
549 * the usage counts on the error path calling free_task.
550 */
551 tsk->seccomp.filter = NULL;
552 #endif
553
554 setup_thread_stack(tsk, orig);
555 clear_user_return_notifier(tsk);
556 clear_tsk_need_resched(tsk);
557 set_task_stack_end_magic(tsk);
558
559 #ifdef CONFIG_CC_STACKPROTECTOR
560 tsk->stack_canary = get_random_canary();
561 #endif
562
563 /*
564 * One for us, one for whoever does the "release_task()" (usually
565 * parent)
566 */
567 atomic_set(&tsk->usage, 2);
568 #ifdef CONFIG_BLK_DEV_IO_TRACE
569 tsk->btrace_seq = 0;
570 #endif
571 tsk->splice_pipe = NULL;
572 tsk->task_frag.page = NULL;
573 tsk->wake_q.next = NULL;
574
575 account_kernel_stack(tsk, 1);
576
577 kcov_task_init(tsk);
578
579 #ifdef CONFIG_FAULT_INJECTION
580 tsk->fail_nth = 0;
581 #endif
582
583 return tsk;
584
585 free_stack:
586 free_thread_stack(tsk);
587 free_tsk:
588 free_task_struct(tsk);
589 return NULL;
590 }
591
592 #ifdef CONFIG_MMU
593 static __latent_entropy int dup_mmap(struct mm_struct *mm,
594 struct mm_struct *oldmm)
595 {
596 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
597 struct rb_node **rb_link, *rb_parent;
598 int retval;
599 unsigned long charge;
600 LIST_HEAD(uf);
601
602 uprobe_start_dup_mmap();
603 if (down_write_killable(&oldmm->mmap_sem)) {
604 retval = -EINTR;
605 goto fail_uprobe_end;
606 }
607 flush_cache_dup_mm(oldmm);
608 uprobe_dup_mmap(oldmm, mm);
609 /*
610 * Not linked in yet - no deadlock potential:
611 */
612 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
613
614 /* No ordering required: file already has been exposed. */
615 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
616
617 mm->total_vm = oldmm->total_vm;
618 mm->data_vm = oldmm->data_vm;
619 mm->exec_vm = oldmm->exec_vm;
620 mm->stack_vm = oldmm->stack_vm;
621
622 rb_link = &mm->mm_rb.rb_node;
623 rb_parent = NULL;
624 pprev = &mm->mmap;
625 retval = ksm_fork(mm, oldmm);
626 if (retval)
627 goto out;
628 retval = khugepaged_fork(mm, oldmm);
629 if (retval)
630 goto out;
631
632 prev = NULL;
633 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
634 struct file *file;
635
636 if (mpnt->vm_flags & VM_DONTCOPY) {
637 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
638 continue;
639 }
640 charge = 0;
641 if (mpnt->vm_flags & VM_ACCOUNT) {
642 unsigned long len = vma_pages(mpnt);
643
644 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
645 goto fail_nomem;
646 charge = len;
647 }
648 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
649 if (!tmp)
650 goto fail_nomem;
651 *tmp = *mpnt;
652 INIT_LIST_HEAD(&tmp->anon_vma_chain);
653 retval = vma_dup_policy(mpnt, tmp);
654 if (retval)
655 goto fail_nomem_policy;
656 tmp->vm_mm = mm;
657 retval = dup_userfaultfd(tmp, &uf);
658 if (retval)
659 goto fail_nomem_anon_vma_fork;
660 if (tmp->vm_flags & VM_WIPEONFORK) {
661 /* VM_WIPEONFORK gets a clean slate in the child. */
662 tmp->anon_vma = NULL;
663 if (anon_vma_prepare(tmp))
664 goto fail_nomem_anon_vma_fork;
665 } else if (anon_vma_fork(tmp, mpnt))
666 goto fail_nomem_anon_vma_fork;
667 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
668 tmp->vm_next = tmp->vm_prev = NULL;
669 file = tmp->vm_file;
670 if (file) {
671 struct inode *inode = file_inode(file);
672 struct address_space *mapping = file->f_mapping;
673
674 get_file(file);
675 if (tmp->vm_flags & VM_DENYWRITE)
676 atomic_dec(&inode->i_writecount);
677 i_mmap_lock_write(mapping);
678 if (tmp->vm_flags & VM_SHARED)
679 atomic_inc(&mapping->i_mmap_writable);
680 flush_dcache_mmap_lock(mapping);
681 /* insert tmp into the share list, just after mpnt */
682 vma_interval_tree_insert_after(tmp, mpnt,
683 &mapping->i_mmap);
684 flush_dcache_mmap_unlock(mapping);
685 i_mmap_unlock_write(mapping);
686 }
687
688 /*
689 * Clear hugetlb-related page reserves for children. This only
690 * affects MAP_PRIVATE mappings. Faults generated by the child
691 * are not guaranteed to succeed, even if read-only
692 */
693 if (is_vm_hugetlb_page(tmp))
694 reset_vma_resv_huge_pages(tmp);
695
696 /*
697 * Link in the new vma and copy the page table entries.
698 */
699 *pprev = tmp;
700 pprev = &tmp->vm_next;
701 tmp->vm_prev = prev;
702 prev = tmp;
703
704 __vma_link_rb(mm, tmp, rb_link, rb_parent);
705 rb_link = &tmp->vm_rb.rb_right;
706 rb_parent = &tmp->vm_rb;
707
708 mm->map_count++;
709 if (!(tmp->vm_flags & VM_WIPEONFORK))
710 retval = copy_page_range(mm, oldmm, mpnt);
711
712 if (tmp->vm_ops && tmp->vm_ops->open)
713 tmp->vm_ops->open(tmp);
714
715 if (retval)
716 goto out;
717 }
718 /* a new mm has just been created */
719 arch_dup_mmap(oldmm, mm);
720 retval = 0;
721 out:
722 up_write(&mm->mmap_sem);
723 flush_tlb_mm(oldmm);
724 up_write(&oldmm->mmap_sem);
725 dup_userfaultfd_complete(&uf);
726 fail_uprobe_end:
727 uprobe_end_dup_mmap();
728 return retval;
729 fail_nomem_anon_vma_fork:
730 mpol_put(vma_policy(tmp));
731 fail_nomem_policy:
732 kmem_cache_free(vm_area_cachep, tmp);
733 fail_nomem:
734 retval = -ENOMEM;
735 vm_unacct_memory(charge);
736 goto out;
737 }
738
739 static inline int mm_alloc_pgd(struct mm_struct *mm)
740 {
741 mm->pgd = pgd_alloc(mm);
742 if (unlikely(!mm->pgd))
743 return -ENOMEM;
744 return 0;
745 }
746
747 static inline void mm_free_pgd(struct mm_struct *mm)
748 {
749 pgd_free(mm, mm->pgd);
750 }
751 #else
752 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
753 {
754 down_write(&oldmm->mmap_sem);
755 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
756 up_write(&oldmm->mmap_sem);
757 return 0;
758 }
759 #define mm_alloc_pgd(mm) (0)
760 #define mm_free_pgd(mm)
761 #endif /* CONFIG_MMU */
762
763 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
764
765 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
766 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
767
768 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
769
770 static int __init coredump_filter_setup(char *s)
771 {
772 default_dump_filter =
773 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
774 MMF_DUMP_FILTER_MASK;
775 return 1;
776 }
777
778 __setup("coredump_filter=", coredump_filter_setup);
779
780 #include <linux/init_task.h>
781
782 static void mm_init_aio(struct mm_struct *mm)
783 {
784 #ifdef CONFIG_AIO
785 spin_lock_init(&mm->ioctx_lock);
786 mm->ioctx_table = NULL;
787 #endif
788 }
789
