]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/fork.c
Merge tag 'wireless-drivers-next-for-davem-2018-02-08' of git://git.kernel.org/pub...
[mirror_ubuntu-hirsute-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/sched/mm.h>
81 #include <linux/perf_event.h>
82 #include <linux/posix-timers.h>
83 #include <linux/user-return-notifier.h>
84 #include <linux/oom.h>
85 #include <linux/khugepaged.h>
86 #include <linux/signalfd.h>
87 #include <linux/uprobes.h>
88 #include <linux/aio.h>
89 #include <linux/compiler.h>
90 #include <linux/sysctl.h>
91 #include <linux/kcov.h>
92 #include <linux/livepatch.h>
93 #include <linux/thread_info.h>
94
95 #include <asm/pgtable.h>
96 #include <asm/pgalloc.h>
97 #include <linux/uaccess.h>
98 #include <asm/mmu_context.h>
99 #include <asm/cacheflush.h>
100 #include <asm/tlbflush.h>
101
102 #include <trace/events/sched.h>
103
104 #define CREATE_TRACE_POINTS
105 #include <trace/events/task.h>
106
107 /*
108 * Minimum number of threads to boot the kernel
109 */
110 #define MIN_THREADS 20
111
112 /*
113 * Maximum number of threads
114 */
115 #define MAX_THREADS FUTEX_TID_MASK
116
117 /*
118 * Protected counters by write_lock_irq(&tasklist_lock)
119 */
120 unsigned long total_forks; /* Handle normal Linux uptimes. */
121 int nr_threads; /* The idle threads do not count.. */
122
123 int max_threads; /* tunable limit on nr_threads */
124
125 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
126
127 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
128
129 #ifdef CONFIG_PROVE_RCU
130 int lockdep_tasklist_lock_is_held(void)
131 {
132 return lockdep_is_held(&tasklist_lock);
133 }
134 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
135 #endif /* #ifdef CONFIG_PROVE_RCU */
136
137 int nr_processes(void)
138 {
139 int cpu;
140 int total = 0;
141
142 for_each_possible_cpu(cpu)
143 total += per_cpu(process_counts, cpu);
144
145 return total;
146 }
147
148 void __weak arch_release_task_struct(struct task_struct *tsk)
149 {
150 }
151
152 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
153 static struct kmem_cache *task_struct_cachep;
154
155 static inline struct task_struct *alloc_task_struct_node(int node)
156 {
157 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
158 }
159
160 static inline void free_task_struct(struct task_struct *tsk)
161 {
162 kmem_cache_free(task_struct_cachep, tsk);
163 }
164 #endif
165
166 void __weak arch_release_thread_stack(unsigned long *stack)
167 {
168 }
169
170 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
171
172 /*
173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
174 * kmemcache based allocator.
175 */
176 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
177
178 #ifdef CONFIG_VMAP_STACK
179 /*
180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
181 * flush. Try to minimize the number of calls by caching stacks.
182 */
183 #define NR_CACHED_STACKS 2
184 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
185
186 static int free_vm_stack_cache(unsigned int cpu)
187 {
188 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
189 int i;
190
191 for (i = 0; i < NR_CACHED_STACKS; i++) {
192 struct vm_struct *vm_stack = cached_vm_stacks[i];
193
194 if (!vm_stack)
195 continue;
196
197 vfree(vm_stack->addr);
198 cached_vm_stacks[i] = NULL;
199 }
200
201 return 0;
202 }
203 #endif
204
205 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
206 {
207 #ifdef CONFIG_VMAP_STACK
208 void *stack;
209 int i;
210
211 for (i = 0; i < NR_CACHED_STACKS; i++) {
212 struct vm_struct *s;
213
214 s = this_cpu_xchg(cached_stacks[i], NULL);
215
216 if (!s)
217 continue;
218
219 #ifdef CONFIG_DEBUG_KMEMLEAK
220 /* Clear stale pointers from reused stack. */
221 memset(s->addr, 0, THREAD_SIZE);
222 #endif
223 tsk->stack_vm_area = s;
224 return s->addr;
225 }
226
227 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
228 VMALLOC_START, VMALLOC_END,
229 THREADINFO_GFP,
230 PAGE_KERNEL,
231 0, node, __builtin_return_address(0));
232
233 /*
234 * We can't call find_vm_area() in interrupt context, and
235 * free_thread_stack() can be called in interrupt context,
236 * so cache the vm_struct.
237 */
238 if (stack)
239 tsk->stack_vm_area = find_vm_area(stack);
240 return stack;
241 #else
242 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
243 THREAD_SIZE_ORDER);
244
245 return page ? page_address(page) : NULL;
246 #endif
247 }
248
249 static inline void free_thread_stack(struct task_struct *tsk)
250 {
251 #ifdef CONFIG_VMAP_STACK
252 if (task_stack_vm_area(tsk)) {
253 int i;
254
255 for (i = 0; i < NR_CACHED_STACKS; i++) {
256 if (this_cpu_cmpxchg(cached_stacks[i],
257 NULL, tsk->stack_vm_area) != NULL)
258 continue;
259
260 return;
261 }
262
263 vfree_atomic(tsk->stack);
264 return;
265 }
266 #endif
267
268 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
269 }
270 # else
271 static struct kmem_cache *thread_stack_cache;
272
273 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
274 int node)
275 {
276 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
277 }
278
279 static void free_thread_stack(struct task_struct *tsk)
280 {
281 kmem_cache_free(thread_stack_cache, tsk->stack);
282 }
283
284 void thread_stack_cache_init(void)
285 {
286 thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
287 THREAD_SIZE, THREAD_SIZE, 0, 0,
288 THREAD_SIZE, NULL);
289 BUG_ON(thread_stack_cache == NULL);
290 }
291 # endif
292 #endif
293
294 /* SLAB cache for signal_struct structures (tsk->signal) */
295 static struct kmem_cache *signal_cachep;
296
297 /* SLAB cache for sighand_struct structures (tsk->sighand) */
298 struct kmem_cache *sighand_cachep;
299
300 /* SLAB cache for files_struct structures (tsk->files) */
301 struct kmem_cache *files_cachep;
302
303 /* SLAB cache for fs_struct structures (tsk->fs) */
304 struct kmem_cache *fs_cachep;
305
306 /* SLAB cache for vm_area_struct structures */
307 struct kmem_cache *vm_area_cachep;
308
309 /* SLAB cache for mm_struct structures (tsk->mm) */
310 static struct kmem_cache *mm_cachep;
311
312 static void account_kernel_stack(struct task_struct *tsk, int account)
313 {
314 void *stack = task_stack_page(tsk);
315 struct vm_struct *vm = task_stack_vm_area(tsk);
316
317 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
318
319 if (vm) {
320 int i;
321
322 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
323
324 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
325 mod_zone_page_state(page_zone(vm->pages[i]),
326 NR_KERNEL_STACK_KB,
327 PAGE_SIZE / 1024 * account);
328 }
329
330 /* All stack pages belong to the same memcg. */
331 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
332 account * (THREAD_SIZE / 1024));
333 } else {
334 /*
335 * All stack pages are in the same zone and belong to the
336 * same memcg.
337 */
338 struct page *first_page = virt_to_page(stack);
339
340 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
341 THREAD_SIZE / 1024 * account);
342
343 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
344 account * (THREAD_SIZE / 1024));
345 }
346 }
347
348 static void release_task_stack(struct task_struct *tsk)
349 {
350 if (WARN_ON(tsk->state != TASK_DEAD))
351 return; /* Better to leak the stack than to free prematurely */
352
353 account_kernel_stack(tsk, -1);
354 arch_release_thread_stack(tsk->stack);
355 free_thread_stack(tsk);
356 tsk->stack = NULL;
357 #ifdef CONFIG_VMAP_STACK
358 tsk->stack_vm_area = NULL;
359 #endif
360 }
361
362 #ifdef CONFIG_THREAD_INFO_IN_TASK
363 void put_task_stack(struct task_struct *tsk)
364 {
365 if (atomic_dec_and_test(&tsk->stack_refcount))
366 release_task_stack(tsk);
367 }
368 #endif
369
370 void free_task(struct task_struct *tsk)
371 {
372 #ifndef CONFIG_THREAD_INFO_IN_TASK
373 /*
374 * The task is finally done with both the stack and thread_info,
375 * so free both.
376 */
377 release_task_stack(tsk);
378 #else
379 /*
380 * If the task had a separate stack allocation, it should be gone
381 * by now.
