]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
mm: use helper functions for allocating and freeing vm_area structs
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/sched/autogroup.h>
16 #include <linux/sched/mm.h>
17 #include <linux/sched/coredump.h>
18 #include <linux/sched/user.h>
19 #include <linux/sched/numa_balancing.h>
20 #include <linux/sched/stat.h>
21 #include <linux/sched/task.h>
22 #include <linux/sched/task_stack.h>
23 #include <linux/sched/cputime.h>
24 #include <linux/rtmutex.h>
25 #include <linux/init.h>
26 #include <linux/unistd.h>
27 #include <linux/module.h>
28 #include <linux/vmalloc.h>
29 #include <linux/completion.h>
30 #include <linux/personality.h>
31 #include <linux/mempolicy.h>
32 #include <linux/sem.h>
33 #include <linux/file.h>
34 #include <linux/fdtable.h>
35 #include <linux/iocontext.h>
36 #include <linux/key.h>
37 #include <linux/binfmts.h>
38 #include <linux/mman.h>
39 #include <linux/mmu_notifier.h>
40 #include <linux/hmm.h>
41 #include <linux/fs.h>
42 #include <linux/mm.h>
43 #include <linux/vmacache.h>
44 #include <linux/nsproxy.h>
45 #include <linux/capability.h>
46 #include <linux/cpu.h>
47 #include <linux/cgroup.h>
48 #include <linux/security.h>
49 #include <linux/hugetlb.h>
50 #include <linux/seccomp.h>
51 #include <linux/swap.h>
52 #include <linux/syscalls.h>
53 #include <linux/jiffies.h>
54 #include <linux/futex.h>
55 #include <linux/compat.h>
56 #include <linux/kthread.h>
57 #include <linux/task_io_accounting_ops.h>
58 #include <linux/rcupdate.h>
59 #include <linux/ptrace.h>
60 #include <linux/mount.h>
61 #include <linux/audit.h>
62 #include <linux/memcontrol.h>
63 #include <linux/ftrace.h>
64 #include <linux/proc_fs.h>
65 #include <linux/profile.h>
66 #include <linux/rmap.h>
67 #include <linux/ksm.h>
68 #include <linux/acct.h>
69 #include <linux/userfaultfd_k.h>
70 #include <linux/tsacct_kern.h>
71 #include <linux/cn_proc.h>
72 #include <linux/freezer.h>
73 #include <linux/delayacct.h>
74 #include <linux/taskstats_kern.h>
75 #include <linux/random.h>
76 #include <linux/tty.h>
77 #include <linux/blkdev.h>
78 #include <linux/fs_struct.h>
79 #include <linux/magic.h>
80 #include <linux/perf_event.h>
81 #include <linux/posix-timers.h>
82 #include <linux/user-return-notifier.h>
83 #include <linux/oom.h>
84 #include <linux/khugepaged.h>
85 #include <linux/signalfd.h>
86 #include <linux/uprobes.h>
87 #include <linux/aio.h>
88 #include <linux/compiler.h>
89 #include <linux/sysctl.h>
90 #include <linux/kcov.h>
91 #include <linux/livepatch.h>
92 #include <linux/thread_info.h>
93
94 #include <asm/pgtable.h>
95 #include <asm/pgalloc.h>
96 #include <linux/uaccess.h>
97 #include <asm/mmu_context.h>
98 #include <asm/cacheflush.h>
99 #include <asm/tlbflush.h>
100
101 #include <trace/events/sched.h>
102
103 #define CREATE_TRACE_POINTS
104 #include <trace/events/task.h>
105 #ifdef CONFIG_USER_NS
106 extern int unprivileged_userns_clone;
107 #else
108 #define unprivileged_userns_clone 0
109 #endif
110
111 /*
112 * Minimum number of threads to boot the kernel
113 */
114 #define MIN_THREADS 20
115
116 /*
117 * Maximum number of threads
118 */
119 #define MAX_THREADS FUTEX_TID_MASK
120
121 /*
122 * Protected counters by write_lock_irq(&tasklist_lock)
123 */
124 unsigned long total_forks; /* Handle normal Linux uptimes. */
125 int nr_threads; /* The idle threads do not count.. */
126
127 int max_threads; /* tunable limit on nr_threads */
128
129 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
130
131 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
132
133 #ifdef CONFIG_PROVE_RCU
134 int lockdep_tasklist_lock_is_held(void)
135 {
136 return lockdep_is_held(&tasklist_lock);
137 }
138 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
139 #endif /* #ifdef CONFIG_PROVE_RCU */
140
141 int nr_processes(void)
142 {
143 int cpu;
144 int total = 0;
145
146 for_each_possible_cpu(cpu)
147 total += per_cpu(process_counts, cpu);
148
149 return total;
150 }
151
152 void __weak arch_release_task_struct(struct task_struct *tsk)
153 {
154 }
155
156 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
157 static struct kmem_cache *task_struct_cachep;
158
159 static inline struct task_struct *alloc_task_struct_node(int node)
160 {
161 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
162 }
163
164 static inline void free_task_struct(struct task_struct *tsk)
165 {
166 kmem_cache_free(task_struct_cachep, tsk);
167 }
168 #endif
169
170 void __weak arch_release_thread_stack(unsigned long *stack)
171 {
172 }
173
174 #ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
175
176 /*
177 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
178 * kmemcache based allocator.