790 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
791 {
792 #ifdef CONFIG_MEMCG
793 mm->owner = p;
794 #endif
795 }
796
797 static void mm_init_uprobes_state(struct mm_struct *mm)
798 {
799 #ifdef CONFIG_UPROBES
800 mm->uprobes_state.xol_area = NULL;
801 #endif
802 }
803
804 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
805 struct user_namespace *user_ns)
806 {
807 mm->mmap = NULL;
808 mm->mm_rb = RB_ROOT;
809 mm->vmacache_seqnum = 0;
810 atomic_set(&mm->mm_users, 1);
811 atomic_set(&mm->mm_count, 1);
812 init_rwsem(&mm->mmap_sem);
813 INIT_LIST_HEAD(&mm->mmlist);
814 mm->core_state = NULL;
815 atomic_long_set(&mm->nr_ptes, 0);
816 mm_nr_pmds_init(mm);
817 mm->map_count = 0;
818 mm->locked_vm = 0;
819 mm->pinned_vm = 0;
820 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
821 spin_lock_init(&mm->page_table_lock);
822 mm_init_cpumask(mm);
823 mm_init_aio(mm);
824 mm_init_owner(mm, p);
825 RCU_INIT_POINTER(mm->exe_file, NULL);
826 mmu_notifier_mm_init(mm);
827 init_tlb_flush_pending(mm);
828 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
829 mm->pmd_huge_pte = NULL;
830 #endif
831 mm_init_uprobes_state(mm);
832
833 if (current->mm) {
834 mm->flags = current->mm->flags & MMF_INIT_MASK;
835 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
836 } else {
837 mm->flags = default_dump_filter;
838 mm->def_flags = 0;
839 }
840
841 if (mm_alloc_pgd(mm))
842 goto fail_nopgd;
843
844 if (init_new_context(p, mm))
845 goto fail_nocontext;
846
847 mm->user_ns = get_user_ns(user_ns);
848 return mm;
849
850 fail_nocontext:
851 mm_free_pgd(mm);
852 fail_nopgd:
853 free_mm(mm);
854 return NULL;
855 }
856
857 static void check_mm(struct mm_struct *mm)
858 {
859 int i;
860
861 for (i = 0; i < NR_MM_COUNTERS; i++) {
862 long x = atomic_long_read(&mm->rss_stat.count[i]);
863
864 if (unlikely(x))
865 printk(KERN_ALERT "BUG: Bad rss-counter state "
866 "mm:%p idx:%d val:%ld\n", mm, i, x);
867 }
868
869 if (atomic_long_read(&mm->nr_ptes))
870 pr_alert("BUG: non-zero nr_ptes on freeing mm: %ld\n",
871 atomic_long_read(&mm->nr_ptes));
872 if (mm_nr_pmds(mm))
873 pr_alert("BUG: non-zero nr_pmds on freeing mm: %ld\n",
874 mm_nr_pmds(mm));
875
876 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
877 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
878 #endif
879 }
880
881 /*
882 * Allocate and initialize an mm_struct.
883 */
884 struct mm_struct *mm_alloc(void)
885 {
886 struct mm_struct *mm;
887
888 mm = allocate_mm();
889 if (!mm)
890 return NULL;
891
892 memset(mm, 0, sizeof(*mm));
893 return mm_init(mm, current, current_user_ns());
894 }
895
896 /*
897 * Called when the last reference to the mm
898 * is dropped: either by a lazy thread or by
899 * mmput. Free the page directory and the mm.
900 */
901 void __mmdrop(struct mm_struct *mm)
902 {
903 BUG_ON(mm == &init_mm);
904 mm_free_pgd(mm);
905 destroy_context(mm);
906 mmu_notifier_mm_destroy(mm);
907 check_mm(mm);
908 put_user_ns(mm->user_ns);
909 free_mm(mm);
910 }
911 EXPORT_SYMBOL_GPL(__mmdrop);
912
913 static inline void __mmput(struct mm_struct *mm)
914 {
915 VM_BUG_ON(atomic_read(&mm->mm_users));
916
917 uprobe_clear_state(mm);
918 exit_aio(mm);
919 ksm_exit(mm);
920 khugepaged_exit(mm); /* must run before exit_mmap */
921 exit_mmap(mm);
922 mm_put_huge_zero_page(mm);
923 set_mm_exe_file(mm, NULL);
924 if (!list_empty(&mm->mmlist)) {
925 spin_lock(&mmlist_lock);
926 list_del(&mm->mmlist);
927 spin_unlock(&mmlist_lock);
928 }
929 if (mm->binfmt)
930 module_put(mm->binfmt->module);
931 mmdrop(mm);
932 }
933
934 /*
935 * Decrement the use count and release all resources for an mm.
936 */
937 void mmput(struct mm_struct *mm)
938 {
939 might_sleep();
940
941 if (atomic_dec_and_test(&mm->mm_users))
942 __mmput(mm);
943 }
944 EXPORT_SYMBOL_GPL(mmput);
945
946 /**
947 * set_mm_exe_file - change a reference to the mm's executable file
948 *
949 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
950 *
951 * Main users are mmput() and sys_execve(). Callers prevent concurrent
952 * invocations: in mmput() nobody alive left, in execve task is single
953 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
954 * mm->exe_file, but does so without using set_mm_exe_file() in order
955 * to do avoid the need for any locks.
956 */
957 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
958 {
959 struct file *old_exe_file;
960
961 /*
962 * It is safe to dereference the exe_file without RCU as
963 * this function is only called if nobody else can access
964 * this mm -- see comment above for justification.
965 */
966 old_exe_file = rcu_dereference_raw(mm->exe_file);
967
968 if (new_exe_file)
969 get_file(new_exe_file);
970 rcu_assign_pointer(mm->exe_file, new_exe_file);
971 if (old_exe_file)
972 fput(old_exe_file);
973 }
974
975 /**
976 * get_mm_exe_file - acquire a reference to the mm's executable file
977 *
978 * Returns %NULL if mm has no associated executable file.
979 * User must release file via fput().
980 */
981 struct file *get_mm_exe_file(struct mm_struct *mm)
982 {
983 struct file *exe_file;
984
985 rcu_read_lock();
986 exe_file = rcu_dereference(mm->exe_file);
987 if (exe_file && !get_file_rcu(exe_file))
988 exe_file = NULL;
989 rcu_read_unlock();
990 return exe_file;
991 }
992 EXPORT_SYMBOL(get_mm_exe_file);
993
994 /**
995 * get_task_exe_file - acquire a reference to the task's executable file
996 *
997 * Returns %NULL if task's mm (if any) has no associated executable file or
998 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
999 * User must release file via fput().
1000 */
1001 struct file *get_task_exe_file(struct task_struct *task)
1002 {
1003 struct file *exe_file = NULL;
1004 struct mm_struct *mm;
1005
1006 task_lock(task);
1007 mm = task->mm;
1008 if (mm) {
1009 if (!(task->flags & PF_KTHREAD))
1010 exe_file = get_mm_exe_file(mm);
1011 }
1012 task_unlock(task);
1013 return exe_file;
1014 }
1015 EXPORT_SYMBOL(get_task_exe_file);
1016
1017 /**
1018 * get_task_mm - acquire a reference to the task's mm
1019 *
1020 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1021 * this kernel workthread has transiently adopted a user mm with use_mm,
1022 * to do its AIO) is not set and if so returns a reference to it, after
1023 * bumping up the use count. User must release the mm via mmput()
1024 * after use. Typically used by /proc and ptrace.
