]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/fork.c
[PATCH] sys_unshare: remove a broken CLONE_SIGHAND code
[mirror_ubuntu-artful-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/smp_lock.h>
18 #include <linux/module.h>
19 #include <linux/vmalloc.h>
20 #include <linux/completion.h>
21 #include <linux/namespace.h>
22 #include <linux/personality.h>
23 #include <linux/mempolicy.h>
24 #include <linux/sem.h>
25 #include <linux/file.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/fs.h>
30 #include <linux/nsproxy.h>
31 #include <linux/capability.h>
32 #include <linux/cpu.h>
33 #include <linux/cpuset.h>
34 #include <linux/security.h>
35 #include <linux/swap.h>
36 #include <linux/syscalls.h>
37 #include <linux/jiffies.h>
38 #include <linux/futex.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/profile.h>
44 #include <linux/rmap.h>
45 #include <linux/acct.h>
46 #include <linux/tsacct_kern.h>
47 #include <linux/cn_proc.h>
48 #include <linux/delayacct.h>
49 #include <linux/taskstats_kern.h>
50 #include <linux/random.h>
51
52 #include <asm/pgtable.h>
53 #include <asm/pgalloc.h>
54 #include <asm/uaccess.h>
55 #include <asm/mmu_context.h>
56 #include <asm/cacheflush.h>
57 #include <asm/tlbflush.h>
58
59 /*
60 * Protected counters by write_lock_irq(&tasklist_lock)
61 */
62 unsigned long total_forks; /* Handle normal Linux uptimes. */
63 int nr_threads; /* The idle threads do not count.. */
64
65 int max_threads; /* tunable limit on nr_threads */
66
67 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
68
69 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
70
71 int nr_processes(void)
72 {
73 int cpu;
74 int total = 0;
75
76 for_each_online_cpu(cpu)
77 total += per_cpu(process_counts, cpu);
78
79 return total;
80 }
81
82 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
83 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
84 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
85 static struct kmem_cache *task_struct_cachep;
86 #endif
87
88 /* SLAB cache for signal_struct structures (tsk->signal) */
89 static struct kmem_cache *signal_cachep;
90
91 /* SLAB cache for sighand_struct structures (tsk->sighand) */
92 struct kmem_cache *sighand_cachep;
93
94 /* SLAB cache for files_struct structures (tsk->files) */
95 struct kmem_cache *files_cachep;
96
97 /* SLAB cache for fs_struct structures (tsk->fs) */
98 struct kmem_cache *fs_cachep;
99
100 /* SLAB cache for vm_area_struct structures */
101 struct kmem_cache *vm_area_cachep;
102
103 /* SLAB cache for mm_struct structures (tsk->mm) */
104 static struct kmem_cache *mm_cachep;
105
106 void free_task(struct task_struct *tsk)
107 {
108 free_thread_info(tsk->thread_info);
109 rt_mutex_debug_task_free(tsk);
110 free_task_struct(tsk);
111 }
112 EXPORT_SYMBOL(free_task);
113
114 void __put_task_struct(struct task_struct *tsk)
115 {
116 WARN_ON(!(tsk->exit_state & (EXIT_DEAD | EXIT_ZOMBIE)));
117 WARN_ON(atomic_read(&tsk->usage));
118 WARN_ON(tsk == current);
119
120 security_task_free(tsk);
121 free_uid(tsk->user);
122 put_group_info(tsk->group_info);
123 delayacct_tsk_free(tsk);
124
125 if (!profile_handoff_task(tsk))
126 free_task(tsk);
127 }
128
129 void __init fork_init(unsigned long mempages)
130 {
131 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
132 #ifndef ARCH_MIN_TASKALIGN
133 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
134 #endif
135 /* create a slab on which task_structs can be allocated */
136 task_struct_cachep =
137 kmem_cache_create("task_struct", sizeof(struct task_struct),
138 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL, NULL);
139 #endif
140
141 /*
142 * The default maximum number of threads is set to a safe
143 * value: the thread structures can take up at most half
144 * of memory.
145 */
146 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
147
148 /*
149 * we need to allow at least 20 threads to boot a system
150 */
151 if(max_threads < 20)
152 max_threads = 20;
153
154 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
155 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
156 init_task.signal->rlim[RLIMIT_SIGPENDING] =
157 init_task.signal->rlim[RLIMIT_NPROC];
158 }
159
160 static struct task_struct *dup_task_struct(struct task_struct *orig)
161 {
162 struct task_struct *tsk;
163 struct thread_info *ti;
164
165 prepare_to_copy(orig);
166
167 tsk = alloc_task_struct();
168 if (!tsk)
169 return NULL;
170
171 ti = alloc_thread_info(tsk);
172 if (!ti) {
173 free_task_struct(tsk);
174 return NULL;
175 }
176
177 *tsk = *orig;
178 tsk->thread_info = ti;
179 setup_thread_stack(tsk, orig);
180
181 #ifdef CONFIG_CC_STACKPROTECTOR
182 tsk->stack_canary = get_random_int();
183 #endif
184
185 /* One for us, one for whoever does the "release_task()" (usually parent) */
186 atomic_set(&tsk->usage,2);
187 atomic_set(&tsk->fs_excl, 0);
188 #ifdef CONFIG_BLK_DEV_IO_TRACE
189 tsk->btrace_seq = 0;
190 #endif
191 tsk->splice_pipe = NULL;
192 return tsk;
193 }
194
195 #ifdef CONFIG_MMU
196 static inline int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
197 {
198 struct vm_area_struct *mpnt, *tmp, **pprev;
199 struct rb_node **rb_link, *rb_parent;
200 int retval;
201 unsigned long charge;
202 struct mempolicy *pol;
203
204 down_write(&oldmm->mmap_sem);
205 flush_cache_mm(oldmm);
206 /*
207 * Not linked in yet - no deadlock potential:
208 */
209 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
210
211 mm->locked_vm = 0;
212 mm->mmap = NULL;
213 mm->mmap_cache = NULL;
214 mm->free_area_cache = oldmm->mmap_base;
215 mm->cached_hole_size = ~0UL;
216 mm->map_count = 0;
217 cpus_clear(mm->cpu_vm_mask);
218 mm->mm_rb = RB_ROOT;
219 rb_link = &mm->mm_rb.rb_node;
220 rb_parent = NULL;
221 pprev = &mm->mmap;
222
223 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
224 struct file *file;
225
226 if (mpnt->vm_flags & VM_DONTCOPY) {
227 long pages = vma_pages(mpnt);
228 mm->total_vm -= pages;
229 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
230 -pages);
231 continue;
232 }
233 charge = 0;
234 if (mpnt->vm_flags & VM_ACCOUNT) {
235 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
236 if (security_vm_enough_memory(len))
237 goto fail_nomem;
238 charge = len;
239 }
240 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
241 if (!tmp)
242 goto fail_nomem;
243 *tmp = *mpnt;
244 pol = mpol_copy(vma_policy(mpnt));
245 retval = PTR_ERR(pol);
246 if (IS_ERR(pol))
247 goto fail_nomem_policy;
248 vma_set_policy(tmp, pol);
249 tmp->vm_flags &= ~VM_LOCKED;
250 tmp->vm_mm = mm;
251 tmp->vm_next = NULL;
252 anon_vma_link(tmp);
253 file = tmp->vm_file;
254 if (file) {
255 struct inode *inode = file->f_dentry->d_inode;
256 get_file(file);
257 if (tmp->vm_flags & VM_DENYWRITE)
258 atomic_dec(&inode->i_writecount);
259
260 /* insert tmp into the share list, just after mpnt */
261 spin_lock(&file->f_mapping->i_mmap_lock);
262 tmp->vm_truncate_count = mpnt->vm_truncate_count;
263 flush_dcache_mmap_lock(file->f_mapping);
264 vma_prio_tree_add(tmp, mpnt);
265 flush_dcache_mmap_unlock(file->f_mapping);
266 spin_unlock(&file->f_mapping->i_mmap_lock);
267 }
268
269 /*
270 * Link in the new vma and copy the page table entries.