179 */
180 # if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
181
182 #ifdef CONFIG_VMAP_STACK
183 /*
184 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
185 * flush. Try to minimize the number of calls by caching stacks.
186 */
187 #define NR_CACHED_STACKS 2
188 static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
189
190 static int free_vm_stack_cache(unsigned int cpu)
191 {
192 struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
193 int i;
194
195 for (i = 0; i < NR_CACHED_STACKS; i++) {
196 struct vm_struct *vm_stack = cached_vm_stacks[i];
197
198 if (!vm_stack)
199 continue;
200
201 vfree(vm_stack->addr);
202 cached_vm_stacks[i] = NULL;
203 }
204
205 return 0;
206 }
207 #endif
208
209 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
210 {
211 #ifdef CONFIG_VMAP_STACK
212 void *stack;
213 int i;
214
215 for (i = 0; i < NR_CACHED_STACKS; i++) {
216 struct vm_struct *s;
217
218 s = this_cpu_xchg(cached_stacks[i], NULL);
219
220 if (!s)
221 continue;
222
223 /* Clear stale pointers from reused stack. */
224 memset(s->addr, 0, THREAD_SIZE);
225
226 tsk->stack_vm_area = s;
227 return s->addr;
228 }
229
230 stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
231 VMALLOC_START, VMALLOC_END,
232 THREADINFO_GFP,
233 PAGE_KERNEL,
234 0, node, __builtin_return_address(0));
235
236 /*
237 * We can't call find_vm_area() in interrupt context, and
238 * free_thread_stack() can be called in interrupt context,
239 * so cache the vm_struct.
240 */
241 if (stack)
242 tsk->stack_vm_area = find_vm_area(stack);
243 return stack;
244 #else
245 struct page *page = alloc_pages_node(node, THREADINFO_GFP,
246 THREAD_SIZE_ORDER);
247
248 return page ? page_address(page) : NULL;
249 #endif
250 }
251
252 static inline void free_thread_stack(struct task_struct *tsk)
253 {
254 #ifdef CONFIG_VMAP_STACK
255 if (task_stack_vm_area(tsk)) {
256 int i;
257
258 for (i = 0; i < NR_CACHED_STACKS; i++) {
259 if (this_cpu_cmpxchg(cached_stacks[i],
260 NULL, tsk->stack_vm_area) != NULL)
261 continue;
262
263 return;
264 }
265
266 vfree_atomic(tsk->stack);
267 return;
268 }
269 #endif
270
271 __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
272 }
273 # else
274 static struct kmem_cache *thread_stack_cache;
275
276 static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
277 int node)
278 {
279 return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
280 }
281
282 static void free_thread_stack(struct task_struct *tsk)
283 {
284 kmem_cache_free(thread_stack_cache, tsk->stack);
285 }
286
287 void thread_stack_cache_init(void)
288 {
289 thread_stack_cache = kmem_cache_create("thread_stack", THREAD_SIZE,
290 THREAD_SIZE, 0, NULL);
291 BUG_ON(thread_stack_cache == NULL);
292 }
293 # endif
294 #endif
295
296 /* SLAB cache for signal_struct structures (tsk->signal) */
297 static struct kmem_cache *signal_cachep;
298
299 /* SLAB cache for sighand_struct structures (tsk->sighand) */
300 struct kmem_cache *sighand_cachep;
301
302 /* SLAB cache for files_struct structures (tsk->files) */
303 struct kmem_cache *files_cachep;
304
305 /* SLAB cache for fs_struct structures (tsk->fs) */
306 struct kmem_cache *fs_cachep;
307
308 /* SLAB cache for vm_area_struct structures */
309 static struct kmem_cache *vm_area_cachep;
310
311 /* SLAB cache for mm_struct structures (tsk->mm) */
312 static struct kmem_cache *mm_cachep;
313
314 struct vm_area_struct *vm_area_alloc(void)
315 {
316 return kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
317 }
318
319 struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
320 {
321 return kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
322 }
323