1025 */
1026 struct mm_struct *get_task_mm(struct task_struct *task)
1027 {
1028 struct mm_struct *mm;
1029
1030 task_lock(task);
1031 mm = task->mm;
1032 if (mm) {
1033 if (task->flags & PF_KTHREAD)
1034 mm = NULL;
1035 else
1036 mmget(mm);
1037 }
1038 task_unlock(task);
1039 return mm;
1040 }
1041 EXPORT_SYMBOL_GPL(get_task_mm);
1042
1043 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1044 {
1045 struct mm_struct *mm;
1046 int err;
1047
1048 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1049 if (err)
1050 return ERR_PTR(err);
1051
1052 mm = get_task_mm(task);
1053 if (mm && mm != current->mm &&
1054 !ptrace_may_access(task, mode)) {
1055 mmput(mm);
1056 mm = ERR_PTR(-EACCES);
1057 }
1058 mutex_unlock(&task->signal->cred_guard_mutex);
1059
1060 return mm;
1061 }
1062
1063 static void complete_vfork_done(struct task_struct *tsk)
1064 {
1065 struct completion *vfork;
1066
1067 task_lock(tsk);
1068 vfork = tsk->vfork_done;
1069 if (likely(vfork)) {
1070 tsk->vfork_done = NULL;
1071 complete(vfork);
1072 }
1073 task_unlock(tsk);
1074 }
1075
1076 static int wait_for_vfork_done(struct task_struct *child,
1077 struct completion *vfork)
1078 {
1079 int killed;
1080
1081 freezer_do_not_count();
1082 killed = wait_for_completion_killable(vfork);
1083 freezer_count();
1084
1085 if (killed) {
1086 task_lock(child);
1087 child->vfork_done = NULL;
1088 task_unlock(child);
1089 }
1090
1091 put_task_struct(child);
1092 return killed;
1093 }
1094
1095 /* Please note the differences between mmput and mm_release.
1096 * mmput is called whenever we stop holding onto a mm_struct,
1097 * error success whatever.
1098 *
1099 * mm_release is called after a mm_struct has been removed
1100 * from the current process.
1101 *
1102 * This difference is important for error handling, when we
1103 * only half set up a mm_struct for a new process and need to restore
1104 * the old one. Because we mmput the new mm_struct before
1105 * restoring the old one. . .
1106 * Eric Biederman 10 January 1998
1107 */
1108 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1109 {
1110 /* Get rid of any futexes when releasing the mm */
1111 #ifdef CONFIG_FUTEX
1112 if (unlikely(tsk->robust_list)) {
1113 exit_robust_list(tsk);
1114 tsk->robust_list = NULL;
1115 }
1116 #ifdef CONFIG_COMPAT
1117 if (unlikely(tsk->compat_robust_list)) {
1118 compat_exit_robust_list(tsk);
1119 tsk->compat_robust_list = NULL;
1120 }
1121 #endif
1122 if (unlikely(!list_empty(&tsk->pi_state_list)))
1123 exit_pi_state_list(tsk);
1124 #endif
1125
1126 uprobe_free_utask(tsk);
1127
1128 /* Get rid of any cached register state */
1129 deactivate_mm(tsk, mm);
1130
1131 /*
1132 * Signal userspace if we're not exiting with a core dump
1133 * because we want to leave the value intact for debugging
1134 * purposes.
1135 */
1136 if (tsk->clear_child_tid) {
1137 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1138 atomic_read(&mm->mm_users) > 1) {
1139 /*
1140 * We don't check the error code - if userspace has
1141 * not set up a proper pointer then tough luck.
1142 */
1143 put_user(0, tsk->clear_child_tid);
1144 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1145 1, NULL, NULL, 0);
1146 }
1147 tsk->clear_child_tid = NULL;
1148 }
1149
1150 /*
1151 * All done, finally we can wake up parent and return this mm to him.
1152 * Also kthread_stop() uses this completion for synchronization.
1153 */
1154 if (tsk->vfork_done)
1155 complete_vfork_done(tsk);
1156 }
1157
1158 /*
1159 * Allocate a new mm structure and copy contents from the
1160 * mm structure of the passed in task structure.
1161 */
1162 static struct mm_struct *dup_mm(struct task_struct *tsk)
1163 {
1164 struct mm_struct *mm, *oldmm = current->mm;
1165 int err;
1166
1167 mm = allocate_mm();
1168 if (!mm)
1169 goto fail_nomem;
1170
1171 memcpy(mm, oldmm, sizeof(*mm));
1172
1173 if (!mm_init(mm, tsk, mm->user_ns))
1174 goto fail_nomem;
1175
1176 err = dup_mmap(mm, oldmm);
1177 if (err)
1178 goto free_pt;
1179
1180 mm->hiwater_rss = get_mm_rss(mm);
1181 mm->hiwater_vm = mm->total_vm;
1182
1183 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1184 goto free_pt;
1185
1186 return mm;
1187
1188 free_pt:
1189 /* don't put binfmt in mmput, we haven't got module yet */
1190 mm->binfmt = NULL;
1191 mmput(mm);
1192
1193 fail_nomem:
1194 return NULL;
1195 }
1196
1197 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1198 {
1199 struct mm_struct *mm, *oldmm;
1200 int retval;
1201
1202 tsk->min_flt = tsk->maj_flt = 0;
1203 tsk->nvcsw = tsk->nivcsw = 0;
1204 #ifdef CONFIG_DETECT_HUNG_TASK
1205 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1206 #endif
1207
1208 tsk->mm = NULL;
1209 tsk->active_mm = NULL;
1210
1211 /*
1212 * Are we cloning a kernel thread?
1213 *
1214 * We need to steal a active VM for that..
1215 */
1216 oldmm = current->mm;
1217 if (!oldmm)
1218 return 0;
1219
1220 /* initialize the new vmacache entries */
1221 vmacache_flush(tsk);
1222
1223 if (clone_flags & CLONE_VM) {
1224 mmget(oldmm);
1225 mm = oldmm;
1226 goto good_mm;
1227 }
1228
1229 retval = -ENOMEM;
1230 mm = dup_mm(tsk);
1231 if (!mm)
1232 goto fail_nomem;
1233
1234 good_mm:
1235 tsk->mm = mm;
1236 tsk->active_mm = mm;
1237 return 0;
1238
1239 fail_nomem:
1240 return retval;
1241 }
1242
1243 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1244 {
1245 struct fs_struct *fs = current->fs;
1246 if (clone_flags & CLONE_FS) {
1247 /* tsk->fs is already what we want */
1248 spin_lock(&fs->lock);
1249 if (fs->in_exec) {
1250 spin_unlock(&fs->lock);
1251 return -EAGAIN;
1252 }
1253 fs->users++;
1254 spin_unlock(&fs->lock);
1255 return 0;
1256 }
1257 tsk->fs = copy_fs_struct(fs);
1258 if (!tsk->fs)
1259 return -ENOMEM;
1260 return 0;
1261 }
1262
1263 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1264 {
1265 struct files_struct *oldf, *newf;
1266 int error = 0;
1267
1268 /*
1269 * A background process may not have any files ...