271 */
272 *pprev = tmp;
273 pprev = &tmp->vm_next;
274
275 __vma_link_rb(mm, tmp, rb_link, rb_parent);
276 rb_link = &tmp->vm_rb.rb_right;
277 rb_parent = &tmp->vm_rb;
278
279 mm->map_count++;
280 retval = copy_page_range(mm, oldmm, mpnt);
281
282 if (tmp->vm_ops && tmp->vm_ops->open)
283 tmp->vm_ops->open(tmp);
284
285 if (retval)
286 goto out;
287 }
288 retval = 0;
289 out:
290 up_write(&mm->mmap_sem);
291 flush_tlb_mm(oldmm);
292 up_write(&oldmm->mmap_sem);
293 return retval;
294 fail_nomem_policy:
295 kmem_cache_free(vm_area_cachep, tmp);
296 fail_nomem:
297 retval = -ENOMEM;
298 vm_unacct_memory(charge);
299 goto out;
300 }
301
302 static inline int mm_alloc_pgd(struct mm_struct * mm)
303 {
304 mm->pgd = pgd_alloc(mm);
305 if (unlikely(!mm->pgd))
306 return -ENOMEM;
307 return 0;
308 }
309
310 static inline void mm_free_pgd(struct mm_struct * mm)
311 {
312 pgd_free(mm->pgd);
313 }
314 #else
315 #define dup_mmap(mm, oldmm) (0)
316 #define mm_alloc_pgd(mm) (0)
317 #define mm_free_pgd(mm)
318 #endif /* CONFIG_MMU */
319
320 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
321
322 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
323 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
324
325 #include <linux/init_task.h>
326
327 static struct mm_struct * mm_init(struct mm_struct * mm)
328 {
329 atomic_set(&mm->mm_users, 1);
330 atomic_set(&mm->mm_count, 1);
331 init_rwsem(&mm->mmap_sem);
332 INIT_LIST_HEAD(&mm->mmlist);
333 mm->core_waiters = 0;
334 mm->nr_ptes = 0;
335 set_mm_counter(mm, file_rss, 0);
336 set_mm_counter(mm, anon_rss, 0);
337 spin_lock_init(&mm->page_table_lock);
338 rwlock_init(&mm->ioctx_list_lock);
339 mm->ioctx_list = NULL;
340 mm->free_area_cache = TASK_UNMAPPED_BASE;
341 mm->cached_hole_size = ~0UL;
342
343 if (likely(!mm_alloc_pgd(mm))) {
344 mm->def_flags = 0;
345 return mm;
346 }
347 free_mm(mm);
348 return NULL;
349 }
350
351 /*
352 * Allocate and initialize an mm_struct.
353 */
354 struct mm_struct * mm_alloc(void)
355 {
356 struct mm_struct * mm;
357
358 mm = allocate_mm();
359 if (mm) {
360 memset(mm, 0, sizeof(*mm));
361 mm = mm_init(mm);
362 }
363 return mm;
364 }
365
366 /*
367 * Called when the last reference to the mm
368 * is dropped: either by a lazy thread or by
369 * mmput. Free the page directory and the mm.
370 */
371 void fastcall __mmdrop(struct mm_struct *mm)
372 {
373 BUG_ON(mm == &init_mm);
374 mm_free_pgd(mm);
375 destroy_context(mm);
376 free_mm(mm);
377 }
378
379 /*
380 * Decrement the use count and release all resources for an mm.
381 */
382 void mmput(struct mm_struct *mm)
383 {
384 might_sleep();
385
386 if (atomic_dec_and_test(&mm->mm_users)) {
387 exit_aio(mm);
388 exit_mmap(mm);
389 if (!list_empty(&mm->mmlist)) {
390 spin_lock(&mmlist_lock);
391 list_del(&mm->mmlist);
392 spin_unlock(&mmlist_lock);
393 }
394 put_swap_token(mm);
395 mmdrop(mm);
396 }
397 }
398 EXPORT_SYMBOL_GPL(mmput);
399
400 /**
401 * get_task_mm - acquire a reference to the task's mm
402 *
403 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
404 * this kernel workthread has transiently adopted a user mm with use_mm,
405 * to do its AIO) is not set and if so returns a reference to it, after
406 * bumping up the use count. User must release the mm via mmput()
407 * after use. Typically used by /proc and ptrace.
408 */
409 struct mm_struct *get_task_mm(struct task_struct *task)
410 {
411 struct mm_struct *mm;
412
413 task_lock(task);
414 mm = task->mm;
415 if (mm) {
416 if (task->flags & PF_BORROWED_MM)
417 mm = NULL;
418 else
419 atomic_inc(&mm->mm_users);
420 }
421 task_unlock(task);
422 return mm;
423 }
424 EXPORT_SYMBOL_GPL(get_task_mm);
425
426 /* Please note the differences between mmput and mm_release.
427 * mmput is called whenever we stop holding onto a mm_struct,
428 * error success whatever.
429 *
430 * mm_release is called after a mm_struct has been removed
431 * from the current process.
432 *
433 * This difference is important for error handling, when we
434 * only half set up a mm_struct for a new process and need to restore
435 * the old one. Because we mmput the new mm_struct before
436 * restoring the old one. . .
437 * Eric Biederman 10 January 1998
438 */
439 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
440 {
441 struct completion *vfork_done = tsk->vfork_done;
442
443 /* Get rid of any cached register state */
444 deactivate_mm(tsk, mm);
445
446 /* notify parent sleeping on vfork() */
447 if (vfork_done) {
448 tsk->vfork_done = NULL;
449 complete(vfork_done);
450 }
451
452 /*
453 * If we're exiting normally, clear a user-space tid field if
454 * requested. We leave this alone when dying by signal, to leave
455 * the value intact in a core dump, and to save the unnecessary
456 * trouble otherwise. Userland only wants this done for a sys_exit.
457 */
458 if (tsk->clear_child_tid
459 && !(tsk->flags & PF_SIGNALED)
460 && atomic_read(&mm->mm_users) > 1) {
461 u32 __user * tidptr = tsk->clear_child_tid;
462 tsk->clear_child_tid = NULL;
463
464 /*
465 * We don't check the error code - if userspace has
466 * not set up a proper pointer then tough luck.