382 */
383 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
384 #endif
385 rt_mutex_debug_task_free(tsk);
386 ftrace_graph_exit_task(tsk);
387 put_seccomp_filter(tsk);
388 arch_release_task_struct(tsk);
389 if (tsk->flags & PF_KTHREAD)
390 free_kthread_struct(tsk);
391 free_task_struct(tsk);
392 }
393 EXPORT_SYMBOL(free_task);
394
395 #ifdef CONFIG_MMU
396 static __latent_entropy int dup_mmap(struct mm_struct *mm,
397 struct mm_struct *oldmm)
398 {
399 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
400 struct rb_node **rb_link, *rb_parent;
401 int retval;
402 unsigned long charge;
403 LIST_HEAD(uf);
404
405 uprobe_start_dup_mmap();
406 if (down_write_killable(&oldmm->mmap_sem)) {
407 retval = -EINTR;
408 goto fail_uprobe_end;
409 }
410 flush_cache_dup_mm(oldmm);
411 uprobe_dup_mmap(oldmm, mm);
412 /*
413 * Not linked in yet - no deadlock potential:
414 */
415 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
416
417 /* No ordering required: file already has been exposed. */
418 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
419
420 mm->total_vm = oldmm->total_vm;
421 mm->data_vm = oldmm->data_vm;
422 mm->exec_vm = oldmm->exec_vm;
423 mm->stack_vm = oldmm->stack_vm;
424
425 rb_link = &mm->mm_rb.rb_node;
426 rb_parent = NULL;
427 pprev = &mm->mmap;
428 retval = ksm_fork(mm, oldmm);
429 if (retval)
430 goto out;
431 retval = khugepaged_fork(mm, oldmm);
432 if (retval)
433 goto out;
434
435 prev = NULL;
436 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
437 struct file *file;
438
439 if (mpnt->vm_flags & VM_DONTCOPY) {
440 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
441 continue;
442 }
443 charge = 0;
444 if (mpnt->vm_flags & VM_ACCOUNT) {
445 unsigned long len = vma_pages(mpnt);
446
447 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
448 goto fail_nomem;
449 charge = len;
450 }
451 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
452 if (!tmp)
453 goto fail_nomem;
454 *tmp = *mpnt;
455 INIT_LIST_HEAD(&tmp->anon_vma_chain);
456 retval = vma_dup_policy(mpnt, tmp);
457 if (retval)
458 goto fail_nomem_policy;
459 tmp->vm_mm = mm;
460 retval = dup_userfaultfd(tmp, &uf);
461 if (retval)
462 goto fail_nomem_anon_vma_fork;
463 if (tmp->vm_flags & VM_WIPEONFORK) {
464 /* VM_WIPEONFORK gets a clean slate in the child. */
465 tmp->anon_vma = NULL;
466 if (anon_vma_prepare(tmp))
467 goto fail_nomem_anon_vma_fork;
468 } else if (anon_vma_fork(tmp, mpnt))
469 goto fail_nomem_anon_vma_fork;
470 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
471 tmp->vm_next = tmp->vm_prev = NULL;
472 file = tmp->vm_file;
473 if (file) {
474 struct inode *inode = file_inode(file);
475 struct address_space *mapping = file->f_mapping;
476
477 get_file(file);
478 if (tmp->vm_flags & VM_DENYWRITE)
479 atomic_dec(&inode->i_writecount);
480 i_mmap_lock_write(mapping);
481 if (tmp->vm_flags & VM_SHARED)
482 atomic_inc(&mapping->i_mmap_writable);
483 flush_dcache_mmap_lock(mapping);
484 /* insert tmp into the share list, just after mpnt */
485 vma_interval_tree_insert_after(tmp, mpnt,
486 &mapping->i_mmap);
487 flush_dcache_mmap_unlock(mapping);
488 i_mmap_unlock_write(mapping);
489 }
490
491 /*
492 * Clear hugetlb-related page reserves for children. This only
493 * affects MAP_PRIVATE mappings. Faults generated by the child
494 * are not guaranteed to succeed, even if read-only
495 */
496 if (is_vm_hugetlb_page(tmp))
497 reset_vma_resv_huge_pages(tmp);
498
499 /*
500 * Link in the new vma and copy the page table entries.
501 */
502 *pprev = tmp;
503 pprev = &tmp->vm_next;
504 tmp->vm_prev = prev;
505 prev = tmp;
506
507 __vma_link_rb(mm, tmp, rb_link, rb_parent);
508 rb_link = &tmp->vm_rb.rb_right;
509 rb_parent = &tmp->vm_rb;
510
511 mm->map_count++;
512 if (!(tmp->vm_flags & VM_WIPEONFORK))
513 retval = copy_page_range(mm, oldmm, mpnt);
514
515 if (tmp->vm_ops && tmp->vm_ops->open)
516 tmp->vm_ops->open(tmp);
517
518 if (retval)
519 goto out;
520 }
521 /* a new mm has just been created */
522 arch_dup_mmap(oldmm, mm);
523 retval = 0;
524 out:
525 up_write(&mm->mmap_sem);
526 flush_tlb_mm(oldmm);
527 up_write(&oldmm->mmap_sem);
528 dup_userfaultfd_complete(&uf);
529 fail_uprobe_end:
530 uprobe_end_dup_mmap();
531 return retval;
532 fail_nomem_anon_vma_fork:
533 mpol_put(vma_policy(tmp));
534 fail_nomem_policy:
535 kmem_cache_free(vm_area_cachep, tmp);
536 fail_nomem:
537 retval = -ENOMEM;
538 vm_unacct_memory(charge);
539 goto out;
540 }
541
542 static inline int mm_alloc_pgd(struct mm_struct *mm)
543 {
544 mm->pgd = pgd_alloc(mm);
545 if (unlikely(!mm->pgd))
546 return -ENOMEM;
547 return 0;
548 }
549
550 static inline void mm_free_pgd(struct mm_struct *mm)
551 {
552 pgd_free(mm, mm->pgd);
553 }
554 #else
555 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
556 {
557 down_write(&oldmm->mmap_sem);
558 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
559 up_write(&oldmm->mmap_sem);
560 return 0;
561 }
562 #define mm_alloc_pgd(mm) (0)
563 #define mm_free_pgd(mm)
564 #endif /* CONFIG_MMU */
565
566 static void check_mm(struct mm_struct *mm)
567 {
568 int i;
569
570 for (i = 0; i < NR_MM_COUNTERS; i++) {
571 long x = atomic_long_read(&mm->rss_stat.count[i]);
572
573 if (unlikely(x))
574 printk(KERN_ALERT "BUG: Bad rss-counter state "
575 "mm:%p idx:%d val:%ld\n", mm, i, x);
576 }
577
578 if (mm_pgtables_bytes(mm))
579 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
580 mm_pgtables_bytes(mm));
581
582 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
583 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
584 #endif
585 }
586
587 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
588 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
589
590 /*
591 * Called when the last reference to the mm
592 * is dropped: either by a lazy thread or by
593 * mmput. Free the page directory and the mm.
594 */
595 static void __mmdrop(struct mm_struct *mm)
596 {
597 BUG_ON(mm == &init_mm);
598 mm_free_pgd(mm);
599 destroy_context(mm);
600 hmm_mm_destroy(mm);
601 mmu_notifier_mm_destroy(mm);
602 check_mm(mm);
603 put_user_ns(mm->user_ns);
604 free_mm(mm);
605 }
606
607 void mmdrop(struct mm_struct *mm)
608 {
609 /*
610 * The implicit full barrier implied by atomic_dec_and_test() is
611 * required by the membarrier system call before returning to
612 * user-space, after storing to rq->curr.
613 */
614 if (unlikely(atomic_dec_and_test(&mm->mm_count)))
615 __mmdrop(mm);
616 }
617 EXPORT_SYMBOL_GPL(mmdrop);
618
619 static void mmdrop_async_fn(struct work_struct *work)
620 {
621 struct mm_struct *mm;
622
623 mm = container_of(work, struct mm_struct, async_put_work);
624 __mmdrop(mm);
625 }
626
627 static void mmdrop_async(struct mm_struct *mm)
628 {
629 if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
630 INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
631 schedule_work(&mm->async_put_work);
632 }
633 }
634
635 static inline void free_signal_struct(struct signal_struct *sig)
636 {
637 taskstats_tgid_free(sig);
638 sched_autogroup_exit(sig);
639 /*
640 * __mmdrop is not safe to call from softirq context on x86 due to
641 * pgd_dtor so postpone it to the async context
642 */
643 if (sig->oom_mm)
644 mmdrop_async(sig->oom_mm);
645 kmem_cache_free(signal_cachep, sig);
646 }
647
648 static inline void put_signal_struct(struct signal_struct *sig)
649 {
650 if (atomic_dec_and_test(&sig->sigcnt))
651 free_signal_struct(sig);
652 }
653
654 void __put_task_struct(struct task_struct *tsk)
655 {
656 WARN_ON(!tsk->exit_state);
657 WARN_ON(atomic_read(&tsk->usage));
658 WARN_ON(tsk == current);
659
660 cgroup_free(tsk);
661 task_numa_free(tsk);
662 security_task_free(tsk);
663 exit_creds(tsk);
664 delayacct_tsk_free(tsk);
665 put_signal_struct(tsk->signal);
666
667 if (!profile_handoff_task(tsk))
668 free_task(tsk);
669 }
670 EXPORT_SYMBOL_GPL(__put_task_struct);
671
672 void __init __weak arch_task_cache_init(void) { }
673
674 /*
675 * set_max_threads
676 */
677 static void set_max_threads(unsigned int max_threads_suggested)
678 {
679 u64 threads;
680
681 /*
682 * The number of threads shall be limited such that the thread
683 * structures may only consume a small part of the available memory.
684 */
685 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
686 threads = MAX_THREADS;
687 else
688 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
689 (u64) THREAD_SIZE * 8UL);
690
691 if (threads > max_threads_suggested)
692 threads = max_threads_suggested;
693
694 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
695 }
696
697 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
698 /* Initialized by the architecture: */
699 int arch_task_struct_size __read_mostly;
700 #endif
701
702 static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
703 {
704 /* Fetch thread_struct whitelist for the architecture. */
705 arch_thread_struct_whitelist(offset, size);
706
707 /*
708 * Handle zero-sized whitelist or empty thread_struct, otherwise
709 * adjust offset to position of thread_struct in task_struct.