1270 */
1271 oldf = current->files;
1272 if (!oldf)
1273 goto out;
1274
1275 if (clone_flags & CLONE_FILES) {
1276 atomic_inc(&oldf->count);
1277 goto out;
1278 }
1279
1280 newf = dup_fd(oldf, &error);
1281 if (!newf)
1282 goto out;
1283
1284 tsk->files = newf;
1285 error = 0;
1286 out:
1287 return error;
1288 }
1289
1290 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1291 {
1292 #ifdef CONFIG_BLOCK
1293 struct io_context *ioc = current->io_context;
1294 struct io_context *new_ioc;
1295
1296 if (!ioc)
1297 return 0;
1298 /*
1299 * Share io context with parent, if CLONE_IO is set
1300 */
1301 if (clone_flags & CLONE_IO) {
1302 ioc_task_link(ioc);
1303 tsk->io_context = ioc;
1304 } else if (ioprio_valid(ioc->ioprio)) {
1305 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1306 if (unlikely(!new_ioc))
1307 return -ENOMEM;
1308
1309 new_ioc->ioprio = ioc->ioprio;
1310 put_io_context(new_ioc);
1311 }
1312 #endif
1313 return 0;
1314 }
1315
1316 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1317 {
1318 struct sighand_struct *sig;
1319
1320 if (clone_flags & CLONE_SIGHAND) {
1321 atomic_inc(&current->sighand->count);
1322 return 0;
1323 }
1324 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1325 rcu_assign_pointer(tsk->sighand, sig);
1326 if (!sig)
1327 return -ENOMEM;
1328
1329 atomic_set(&sig->count, 1);
1330 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1331 return 0;
1332 }
1333
1334 void __cleanup_sighand(struct sighand_struct *sighand)
1335 {
1336 if (atomic_dec_and_test(&sighand->count)) {
1337 signalfd_cleanup(sighand);
1338 /*
1339 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1340 * without an RCU grace period, see __lock_task_sighand().
1341 */
1342 kmem_cache_free(sighand_cachep, sighand);
1343 }
1344 }
1345
1346 #ifdef CONFIG_POSIX_TIMERS
1347 /*
1348 * Initialize POSIX timer handling for a thread group.
1349 */
1350 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1351 {
1352 unsigned long cpu_limit;
1353
1354 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1355 if (cpu_limit != RLIM_INFINITY) {
1356 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1357 sig->cputimer.running = true;
1358 }
1359
1360 /* The timer lists. */
1361 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1362 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1363 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1364 }
1365 #else
1366 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1367 #endif
1368
1369 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1370 {
1371 struct signal_struct *sig;
1372
1373 if (clone_flags & CLONE_THREAD)
1374 return 0;
1375
1376 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1377 tsk->signal = sig;
1378 if (!sig)
1379 return -ENOMEM;
1380
1381 sig->nr_threads = 1;
1382 atomic_set(&sig->live, 1);
1383 atomic_set(&sig->sigcnt, 1);
1384
1385 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1386 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1387 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1388
1389 init_waitqueue_head(&sig->wait_chldexit);
1390 sig->curr_target = tsk;
1391 init_sigpending(&sig->shared_pending);
1392 seqlock_init(&sig->stats_lock);
1393 prev_cputime_init(&sig->prev_cputime);
1394
1395 #ifdef CONFIG_POSIX_TIMERS
1396 INIT_LIST_HEAD(&sig->posix_timers);
1397 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1398 sig->real_timer.function = it_real_fn;
1399 #endif
1400
1401 task_lock(current->group_leader);
1402 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1403 task_unlock(current->group_leader);
1404
1405 posix_cpu_timers_init_group(sig);
1406
1407 tty_audit_fork(sig);
1408 sched_autogroup_fork(sig);
1409
1410 sig->oom_score_adj = current->signal->oom_score_adj;
1411 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1412
1413 mutex_init(&sig->cred_guard_mutex);
1414
1415 return 0;
1416 }
1417
1418 static void copy_seccomp(struct task_struct *p)
1419 {
1420 #ifdef CONFIG_SECCOMP
1421 /*
1422 * Must be called with sighand->lock held, which is common to
1423 * all threads in the group. Holding cred_guard_mutex is not
1424 * needed because this new task is not yet running and cannot
1425 * be racing exec.
1426 */
1427 assert_spin_locked(&current->sighand->siglock);
1428
1429 /* Ref-count the new filter user, and assign it. */
1430 get_seccomp_filter(current);
1431 p->seccomp = current->seccomp;
1432
1433 /*
1434 * Explicitly enable no_new_privs here in case it got set
1435 * between the task_struct being duplicated and holding the
1436 * sighand lock. The seccomp state and nnp must be in sync.
1437 */
1438 if (task_no_new_privs(current))
1439 task_set_no_new_privs(p);
1440
1441 /*
1442 * If the parent gained a seccomp mode after copying thread
1443 * flags and between before we held the sighand lock, we have
1444 * to manually enable the seccomp thread flag here.
1445 */
1446 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1447 set_tsk_thread_flag(p, TIF_SECCOMP);
1448 #endif
1449 }
1450
1451 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1452 {
1453 current->clear_child_tid = tidptr;
1454
1455 return task_pid_vnr(current);
1456 }
1457
1458 static void rt_mutex_init_task(struct task_struct *p)
1459 {
1460 raw_spin_lock_init(&p->pi_lock);
1461 #ifdef CONFIG_RT_MUTEXES
1462 p->pi_waiters = RB_ROOT;
1463 p->pi_waiters_leftmost = NULL;
1464 p->pi_top_task = NULL;
1465 p->pi_blocked_on = NULL;
1466 #endif
1467 }
1468
1469 #ifdef CONFIG_POSIX_TIMERS
1470 /*
1471 * Initialize POSIX timer handling for a single task.
1472 */
1473 static void posix_cpu_timers_init(struct task_struct *tsk)
1474 {
1475 tsk->cputime_expires.prof_exp = 0;
1476 tsk->cputime_expires.virt_exp = 0;
1477 tsk->cputime_expires.sched_exp = 0;
1478 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1479 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1480 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1481 }
1482 #else
1483 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1484 #endif
1485
1486 static inline void
1487 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1488 {
1489 task->pids[type].pid = pid;
1490 }
1491
1492 static inline void rcu_copy_process(struct task_struct *p)
1493 {
1494 #ifdef CONFIG_PREEMPT_RCU
1495 p->rcu_read_lock_nesting = 0;
1496 p->rcu_read_unlock_special.s = 0;
1497 p->rcu_blocked_node = NULL;
1498 INIT_LIST_HEAD(&p->rcu_node_entry);
1499 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1500 #ifdef CONFIG_TASKS_RCU
1501 p->rcu_tasks_holdout = false;
1502 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1503 p->rcu_tasks_idle_cpu = -1;
1504 #endif /* #ifdef CONFIG_TASKS_RCU */
1505 }
1506
1507 /*
1508 * This creates a new process as a copy of the old one,
1509 * but does not actually start it yet.
1510 *
1511 * It copies the registers, and all the appropriate
1512 * parts of the process environment (as per the clone
1513 * flags). The actual kick-off is left to the caller.
1514 */
1515 static __latent_entropy struct task_struct *copy_process(
1516 unsigned long clone_flags,
1517 unsigned long stack_start,
1518 unsigned long stack_size,
1519 int __user *child_tidptr,
1520 struct pid *pid,
1521 int trace,
1522 unsigned long tls,
1523 int node)
1524 {
1525 int retval;
1526 struct task_struct *p;
1527
1528 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1529 return ERR_PTR(-EINVAL);
1530
1531 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1532 return ERR_PTR(-EINVAL);
1533
1534 /*
1535 * Thread groups must share signals as well, and detached threads
1536 * can only be started up within the thread group.