324 void vm_area_free(struct vm_area_struct *vma)
325 {
326 kmem_cache_free(vm_area_cachep, vma);
327 }
328
329 static void account_kernel_stack(struct task_struct *tsk, int account)
330 {
331 void *stack = task_stack_page(tsk);
332 struct vm_struct *vm = task_stack_vm_area(tsk);
333
334 BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
335
336 if (vm) {
337 int i;
338
339 BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
340
341 for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
342 mod_zone_page_state(page_zone(vm->pages[i]),
343 NR_KERNEL_STACK_KB,
344 PAGE_SIZE / 1024 * account);
345 }
346
347 /* All stack pages belong to the same memcg. */
348 mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
349 account * (THREAD_SIZE / 1024));
350 } else {
351 /*
352 * All stack pages are in the same zone and belong to the
353 * same memcg.
354 */
355 struct page *first_page = virt_to_page(stack);
356
357 mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
358 THREAD_SIZE / 1024 * account);
359
360 mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
361 account * (THREAD_SIZE / 1024));
362 }
363 }
364
365 static void release_task_stack(struct task_struct *tsk)
366 {
367 if (WARN_ON(tsk->state != TASK_DEAD))
368 return; /* Better to leak the stack than to free prematurely */
369
370 account_kernel_stack(tsk, -1);
371 arch_release_thread_stack(tsk->stack);
372 free_thread_stack(tsk);
373 tsk->stack = NULL;
374 #ifdef CONFIG_VMAP_STACK
375 tsk->stack_vm_area = NULL;
376 #endif
377 }
378
379 #ifdef CONFIG_THREAD_INFO_IN_TASK
380 void put_task_stack(struct task_struct *tsk)
381 {
382 if (atomic_dec_and_test(&tsk->stack_refcount))
383 release_task_stack(tsk);
384 }
385 #endif
386
387 void free_task(struct task_struct *tsk)
388 {
389 #ifndef CONFIG_THREAD_INFO_IN_TASK
390 /*
391 * The task is finally done with both the stack and thread_info,
392 * so free both.
393 */
394 release_task_stack(tsk);
395 #else
396 /*
397 * If the task had a separate stack allocation, it should be gone
398 * by now.
399 */
400 WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
401 #endif
402 rt_mutex_debug_task_free(tsk);
403 ftrace_graph_exit_task(tsk);
404 put_seccomp_filter(tsk);
405 arch_release_task_struct(tsk);
406 if (tsk->flags & PF_KTHREAD)
407 free_kthread_struct(tsk);
408 free_task_struct(tsk);
409 }
410 EXPORT_SYMBOL(free_task);
411
412 static inline void free_signal_struct(struct signal_struct *sig)
413 {
414 taskstats_tgid_free(sig);
415 sched_autogroup_exit(sig);
416 /*
417 * __mmdrop is not safe to call from softirq context on x86 due to
418 * pgd_dtor so postpone it to the async context
419 */
420 if (sig->oom_mm)
421 mmdrop_async(sig->oom_mm);
422 kmem_cache_free(signal_cachep, sig);
423 }
424
425 static inline void put_signal_struct(struct signal_struct *sig)
426 {
427 if (atomic_dec_and_test(&sig->sigcnt))
428 free_signal_struct(sig);
429 }
430
431 void __put_task_struct(struct task_struct *tsk)
432 {
433 WARN_ON(!tsk->exit_state);
434 WARN_ON(atomic_read(&tsk->usage));
435 WARN_ON(tsk == current);
436
437 cgroup_free(tsk);
438 task_numa_free(tsk);
439 security_task_free(tsk);
440 exit_creds(tsk);
441 delayacct_tsk_free(tsk);
442 put_signal_struct(tsk->signal);
443
444 if (!profile_handoff_task(tsk))
445 free_task(tsk);
446 }
447 EXPORT_SYMBOL_GPL(__put_task_struct);
448
449 void __init __weak arch_task_cache_init(void) { }
450
451 /*
452 * set_max_threads
453 */
454 static void set_max_threads(unsigned int max_threads_suggested)
455 {
456 u64 threads;
457
458 /*
459 * The number of threads shall be limited such that the thread
460 * structures may only consume a small part of the available memory.