710 */
711 if (unlikely(*size == 0))
712 *offset = 0;
713 else
714 *offset += offsetof(struct task_struct, thread);
715 }
716
717 void __init fork_init(void)
718 {
719 int i;
720 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
721 #ifndef ARCH_MIN_TASKALIGN
722 #define ARCH_MIN_TASKALIGN 0
723 #endif
724 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
725 unsigned long useroffset, usersize;
726
727 /* create a slab on which task_structs can be allocated */
728 task_struct_whitelist(&useroffset, &usersize);
729 task_struct_cachep = kmem_cache_create_usercopy("task_struct",
730 arch_task_struct_size, align,
731 SLAB_PANIC|SLAB_ACCOUNT,
732 useroffset, usersize, NULL);
733 #endif
734
735 /* do the arch specific task caches init */
736 arch_task_cache_init();
737
738 set_max_threads(MAX_THREADS);
739
740 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
741 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
742 init_task.signal->rlim[RLIMIT_SIGPENDING] =
743 init_task.signal->rlim[RLIMIT_NPROC];
744
745 for (i = 0; i < UCOUNT_COUNTS; i++) {
746 init_user_ns.ucount_max[i] = max_threads/2;
747 }
748
749 #ifdef CONFIG_VMAP_STACK
750 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
751 NULL, free_vm_stack_cache);
752 #endif
753
754 lockdep_init_task(&init_task);
755 }
756
757 int __weak arch_dup_task_struct(struct task_struct *dst,
758 struct task_struct *src)
759 {
760 *dst = *src;
761 return 0;
762 }
763
764 void set_task_stack_end_magic(struct task_struct *tsk)
765 {
766 unsigned long *stackend;
767
768 stackend = end_of_stack(tsk);
769 *stackend = STACK_END_MAGIC; /* for overflow detection */
770 }
771
772 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
773 {
774 struct task_struct *tsk;
775 unsigned long *stack;
776 struct vm_struct *stack_vm_area;
777 int err;
778
779 if (node == NUMA_NO_NODE)
780 node = tsk_fork_get_node(orig);
781 tsk = alloc_task_struct_node(node);
782 if (!tsk)
783 return NULL;
784
785 stack = alloc_thread_stack_node(tsk, node);
786 if (!stack)
787 goto free_tsk;
788
789 stack_vm_area = task_stack_vm_area(tsk);
790
791 err = arch_dup_task_struct(tsk, orig);
792
793 /*
794 * arch_dup_task_struct() clobbers the stack-related fields. Make
795 * sure they're properly initialized before using any stack-related
796 * functions again.
797 */
798 tsk->stack = stack;
799 #ifdef CONFIG_VMAP_STACK
800 tsk->stack_vm_area = stack_vm_area;
801 #endif
802 #ifdef CONFIG_THREAD_INFO_IN_TASK
803 atomic_set(&tsk->stack_refcount, 1);
804 #endif
805
806 if (err)
807 goto free_stack;
808
809 #ifdef CONFIG_SECCOMP
810 /*
811 * We must handle setting up seccomp filters once we're under
812 * the sighand lock in case orig has changed between now and
813 * then. Until then, filter must be NULL to avoid messing up
814 * the usage counts on the error path calling free_task.
815 */
816 tsk->seccomp.filter = NULL;
817 #endif
818
819 setup_thread_stack(tsk, orig);
820 clear_user_return_notifier(tsk);
821 clear_tsk_need_resched(tsk);
822 set_task_stack_end_magic(tsk);
823
824 #ifdef CONFIG_CC_STACKPROTECTOR
825 tsk->stack_canary = get_random_canary();
826 #endif
827
828 /*
829 * One for us, one for whoever does the "release_task()" (usually
830 * parent)
831 */
832 atomic_set(&tsk->usage, 2);
833 #ifdef CONFIG_BLK_DEV_IO_TRACE
834 tsk->btrace_seq = 0;
835 #endif
836 tsk->splice_pipe = NULL;
837 tsk->task_frag.page = NULL;
838 tsk->wake_q.next = NULL;
839
840 account_kernel_stack(tsk, 1);
841
842 kcov_task_init(tsk);
843
844 #ifdef CONFIG_FAULT_INJECTION
845 tsk->fail_nth = 0;
846 #endif
847
848 return tsk;
849
850 free_stack:
851 free_thread_stack(tsk);
852 free_tsk:
853 free_task_struct(tsk);
854 return NULL;
855 }
856
857 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
858
859 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
860
861 static int __init coredump_filter_setup(char *s)
862 {
863 default_dump_filter =
864 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
865 MMF_DUMP_FILTER_MASK;
866 return 1;
867 }
868
869 __setup("coredump_filter=", coredump_filter_setup);
870
871 #include <linux/init_task.h>
872
873 static void mm_init_aio(struct mm_struct *mm)
874 {
875 #ifdef CONFIG_AIO
876 spin_lock_init(&mm->ioctx_lock);
877 mm->ioctx_table = NULL;
878 #endif
879 }
880
881 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
882 {
883 #ifdef CONFIG_MEMCG
884 mm->owner = p;
885 #endif
886 }
887
888 static void mm_init_uprobes_state(struct mm_struct *mm)
889 {
890 #ifdef CONFIG_UPROBES
891 mm->uprobes_state.xol_area = NULL;
892 #endif
893 }
894
895 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
896 struct user_namespace *user_ns)
897 {
898 mm->mmap = NULL;
899 mm->mm_rb = RB_ROOT;
900 mm->vmacache_seqnum = 0;
901 atomic_set(&mm->mm_users, 1);
902 atomic_set(&mm->mm_count, 1);
903 init_rwsem(&mm->mmap_sem);
904 INIT_LIST_HEAD(&mm->mmlist);
905 mm->core_state = NULL;
906 mm_pgtables_bytes_init(mm);
907 mm->map_count = 0;
908 mm->locked_vm = 0;
909 mm->pinned_vm = 0;
910 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
911 spin_lock_init(&mm->page_table_lock);
912 mm_init_cpumask(mm);
913 mm_init_aio(mm);
914 mm_init_owner(mm, p);
915 RCU_INIT_POINTER(mm->exe_file, NULL);
916 mmu_notifier_mm_init(mm);
917 hmm_mm_init(mm);
918 init_tlb_flush_pending(mm);
919 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
920 mm->pmd_huge_pte = NULL;
921 #endif
922 mm_init_uprobes_state(mm);
923
924 if (current->mm) {
925 mm->flags = current->mm->flags & MMF_INIT_MASK;
926 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
927 } else {
928 mm->flags = default_dump_filter;
929 mm->def_flags = 0;
930 }
931
932 if (mm_alloc_pgd(mm))
933 goto fail_nopgd;
934
935 if (init_new_context(p, mm))
936 goto fail_nocontext;
937
938 mm->user_ns = get_user_ns(user_ns);
939 return mm;
940
941 fail_nocontext:
942 mm_free_pgd(mm);
943 fail_nopgd:
944 free_mm(mm);
945 return NULL;
946 }
947
948 /*
949 * Allocate and initialize an mm_struct.
950 */
951 struct mm_struct *mm_alloc(void)
952 {
953 struct mm_struct *mm;
954
955 mm = allocate_mm();
956 if (!mm)
957 return NULL;
958
959 memset(mm, 0, sizeof(*mm));
960 return mm_init(mm, current, current_user_ns());
961 }
962
963 static inline void __mmput(struct mm_struct *mm)
964 {
965 VM_BUG_ON(atomic_read(&mm->mm_users));
966
967 uprobe_clear_state(mm);
968 exit_aio(mm);
969 ksm_exit(mm);
970 khugepaged_exit(mm); /* must run before exit_mmap */
971 exit_mmap(mm);
972 mm_put_huge_zero_page(mm);
973 set_mm_exe_file(mm, NULL);
974 if (!list_empty(&mm->mmlist)) {
975 spin_lock(&mmlist_lock);
976 list_del(&mm->mmlist);
977 spin_unlock(&mmlist_lock);
978 }
979 if (mm->binfmt)
980 module_put(mm->binfmt->module);
981 mmdrop(mm);
982 }
983
984 /*
985 * Decrement the use count and release all resources for an mm.
986 */
987 void mmput(struct mm_struct *mm)
988 {
989 might_sleep();
990
991 if (atomic_dec_and_test(&mm->mm_users))
992 __mmput(mm);
993 }
994 EXPORT_SYMBOL_GPL(mmput);
995
996 #ifdef CONFIG_MMU
997 static void mmput_async_fn(struct work_struct *work)
998 {
999 struct mm_struct *mm = container_of(work, struct mm_struct,
1000 async_put_work);
1001
1002 __mmput(mm);
1003 }
1004
1005 void mmput_async(struct mm_struct *mm)
1006 {
1007 if (atomic_dec_and_test(&mm->mm_users)) {
1008 INIT_WORK(&mm->async_put_work, mmput_async_fn);
1009 schedule_work(&mm->async_put_work);
1010 }
1011 }
1012 #endif
1013
1014 /**
1015 * set_mm_exe_file - change a reference to the mm's executable file
1016 *
1017 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1018 *
1019 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1020 * invocations: in mmput() nobody alive left, in execve task is single
1021 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1022 * mm->exe_file, but does so without using set_mm_exe_file() in order
1023 * to do avoid the need for any locks.