467 */
468 put_user(0, tidptr);
469 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
470 }
471 }
472
473 /*
474 * Allocate a new mm structure and copy contents from the
475 * mm structure of the passed in task structure.
476 */
477 static struct mm_struct *dup_mm(struct task_struct *tsk)
478 {
479 struct mm_struct *mm, *oldmm = current->mm;
480 int err;
481
482 if (!oldmm)
483 return NULL;
484
485 mm = allocate_mm();
486 if (!mm)
487 goto fail_nomem;
488
489 memcpy(mm, oldmm, sizeof(*mm));
490
491 /* Initializing for Swap token stuff */
492 mm->token_priority = 0;
493 mm->last_interval = 0;
494
495 if (!mm_init(mm))
496 goto fail_nomem;
497
498 if (init_new_context(tsk, mm))
499 goto fail_nocontext;
500
501 err = dup_mmap(mm, oldmm);
502 if (err)
503 goto free_pt;
504
505 mm->hiwater_rss = get_mm_rss(mm);
506 mm->hiwater_vm = mm->total_vm;
507
508 return mm;
509
510 free_pt:
511 mmput(mm);
512
513 fail_nomem:
514 return NULL;
515
516 fail_nocontext:
517 /*
518 * If init_new_context() failed, we cannot use mmput() to free the mm
519 * because it calls destroy_context()
520 */
521 mm_free_pgd(mm);
522 free_mm(mm);
523 return NULL;
524 }
525
526 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
527 {
528 struct mm_struct * mm, *oldmm;
529 int retval;
530
531 tsk->min_flt = tsk->maj_flt = 0;
532 tsk->nvcsw = tsk->nivcsw = 0;
533
534 tsk->mm = NULL;
535 tsk->active_mm = NULL;
536
537 /*
538 * Are we cloning a kernel thread?
539 *
540 * We need to steal a active VM for that..
541 */
542 oldmm = current->mm;
543 if (!oldmm)
544 return 0;
545
546 if (clone_flags & CLONE_VM) {
547 atomic_inc(&oldmm->mm_users);
548 mm = oldmm;
549 goto good_mm;
550 }
551
552 retval = -ENOMEM;
553 mm = dup_mm(tsk);
554 if (!mm)
555 goto fail_nomem;
556
557 good_mm:
558 /* Initializing for Swap token stuff */
559 mm->token_priority = 0;
560 mm->last_interval = 0;
561
562 tsk->mm = mm;
563 tsk->active_mm = mm;
564 return 0;
565
566 fail_nomem:
567 return retval;
568 }
569
570 static inline struct fs_struct *__copy_fs_struct(struct fs_struct *old)
571 {
572 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
573 /* We don't need to lock fs - think why ;-) */
574 if (fs) {
575 atomic_set(&fs->count, 1);
576 rwlock_init(&fs->lock);
577 fs->umask = old->umask;
578 read_lock(&old->lock);
579 fs->rootmnt = mntget(old->rootmnt);
580 fs->root = dget(old->root);
581 fs->pwdmnt = mntget(old->pwdmnt);
582 fs->pwd = dget(old->pwd);
583 if (old->altroot) {
584 fs->altrootmnt = mntget(old->altrootmnt);
585 fs->altroot = dget(old->altroot);
586 } else {
587 fs->altrootmnt = NULL;
588 fs->altroot = NULL;
589 }
590 read_unlock(&old->lock);
591 }
592 return fs;
593 }
594
595 struct fs_struct *copy_fs_struct(struct fs_struct *old)
596 {
597 return __copy_fs_struct(old);
598 }
599
600 EXPORT_SYMBOL_GPL(copy_fs_struct);
601
602 static inline int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
603 {
604 if (clone_flags & CLONE_FS) {
605 atomic_inc(&current->fs->count);
606 return 0;
607 }
608 tsk->fs = __copy_fs_struct(current->fs);
609 if (!tsk->fs)
610 return -ENOMEM;
611 return 0;
612 }
613
614 static int count_open_files(struct fdtable *fdt)
615 {
616 int size = fdt->max_fdset;
617 int i;
618
619 /* Find the last open fd */
620 for (i = size/(8*sizeof(long)); i > 0; ) {
621 if (fdt->open_fds->fds_bits[--i])
622 break;
623 }
624 i = (i+1) * 8 * sizeof(long);
625 return i;
626 }
627
628 static struct files_struct *alloc_files(void)
629 {
630 struct files_struct *newf;
631 struct fdtable *fdt;
632
633 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
634 if (!newf)
635 goto out;
636
637 atomic_set(&newf->count, 1);
638
639 spin_lock_init(&newf->file_lock);
640 newf->next_fd = 0;
641 fdt = &newf->fdtab;
642 fdt->max_fds = NR_OPEN_DEFAULT;
643 fdt->max_fdset = EMBEDDED_FD_SET_SIZE;
644 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
645 fdt->open_fds = (fd_set *)&newf->open_fds_init;
646 fdt->fd = &newf->fd_array[0];
647 INIT_RCU_HEAD(&fdt->rcu);
648 fdt->free_files = NULL;
649 fdt->next = NULL;
650 rcu_assign_pointer(newf->fdt, fdt);
651 out:
652 return newf;
653 }
654
655 /*
656 * Allocate a new files structure and copy contents from the
657 * passed in files structure.
658 * errorp will be valid only when the returned files_struct is NULL.
659 */
660 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
661 {
662 struct files_struct *newf;
663 struct file **old_fds, **new_fds;
664 int open_files, size, i, expand;
665 struct fdtable *old_fdt, *new_fdt;
666
667 *errorp = -ENOMEM;
668 newf = alloc_files();
669 if (!newf)
670 goto out;
671
672 spin_lock(&oldf->file_lock);
673 old_fdt = files_fdtable(oldf);
674 new_fdt = files_fdtable(newf);
675 size = old_fdt->max_fdset;
676 open_files = count_open_files(old_fdt);
677 expand = 0;
678
679 /*
680 * Check whether we need to allocate a larger fd array or fd set.
681 * Note: we're not a clone task, so the open count won't change.
682 */
683 if (open_files > new_fdt->max_fdset) {
684 new_fdt->max_fdset = 0;
685 expand = 1;
686 }
687 if (open_files > new_fdt->max_fds) {
688 new_fdt->max_fds = 0;
689 expand = 1;
690 }
691
692 /* if the old fdset gets grown now, we'll only copy up to "size" fds */
693 if (expand) {
694 spin_unlock(&oldf->file_lock);
695 spin_lock(&newf->file_lock);
696 *errorp = expand_files(newf, open_files-1);
697 spin_unlock(&newf->file_lock);
698 if (*errorp < 0)
699 goto out_release;
700 new_fdt = files_fdtable(newf);
701 /*
702 * Reacquire the oldf lock and a pointer to its fd table
703 * who knows it may have a new bigger fd table. We need
704 * the latest pointer.