461 */
462 if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
463 threads = MAX_THREADS;
464 else
465 threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
466 (u64) THREAD_SIZE * 8UL);
467
468 if (threads > max_threads_suggested)
469 threads = max_threads_suggested;
470
471 max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
472 }
473
474 #ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
475 /* Initialized by the architecture: */
476 int arch_task_struct_size __read_mostly;
477 #endif
478
479 void __init fork_init(void)
480 {
481 int i;
482 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
483 #ifndef ARCH_MIN_TASKALIGN
484 #define ARCH_MIN_TASKALIGN 0
485 #endif
486 int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
487
488 /* create a slab on which task_structs can be allocated */
489 task_struct_cachep = kmem_cache_create("task_struct",
490 arch_task_struct_size, align,
491 SLAB_PANIC|SLAB_ACCOUNT, NULL);
492 #endif
493
494 /* do the arch specific task caches init */
495 arch_task_cache_init();
496
497 set_max_threads(MAX_THREADS);
498
499 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
500 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
501 init_task.signal->rlim[RLIMIT_SIGPENDING] =
502 init_task.signal->rlim[RLIMIT_NPROC];
503
504 for (i = 0; i < UCOUNT_COUNTS; i++) {
505 init_user_ns.ucount_max[i] = max_threads/2;
506 }
507
508 #ifdef CONFIG_VMAP_STACK
509 cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
510 NULL, free_vm_stack_cache);
511 #endif
512
513 lockdep_init_task(&init_task);
514 }
515
516 int __weak arch_dup_task_struct(struct task_struct *dst,
517 struct task_struct *src)
518 {
519 *dst = *src;
520 return 0;
521 }
522
523 void set_task_stack_end_magic(struct task_struct *tsk)
524 {
525 unsigned long *stackend;
526
527 stackend = end_of_stack(tsk);
528 *stackend = STACK_END_MAGIC; /* for overflow detection */
529 }
530
531 static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
532 {
533 struct task_struct *tsk;
534 unsigned long *stack;
535 struct vm_struct *stack_vm_area;
536 int err;
537
538 if (node == NUMA_NO_NODE)
539 node = tsk_fork_get_node(orig);
540 tsk = alloc_task_struct_node(node);
541 if (!tsk)
542 return NULL;
543
544 stack = alloc_thread_stack_node(tsk, node);
545 if (!stack)
546 goto free_tsk;
547
548 stack_vm_area = task_stack_vm_area(tsk);
549
550 err = arch_dup_task_struct(tsk, orig);
551
552 /*
553 * arch_dup_task_struct() clobbers the stack-related fields. Make
554 * sure they're properly initialized before using any stack-related
555 * functions again.
556 */
557 tsk->stack = stack;
558 #ifdef CONFIG_VMAP_STACK
559 tsk->stack_vm_area = stack_vm_area;
560 #endif
561 #ifdef CONFIG_THREAD_INFO_IN_TASK
562 atomic_set(&tsk->stack_refcount, 1);
563 #endif
564
565 if (err)
566 goto free_stack;
567
568 #ifdef CONFIG_SECCOMP
569 /*
570 * We must handle setting up seccomp filters once we're under
571 * the sighand lock in case orig has changed between now and
572 * then. Until then, filter must be NULL to avoid messing up
573 * the usage counts on the error path calling free_task.