1537 */
1538 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1539 return ERR_PTR(-EINVAL);
1540
1541 /*
1542 * Shared signal handlers imply shared VM. By way of the above,
1543 * thread groups also imply shared VM. Blocking this case allows
1544 * for various simplifications in other code.
1545 */
1546 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1547 return ERR_PTR(-EINVAL);
1548
1549 /*
1550 * Siblings of global init remain as zombies on exit since they are
1551 * not reaped by their parent (swapper). To solve this and to avoid
1552 * multi-rooted process trees, prevent global and container-inits
1553 * from creating siblings.
1554 */
1555 if ((clone_flags & CLONE_PARENT) &&
1556 current->signal->flags & SIGNAL_UNKILLABLE)
1557 return ERR_PTR(-EINVAL);
1558
1559 /*
1560 * If the new process will be in a different pid or user namespace
1561 * do not allow it to share a thread group with the forking task.
1562 */
1563 if (clone_flags & CLONE_THREAD) {
1564 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1565 (task_active_pid_ns(current) !=
1566 current->nsproxy->pid_ns_for_children))
1567 return ERR_PTR(-EINVAL);
1568 }
1569
1570 retval = security_task_create(clone_flags);
1571 if (retval)
1572 goto fork_out;
1573
1574 retval = -ENOMEM;
1575 p = dup_task_struct(current, node);
1576 if (!p)
1577 goto fork_out;
1578
1579 /*
1580 * This _must_ happen before we call free_task(), i.e. before we jump
1581 * to any of the bad_fork_* labels. This is to avoid freeing
1582 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1583 * kernel threads (PF_KTHREAD).
1584 */
1585 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1586 /*
1587 * Clear TID on mm_release()?
1588 */
1589 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1590
1591 ftrace_graph_init_task(p);
1592
1593 rt_mutex_init_task(p);
1594
1595 #ifdef CONFIG_PROVE_LOCKING
1596 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1597 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1598 #endif
1599 retval = -EAGAIN;
1600 if (atomic_read(&p->real_cred->user->processes) >=
1601 task_rlimit(p, RLIMIT_NPROC)) {
1602 if (p->real_cred->user != INIT_USER &&
1603 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1604 goto bad_fork_free;
1605 }
1606 current->flags &= ~PF_NPROC_EXCEEDED;
1607
1608 retval = copy_creds(p, clone_flags);
1609 if (retval < 0)
1610 goto bad_fork_free;
1611
1612 /*
1613 * If multiple threads are within copy_process(), then this check
1614 * triggers too late. This doesn't hurt, the check is only there
1615 * to stop root fork bombs.
1616 */
1617 retval = -EAGAIN;
1618 if (nr_threads >= max_threads)
1619 goto bad_fork_cleanup_count;
1620
1621 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1622 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1623 p->flags |= PF_FORKNOEXEC;
1624 INIT_LIST_HEAD(&p->children);
1625 INIT_LIST_HEAD(&p->sibling);
1626 rcu_copy_process(p);
1627 p->vfork_done = NULL;
1628 spin_lock_init(&p->alloc_lock);
1629
1630 init_sigpending(&p->pending);
1631
1632 p->utime = p->stime = p->gtime = 0;
1633 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1634 p->utimescaled = p->stimescaled = 0;
1635 #endif
1636 prev_cputime_init(&p->prev_cputime);
1637
1638 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1639 seqcount_init(&p->vtime.seqcount);
1640 p->vtime.starttime = 0;
1641 p->vtime.state = VTIME_INACTIVE;
1642 #endif
1643
1644 #if defined(SPLIT_RSS_COUNTING)
1645 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1646 #endif
1647
1648 p->default_timer_slack_ns = current->timer_slack_ns;
1649
1650 task_io_accounting_init(&p->ioac);
1651 acct_clear_integrals(p);
1652
1653 posix_cpu_timers_init(p);
1654
1655 p->start_time = ktime_get_ns();
1656 p->real_start_time = ktime_get_boot_ns();
1657 p->io_context = NULL;
1658 p->audit_context = NULL;
1659 cgroup_fork(p);
1660 #ifdef CONFIG_NUMA
1661 p->mempolicy = mpol_dup(p->mempolicy);
1662 if (IS_ERR(p->mempolicy)) {
1663 retval = PTR_ERR(p->mempolicy);
1664 p->mempolicy = NULL;
1665 goto bad_fork_cleanup_threadgroup_lock;
1666 }
1667 #endif
1668 #ifdef CONFIG_CPUSETS
1669 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1670 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1671 seqcount_init(&p->mems_allowed_seq);
1672 #endif
1673 #ifdef CONFIG_TRACE_IRQFLAGS
1674 p->irq_events = 0;
1675 p->hardirqs_enabled = 0;
1676 p->hardirq_enable_ip = 0;
1677 p->hardirq_enable_event = 0;
1678 p->hardirq_disable_ip = _THIS_IP_;
1679 p->hardirq_disable_event = 0;
1680 p->softirqs_enabled = 1;
1681 p->softirq_enable_ip = _THIS_IP_;
1682 p->softirq_enable_event = 0;
1683 p->softirq_disable_ip = 0;
1684 p->softirq_disable_event = 0;
1685 p->hardirq_context = 0;
1686 p->softirq_context = 0;
1687 #endif
1688
1689 p->pagefault_disabled = 0;
1690
1691 #ifdef CONFIG_LOCKDEP
1692 p->lockdep_depth = 0; /* no locks held yet */
1693 p->curr_chain_key = 0;
1694 p->lockdep_recursion = 0;
1695 lockdep_init_task(p);
1696 #endif
1697
1698 #ifdef CONFIG_DEBUG_MUTEXES
1699 p->blocked_on = NULL; /* not blocked yet */
1700 #endif
1701 #ifdef CONFIG_BCACHE
1702 p->sequential_io = 0;
1703 p->sequential_io_avg = 0;
1704 #endif
1705
1706 /* Perform scheduler related setup. Assign this task to a CPU. */
1707 retval = sched_fork(clone_flags, p);
1708 if (retval)
1709 goto bad_fork_cleanup_policy;
1710
1711 retval = perf_event_init_task(p);
1712 if (retval)
1713 goto bad_fork_cleanup_policy;
1714 retval = audit_alloc(p);
1715 if (retval)
1716 goto bad_fork_cleanup_perf;
1717 /* copy all the process information */
1718 shm_init_task(p);
1719 retval = security_task_alloc(p, clone_flags);
1720 if (retval)
1721 goto bad_fork_cleanup_audit;
1722 retval = copy_semundo(clone_flags, p);
1723 if (retval)
1724 goto bad_fork_cleanup_security;
1725 retval = copy_files(clone_flags, p);
1726 if (retval)
1727 goto bad_fork_cleanup_semundo;
1728 retval = copy_fs(clone_flags, p);
1729 if (retval)
1730 goto bad_fork_cleanup_files;
1731 retval = copy_sighand(clone_flags, p);
1732 if (retval)
1733 goto bad_fork_cleanup_fs;
1734 retval = copy_signal(clone_flags, p);
1735 if (retval)
1736 goto bad_fork_cleanup_sighand;
1737 retval = copy_mm(clone_flags, p);
1738 if (retval)
1739 goto bad_fork_cleanup_signal;
1740 retval = copy_namespaces(clone_flags, p);
1741 if (retval)
1742 goto bad_fork_cleanup_mm;
1743 retval = copy_io(clone_flags, p);
1744 if (retval)
1745 goto bad_fork_cleanup_namespaces;
1746 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1747 if (retval)
1748 goto bad_fork_cleanup_io;
1749
1750 if (pid != &init_struct_pid) {
1751 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1752 if (IS_ERR(pid)) {
1753 retval = PTR_ERR(pid);
1754 goto bad_fork_cleanup_thread;
1755 }
1756 }
1757
1758 #ifdef CONFIG_BLOCK
1759 p->plug = NULL;
1760 #endif
1761 #ifdef CONFIG_FUTEX
1762 p->robust_list = NULL;
1763 #ifdef CONFIG_COMPAT
1764 p->compat_robust_list = NULL;
1765 #endif
1766 INIT_LIST_HEAD(&p->pi_state_list);
1767 p->pi_state_cache = NULL;
1768 #endif
1769 /*
1770 * sigaltstack should be cleared when sharing the same VM
1771 */
1772 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1773 sas_ss_reset(p);
1774
1775 /*
1776 * Syscall tracing and stepping should be turned off in the
1777 * child regardless of CLONE_PTRACE.