705 */
706 spin_lock(&oldf->file_lock);
707 old_fdt = files_fdtable(oldf);
708 }
709
710 old_fds = old_fdt->fd;
711 new_fds = new_fdt->fd;
712
713 memcpy(new_fdt->open_fds->fds_bits, old_fdt->open_fds->fds_bits, open_files/8);
714 memcpy(new_fdt->close_on_exec->fds_bits, old_fdt->close_on_exec->fds_bits, open_files/8);
715
716 for (i = open_files; i != 0; i--) {
717 struct file *f = *old_fds++;
718 if (f) {
719 get_file(f);
720 } else {
721 /*
722 * The fd may be claimed in the fd bitmap but not yet
723 * instantiated in the files array if a sibling thread
724 * is partway through open(). So make sure that this
725 * fd is available to the new process.
726 */
727 FD_CLR(open_files - i, new_fdt->open_fds);
728 }
729 rcu_assign_pointer(*new_fds++, f);
730 }
731 spin_unlock(&oldf->file_lock);
732
733 /* compute the remainder to be cleared */
734 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
735
736 /* This is long word aligned thus could use a optimized version */
737 memset(new_fds, 0, size);
738
739 if (new_fdt->max_fdset > open_files) {
740 int left = (new_fdt->max_fdset-open_files)/8;
741 int start = open_files / (8 * sizeof(unsigned long));
742
743 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
744 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
745 }
746
747 out:
748 return newf;
749
750 out_release:
751 free_fdset (new_fdt->close_on_exec, new_fdt->max_fdset);
752 free_fdset (new_fdt->open_fds, new_fdt->max_fdset);
753 free_fd_array(new_fdt->fd, new_fdt->max_fds);
754 kmem_cache_free(files_cachep, newf);
755 return NULL;
756 }
757
758 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
759 {
760 struct files_struct *oldf, *newf;
761 int error = 0;
762
763 /*
764 * A background process may not have any files ...
765 */
766 oldf = current->files;
767 if (!oldf)
768 goto out;
769
770 if (clone_flags & CLONE_FILES) {
771 atomic_inc(&oldf->count);
772 goto out;
773 }
774
775 /*
776 * Note: we may be using current for both targets (See exec.c)
777 * This works because we cache current->files (old) as oldf. Don't
778 * break this.
779 */
780 tsk->files = NULL;
781 newf = dup_fd(oldf, &error);
782 if (!newf)
783 goto out;
784
785 tsk->files = newf;
786 error = 0;
787 out:
788 return error;
789 }
790
791 /*
792 * Helper to unshare the files of the current task.
793 * We don't want to expose copy_files internals to
794 * the exec layer of the kernel.
795 */
796
797 int unshare_files(void)
798 {
799 struct files_struct *files = current->files;
800 int rc;
801
802 BUG_ON(!files);
803
804 /* This can race but the race causes us to copy when we don't
805 need to and drop the copy */
806 if(atomic_read(&files->count) == 1)
807 {
808 atomic_inc(&files->count);
809 return 0;
810 }
811 rc = copy_files(0, current);
812 if(rc)
813 current->files = files;
814 return rc;
815 }
816
817 EXPORT_SYMBOL(unshare_files);
818
819 static inline int copy_sighand(unsigned long clone_flags, struct task_struct * tsk)
820 {
821 struct sighand_struct *sig;
822
823 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
824 atomic_inc(&current->sighand->count);
825 return 0;
826 }
827 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
828 rcu_assign_pointer(tsk->sighand, sig);
829 if (!sig)
830 return -ENOMEM;
831 atomic_set(&sig->count, 1);
832 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
833 return 0;
834 }
835
836 void __cleanup_sighand(struct sighand_struct *sighand)
837 {
838 if (atomic_dec_and_test(&sighand->count))
839 kmem_cache_free(sighand_cachep, sighand);
840 }
841
842 static inline int copy_signal(unsigned long clone_flags, struct task_struct * tsk)
843 {
844 struct signal_struct *sig;
845 int ret;
846
847 if (clone_flags & CLONE_THREAD) {
848 atomic_inc(&current->signal->count);
849 atomic_inc(&current->signal->live);
850 return 0;
851 }
852 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
853 tsk->signal = sig;
854 if (!sig)
855 return -ENOMEM;
856
857 ret = copy_thread_group_keys(tsk);
858 if (ret < 0) {
859 kmem_cache_free(signal_cachep, sig);
860 return ret;
861 }
862
863 atomic_set(&sig->count, 1);
864 atomic_set(&sig->live, 1);
865 init_waitqueue_head(&sig->wait_chldexit);
866 sig->flags = 0;
867 sig->group_exit_code = 0;
868 sig->group_exit_task = NULL;
869 sig->group_stop_count = 0;
870 sig->curr_target = NULL;
871 init_sigpending(&sig->shared_pending);
872 INIT_LIST_HEAD(&sig->posix_timers);
873
874 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_REL);
875 sig->it_real_incr.tv64 = 0;
876 sig->real_timer.function = it_real_fn;
877 sig->tsk = tsk;
878
879 sig->it_virt_expires = cputime_zero;
880 sig->it_virt_incr = cputime_zero;
881 sig->it_prof_expires = cputime_zero;
882 sig->it_prof_incr = cputime_zero;
883
884 sig->leader = 0; /* session leadership doesn't inherit */
885 sig->tty_old_pgrp = 0;
886
887 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
888 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
889 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
890 sig->sched_time = 0;
891 INIT_LIST_HEAD(&sig->cpu_timers[0]);
892 INIT_LIST_HEAD(&sig->cpu_timers[1]);
893 INIT_LIST_HEAD(&sig->cpu_timers[2]);
894 taskstats_tgid_init(sig);
895
896 task_lock(current->group_leader);
897 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
898 task_unlock(current->group_leader);
899
900 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
901 /*
902 * New sole thread in the process gets an expiry time
903 * of the whole CPU time limit.
904 */
905 tsk->it_prof_expires =
906 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
907 }
908 acct_init_pacct(&sig->pacct);
909
910 return 0;
911 }
912
913 void __cleanup_signal(struct signal_struct *sig)
914 {
915 exit_thread_group_keys(sig);
916 kmem_cache_free(signal_cachep, sig);
917 }
918
919 static inline void cleanup_signal(struct task_struct *tsk)
920 {
921 struct signal_struct *sig = tsk->signal;
922
923 atomic_dec(&sig->live);
924
925 if (atomic_dec_and_test(&sig->count))
926 __cleanup_signal(sig);
927 }
928
929 static inline void copy_flags(unsigned long clone_flags, struct task_struct *p)
930 {
931 unsigned long new_flags = p->flags;
932
933 new_flags &= ~(PF_SUPERPRIV | PF_NOFREEZE);
934 new_flags |= PF_FORKNOEXEC;
935 if (!(clone_flags & CLONE_PTRACE))
936 p->ptrace = 0;
937 p->flags = new_flags;
938 }
939
940 asmlinkage long sys_set_tid_address(int __user *tidptr)
941 {
942 current->clear_child_tid = tidptr;
943
944 return current->pid;
945 }
946
947 static inline void rt_mutex_init_task(struct task_struct *p)
948 {
949 #ifdef CONFIG_RT_MUTEXES
950 spin_lock_init(&p->pi_lock);
951 plist_head_init(&p->pi_waiters, &p->pi_lock);
952 p->pi_blocked_on = NULL;
953 #endif
954 }
955
956 /*
957 * This creates a new process as a copy of the old one,
958 * but does not actually start it yet.