574 */
575 tsk->seccomp.filter = NULL;
576 #endif
577
578 setup_thread_stack(tsk, orig);
579 clear_user_return_notifier(tsk);
580 clear_tsk_need_resched(tsk);
581 set_task_stack_end_magic(tsk);
582
583 #ifdef CONFIG_CC_STACKPROTECTOR
584 tsk->stack_canary = get_random_canary();
585 #endif
586
587 /*
588 * One for us, one for whoever does the "release_task()" (usually
589 * parent)
590 */
591 atomic_set(&tsk->usage, 2);
592 #ifdef CONFIG_BLK_DEV_IO_TRACE
593 tsk->btrace_seq = 0;
594 #endif
595 tsk->splice_pipe = NULL;
596 tsk->task_frag.page = NULL;
597 tsk->wake_q.next = NULL;
598
599 account_kernel_stack(tsk, 1);
600
601 kcov_task_init(tsk);
602
603 #ifdef CONFIG_FAULT_INJECTION
604 tsk->fail_nth = 0;
605 #endif
606
607 return tsk;
608
609 free_stack:
610 free_thread_stack(tsk);
611 free_tsk:
612 free_task_struct(tsk);
613 return NULL;
614 }
615
616 #ifdef CONFIG_MMU
617 static __latent_entropy int dup_mmap(struct mm_struct *mm,
618 struct mm_struct *oldmm)
619 {
620 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
621 struct rb_node **rb_link, *rb_parent;
622 int retval;
623 unsigned long charge;
624 LIST_HEAD(uf);
625
626 uprobe_start_dup_mmap();
627 if (down_write_killable(&oldmm->mmap_sem)) {
628 retval = -EINTR;
629 goto fail_uprobe_end;
630 }
631 flush_cache_dup_mm(oldmm);
632 uprobe_dup_mmap(oldmm, mm);
633 /*
634 * Not linked in yet - no deadlock potential:
635 */
636 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
637
638 /* No ordering required: file already has been exposed. */
639 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
640
641 mm->total_vm = oldmm->total_vm;
642 mm->data_vm = oldmm->data_vm;
643 mm->exec_vm = oldmm->exec_vm;
644 mm->stack_vm = oldmm->stack_vm;
645
646 rb_link = &mm->mm_rb.rb_node;
647 rb_parent = NULL;
648 pprev = &mm->mmap;
649 retval = ksm_fork(mm, oldmm);
650 if (retval)
651 goto out;
652 retval = khugepaged_fork(mm, oldmm);
653 if (retval)
654 goto out;
655
656 prev = NULL;
657 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
658 struct file *file;
659
660 if (mpnt->vm_flags & VM_DONTCOPY) {
661 vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
662 continue;
663 }
664 charge = 0;
665 /*
666 * Don't duplicate many vmas if we've been oom-killed (for
667 * example)
668 */
669 if (fatal_signal_pending(current)) {
670 retval = -EINTR;
671 goto out;
672 }
673 if (mpnt->vm_flags & VM_ACCOUNT) {
674 unsigned long len = vma_pages(mpnt);
675
676 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
677 goto fail_nomem;
678 charge = len;
679 }
680 tmp = vm_area_dup(mpnt);
681 if (!tmp)
682 goto fail_nomem;
683 *tmp = *mpnt;
684 INIT_LIST_HEAD(&tmp->anon_vma_chain);
685 retval = vma_dup_policy(mpnt, tmp);
686 if (retval)
687 goto fail_nomem_policy;
688 tmp->vm_mm = mm;
689 retval = dup_userfaultfd(tmp, &uf);
690 if (retval)
691 goto fail_nomem_anon_vma_fork;
692 if (tmp->vm_flags & VM_WIPEONFORK) {
693 /* VM_WIPEONFORK gets a clean slate in the child. */
694 tmp->anon_vma = NULL;
695 if (anon_vma_prepare(tmp))
696 goto fail_nomem_anon_vma_fork;
697 } else if (anon_vma_fork(tmp, mpnt))
698 goto fail_nomem_anon_vma_fork;
699 tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
700 tmp->vm_next = tmp->vm_prev = NULL;
701 file = tmp->vm_file;
702 if (file) {
703 struct inode *inode = file_inode(file);
704 struct address_space *mapping = file->f_mapping;
705
706 vma_get_file(tmp);
707 if (tmp->vm_flags & VM_DENYWRITE)
708 atomic_dec(&inode->i_writecount);
709 i_mmap_lock_write(mapping);
710 if (tmp->vm_flags & VM_SHARED)
711 atomic_inc(&mapping->i_mmap_writable);
712 flush_dcache_mmap_lock(mapping);
713 /* insert tmp into the share list, just after mpnt */
714 vma_interval_tree_insert_after(tmp, mpnt,
715 &mapping->i_mmap);
716 flush_dcache_mmap_unlock(mapping);
717 i_mmap_unlock_write(mapping);
718 }
719
720 /*
721 * Clear hugetlb-related page reserves for children. This only
722 * affects MAP_PRIVATE mappings. Faults generated by the child
723 * are not guaranteed to succeed, even if read-only
724 */
725 if (is_vm_hugetlb_page(tmp))
726 reset_vma_resv_huge_pages(tmp);
727
728 /*
729 * Link in the new vma and copy the page table entries.