1778 */
1779 user_disable_single_step(p);
1780 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1781 #ifdef TIF_SYSCALL_EMU
1782 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1783 #endif
1784 clear_all_latency_tracing(p);
1785
1786 /* ok, now we should be set up.. */
1787 p->pid = pid_nr(pid);
1788 if (clone_flags & CLONE_THREAD) {
1789 p->exit_signal = -1;
1790 p->group_leader = current->group_leader;
1791 p->tgid = current->tgid;
1792 } else {
1793 if (clone_flags & CLONE_PARENT)
1794 p->exit_signal = current->group_leader->exit_signal;
1795 else
1796 p->exit_signal = (clone_flags & CSIGNAL);
1797 p->group_leader = p;
1798 p->tgid = p->pid;
1799 }
1800
1801 p->nr_dirtied = 0;
1802 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1803 p->dirty_paused_when = 0;
1804
1805 p->pdeath_signal = 0;
1806 INIT_LIST_HEAD(&p->thread_group);
1807 p->task_works = NULL;
1808
1809 cgroup_threadgroup_change_begin(current);
1810 /*
1811 * Ensure that the cgroup subsystem policies allow the new process to be
1812 * forked. It should be noted the the new process's css_set can be changed
1813 * between here and cgroup_post_fork() if an organisation operation is in
1814 * progress.
1815 */
1816 retval = cgroup_can_fork(p);
1817 if (retval)
1818 goto bad_fork_free_pid;
1819
1820 /*
1821 * Make it visible to the rest of the system, but dont wake it up yet.
1822 * Need tasklist lock for parent etc handling!
1823 */
1824 write_lock_irq(&tasklist_lock);
1825
1826 /* CLONE_PARENT re-uses the old parent */
1827 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1828 p->real_parent = current->real_parent;
1829 p->parent_exec_id = current->parent_exec_id;
1830 } else {
1831 p->real_parent = current;
1832 p->parent_exec_id = current->self_exec_id;
1833 }
1834
1835 klp_copy_process(p);
1836
1837 spin_lock(&current->sighand->siglock);
1838
1839 /*
1840 * Copy seccomp details explicitly here, in case they were changed
1841 * before holding sighand lock.
1842 */
1843 copy_seccomp(p);
1844
1845 /*
1846 * Process group and session signals need to be delivered to just the
1847 * parent before the fork or both the parent and the child after the
1848 * fork. Restart if a signal comes in before we add the new process to
1849 * it's process group.
1850 * A fatal signal pending means that current will exit, so the new
1851 * thread can't slip out of an OOM kill (or normal SIGKILL).
1852 */
1853 recalc_sigpending();
1854 if (signal_pending(current)) {
1855 retval = -ERESTARTNOINTR;
1856 goto bad_fork_cancel_cgroup;
1857 }
1858 if (unlikely(!(ns_of_pid(pid)->nr_hashed & PIDNS_HASH_ADDING))) {
1859 retval = -ENOMEM;
1860 goto bad_fork_cancel_cgroup;
1861 }
1862
1863 if (likely(p->pid)) {
1864 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1865
1866 init_task_pid(p, PIDTYPE_PID, pid);
1867 if (thread_group_leader(p)) {
1868 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1869 init_task_pid(p, PIDTYPE_SID, task_session(current));
1870
1871 if (is_child_reaper(pid)) {
1872 ns_of_pid(pid)->child_reaper = p;
1873 p->signal->flags |= SIGNAL_UNKILLABLE;
1874 }
1875
1876 p->signal->leader_pid = pid;
1877 p->signal->tty = tty_kref_get(current->signal->tty);
1878 /*
1879 * Inherit has_child_subreaper flag under the same
1880 * tasklist_lock with adding child to the process tree
1881 * for propagate_has_child_subreaper optimization.
1882 */
1883 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1884 p->real_parent->signal->is_child_subreaper;
1885 list_add_tail(&p->sibling, &p->real_parent->children);
1886 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1887 attach_pid(p, PIDTYPE_PGID);
1888 attach_pid(p, PIDTYPE_SID);
1889 __this_cpu_inc(process_counts);
1890 } else {
1891 current->signal->nr_threads++;
1892 atomic_inc(&current->signal->live);
1893 atomic_inc(&current->signal->sigcnt);
1894 list_add_tail_rcu(&p->thread_group,
1895 &p->group_leader->thread_group);
1896 list_add_tail_rcu(&p->thread_node,
1897 &p->signal->thread_head);
1898 }
1899 attach_pid(p, PIDTYPE_PID);
1900 nr_threads++;
1901 }
1902
1903 total_forks++;
1904 spin_unlock(&current->sighand->siglock);
1905 syscall_tracepoint_update(p);
1906 write_unlock_irq(&tasklist_lock);
1907
1908 proc_fork_connector(p);
1909 cgroup_post_fork(p);
1910 cgroup_threadgroup_change_end(current);
1911 perf_event_fork(p);
1912
1913 trace_task_newtask(p, clone_flags);
1914 uprobe_copy_process(p, clone_flags);
1915
1916 return p;
1917
1918 bad_fork_cancel_cgroup:
1919 spin_unlock(&current->sighand->siglock);
1920 write_unlock_irq(&tasklist_lock);
1921 cgroup_cancel_fork(p);
1922 bad_fork_free_pid:
1923 cgroup_threadgroup_change_end(current);
1924 if (pid != &init_struct_pid)
1925 free_pid(pid);
1926 bad_fork_cleanup_thread:
1927 exit_thread(p);
1928 bad_fork_cleanup_io:
1929 if (p->io_context)
1930 exit_io_context(p);
1931 bad_fork_cleanup_namespaces:
1932 exit_task_namespaces(p);
1933 bad_fork_cleanup_mm:
1934 if (p->mm)
1935 mmput(p->mm);
1936 bad_fork_cleanup_signal:
1937 if (!(clone_flags & CLONE_THREAD))
1938 free_signal_struct(p->signal);
1939 bad_fork_cleanup_sighand:
1940 __cleanup_sighand(p->sighand);
1941 bad_fork_cleanup_fs:
1942 exit_fs(p); /* blocking */
1943 bad_fork_cleanup_files:
1944 exit_files(p); /* blocking */
1945 bad_fork_cleanup_semundo:
1946 exit_sem(p);
1947 bad_fork_cleanup_security:
1948 security_task_free(p);
1949 bad_fork_cleanup_audit:
1950 audit_free(p);
1951 bad_fork_cleanup_perf:
1952 perf_event_free_task(p);
1953 bad_fork_cleanup_policy:
1954 lockdep_free_task(p);
1955 #ifdef CONFIG_NUMA
1956 mpol_put(p->mempolicy);
1957 bad_fork_cleanup_threadgroup_lock:
1958 #endif
1959 delayacct_tsk_free(p);
1960 bad_fork_cleanup_count:
1961 atomic_dec(&p->cred->user->processes);
1962 exit_creds(p);
1963 bad_fork_free:
1964 p->state = TASK_DEAD;
1965 put_task_stack(p);
1966 free_task(p);
1967 fork_out:
1968 return ERR_PTR(retval);
1969 }
1970
1971 static inline void init_idle_pids(struct pid_link *links)
1972 {
1973 enum pid_type type;
1974
1975 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1976 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1977 links[type].pid = &init_struct_pid;
1978 }
1979 }
1980
1981 struct task_struct *fork_idle(int cpu)
1982 {
1983 struct task_struct *task;
1984 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
1985 cpu_to_node(cpu));
1986 if (!IS_ERR(task)) {
1987 init_idle_pids(task->pids);
1988 init_idle(task, cpu);
1989 }
1990
1991 return task;
1992 }
1993
1994 /*
1995 * Ok, this is the main fork-routine.