1024 */
1025 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1026 {
1027 struct file *old_exe_file;
1028
1029 /*
1030 * It is safe to dereference the exe_file without RCU as
1031 * this function is only called if nobody else can access
1032 * this mm -- see comment above for justification.
1033 */
1034 old_exe_file = rcu_dereference_raw(mm->exe_file);
1035
1036 if (new_exe_file)
1037 get_file(new_exe_file);
1038 rcu_assign_pointer(mm->exe_file, new_exe_file);
1039 if (old_exe_file)
1040 fput(old_exe_file);
1041 }
1042
1043 /**
1044 * get_mm_exe_file - acquire a reference to the mm's executable file
1045 *
1046 * Returns %NULL if mm has no associated executable file.
1047 * User must release file via fput().
1048 */
1049 struct file *get_mm_exe_file(struct mm_struct *mm)
1050 {
1051 struct file *exe_file;
1052
1053 rcu_read_lock();
1054 exe_file = rcu_dereference(mm->exe_file);
1055 if (exe_file && !get_file_rcu(exe_file))
1056 exe_file = NULL;
1057 rcu_read_unlock();
1058 return exe_file;
1059 }
1060 EXPORT_SYMBOL(get_mm_exe_file);
1061
1062 /**
1063 * get_task_exe_file - acquire a reference to the task's executable file
1064 *
1065 * Returns %NULL if task's mm (if any) has no associated executable file or
1066 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1067 * User must release file via fput().
1068 */
1069 struct file *get_task_exe_file(struct task_struct *task)
1070 {
1071 struct file *exe_file = NULL;
1072 struct mm_struct *mm;
1073
1074 task_lock(task);
1075 mm = task->mm;
1076 if (mm) {
1077 if (!(task->flags & PF_KTHREAD))
1078 exe_file = get_mm_exe_file(mm);
1079 }
1080 task_unlock(task);
1081 return exe_file;
1082 }
1083 EXPORT_SYMBOL(get_task_exe_file);
1084
1085 /**
1086 * get_task_mm - acquire a reference to the task's mm
1087 *
1088 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1089 * this kernel workthread has transiently adopted a user mm with use_mm,
1090 * to do its AIO) is not set and if so returns a reference to it, after
1091 * bumping up the use count. User must release the mm via mmput()
1092 * after use. Typically used by /proc and ptrace.
1093 */
1094 struct mm_struct *get_task_mm(struct task_struct *task)
1095 {
1096 struct mm_struct *mm;
1097
1098 task_lock(task);
1099 mm = task->mm;
1100 if (mm) {
1101 if (task->flags & PF_KTHREAD)
1102 mm = NULL;
1103 else
1104 mmget(mm);
1105 }
1106 task_unlock(task);
1107 return mm;
1108 }
1109 EXPORT_SYMBOL_GPL(get_task_mm);
1110
1111 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1112 {
1113 struct mm_struct *mm;
1114 int err;
1115
1116 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1117 if (err)
1118 return ERR_PTR(err);
1119
1120 mm = get_task_mm(task);
1121 if (mm && mm != current->mm &&
1122 !ptrace_may_access(task, mode)) {
1123 mmput(mm);
1124 mm = ERR_PTR(-EACCES);
1125 }
1126 mutex_unlock(&task->signal->cred_guard_mutex);
1127
1128 return mm;
1129 }
1130
1131 static void complete_vfork_done(struct task_struct *tsk)
1132 {
1133 struct completion *vfork;
1134
1135 task_lock(tsk);
1136 vfork = tsk->vfork_done;
1137 if (likely(vfork)) {
1138 tsk->vfork_done = NULL;
1139 complete(vfork);
1140 }
1141 task_unlock(tsk);
1142 }
1143
1144 static int wait_for_vfork_done(struct task_struct *child,
1145 struct completion *vfork)
1146 {
1147 int killed;
1148
1149 freezer_do_not_count();
1150 killed = wait_for_completion_killable(vfork);
1151 freezer_count();
1152
1153 if (killed) {
1154 task_lock(child);
1155 child->vfork_done = NULL;
1156 task_unlock(child);
1157 }
1158
1159 put_task_struct(child);
1160 return killed;
1161 }
1162
1163 /* Please note the differences between mmput and mm_release.
1164 * mmput is called whenever we stop holding onto a mm_struct,
1165 * error success whatever.
1166 *
1167 * mm_release is called after a mm_struct has been removed
1168 * from the current process.
1169 *
1170 * This difference is important for error handling, when we
1171 * only half set up a mm_struct for a new process and need to restore
1172 * the old one. Because we mmput the new mm_struct before
1173 * restoring the old one. . .
1174 * Eric Biederman 10 January 1998
1175 */
1176 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1177 {
1178 /* Get rid of any futexes when releasing the mm */
1179 #ifdef CONFIG_FUTEX
1180 if (unlikely(tsk->robust_list)) {
1181 exit_robust_list(tsk);
1182 tsk->robust_list = NULL;
1183 }
1184 #ifdef CONFIG_COMPAT
1185 if (unlikely(tsk->compat_robust_list)) {
1186 compat_exit_robust_list(tsk);
1187 tsk->compat_robust_list = NULL;
1188 }
1189 #endif
1190 if (unlikely(!list_empty(&tsk->pi_state_list)))
1191 exit_pi_state_list(tsk);
1192 #endif
1193
1194 uprobe_free_utask(tsk);
1195
1196 /* Get rid of any cached register state */
1197 deactivate_mm(tsk, mm);
1198
1199 /*
1200 * Signal userspace if we're not exiting with a core dump
1201 * because we want to leave the value intact for debugging
1202 * purposes.
1203 */
1204 if (tsk->clear_child_tid) {
1205 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1206 atomic_read(&mm->mm_users) > 1) {
1207 /*
1208 * We don't check the error code - if userspace has
1209 * not set up a proper pointer then tough luck.
1210 */
1211 put_user(0, tsk->clear_child_tid);
1212 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1213 1, NULL, NULL, 0);
1214 }
1215 tsk->clear_child_tid = NULL;
1216 }
1217
1218 /*
1219 * All done, finally we can wake up parent and return this mm to him.
1220 * Also kthread_stop() uses this completion for synchronization.
1221 */
1222 if (tsk->vfork_done)
1223 complete_vfork_done(tsk);
1224 }
1225
1226 /*
1227 * Allocate a new mm structure and copy contents from the
1228 * mm structure of the passed in task structure.
1229 */
1230 static struct mm_struct *dup_mm(struct task_struct *tsk)
1231 {
1232 struct mm_struct *mm, *oldmm = current->mm;
1233 int err;
1234
1235 mm = allocate_mm();
1236 if (!mm)
1237 goto fail_nomem;
1238
1239 memcpy(mm, oldmm, sizeof(*mm));
1240
1241 if (!mm_init(mm, tsk, mm->user_ns))
1242 goto fail_nomem;
1243
1244 err = dup_mmap(mm, oldmm);
1245 if (err)
1246 goto free_pt;
1247
1248 mm->hiwater_rss = get_mm_rss(mm);
1249 mm->hiwater_vm = mm->total_vm;
1250
1251 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1252 goto free_pt;
1253
1254 return mm;
1255
1256 free_pt:
1257 /* don't put binfmt in mmput, we haven't got module yet */
1258 mm->binfmt = NULL;
1259 mmput(mm);
1260
1261 fail_nomem:
1262 return NULL;
1263 }
1264
1265 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1266 {
1267 struct mm_struct *mm, *oldmm;
1268 int retval;
1269
1270 tsk->min_flt = tsk->maj_flt = 0;
1271 tsk->nvcsw = tsk->nivcsw = 0;
1272 #ifdef CONFIG_DETECT_HUNG_TASK
1273 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1274 #endif
1275
1276 tsk->mm = NULL;
1277 tsk->active_mm = NULL;
1278
1279 /*
1280 * Are we cloning a kernel thread?
1281 *
1282 * We need to steal a active VM for that..
1283 */
1284 oldmm = current->mm;
1285 if (!oldmm)
1286 return 0;
1287
1288 /* initialize the new vmacache entries */
1289 vmacache_flush(tsk);
1290
1291 if (clone_flags & CLONE_VM) {
1292 mmget(oldmm);
1293 mm = oldmm;
1294 goto good_mm;
1295 }
1296
1297 retval = -ENOMEM;
1298 mm = dup_mm(tsk);
1299 if (!mm)
1300 goto fail_nomem;
1301
1302 good_mm:
1303 tsk->mm = mm;
1304 tsk->active_mm = mm;
1305 return 0;
1306
1307 fail_nomem:
1308 return retval;
1309 }
1310
1311 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1312 {
1313 struct fs_struct *fs = current->fs;
1314 if (clone_flags & CLONE_FS) {
1315 /* tsk->fs is already what we want */
1316 spin_lock(&fs->lock);
1317 if (fs->in_exec) {
1318 spin_unlock(&fs->lock);
1319 return -EAGAIN;
1320 }
1321 fs->users++;
1322 spin_unlock(&fs->lock);
1323 return 0;
1324 }
1325 tsk->fs = copy_fs_struct(fs);
1326 if (!tsk->fs)
1327 return -ENOMEM;
1328 return 0;
1329 }
1330
1331 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1332 {
1333 struct files_struct *oldf, *newf;
1334 int error = 0;
1335
1336 /*
1337 * A background process may not have any files ...