959 *
960 * It copies the registers, and all the appropriate
961 * parts of the process environment (as per the clone
962 * flags). The actual kick-off is left to the caller.
963 */
964 static struct task_struct *copy_process(unsigned long clone_flags,
965 unsigned long stack_start,
966 struct pt_regs *regs,
967 unsigned long stack_size,
968 int __user *parent_tidptr,
969 int __user *child_tidptr,
970 int pid)
971 {
972 int retval;
973 struct task_struct *p = NULL;
974
975 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
976 return ERR_PTR(-EINVAL);
977
978 /*
979 * Thread groups must share signals as well, and detached threads
980 * can only be started up within the thread group.
981 */
982 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
983 return ERR_PTR(-EINVAL);
984
985 /*
986 * Shared signal handlers imply shared VM. By way of the above,
987 * thread groups also imply shared VM. Blocking this case allows
988 * for various simplifications in other code.
989 */
990 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
991 return ERR_PTR(-EINVAL);
992
993 retval = security_task_create(clone_flags);
994 if (retval)
995 goto fork_out;
996
997 retval = -ENOMEM;
998 p = dup_task_struct(current);
999 if (!p)
1000 goto fork_out;
1001
1002 rt_mutex_init_task(p);
1003
1004 #ifdef CONFIG_TRACE_IRQFLAGS
1005 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1006 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1007 #endif
1008 retval = -EAGAIN;
1009 if (atomic_read(&p->user->processes) >=
1010 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1011 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1012 p->user != &root_user)
1013 goto bad_fork_free;
1014 }
1015
1016 atomic_inc(&p->user->__count);
1017 atomic_inc(&p->user->processes);
1018 get_group_info(p->group_info);
1019
1020 /*
1021 * If multiple threads are within copy_process(), then this check
1022 * triggers too late. This doesn't hurt, the check is only there
1023 * to stop root fork bombs.
1024 */
1025 if (nr_threads >= max_threads)
1026 goto bad_fork_cleanup_count;
1027
1028 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1029 goto bad_fork_cleanup_count;
1030
1031 if (p->binfmt && !try_module_get(p->binfmt->module))
1032 goto bad_fork_cleanup_put_domain;
1033
1034 p->did_exec = 0;
1035 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1036 copy_flags(clone_flags, p);
1037 p->pid = pid;
1038 retval = -EFAULT;
1039 if (clone_flags & CLONE_PARENT_SETTID)
1040 if (put_user(p->pid, parent_tidptr))
1041 goto bad_fork_cleanup_delays_binfmt;
1042
1043 INIT_LIST_HEAD(&p->children);
1044 INIT_LIST_HEAD(&p->sibling);
1045 p->vfork_done = NULL;
1046 spin_lock_init(&p->alloc_lock);
1047
1048 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1049 init_sigpending(&p->pending);
1050
1051 p->utime = cputime_zero;
1052 p->stime = cputime_zero;
1053 p->sched_time = 0;
1054 p->rchar = 0; /* I/O counter: bytes read */
1055 p->wchar = 0; /* I/O counter: bytes written */
1056 p->syscr = 0; /* I/O counter: read syscalls */
1057 p->syscw = 0; /* I/O counter: write syscalls */
1058 acct_clear_integrals(p);
1059
1060 p->it_virt_expires = cputime_zero;
1061 p->it_prof_expires = cputime_zero;
1062 p->it_sched_expires = 0;
1063 INIT_LIST_HEAD(&p->cpu_timers[0]);
1064 INIT_LIST_HEAD(&p->cpu_timers[1]);
1065 INIT_LIST_HEAD(&p->cpu_timers[2]);
1066
1067 p->lock_depth = -1; /* -1 = no lock */
1068 do_posix_clock_monotonic_gettime(&p->start_time);
1069 p->security = NULL;
1070 p->io_context = NULL;
1071 p->io_wait = NULL;
1072 p->audit_context = NULL;
1073 cpuset_fork(p);
1074 #ifdef CONFIG_NUMA
1075 p->mempolicy = mpol_copy(p->mempolicy);
1076 if (IS_ERR(p->mempolicy)) {
1077 retval = PTR_ERR(p->mempolicy);
1078 p->mempolicy = NULL;
1079 goto bad_fork_cleanup_cpuset;
1080 }
1081 mpol_fix_fork_child_flag(p);
1082 #endif
1083 #ifdef CONFIG_TRACE_IRQFLAGS
1084 p->irq_events = 0;
1085 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1086 p->hardirqs_enabled = 1;
1087 #else
1088 p->hardirqs_enabled = 0;
1089 #endif
1090 p->hardirq_enable_ip = 0;
1091 p->hardirq_enable_event = 0;
1092 p->hardirq_disable_ip = _THIS_IP_;
1093 p->hardirq_disable_event = 0;
1094 p->softirqs_enabled = 1;
1095 p->softirq_enable_ip = _THIS_IP_;
1096 p->softirq_enable_event = 0;
1097 p->softirq_disable_ip = 0;
1098 p->softirq_disable_event = 0;
1099 p->hardirq_context = 0;
1100 p->softirq_context = 0;
1101 #endif
1102 #ifdef CONFIG_LOCKDEP
1103 p->lockdep_depth = 0; /* no locks held yet */
1104 p->curr_chain_key = 0;
1105 p->lockdep_recursion = 0;
1106 #endif
1107
1108 #ifdef CONFIG_DEBUG_MUTEXES
1109 p->blocked_on = NULL; /* not blocked yet */
1110 #endif
1111
1112 p->tgid = p->pid;
1113 if (clone_flags & CLONE_THREAD)
1114 p->tgid = current->tgid;
1115
1116 if ((retval = security_task_alloc(p)))
1117 goto bad_fork_cleanup_policy;
1118 if ((retval = audit_alloc(p)))
1119 goto bad_fork_cleanup_security;
1120 /* copy all the process information */
1121 if ((retval = copy_semundo(clone_flags, p)))
1122 goto bad_fork_cleanup_audit;
1123 if ((retval = copy_files(clone_flags, p)))
1124 goto bad_fork_cleanup_semundo;
1125 if ((retval = copy_fs(clone_flags, p)))
1126 goto bad_fork_cleanup_files;
1127 if ((retval = copy_sighand(clone_flags, p)))
1128 goto bad_fork_cleanup_fs;
1129 if ((retval = copy_signal(clone_flags, p)))
1130 goto bad_fork_cleanup_sighand;
1131 if ((retval = copy_mm(clone_flags, p)))
1132 goto bad_fork_cleanup_signal;
1133 if ((retval = copy_keys(clone_flags, p)))
1134 goto bad_fork_cleanup_mm;
1135 if ((retval = copy_namespaces(clone_flags, p)))
1136 goto bad_fork_cleanup_keys;
1137 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1138 if (retval)
1139 goto bad_fork_cleanup_namespaces;
1140
1141 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1142 /*
1143 * Clear TID on mm_release()?