1996 *
1997 * It copies the process, and if successful kick-starts
1998 * it and waits for it to finish using the VM if required.
1999 */
2000 long _do_fork(unsigned long clone_flags,
2001 unsigned long stack_start,
2002 unsigned long stack_size,
2003 int __user *parent_tidptr,
2004 int __user *child_tidptr,
2005 unsigned long tls)
2006 {
2007 struct task_struct *p;
2008 int trace = 0;
2009 long nr;
2010
2011 /*
2012 * Determine whether and which event to report to ptracer. When
2013 * called from kernel_thread or CLONE_UNTRACED is explicitly
2014 * requested, no event is reported; otherwise, report if the event
2015 * for the type of forking is enabled.
2016 */
2017 if (!(clone_flags & CLONE_UNTRACED)) {
2018 if (clone_flags & CLONE_VFORK)
2019 trace = PTRACE_EVENT_VFORK;
2020 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2021 trace = PTRACE_EVENT_CLONE;
2022 else
2023 trace = PTRACE_EVENT_FORK;
2024
2025 if (likely(!ptrace_event_enabled(current, trace)))
2026 trace = 0;
2027 }
2028
2029 p = copy_process(clone_flags, stack_start, stack_size,
2030 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2031 add_latent_entropy();
2032 /*
2033 * Do this prior waking up the new thread - the thread pointer
2034 * might get invalid after that point, if the thread exits quickly.
2035 */
2036 if (!IS_ERR(p)) {
2037 struct completion vfork;
2038 struct pid *pid;
2039
2040 trace_sched_process_fork(current, p);
2041
2042 pid = get_task_pid(p, PIDTYPE_PID);
2043 nr = pid_vnr(pid);
2044
2045 if (clone_flags & CLONE_PARENT_SETTID)
2046 put_user(nr, parent_tidptr);
2047
2048 if (clone_flags & CLONE_VFORK) {
2049 p->vfork_done = &vfork;
2050 init_completion(&vfork);
2051 get_task_struct(p);
2052 }
2053
2054 wake_up_new_task(p);
2055
2056 /* forking complete and child started to run, tell ptracer */
2057 if (unlikely(trace))
2058 ptrace_event_pid(trace, pid);
2059
2060 if (clone_flags & CLONE_VFORK) {
2061 if (!wait_for_vfork_done(p, &vfork))
2062 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2063 }
2064
2065 put_pid(pid);
2066 } else {
2067 nr = PTR_ERR(p);
2068 }
2069 return nr;
2070 }
2071
2072 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2073 /* For compatibility with architectures that call do_fork directly rather than
2074 * using the syscall entry points below. */
2075 long do_fork(unsigned long clone_flags,
2076 unsigned long stack_start,
2077 unsigned long stack_size,
2078 int __user *parent_tidptr,
2079 int __user *child_tidptr)
2080 {
2081 return _do_fork(clone_flags, stack_start, stack_size,
2082 parent_tidptr, child_tidptr, 0);
2083 }
2084 #endif
2085
2086 /*
2087 * Create a kernel thread.
2088 */
2089 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2090 {
2091 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2092 (unsigned long)arg, NULL, NULL, 0);
2093 }
2094
2095 #ifdef __ARCH_WANT_SYS_FORK
2096 SYSCALL_DEFINE0(fork)
2097 {
2098 #ifdef CONFIG_MMU
2099 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2100 #else
2101 /* can not support in nommu mode */
2102 return -EINVAL;
2103 #endif
2104 }
2105 #endif
2106
2107 #ifdef __ARCH_WANT_SYS_VFORK
2108 SYSCALL_DEFINE0(vfork)
2109 {
2110 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2111 0, NULL, NULL, 0);
2112 }
2113 #endif
2114
2115 #ifdef __ARCH_WANT_SYS_CLONE
2116 #ifdef CONFIG_CLONE_BACKWARDS
2117 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2118 int __user *, parent_tidptr,
2119 unsigned long, tls,
2120 int __user *, child_tidptr)
2121 #elif defined(CONFIG_CLONE_BACKWARDS2)
2122 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2123 int __user *, parent_tidptr,
2124 int __user *, child_tidptr,
2125 unsigned long, tls)
2126 #elif defined(CONFIG_CLONE_BACKWARDS3)
2127 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2128 int, stack_size,
2129 int __user *, parent_tidptr,
2130 int __user *, child_tidptr,
2131 unsigned long, tls)
2132 #else
2133 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2134 int __user *, parent_tidptr,
2135 int __user *, child_tidptr,
2136 unsigned long, tls)
2137 #endif
2138 {
2139 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2140 }
2141 #endif
2142
2143 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2144 {
2145 struct task_struct *leader, *parent, *child;
2146 int res;
2147
2148 read_lock(&tasklist_lock);
2149 leader = top = top->group_leader;
2150 down:
2151 for_each_thread(leader, parent) {
2152 list_for_each_entry(child, &parent->children, sibling) {
2153 res = visitor(child, data);
2154 if (res) {
2155 if (res < 0)
2156 goto out;
2157 leader = child;
2158 goto down;
2159 }
2160 up:
2161 ;
2162 }
2163 }
2164
2165 if (leader != top) {
2166 child = leader;
2167 parent = child->real_parent;
2168 leader = parent->group_leader;
2169 goto up;
2170 }
2171 out:
2172 read_unlock(&tasklist_lock);
2173 }
2174
2175 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2176 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2177 #endif
2178
2179 static void sighand_ctor(void *data)
2180 {
2181 struct sighand_struct *sighand = data;
2182
2183 spin_lock_init(&sighand->siglock);
2184 init_waitqueue_head(&sighand->signalfd_wqh);
2185 }
2186
2187 void __init proc_caches_init(void)
2188 {
2189 sighand_cachep = kmem_cache_create("sighand_cache",
2190 sizeof(struct sighand_struct), 0,
2191 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2192 SLAB_NOTRACK|SLAB_ACCOUNT, sighand_ctor);
2193 signal_cachep = kmem_cache_create("signal_cache",
2194 sizeof(struct signal_struct), 0,
2195 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2196 NULL);
2197 files_cachep = kmem_cache_create("files_cache",
2198 sizeof(struct files_struct), 0,
2199 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2200 NULL);
2201 fs_cachep = kmem_cache_create("fs_cache",
2202 sizeof(struct fs_struct), 0,
2203 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2204 NULL);
2205 /*
2206 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2207 * whole struct cpumask for the OFFSTACK case. We could change
2208 * this to *only* allocate as much of it as required by the
2209 * maximum number of CPU's we can ever have. The cpumask_allocation
2210 * is at the end of the structure, exactly for that reason.