1338 */
1339 oldf = current->files;
1340 if (!oldf)
1341 goto out;
1342
1343 if (clone_flags & CLONE_FILES) {
1344 atomic_inc(&oldf->count);
1345 goto out;
1346 }
1347
1348 newf = dup_fd(oldf, &error);
1349 if (!newf)
1350 goto out;
1351
1352 tsk->files = newf;
1353 error = 0;
1354 out:
1355 return error;
1356 }
1357
1358 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1359 {
1360 #ifdef CONFIG_BLOCK
1361 struct io_context *ioc = current->io_context;
1362 struct io_context *new_ioc;
1363
1364 if (!ioc)
1365 return 0;
1366 /*
1367 * Share io context with parent, if CLONE_IO is set
1368 */
1369 if (clone_flags & CLONE_IO) {
1370 ioc_task_link(ioc);
1371 tsk->io_context = ioc;
1372 } else if (ioprio_valid(ioc->ioprio)) {
1373 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1374 if (unlikely(!new_ioc))
1375 return -ENOMEM;
1376
1377 new_ioc->ioprio = ioc->ioprio;
1378 put_io_context(new_ioc);
1379 }
1380 #endif
1381 return 0;
1382 }
1383
1384 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1385 {
1386 struct sighand_struct *sig;
1387
1388 if (clone_flags & CLONE_SIGHAND) {
1389 atomic_inc(&current->sighand->count);
1390 return 0;
1391 }
1392 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1393 rcu_assign_pointer(tsk->sighand, sig);
1394 if (!sig)
1395 return -ENOMEM;
1396
1397 atomic_set(&sig->count, 1);
1398 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1399 return 0;
1400 }
1401
1402 void __cleanup_sighand(struct sighand_struct *sighand)
1403 {
1404 if (atomic_dec_and_test(&sighand->count)) {
1405 signalfd_cleanup(sighand);
1406 /*
1407 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1408 * without an RCU grace period, see __lock_task_sighand().
1409 */
1410 kmem_cache_free(sighand_cachep, sighand);
1411 }
1412 }
1413
1414 #ifdef CONFIG_POSIX_TIMERS
1415 /*
1416 * Initialize POSIX timer handling for a thread group.
1417 */
1418 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1419 {
1420 unsigned long cpu_limit;
1421
1422 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1423 if (cpu_limit != RLIM_INFINITY) {
1424 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1425 sig->cputimer.running = true;
1426 }
1427
1428 /* The timer lists. */
1429 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1430 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1431 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1432 }
1433 #else
1434 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1435 #endif
1436
1437 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1438 {
1439 struct signal_struct *sig;
1440
1441 if (clone_flags & CLONE_THREAD)
1442 return 0;
1443
1444 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1445 tsk->signal = sig;
1446 if (!sig)
1447 return -ENOMEM;
1448
1449 sig->nr_threads = 1;
1450 atomic_set(&sig->live, 1);
1451 atomic_set(&sig->sigcnt, 1);
1452
1453 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1454 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1455 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1456
1457 init_waitqueue_head(&sig->wait_chldexit);
1458 sig->curr_target = tsk;
1459 init_sigpending(&sig->shared_pending);
1460 seqlock_init(&sig->stats_lock);
1461 prev_cputime_init(&sig->prev_cputime);
1462
1463 #ifdef CONFIG_POSIX_TIMERS
1464 INIT_LIST_HEAD(&sig->posix_timers);
1465 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1466 sig->real_timer.function = it_real_fn;
1467 #endif
1468
1469 task_lock(current->group_leader);
1470 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1471 task_unlock(current->group_leader);
1472
1473 posix_cpu_timers_init_group(sig);
1474
1475 tty_audit_fork(sig);
1476 sched_autogroup_fork(sig);
1477
1478 sig->oom_score_adj = current->signal->oom_score_adj;
1479 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1480
1481 mutex_init(&sig->cred_guard_mutex);
1482
1483 return 0;
1484 }
1485
1486 static void copy_seccomp(struct task_struct *p)
1487 {
1488 #ifdef CONFIG_SECCOMP
1489 /*
1490 * Must be called with sighand->lock held, which is common to
1491 * all threads in the group. Holding cred_guard_mutex is not
1492 * needed because this new task is not yet running and cannot
1493 * be racing exec.
1494 */
1495 assert_spin_locked(&current->sighand->siglock);
1496
1497 /* Ref-count the new filter user, and assign it. */
1498 get_seccomp_filter(current);
1499 p->seccomp = current->seccomp;
1500
1501 /*
1502 * Explicitly enable no_new_privs here in case it got set
1503 * between the task_struct being duplicated and holding the
1504 * sighand lock. The seccomp state and nnp must be in sync.
1505 */
1506 if (task_no_new_privs(current))
1507 task_set_no_new_privs(p);
1508
1509 /*
1510 * If the parent gained a seccomp mode after copying thread
1511 * flags and between before we held the sighand lock, we have
1512 * to manually enable the seccomp thread flag here.
1513 */
1514 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1515 set_tsk_thread_flag(p, TIF_SECCOMP);
1516 #endif
1517 }
1518
1519 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1520 {
1521 current->clear_child_tid = tidptr;
1522
1523 return task_pid_vnr(current);
1524 }
1525
1526 static void rt_mutex_init_task(struct task_struct *p)
1527 {
1528 raw_spin_lock_init(&p->pi_lock);
1529 #ifdef CONFIG_RT_MUTEXES
1530 p->pi_waiters = RB_ROOT_CACHED;
1531 p->pi_top_task = NULL;
1532 p->pi_blocked_on = NULL;
1533 #endif
1534 }
1535
1536 #ifdef CONFIG_POSIX_TIMERS
1537 /*
1538 * Initialize POSIX timer handling for a single task.
1539 */
1540 static void posix_cpu_timers_init(struct task_struct *tsk)
1541 {
1542 tsk->cputime_expires.prof_exp = 0;
1543 tsk->cputime_expires.virt_exp = 0;
1544 tsk->cputime_expires.sched_exp = 0;
1545 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1546 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1547 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1548 }
1549 #else
1550 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1551 #endif
1552
1553 static inline void
1554 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1555 {
1556 task->pids[type].pid = pid;
1557 }
1558
1559 static inline void rcu_copy_process(struct task_struct *p)
1560 {
1561 #ifdef CONFIG_PREEMPT_RCU
1562 p->rcu_read_lock_nesting = 0;
1563 p->rcu_read_unlock_special.s = 0;
1564 p->rcu_blocked_node = NULL;
1565 INIT_LIST_HEAD(&p->rcu_node_entry);
1566 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1567 #ifdef CONFIG_TASKS_RCU
1568 p->rcu_tasks_holdout = false;
1569 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1570 p->rcu_tasks_idle_cpu = -1;
1571 #endif /* #ifdef CONFIG_TASKS_RCU */
1572 }
1573
1574 /*
1575 * This creates a new process as a copy of the old one,
1576 * but does not actually start it yet.
1577 *
1578 * It copies the registers, and all the appropriate
1579 * parts of the process environment (as per the clone
1580 * flags). The actual kick-off is left to the caller.
1581 */
1582 static __latent_entropy struct task_struct *copy_process(
1583 unsigned long clone_flags,
1584 unsigned long stack_start,
1585 unsigned long stack_size,
1586 int __user *child_tidptr,
1587 struct pid *pid,
1588 int trace,
1589 unsigned long tls,
1590 int node)
1591 {
1592 int retval;
1593 struct task_struct *p;
1594
1595 /*
1596 * Don't allow sharing the root directory with processes in a different
1597 * namespace
1598 */
1599 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1600 return ERR_PTR(-EINVAL);
1601
1602 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1603 return ERR_PTR(-EINVAL);
1604
1605 /*
1606 * Thread groups must share signals as well, and detached threads
1607 * can only be started up within the thread group.
1608 */
1609 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1610 return ERR_PTR(-EINVAL);
1611
1612 /*
1613 * Shared signal handlers imply shared VM. By way of the above,
1614 * thread groups also imply shared VM. Blocking this case allows
1615 * for various simplifications in other code.
1616 */
1617 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1618 return ERR_PTR(-EINVAL);
1619
1620 /*
1621 * Siblings of global init remain as zombies on exit since they are
1622 * not reaped by their parent (swapper). To solve this and to avoid
1623 * multi-rooted process trees, prevent global and container-inits
1624 * from creating siblings.
1625 */
1626 if ((clone_flags & CLONE_PARENT) &&
1627 current->signal->flags & SIGNAL_UNKILLABLE)
1628 return ERR_PTR(-EINVAL);
1629
1630 /*
1631 * If the new process will be in a different pid or user namespace
1632 * do not allow it to share a thread group with the forking task.
1633 */
1634 if (clone_flags & CLONE_THREAD) {
1635 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1636 (task_active_pid_ns(current) !=
1637 current->nsproxy->pid_ns_for_children))
1638 return ERR_PTR(-EINVAL);
1639 }
1640
1641 retval = -ENOMEM;
1642 p = dup_task_struct(current, node);
1643 if (!p)
1644 goto fork_out;
1645
1646 /*
1647 * This _must_ happen before we call free_task(), i.e. before we jump
1648 * to any of the bad_fork_* labels. This is to avoid freeing
1649 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1650 * kernel threads (PF_KTHREAD).
1651 */
1652 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1653 /*
1654 * Clear TID on mm_release()?