1144 */
1145 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1146 p->robust_list = NULL;
1147 #ifdef CONFIG_COMPAT
1148 p->compat_robust_list = NULL;
1149 #endif
1150 INIT_LIST_HEAD(&p->pi_state_list);
1151 p->pi_state_cache = NULL;
1152
1153 /*
1154 * sigaltstack should be cleared when sharing the same VM
1155 */
1156 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1157 p->sas_ss_sp = p->sas_ss_size = 0;
1158
1159 /*
1160 * Syscall tracing should be turned off in the child regardless
1161 * of CLONE_PTRACE.
1162 */
1163 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1164 #ifdef TIF_SYSCALL_EMU
1165 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1166 #endif
1167
1168 /* Our parent execution domain becomes current domain
1169 These must match for thread signalling to apply */
1170 p->parent_exec_id = p->self_exec_id;
1171
1172 /* ok, now we should be set up.. */
1173 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1174 p->pdeath_signal = 0;
1175 p->exit_state = 0;
1176
1177 /*
1178 * Ok, make it visible to the rest of the system.
1179 * We dont wake it up yet.
1180 */
1181 p->group_leader = p;
1182 INIT_LIST_HEAD(&p->thread_group);
1183 INIT_LIST_HEAD(&p->ptrace_children);
1184 INIT_LIST_HEAD(&p->ptrace_list);
1185
1186 /* Perform scheduler related setup. Assign this task to a CPU. */
1187 sched_fork(p, clone_flags);
1188
1189 /* Need tasklist lock for parent etc handling! */
1190 write_lock_irq(&tasklist_lock);
1191
1192 /* for sys_ioprio_set(IOPRIO_WHO_PGRP) */
1193 p->ioprio = current->ioprio;
1194
1195 /*
1196 * The task hasn't been attached yet, so its cpus_allowed mask will
1197 * not be changed, nor will its assigned CPU.
1198 *
1199 * The cpus_allowed mask of the parent may have changed after it was
1200 * copied first time - so re-copy it here, then check the child's CPU
1201 * to ensure it is on a valid CPU (and if not, just force it back to
1202 * parent's CPU). This avoids alot of nasty races.
1203 */
1204 p->cpus_allowed = current->cpus_allowed;
1205 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1206 !cpu_online(task_cpu(p))))
1207 set_task_cpu(p, smp_processor_id());
1208
1209 /* CLONE_PARENT re-uses the old parent */
1210 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1211 p->real_parent = current->real_parent;
1212 else
1213 p->real_parent = current;
1214 p->parent = p->real_parent;
1215
1216 spin_lock(&current->sighand->siglock);
1217
1218 /*
1219 * Process group and session signals need to be delivered to just the
1220 * parent before the fork or both the parent and the child after the
1221 * fork. Restart if a signal comes in before we add the new process to
1222 * it's process group.
1223 * A fatal signal pending means that current will exit, so the new
1224 * thread can't slip out of an OOM kill (or normal SIGKILL).
1225 */
1226 recalc_sigpending();
1227 if (signal_pending(current)) {
1228 spin_unlock(&current->sighand->siglock);
1229 write_unlock_irq(&tasklist_lock);
1230 retval = -ERESTARTNOINTR;
1231 goto bad_fork_cleanup_namespaces;
1232 }
1233
1234 if (clone_flags & CLONE_THREAD) {
1235 p->group_leader = current->group_leader;
1236 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1237
1238 if (!cputime_eq(current->signal->it_virt_expires,
1239 cputime_zero) ||
1240 !cputime_eq(current->signal->it_prof_expires,
1241 cputime_zero) ||
1242 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1243 !list_empty(&current->signal->cpu_timers[0]) ||
1244 !list_empty(&current->signal->cpu_timers[1]) ||
1245 !list_empty(&current->signal->cpu_timers[2])) {
1246 /*
1247 * Have child wake up on its first tick to check
1248 * for process CPU timers.
1249 */
1250 p->it_prof_expires = jiffies_to_cputime(1);
1251 }
1252 }
1253
1254 if (likely(p->pid)) {
1255 add_parent(p);
1256 if (unlikely(p->ptrace & PT_PTRACED))
1257 __ptrace_link(p, current->parent);
1258
1259 if (thread_group_leader(p)) {
1260 p->signal->tty = current->signal->tty;
1261 p->signal->pgrp = process_group(current);
1262 p->signal->session = current->signal->session;
1263 attach_pid(p, PIDTYPE_PGID, process_group(p));
1264 attach_pid(p, PIDTYPE_SID, p->signal->session);
1265
1266 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1267 __get_cpu_var(process_counts)++;
1268 }
1269 attach_pid(p, PIDTYPE_PID, p->pid);
1270 nr_threads++;
1271 }
1272
1273 total_forks++;
1274 spin_unlock(&current->sighand->siglock);
1275 write_unlock_irq(&tasklist_lock);
1276 proc_fork_connector(p);
1277 return p;
1278
1279 bad_fork_cleanup_namespaces:
1280 exit_task_namespaces(p);
1281 bad_fork_cleanup_keys:
1282 exit_keys(p);
1283 bad_fork_cleanup_mm:
1284 if (p->mm)
1285 mmput(p->mm);
1286 bad_fork_cleanup_signal:
1287 cleanup_signal(p);
1288 bad_fork_cleanup_sighand:
1289 __cleanup_sighand(p->sighand);
1290 bad_fork_cleanup_fs:
1291 exit_fs(p); /* blocking */
1292 bad_fork_cleanup_files:
1293 exit_files(p); /* blocking */
1294 bad_fork_cleanup_semundo:
1295 exit_sem(p);
1296 bad_fork_cleanup_audit:
1297 audit_free(p);
1298 bad_fork_cleanup_security:
1299 security_task_free(p);
1300 bad_fork_cleanup_policy:
1301 #ifdef CONFIG_NUMA
1302 mpol_free(p->mempolicy);
1303 bad_fork_cleanup_cpuset:
1304 #endif
1305 cpuset_exit(p);
1306 bad_fork_cleanup_delays_binfmt:
1307 delayacct_tsk_free(p);
1308 if (p->binfmt)
1309 module_put(p->binfmt->module);
1310 bad_fork_cleanup_put_domain:
1311 module_put(task_thread_info(p)->exec_domain->module);
1312 bad_fork_cleanup_count:
1313 put_group_info(p->group_info);
1314 atomic_dec(&p->user->processes);
1315 free_uid(p->user);
1316 bad_fork_free:
1317 free_task(p);
1318 fork_out:
1319 return ERR_PTR(retval);
1320 }
1321
1322 noinline struct pt_regs * __devinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1323 {
1324 memset(regs, 0, sizeof(struct pt_regs));
1325 return regs;
1326 }
1327
1328 struct task_struct * __devinit fork_idle(int cpu)
1329 {
1330 struct task_struct *task;
1331 struct pt_regs regs;
1332
1333 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL, NULL, 0);
1334 if (!IS_ERR(task))
1335 init_idle(task, cpu);
1336
1337 return task;
1338 }
1339
1340 static inline int fork_traceflag (unsigned clone_flags)
1341 {
1342 if (clone_flags & CLONE_UNTRACED)
1343 return 0;
1344 else if (clone_flags & CLONE_VFORK) {
1345 if (current->ptrace & PT_TRACE_VFORK)
1346 return PTRACE_EVENT_VFORK;
1347 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1348 if (current->ptrace & PT_TRACE_CLONE)
1349 return PTRACE_EVENT_CLONE;
1350 } else if (current->ptrace & PT_TRACE_FORK)
1351 return PTRACE_EVENT_FORK;
1352
1353 return 0;
1354 }
1355
1356 /*
1357 * Ok, this is the main fork-routine.