2211 */
2212 mm_cachep = kmem_cache_create("mm_struct",
2213 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2214 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK|SLAB_ACCOUNT,
2215 NULL);
2216 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2217 mmap_init();
2218 nsproxy_cache_init();
2219 }
2220
2221 /*
2222 * Check constraints on flags passed to the unshare system call.
2223 */
2224 static int check_unshare_flags(unsigned long unshare_flags)
2225 {
2226 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2227 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2228 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2229 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2230 return -EINVAL;
2231 /*
2232 * Not implemented, but pretend it works if there is nothing
2233 * to unshare. Note that unsharing the address space or the
2234 * signal handlers also need to unshare the signal queues (aka
2235 * CLONE_THREAD).
2236 */
2237 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2238 if (!thread_group_empty(current))
2239 return -EINVAL;
2240 }
2241 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2242 if (atomic_read(&current->sighand->count) > 1)
2243 return -EINVAL;
2244 }
2245 if (unshare_flags & CLONE_VM) {
2246 if (!current_is_single_threaded())
2247 return -EINVAL;
2248 }
2249
2250 return 0;
2251 }
2252
2253 /*
2254 * Unshare the filesystem structure if it is being shared
2255 */
2256 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2257 {
2258 struct fs_struct *fs = current->fs;
2259
2260 if (!(unshare_flags & CLONE_FS) || !fs)
2261 return 0;
2262
2263 /* don't need lock here; in the worst case we'll do useless copy */
2264 if (fs->users == 1)
2265 return 0;
2266
2267 *new_fsp = copy_fs_struct(fs);
2268 if (!*new_fsp)
2269 return -ENOMEM;
2270
2271 return 0;
2272 }
2273
2274 /*
2275 * Unshare file descriptor table if it is being shared
2276 */
2277 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2278 {
2279 struct files_struct *fd = current->files;
2280 int error = 0;
2281
2282 if ((unshare_flags & CLONE_FILES) &&
2283 (fd && atomic_read(&fd->count) > 1)) {
2284 *new_fdp = dup_fd(fd, &error);
2285 if (!*new_fdp)
2286 return error;
2287 }
2288
2289 return 0;
2290 }
2291
2292 /*
2293 * unshare allows a process to 'unshare' part of the process
2294 * context which was originally shared using clone. copy_*
2295 * functions used by do_fork() cannot be used here directly
2296 * because they modify an inactive task_struct that is being
2297 * constructed. Here we are modifying the current, active,
2298 * task_struct.
2299 */
2300 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2301 {
2302 struct fs_struct *fs, *new_fs = NULL;
2303 struct files_struct *fd, *new_fd = NULL;
2304 struct cred *new_cred = NULL;
2305 struct nsproxy *new_nsproxy = NULL;
2306 int do_sysvsem = 0;
2307 int err;
2308
2309 /*
2310 * If unsharing a user namespace must also unshare the thread group
2311 * and unshare the filesystem root and working directories.
2312 */
2313 if (unshare_flags & CLONE_NEWUSER)
2314 unshare_flags |= CLONE_THREAD | CLONE_FS;
2315 /*
2316 * If unsharing vm, must also unshare signal handlers.
2317 */
2318 if (unshare_flags & CLONE_VM)
2319 unshare_flags |= CLONE_SIGHAND;
2320 /*
2321 * If unsharing a signal handlers, must also unshare the signal queues.
2322 */
2323 if (unshare_flags & CLONE_SIGHAND)
2324 unshare_flags |= CLONE_THREAD;
2325 /*
2326 * If unsharing namespace, must also unshare filesystem information.
2327 */
2328 if (unshare_flags & CLONE_NEWNS)
2329 unshare_flags |= CLONE_FS;
2330
2331 err = check_unshare_flags(unshare_flags);
2332 if (err)
2333 goto bad_unshare_out;
2334 /*
2335 * CLONE_NEWIPC must also detach from the undolist: after switching
2336 * to a new ipc namespace, the semaphore arrays from the old
2337 * namespace are unreachable.
2338 */
2339 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2340 do_sysvsem = 1;
2341 err = unshare_fs(unshare_flags, &new_fs);
2342 if (err)
2343 goto bad_unshare_out;
2344 err = unshare_fd(unshare_flags, &new_fd);
2345 if (err)
2346 goto bad_unshare_cleanup_fs;
2347 err = unshare_userns(unshare_flags, &new_cred);
2348 if (err)
2349 goto bad_unshare_cleanup_fd;
2350 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2351 new_cred, new_fs);
2352 if (err)
2353 goto bad_unshare_cleanup_cred;
2354
2355 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2356 if (do_sysvsem) {
2357 /*
2358 * CLONE_SYSVSEM is equivalent to sys_exit().
2359 */
2360 exit_sem(current);
2361 }
2362 if (unshare_flags & CLONE_NEWIPC) {
2363 /* Orphan segments in old ns (see sem above). */
2364 exit_shm(current);
2365 shm_init_task(current);
2366 }
2367
2368 if (new_nsproxy)
2369 switch_task_namespaces(current, new_nsproxy);
2370
2371 task_lock(current);
2372
2373 if (new_fs) {
2374 fs = current->fs;
2375 spin_lock(&fs->lock);
2376 current->fs = new_fs;
2377 if (--fs->users)
2378 new_fs = NULL;
2379 else
2380 new_fs = fs;
2381 spin_unlock(&fs->lock);
2382 }
2383
2384 if (new_fd) {
2385 fd = current->files;
2386 current->files = new_fd;
2387 new_fd = fd;
2388 }
2389
2390 task_unlock(current);
2391
2392 if (new_cred) {
2393 /* Install the new user namespace */
2394 commit_creds(new_cred);
2395 new_cred = NULL;
2396 }
2397 }
2398
2399 perf_event_namespaces(current);
2400
2401 bad_unshare_cleanup_cred:
2402 if (new_cred)
2403 put_cred(new_cred);
2404 bad_unshare_cleanup_fd:
2405 if (new_fd)
2406 put_files_struct(new_fd);
2407
2408 bad_unshare_cleanup_fs:
2409 if (new_fs)
2410 free_fs_struct(new_fs);
2411
2412 bad_unshare_out:
2413 return err;
2414 }
2415
2416 /*
2417 * Helper to unshare the files of the current task.
2418 * We don't want to expose copy_files internals to
2419 * the exec layer of the kernel.
2420 */
2421
2422 int unshare_files(struct files_struct **displaced)
2423 {
2424 struct task_struct *task = current;
2425 struct files_struct *copy = NULL;
2426 int error;
2427
2428 error = unshare_fd(CLONE_FILES, &copy);
2429 if (error || !copy) {
2430 *displaced = NULL;
2431 return error;
2432 }
2433 *displaced = task->files;
2434 task_lock(task);
2435 task->files = copy;
2436 task_unlock(task);
2437 return 0;
2438 }
2439
2440 int sysctl_max_threads(struct ctl_table *table, int write,
2441 void __user *buffer, size_t *lenp, loff_t *ppos)
2442 {
2443 struct ctl_table t;
2444 int ret;
2445 int threads = max_threads;
2446 int min = MIN_THREADS;
2447 int max = MAX_THREADS;
2448
2449 t = *table;
2450 t.data = &threads;
2451 t.extra1 = &min;
2452 t.extra2 = &max;
2453
2454 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2455 if (ret || !write)
2456 return ret;
2457
2458 set_max_threads(threads);
2459
2460 return 0;
2461 }