1655 */
1656 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1657
1658 ftrace_graph_init_task(p);
1659
1660 rt_mutex_init_task(p);
1661
1662 #ifdef CONFIG_PROVE_LOCKING
1663 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1664 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1665 #endif
1666 retval = -EAGAIN;
1667 if (atomic_read(&p->real_cred->user->processes) >=
1668 task_rlimit(p, RLIMIT_NPROC)) {
1669 if (p->real_cred->user != INIT_USER &&
1670 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1671 goto bad_fork_free;
1672 }
1673 current->flags &= ~PF_NPROC_EXCEEDED;
1674
1675 retval = copy_creds(p, clone_flags);
1676 if (retval < 0)
1677 goto bad_fork_free;
1678
1679 /*
1680 * If multiple threads are within copy_process(), then this check
1681 * triggers too late. This doesn't hurt, the check is only there
1682 * to stop root fork bombs.
1683 */
1684 retval = -EAGAIN;
1685 if (nr_threads >= max_threads)
1686 goto bad_fork_cleanup_count;
1687
1688 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1689 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1690 p->flags |= PF_FORKNOEXEC;
1691 INIT_LIST_HEAD(&p->children);
1692 INIT_LIST_HEAD(&p->sibling);
1693 rcu_copy_process(p);
1694 p->vfork_done = NULL;
1695 spin_lock_init(&p->alloc_lock);
1696
1697 init_sigpending(&p->pending);
1698
1699 p->utime = p->stime = p->gtime = 0;
1700 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1701 p->utimescaled = p->stimescaled = 0;
1702 #endif
1703 prev_cputime_init(&p->prev_cputime);
1704
1705 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1706 seqcount_init(&p->vtime.seqcount);
1707 p->vtime.starttime = 0;
1708 p->vtime.state = VTIME_INACTIVE;
1709 #endif
1710
1711 #if defined(SPLIT_RSS_COUNTING)
1712 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1713 #endif
1714
1715 p->default_timer_slack_ns = current->timer_slack_ns;
1716
1717 task_io_accounting_init(&p->ioac);
1718 acct_clear_integrals(p);
1719
1720 posix_cpu_timers_init(p);
1721
1722 p->start_time = ktime_get_ns();
1723 p->real_start_time = ktime_get_boot_ns();
1724 p->io_context = NULL;
1725 p->audit_context = NULL;
1726 cgroup_fork(p);
1727 #ifdef CONFIG_NUMA
1728 p->mempolicy = mpol_dup(p->mempolicy);
1729 if (IS_ERR(p->mempolicy)) {
1730 retval = PTR_ERR(p->mempolicy);
1731 p->mempolicy = NULL;
1732 goto bad_fork_cleanup_threadgroup_lock;
1733 }
1734 #endif
1735 #ifdef CONFIG_CPUSETS
1736 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1737 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1738 seqcount_init(&p->mems_allowed_seq);
1739 #endif
1740 #ifdef CONFIG_TRACE_IRQFLAGS
1741 p->irq_events = 0;
1742 p->hardirqs_enabled = 0;
1743 p->hardirq_enable_ip = 0;
1744 p->hardirq_enable_event = 0;
1745 p->hardirq_disable_ip = _THIS_IP_;
1746 p->hardirq_disable_event = 0;
1747 p->softirqs_enabled = 1;
1748 p->softirq_enable_ip = _THIS_IP_;
1749 p->softirq_enable_event = 0;
1750 p->softirq_disable_ip = 0;
1751 p->softirq_disable_event = 0;
1752 p->hardirq_context = 0;
1753 p->softirq_context = 0;
1754 #endif
1755
1756 p->pagefault_disabled = 0;
1757
1758 #ifdef CONFIG_LOCKDEP
1759 p->lockdep_depth = 0; /* no locks held yet */
1760 p->curr_chain_key = 0;
1761 p->lockdep_recursion = 0;
1762 lockdep_init_task(p);
1763 #endif
1764
1765 #ifdef CONFIG_DEBUG_MUTEXES
1766 p->blocked_on = NULL; /* not blocked yet */
1767 #endif
1768 #ifdef CONFIG_BCACHE
1769 p->sequential_io = 0;
1770 p->sequential_io_avg = 0;
1771 #endif
1772
1773 /* Perform scheduler related setup. Assign this task to a CPU. */
1774 retval = sched_fork(clone_flags, p);
1775 if (retval)
1776 goto bad_fork_cleanup_policy;
1777
1778 retval = perf_event_init_task(p);
1779 if (retval)
1780 goto bad_fork_cleanup_policy;
1781 retval = audit_alloc(p);
1782 if (retval)
1783 goto bad_fork_cleanup_perf;
1784 /* copy all the process information */
1785 shm_init_task(p);
1786 retval = security_task_alloc(p, clone_flags);
1787 if (retval)
1788 goto bad_fork_cleanup_audit;
1789 retval = copy_semundo(clone_flags, p);
1790 if (retval)
1791 goto bad_fork_cleanup_security;
1792 retval = copy_files(clone_flags, p);
1793 if (retval)
1794 goto bad_fork_cleanup_semundo;
1795 retval = copy_fs(clone_flags, p);
1796 if (retval)
1797 goto bad_fork_cleanup_files;
1798 retval = copy_sighand(clone_flags, p);
1799 if (retval)
1800 goto bad_fork_cleanup_fs;
1801 retval = copy_signal(clone_flags, p);
1802 if (retval)
1803 goto bad_fork_cleanup_sighand;
1804 retval = copy_mm(clone_flags, p);
1805 if (retval)
1806 goto bad_fork_cleanup_signal;
1807 retval = copy_namespaces(clone_flags, p);
1808 if (retval)
1809 goto bad_fork_cleanup_mm;
1810 retval = copy_io(clone_flags, p);
1811 if (retval)
1812 goto bad_fork_cleanup_namespaces;
1813 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1814 if (retval)
1815 goto bad_fork_cleanup_io;
1816
1817 if (pid != &init_struct_pid) {
1818 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1819 if (IS_ERR(pid)) {
1820 retval = PTR_ERR(pid);
1821 goto bad_fork_cleanup_thread;
1822 }
1823 }
1824
1825 #ifdef CONFIG_BLOCK
1826 p->plug = NULL;
1827 #endif
1828 #ifdef CONFIG_FUTEX
1829 p->robust_list = NULL;
1830 #ifdef CONFIG_COMPAT
1831 p->compat_robust_list = NULL;
1832 #endif
1833 INIT_LIST_HEAD(&p->pi_state_list);
1834 p->pi_state_cache = NULL;
1835 #endif
1836 /*
1837 * sigaltstack should be cleared when sharing the same VM
1838 */
1839 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1840 sas_ss_reset(p);
1841
1842 /*
1843 * Syscall tracing and stepping should be turned off in the
1844 * child regardless of CLONE_PTRACE.
1845 */
1846 user_disable_single_step(p);
1847 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1848 #ifdef TIF_SYSCALL_EMU
1849 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1850 #endif
1851 clear_all_latency_tracing(p);
1852
1853 /* ok, now we should be set up.. */
1854 p->pid = pid_nr(pid);
1855 if (clone_flags & CLONE_THREAD) {
1856 p->exit_signal = -1;
1857 p->group_leader = current->group_leader;
1858 p->tgid = current->tgid;
1859 } else {
1860 if (clone_flags & CLONE_PARENT)
1861 p->exit_signal = current->group_leader->exit_signal;
1862 else
1863 p->exit_signal = (clone_flags & CSIGNAL);
1864 p->group_leader = p;
1865 p->tgid = p->pid;
1866 }
1867
1868 p->nr_dirtied = 0;
1869 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1870 p->dirty_paused_when = 0;
1871
1872 p->pdeath_signal = 0;
1873 INIT_LIST_HEAD(&p->thread_group);
1874 p->task_works = NULL;
1875
1876 cgroup_threadgroup_change_begin(current);
1877 /*
1878 * Ensure that the cgroup subsystem policies allow the new process to be
1879 * forked. It should be noted the the new process's css_set can be changed
1880 * between here and cgroup_post_fork() if an organisation operation is in
1881 * progress.
1882 */
1883 retval = cgroup_can_fork(p);
1884 if (retval)
1885 goto bad_fork_free_pid;
1886
1887 /*
1888 * Make it visible to the rest of the system, but dont wake it up yet.
1889 * Need tasklist lock for parent etc handling!
1890 */
1891 write_lock_irq(&tasklist_lock);
1892
1893 /* CLONE_PARENT re-uses the old parent */
1894 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1895 p->real_parent = current->real_parent;
1896 p->parent_exec_id = current->parent_exec_id;
1897 } else {
1898 p->real_parent = current;
1899 p->parent_exec_id = current->self_exec_id;
1900 }
1901
1902 klp_copy_process(p);
1903
1904 spin_lock(&current->sighand->siglock);
1905
1906 /*
1907 * Copy seccomp details explicitly here, in case they were changed
1908 * before holding sighand lock.
1909 */
1910 copy_seccomp(p);
1911
1912 /*
1913 * Process group and session signals need to be delivered to just the
1914 * parent before the fork or both the parent and the child after the
1915 * fork. Restart if a signal comes in before we add the new process to
1916 * it's process group.
1917 * A fatal signal pending means that current will exit, so the new
1918 * thread can't slip out of an OOM kill (or normal SIGKILL).