1358 *
1359 * It copies the process, and if successful kick-starts
1360 * it and waits for it to finish using the VM if required.
1361 */
1362 long do_fork(unsigned long clone_flags,
1363 unsigned long stack_start,
1364 struct pt_regs *regs,
1365 unsigned long stack_size,
1366 int __user *parent_tidptr,
1367 int __user *child_tidptr)
1368 {
1369 struct task_struct *p;
1370 int trace = 0;
1371 struct pid *pid = alloc_pid();
1372 long nr;
1373
1374 if (!pid)
1375 return -EAGAIN;
1376 nr = pid->nr;
1377 if (unlikely(current->ptrace)) {
1378 trace = fork_traceflag (clone_flags);
1379 if (trace)
1380 clone_flags |= CLONE_PTRACE;
1381 }
1382
1383 p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr, child_tidptr, nr);
1384 /*
1385 * Do this prior waking up the new thread - the thread pointer
1386 * might get invalid after that point, if the thread exits quickly.
1387 */
1388 if (!IS_ERR(p)) {
1389 struct completion vfork;
1390
1391 if (clone_flags & CLONE_VFORK) {
1392 p->vfork_done = &vfork;
1393 init_completion(&vfork);
1394 }
1395
1396 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1397 /*
1398 * We'll start up with an immediate SIGSTOP.
1399 */
1400 sigaddset(&p->pending.signal, SIGSTOP);
1401 set_tsk_thread_flag(p, TIF_SIGPENDING);
1402 }
1403
1404 if (!(clone_flags & CLONE_STOPPED))
1405 wake_up_new_task(p, clone_flags);
1406 else
1407 p->state = TASK_STOPPED;
1408
1409 if (unlikely (trace)) {
1410 current->ptrace_message = nr;
1411 ptrace_notify ((trace << 8) | SIGTRAP);
1412 }
1413
1414 if (clone_flags & CLONE_VFORK) {
1415 wait_for_completion(&vfork);
1416 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1417 current->ptrace_message = nr;
1418 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1419 }
1420 }
1421 } else {
1422 free_pid(pid);
1423 nr = PTR_ERR(p);
1424 }
1425 return nr;
1426 }
1427
1428 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1429 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1430 #endif
1431
1432 static void sighand_ctor(void *data, struct kmem_cache *cachep, unsigned long flags)
1433 {
1434 struct sighand_struct *sighand = data;
1435
1436 if ((flags & (SLAB_CTOR_VERIFY | SLAB_CTOR_CONSTRUCTOR)) ==
1437 SLAB_CTOR_CONSTRUCTOR)
1438 spin_lock_init(&sighand->siglock);
1439 }
1440
1441 void __init proc_caches_init(void)
1442 {
1443 sighand_cachep = kmem_cache_create("sighand_cache",
1444 sizeof(struct sighand_struct), 0,
1445 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1446 sighand_ctor, NULL);
1447 signal_cachep = kmem_cache_create("signal_cache",
1448 sizeof(struct signal_struct), 0,
1449 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1450 files_cachep = kmem_cache_create("files_cache",
1451 sizeof(struct files_struct), 0,
1452 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1453 fs_cachep = kmem_cache_create("fs_cache",
1454 sizeof(struct fs_struct), 0,
1455 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1456 vm_area_cachep = kmem_cache_create("vm_area_struct",
1457 sizeof(struct vm_area_struct), 0,
1458 SLAB_PANIC, NULL, NULL);
1459 mm_cachep = kmem_cache_create("mm_struct",
1460 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1461 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL, NULL);
1462 }
1463
1464
1465 /*
1466 * Check constraints on flags passed to the unshare system call and
1467 * force unsharing of additional process context as appropriate.
1468 */
1469 static inline void check_unshare_flags(unsigned long *flags_ptr)
1470 {
1471 /*
1472 * If unsharing a thread from a thread group, must also
1473 * unshare vm.
1474 */
1475 if (*flags_ptr & CLONE_THREAD)
1476 *flags_ptr |= CLONE_VM;
1477
1478 /*
1479 * If unsharing vm, must also unshare signal handlers.
1480 */
1481 if (*flags_ptr & CLONE_VM)
1482 *flags_ptr |= CLONE_SIGHAND;
1483
1484 /*
1485 * If unsharing signal handlers and the task was created
1486 * using CLONE_THREAD, then must unshare the thread
1487 */
1488 if ((*flags_ptr & CLONE_SIGHAND) &&
1489 (atomic_read(&current->signal->count) > 1))
1490 *flags_ptr |= CLONE_THREAD;
1491
1492 /*
1493 * If unsharing namespace, must also unshare filesystem information.