1919 */
1920 recalc_sigpending();
1921 if (signal_pending(current)) {
1922 retval = -ERESTARTNOINTR;
1923 goto bad_fork_cancel_cgroup;
1924 }
1925 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1926 retval = -ENOMEM;
1927 goto bad_fork_cancel_cgroup;
1928 }
1929
1930 if (likely(p->pid)) {
1931 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1932
1933 init_task_pid(p, PIDTYPE_PID, pid);
1934 if (thread_group_leader(p)) {
1935 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1936 init_task_pid(p, PIDTYPE_SID, task_session(current));
1937
1938 if (is_child_reaper(pid)) {
1939 ns_of_pid(pid)->child_reaper = p;
1940 p->signal->flags |= SIGNAL_UNKILLABLE;
1941 }
1942
1943 p->signal->leader_pid = pid;
1944 p->signal->tty = tty_kref_get(current->signal->tty);
1945 /*
1946 * Inherit has_child_subreaper flag under the same
1947 * tasklist_lock with adding child to the process tree
1948 * for propagate_has_child_subreaper optimization.
1949 */
1950 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1951 p->real_parent->signal->is_child_subreaper;
1952 list_add_tail(&p->sibling, &p->real_parent->children);
1953 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1954 attach_pid(p, PIDTYPE_PGID);
1955 attach_pid(p, PIDTYPE_SID);
1956 __this_cpu_inc(process_counts);
1957 } else {
1958 current->signal->nr_threads++;
1959 atomic_inc(&current->signal->live);
1960 atomic_inc(&current->signal->sigcnt);
1961 list_add_tail_rcu(&p->thread_group,
1962 &p->group_leader->thread_group);
1963 list_add_tail_rcu(&p->thread_node,
1964 &p->signal->thread_head);
1965 }
1966 attach_pid(p, PIDTYPE_PID);
1967 nr_threads++;
1968 }
1969
1970 total_forks++;
1971 spin_unlock(&current->sighand->siglock);
1972 syscall_tracepoint_update(p);
1973 write_unlock_irq(&tasklist_lock);
1974
1975 proc_fork_connector(p);
1976 cgroup_post_fork(p);
1977 cgroup_threadgroup_change_end(current);
1978 perf_event_fork(p);
1979
1980 trace_task_newtask(p, clone_flags);
1981 uprobe_copy_process(p, clone_flags);
1982
1983 return p;
1984
1985 bad_fork_cancel_cgroup:
1986 spin_unlock(&current->sighand->siglock);
1987 write_unlock_irq(&tasklist_lock);
1988 cgroup_cancel_fork(p);
1989 bad_fork_free_pid:
1990 cgroup_threadgroup_change_end(current);
1991 if (pid != &init_struct_pid)
1992 free_pid(pid);
1993 bad_fork_cleanup_thread:
1994 exit_thread(p);
1995 bad_fork_cleanup_io:
1996 if (p->io_context)
1997 exit_io_context(p);
1998 bad_fork_cleanup_namespaces:
1999 exit_task_namespaces(p);
2000 bad_fork_cleanup_mm:
2001 if (p->mm)
2002 mmput(p->mm);
2003 bad_fork_cleanup_signal:
2004 if (!(clone_flags & CLONE_THREAD))
2005 free_signal_struct(p->signal);
2006 bad_fork_cleanup_sighand:
2007 __cleanup_sighand(p->sighand);
2008 bad_fork_cleanup_fs:
2009 exit_fs(p); /* blocking */
2010 bad_fork_cleanup_files:
2011 exit_files(p); /* blocking */
2012 bad_fork_cleanup_semundo:
2013 exit_sem(p);
2014 bad_fork_cleanup_security:
2015 security_task_free(p);
2016 bad_fork_cleanup_audit:
2017 audit_free(p);
2018 bad_fork_cleanup_perf:
2019 perf_event_free_task(p);
2020 bad_fork_cleanup_policy:
2021 lockdep_free_task(p);
2022 #ifdef CONFIG_NUMA
2023 mpol_put(p->mempolicy);
2024 bad_fork_cleanup_threadgroup_lock:
2025 #endif
2026 delayacct_tsk_free(p);
2027 bad_fork_cleanup_count:
2028 atomic_dec(&p->cred->user->processes);
2029 exit_creds(p);
2030 bad_fork_free:
2031 p->state = TASK_DEAD;
2032 put_task_stack(p);
2033 free_task(p);
2034 fork_out:
2035 return ERR_PTR(retval);
2036 }
2037
2038 static inline void init_idle_pids(struct pid_link *links)
2039 {
2040 enum pid_type type;
2041
2042 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2043 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2044 links[type].pid = &init_struct_pid;
2045 }
2046 }
2047
2048 struct task_struct *fork_idle(int cpu)
2049 {
2050 struct task_struct *task;
2051 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2052 cpu_to_node(cpu));
2053 if (!IS_ERR(task)) {
2054 init_idle_pids(task->pids);
2055 init_idle(task, cpu);
2056 }
2057
2058 return task;
2059 }
2060
2061 /*
2062 * Ok, this is the main fork-routine.
2063 *
2064 * It copies the process, and if successful kick-starts
2065 * it and waits for it to finish using the VM if required.
2066 */
2067 long _do_fork(unsigned long clone_flags,
2068 unsigned long stack_start,
2069 unsigned long stack_size,
2070 int __user *parent_tidptr,
2071 int __user *child_tidptr,
2072 unsigned long tls)
2073 {
2074 struct completion vfork;
2075 struct pid *pid;
2076 struct task_struct *p;
2077 int trace = 0;
2078 long nr;
2079
2080 /*
2081 * Determine whether and which event to report to ptracer. When
2082 * called from kernel_thread or CLONE_UNTRACED is explicitly
2083 * requested, no event is reported; otherwise, report if the event
2084 * for the type of forking is enabled.
2085 */
2086 if (!(clone_flags & CLONE_UNTRACED)) {
2087 if (clone_flags & CLONE_VFORK)
2088 trace = PTRACE_EVENT_VFORK;
2089 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2090 trace = PTRACE_EVENT_CLONE;
2091 else
2092 trace = PTRACE_EVENT_FORK;
2093
2094 if (likely(!ptrace_event_enabled(current, trace)))
2095 trace = 0;
2096 }
2097
2098 p = copy_process(clone_flags, stack_start, stack_size,
2099 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2100 add_latent_entropy();
2101
2102 if (IS_ERR(p))
2103 return PTR_ERR(p);
2104
2105 /*
2106 * Do this prior waking up the new thread - the thread pointer
2107 * might get invalid after that point, if the thread exits quickly.
2108 */
2109 trace_sched_process_fork(current, p);
2110
2111 pid = get_task_pid(p, PIDTYPE_PID);
2112 nr = pid_vnr(pid);
2113
2114 if (clone_flags & CLONE_PARENT_SETTID)
2115 put_user(nr, parent_tidptr);
2116
2117 if (clone_flags & CLONE_VFORK) {
2118 p->vfork_done = &vfork;
2119 init_completion(&vfork);
2120 get_task_struct(p);
2121 }
2122
2123 wake_up_new_task(p);
2124
2125 /* forking complete and child started to run, tell ptracer */
2126 if (unlikely(trace))
2127 ptrace_event_pid(trace, pid);
2128
2129 if (clone_flags & CLONE_VFORK) {
2130 if (!wait_for_vfork_done(p, &vfork))
2131 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2132 }
2133
2134 put_pid(pid);
2135 return nr;
2136 }
2137
2138 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2139 /* For compatibility with architectures that call do_fork directly rather than
2140 * using the syscall entry points below. */
2141 long do_fork(unsigned long clone_flags,
2142 unsigned long stack_start,
2143 unsigned long stack_size,
2144 int __user *parent_tidptr,
2145 int __user *child_tidptr)
2146 {
2147 return _do_fork(clone_flags, stack_start, stack_size,
2148 parent_tidptr, child_tidptr, 0);
2149 }
2150 #endif
2151
2152 /*
2153 * Create a kernel thread.