1494 */
1495 if (*flags_ptr & CLONE_NEWNS)
1496 *flags_ptr |= CLONE_FS;
1497 }
1498
1499 /*
1500 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1501 */
1502 static int unshare_thread(unsigned long unshare_flags)
1503 {
1504 if (unshare_flags & CLONE_THREAD)
1505 return -EINVAL;
1506
1507 return 0;
1508 }
1509
1510 /*
1511 * Unshare the filesystem structure if it is being shared
1512 */
1513 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1514 {
1515 struct fs_struct *fs = current->fs;
1516
1517 if ((unshare_flags & CLONE_FS) &&
1518 (fs && atomic_read(&fs->count) > 1)) {
1519 *new_fsp = __copy_fs_struct(current->fs);
1520 if (!*new_fsp)
1521 return -ENOMEM;
1522 }
1523
1524 return 0;
1525 }
1526
1527 /*
1528 * Unshare the namespace structure if it is being shared
1529 */
1530 static int unshare_namespace(unsigned long unshare_flags, struct namespace **new_nsp, struct fs_struct *new_fs)
1531 {
1532 struct namespace *ns = current->nsproxy->namespace;
1533
1534 if ((unshare_flags & CLONE_NEWNS) && ns) {
1535 if (!capable(CAP_SYS_ADMIN))
1536 return -EPERM;
1537
1538 *new_nsp = dup_namespace(current, new_fs ? new_fs : current->fs);
1539 if (!*new_nsp)
1540 return -ENOMEM;
1541 }
1542
1543 return 0;
1544 }
1545
1546 /*
1547 * Unsharing of sighand is not supported yet
1548 */
1549 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1550 {
1551 struct sighand_struct *sigh = current->sighand;
1552
1553 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1554 return -EINVAL;
1555 else
1556 return 0;
1557 }
1558
1559 /*
1560 * Unshare vm if it is being shared
1561 */
1562 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1563 {
1564 struct mm_struct *mm = current->mm;
1565
1566 if ((unshare_flags & CLONE_VM) &&
1567 (mm && atomic_read(&mm->mm_users) > 1)) {
1568 return -EINVAL;
1569 }
1570
1571 return 0;
1572 }
1573
1574 /*
1575 * Unshare file descriptor table if it is being shared
1576 */
1577 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1578 {
1579 struct files_struct *fd = current->files;
1580 int error = 0;
1581
1582 if ((unshare_flags & CLONE_FILES) &&
1583 (fd && atomic_read(&fd->count) > 1)) {
1584 *new_fdp = dup_fd(fd, &error);
1585 if (!*new_fdp)
1586 return error;
1587 }
1588
1589 return 0;
1590 }
1591
1592 /*
1593 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1594 * supported yet
1595 */
1596 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1597 {
1598 if (unshare_flags & CLONE_SYSVSEM)
1599 return -EINVAL;
1600
1601 return 0;
1602 }
1603
1604 #ifndef CONFIG_IPC_NS
1605 static inline int unshare_ipcs(unsigned long flags, struct ipc_namespace **ns)
1606 {
1607 if (flags & CLONE_NEWIPC)
1608 return -EINVAL;
1609
1610 return 0;
1611 }
1612 #endif
1613
1614 /*
1615 * unshare allows a process to 'unshare' part of the process
1616 * context which was originally shared using clone. copy_*
1617 * functions used by do_fork() cannot be used here directly
1618 * because they modify an inactive task_struct that is being
1619 * constructed. Here we are modifying the current, active,
1620 * task_struct.
1621 */
1622 asmlinkage long sys_unshare(unsigned long unshare_flags)
1623 {
1624 int err = 0;
1625 struct fs_struct *fs, *new_fs = NULL;
1626 struct namespace *ns, *new_ns = NULL;
1627 struct sighand_struct *new_sigh = NULL;
1628 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1629 struct files_struct *fd, *new_fd = NULL;
1630 struct sem_undo_list *new_ulist = NULL;
1631 struct nsproxy *new_nsproxy = NULL, *old_nsproxy = NULL;
1632 struct uts_namespace *uts, *new_uts = NULL;
1633 struct ipc_namespace *ipc, *new_ipc = NULL;
1634
1635 check_unshare_flags(&unshare_flags);
1636
1637 /* Return -EINVAL for all unsupported flags */
1638 err = -EINVAL;
1639 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1640 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1641 CLONE_NEWUTS|CLONE_NEWIPC))
1642 goto bad_unshare_out;
1643
1644 if ((err = unshare_thread(unshare_flags)))
1645 goto bad_unshare_out;
1646 if ((err = unshare_fs(unshare_flags, &new_fs)))
1647 goto bad_unshare_cleanup_thread;
1648 if ((err = unshare_namespace(unshare_flags, &new_ns, new_fs)))
1649 goto bad_unshare_cleanup_fs;
1650 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1651 goto bad_unshare_cleanup_ns;
1652 if ((err = unshare_vm(unshare_flags, &new_mm)))
1653 goto bad_unshare_cleanup_sigh;
1654 if ((err = unshare_fd(unshare_flags, &new_fd)))
1655 goto bad_unshare_cleanup_vm;
1656 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1657 goto bad_unshare_cleanup_fd;
1658 if ((err = unshare_utsname(unshare_flags, &new_uts)))
1659 goto bad_unshare_cleanup_semundo;
1660 if ((err = unshare_ipcs(unshare_flags, &new_ipc)))
1661 goto bad_unshare_cleanup_uts;
1662
1663 if (new_ns || new_uts || new_ipc) {
1664 old_nsproxy = current->nsproxy;
1665 new_nsproxy = dup_namespaces(old_nsproxy);
1666 if (!new_nsproxy) {
1667 err = -ENOMEM;
1668 goto bad_unshare_cleanup_ipc;
1669 }
1670 }
1671
1672 if (new_fs || new_ns || new_mm || new_fd || new_ulist ||
1673 new_uts || new_ipc) {
1674
1675 task_lock(current);
1676
1677 if (new_nsproxy) {
1678 current->nsproxy = new_nsproxy;
1679 new_nsproxy = old_nsproxy;
1680 }
1681
1682 if (new_fs) {
1683 fs = current->fs;
1684 current->fs = new_fs;
1685 new_fs = fs;
1686 }
1687
1688 if (new_ns) {
1689 ns = current->nsproxy->namespace;
1690 current->nsproxy->namespace = new_ns;
1691 new_ns = ns;
1692 }
1693
1694 if (new_mm) {
1695 mm = current->mm;
1696 active_mm = current->active_mm;
1697 current->mm = new_mm;
1698 current->active_mm = new_mm;
1699 activate_mm(active_mm, new_mm);
1700 new_mm = mm;
1701 }
1702
1703 if (new_fd) {
1704 fd = current->files;
1705 current->files = new_fd;
1706 new_fd = fd;
1707 }
1708
1709 if (new_uts) {
1710 uts = current->nsproxy->uts_ns;
1711 current->nsproxy->uts_ns = new_uts;
1712 new_uts = uts;
1713 }
1714
1715 if (new_ipc) {
1716 ipc = current->nsproxy->ipc_ns;
1717 current->nsproxy->ipc_ns = new_ipc;
1718 new_ipc = ipc;
1719 }
1720
1721 task_unlock(current);
1722 }
1723
1724 if (new_nsproxy)
1725 put_nsproxy(new_nsproxy);
1726
1727 bad_unshare_cleanup_ipc:
1728 if (new_ipc)
1729 put_ipc_ns(new_ipc);
1730
1731 bad_unshare_cleanup_uts:
1732 if (new_uts)
1733 put_uts_ns(new_uts);
1734
1735 bad_unshare_cleanup_semundo:
1736 bad_unshare_cleanup_fd:
1737 if (new_fd)
1738 put_files_struct(new_fd);
1739
1740 bad_unshare_cleanup_vm:
1741 if (new_mm)
1742 mmput(new_mm);
1743
1744 bad_unshare_cleanup_sigh:
1745 if (new_sigh)
1746 if (atomic_dec_and_test(&new_sigh->count))
1747 kmem_cache_free(sighand_cachep, new_sigh);
1748
1749 bad_unshare_cleanup_ns:
1750 if (new_ns)
1751 put_namespace(new_ns);
1752
1753 bad_unshare_cleanup_fs:
1754 if (new_fs)
1755 put_fs_struct(new_fs);
1756
1757 bad_unshare_cleanup_thread:
1758 bad_unshare_out:
1759 return err;
1760 }