2154 */
2155 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2156 {
2157 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2158 (unsigned long)arg, NULL, NULL, 0);
2159 }
2160
2161 #ifdef __ARCH_WANT_SYS_FORK
2162 SYSCALL_DEFINE0(fork)
2163 {
2164 #ifdef CONFIG_MMU
2165 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2166 #else
2167 /* can not support in nommu mode */
2168 return -EINVAL;
2169 #endif
2170 }
2171 #endif
2172
2173 #ifdef __ARCH_WANT_SYS_VFORK
2174 SYSCALL_DEFINE0(vfork)
2175 {
2176 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2177 0, NULL, NULL, 0);
2178 }
2179 #endif
2180
2181 #ifdef __ARCH_WANT_SYS_CLONE
2182 #ifdef CONFIG_CLONE_BACKWARDS
2183 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2184 int __user *, parent_tidptr,
2185 unsigned long, tls,
2186 int __user *, child_tidptr)
2187 #elif defined(CONFIG_CLONE_BACKWARDS2)
2188 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2189 int __user *, parent_tidptr,
2190 int __user *, child_tidptr,
2191 unsigned long, tls)
2192 #elif defined(CONFIG_CLONE_BACKWARDS3)
2193 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2194 int, stack_size,
2195 int __user *, parent_tidptr,
2196 int __user *, child_tidptr,
2197 unsigned long, tls)
2198 #else
2199 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2200 int __user *, parent_tidptr,
2201 int __user *, child_tidptr,
2202 unsigned long, tls)
2203 #endif
2204 {
2205 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2206 }
2207 #endif
2208
2209 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2210 {
2211 struct task_struct *leader, *parent, *child;
2212 int res;
2213
2214 read_lock(&tasklist_lock);
2215 leader = top = top->group_leader;
2216 down:
2217 for_each_thread(leader, parent) {
2218 list_for_each_entry(child, &parent->children, sibling) {
2219 res = visitor(child, data);
2220 if (res) {
2221 if (res < 0)
2222 goto out;
2223 leader = child;
2224 goto down;
2225 }
2226 up:
2227 ;
2228 }
2229 }
2230
2231 if (leader != top) {
2232 child = leader;
2233 parent = child->real_parent;
2234 leader = parent->group_leader;
2235 goto up;
2236 }
2237 out:
2238 read_unlock(&tasklist_lock);
2239 }
2240
2241 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2242 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2243 #endif
2244
2245 static void sighand_ctor(void *data)
2246 {
2247 struct sighand_struct *sighand = data;
2248
2249 spin_lock_init(&sighand->siglock);
2250 init_waitqueue_head(&sighand->signalfd_wqh);
2251 }
2252
2253 void __init proc_caches_init(void)
2254 {
2255 sighand_cachep = kmem_cache_create("sighand_cache",
2256 sizeof(struct sighand_struct), 0,
2257 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2258 SLAB_ACCOUNT, sighand_ctor);
2259 signal_cachep = kmem_cache_create("signal_cache",
2260 sizeof(struct signal_struct), 0,
2261 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2262 NULL);
2263 files_cachep = kmem_cache_create("files_cache",
2264 sizeof(struct files_struct), 0,
2265 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2266 NULL);
2267 fs_cachep = kmem_cache_create("fs_cache",
2268 sizeof(struct fs_struct), 0,
2269 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2270 NULL);
2271 /*
2272 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2273 * whole struct cpumask for the OFFSTACK case. We could change
2274 * this to *only* allocate as much of it as required by the
2275 * maximum number of CPU's we can ever have. The cpumask_allocation
2276 * is at the end of the structure, exactly for that reason.
2277 */
2278 mm_cachep = kmem_cache_create_usercopy("mm_struct",
2279 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2280 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2281 offsetof(struct mm_struct, saved_auxv),
2282 sizeof_field(struct mm_struct, saved_auxv),
2283 NULL);
2284 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2285 mmap_init();
2286 nsproxy_cache_init();
2287 }
2288
2289 /*
2290 * Check constraints on flags passed to the unshare system call.
2291 */
2292 static int check_unshare_flags(unsigned long unshare_flags)
2293 {
2294 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2295 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2296 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2297 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2298 return -EINVAL;
2299 /*
2300 * Not implemented, but pretend it works if there is nothing
2301 * to unshare. Note that unsharing the address space or the
2302 * signal handlers also need to unshare the signal queues (aka
2303 * CLONE_THREAD).
2304 */
2305 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2306 if (!thread_group_empty(current))
2307 return -EINVAL;
2308 }
2309 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2310 if (atomic_read(&current->sighand->count) > 1)
2311 return -EINVAL;
2312 }
2313 if (unshare_flags & CLONE_VM) {
2314 if (!current_is_single_threaded())
2315 return -EINVAL;
2316 }
2317
2318 return 0;
2319 }
2320
2321 /*
2322 * Unshare the filesystem structure if it is being shared
2323 */
2324 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2325 {
2326 struct fs_struct *fs = current->fs;
2327
2328 if (!(unshare_flags & CLONE_FS) || !fs)
2329 return 0;
2330
2331 /* don't need lock here; in the worst case we'll do useless copy */
2332 if (fs->users == 1)
2333 return 0;
2334
2335 *new_fsp = copy_fs_struct(fs);
2336 if (!*new_fsp)
2337 return -ENOMEM;
2338
2339 return 0;
2340 }
2341
2342 /*
2343 * Unshare file descriptor table if it is being shared
2344 */
2345 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2346 {
2347 struct files_struct *fd = current->files;
2348 int error = 0;
2349
2350 if ((unshare_flags & CLONE_FILES) &&
2351 (fd && atomic_read(&fd->count) > 1)) {
2352 *new_fdp = dup_fd(fd, &error);
2353 if (!*new_fdp)
2354 return error;
2355 }
2356
2357 return 0;
2358 }
2359
2360 /*
2361 * unshare allows a process to 'unshare' part of the process
2362 * context which was originally shared using clone. copy_*
2363 * functions used by do_fork() cannot be used here directly
2364 * because they modify an inactive task_struct that is being
2365 * constructed. Here we are modifying the current, active,
2366 * task_struct.
2367 */
2368 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2369 {
2370 struct fs_struct *fs, *new_fs = NULL;
2371 struct files_struct *fd, *new_fd = NULL;
2372 struct cred *new_cred = NULL;
2373 struct nsproxy *new_nsproxy = NULL;
2374 int do_sysvsem = 0;
2375 int err;
2376
2377 /*
2378 * If unsharing a user namespace must also unshare the thread group
2379 * and unshare the filesystem root and working directories.
2380 */
2381 if (unshare_flags & CLONE_NEWUSER)
2382 unshare_flags |= CLONE_THREAD | CLONE_FS;
2383 /*
2384 * If unsharing vm, must also unshare signal handlers.
2385 */
2386 if (unshare_flags & CLONE_VM)
2387 unshare_flags |= CLONE_SIGHAND;
2388 /*
2389 * If unsharing a signal handlers, must also unshare the signal queues.
2390 */
2391 if (unshare_flags & CLONE_SIGHAND)
2392 unshare_flags |= CLONE_THREAD;
2393 /*
2394 * If unsharing namespace, must also unshare filesystem information.
2395 */
2396 if (unshare_flags & CLONE_NEWNS)
2397 unshare_flags |= CLONE_FS;
2398
2399 err = check_unshare_flags(unshare_flags);
2400 if (err)
2401 goto bad_unshare_out;
2402 /*
2403 * CLONE_NEWIPC must also detach from the undolist: after switching
2404 * to a new ipc namespace, the semaphore arrays from the old
2405 * namespace are unreachable.
2406 */
2407 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2408 do_sysvsem = 1;
2409 err = unshare_fs(unshare_flags, &new_fs);
2410 if (err)
2411 goto bad_unshare_out;
2412 err = unshare_fd(unshare_flags, &new_fd);
2413 if (err)
2414 goto bad_unshare_cleanup_fs;
2415 err = unshare_userns(unshare_flags, &new_cred);
2416 if (err)
2417 goto bad_unshare_cleanup_fd;
2418 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2419 new_cred, new_fs);
2420 if (err)
2421 goto bad_unshare_cleanup_cred;
2422
2423 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2424 if (do_sysvsem) {
2425 /*
2426 * CLONE_SYSVSEM is equivalent to sys_exit().
2427 */
2428 exit_sem(current);
2429 }
2430 if (unshare_flags & CLONE_NEWIPC) {
2431 /* Orphan segments in old ns (see sem above). */
2432 exit_shm(current);
2433 shm_init_task(current);
2434 }
2435
2436 if (new_nsproxy)
2437 switch_task_namespaces(current, new_nsproxy);
2438
2439 task_lock(current);
2440
2441 if (new_fs) {
2442 fs = current->fs;
2443 spin_lock(&fs->lock);
2444 current->fs = new_fs;
2445 if (--fs->users)
2446 new_fs = NULL;
2447 else
2448 new_fs = fs;
2449 spin_unlock(&fs->lock);
2450 }
2451
2452 if (new_fd) {
2453 fd = current->files;
2454 current->files = new_fd;
2455 new_fd = fd;
2456 }
2457
2458 task_unlock(current);
2459
2460 if (new_cred) {
2461 /* Install the new user namespace */
2462 commit_creds(new_cred);
2463 new_cred = NULL;
2464 }
2465 }
2466
2467 perf_event_namespaces(current);
2468
2469 bad_unshare_cleanup_cred:
2470 if (new_cred)
2471 put_cred(new_cred);
2472 bad_unshare_cleanup_fd:
2473 if (new_fd)
2474 put_files_struct(new_fd);
2475
2476 bad_unshare_cleanup_fs:
2477 if (new_fs)
2478 free_fs_struct(new_fs);
2479
2480 bad_unshare_out:
2481 return err;
2482 }
2483
2484 /*
2485 * Helper to unshare the files of the current task.
2486 * We don't want to expose copy_files internals to
2487 * the exec layer of the kernel.
2488 */
2489
2490 int unshare_files(struct files_struct **displaced)
2491 {
2492 struct task_struct *task = current;
2493 struct files_struct *copy = NULL;
2494 int error;
2495
2496 error = unshare_fd(CLONE_FILES, &copy);
2497 if (error || !copy) {
2498 *displaced = NULL;
2499 return error;
2500 }
2501 *displaced = task->files;
2502 task_lock(task);
2503 task->files = copy;
2504 task_unlock(task);
2505 return 0;
2506 }
2507
2508 int sysctl_max_threads(struct ctl_table *table, int write,
2509 void __user *buffer, size_t *lenp, loff_t *ppos)
2510 {
2511 struct ctl_table t;
2512 int ret;
2513 int threads = max_threads;
2514 int min = MIN_THREADS;
2515 int max = MAX_THREADS;
2516
2517 t = *table;
2518 t.data = &threads;
2519 t.extra1 = &min;
2520 t.extra2 = &max;
2521
2522 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2523 if (ret || !write)
2524 return ret;
2525
2526 set_max_threads(threads);
2527
2528 return 0;
2529 }