730 */
731 *pprev = tmp;
732 pprev = &tmp->vm_next;
733 tmp->vm_prev = prev;
734 prev = tmp;
735
736 __vma_link_rb(mm, tmp, rb_link, rb_parent);
737 rb_link = &tmp->vm_rb.rb_right;
738 rb_parent = &tmp->vm_rb;
739
740 mm->map_count++;
741 if (!(tmp->vm_flags & VM_WIPEONFORK))
742 retval = copy_page_range(mm, oldmm, mpnt);
743
744 if (tmp->vm_ops && tmp->vm_ops->open)
745 tmp->vm_ops->open(tmp);
746
747 if (retval)
748 goto out;
749 }
750 /* a new mm has just been created */
751 retval = arch_dup_mmap(oldmm, mm);
752 out:
753 up_write(&mm->mmap_sem);
754 flush_tlb_mm(oldmm);
755 up_write(&oldmm->mmap_sem);
756 dup_userfaultfd_complete(&uf);
757 fail_uprobe_end:
758 uprobe_end_dup_mmap();
759 return retval;
760 fail_nomem_anon_vma_fork:
761 mpol_put(vma_policy(tmp));
762 fail_nomem_policy:
763 vm_area_free(tmp);
764 fail_nomem:
765 retval = -ENOMEM;
766 vm_unacct_memory(charge);
767 goto out;
768 }
769
770 static inline int mm_alloc_pgd(struct mm_struct *mm)
771 {
772 mm->pgd = pgd_alloc(mm);
773 if (unlikely(!mm->pgd))
774 return -ENOMEM;
775 return 0;
776 }
777
778 static inline void mm_free_pgd(struct mm_struct *mm)
779 {
780 pgd_free(mm, mm->pgd);
781 }
782 #else
783 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
784 {
785 down_write(&oldmm->mmap_sem);
786 RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
787 up_write(&oldmm->mmap_sem);
788 return 0;
789 }
790 #define mm_alloc_pgd(mm) (0)
791 #define mm_free_pgd(mm)
792 #endif /* CONFIG_MMU */
793
794 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
795
796 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
797 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
798
799 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
800
801 static int __init coredump_filter_setup(char *s)
802 {
803 default_dump_filter =
804 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
805 MMF_DUMP_FILTER_MASK;
806 return 1;
807 }
808
809 __setup("coredump_filter=", coredump_filter_setup);
810
811 #include <linux/init_task.h>
812
813 static void mm_init_aio(struct mm_struct *mm)
814 {
815 #ifdef CONFIG_AIO
816 spin_lock_init(&mm->ioctx_lock);
817 mm->ioctx_table = NULL;
818 #endif
819 }
820
821 static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
822 {
823 #ifdef CONFIG_MEMCG
824 mm->owner = p;
825 #endif
826 }
827
828 static void mm_init_uprobes_state(struct mm_struct *mm)
829 {
830 #ifdef CONFIG_UPROBES
831 mm->uprobes_state.xol_area = NULL;
832 #endif
833 }
834
835 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
836 struct user_namespace *user_ns)
837 {
838 mm->mmap = NULL;
839 mm->mm_rb = RB_ROOT;
840 mm->vmacache_seqnum = 0;
841 atomic_set(&mm->mm_users, 1);
842 atomic_set(&mm->mm_count, 1);
843 init_rwsem(&mm->mmap_sem);
844 INIT_LIST_HEAD(&mm->mmlist);
845 mm->core_state = NULL;
846 mm_pgtables_bytes_init(mm);
847 mm->map_count = 0;
848 mm->locked_vm = 0;
849 mm->pinned_vm = 0;
850 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
851 spin_lock_init(&mm->page_table_lock);
852 mm_init_cpumask(mm);
853 mm_init_aio(mm);
854 mm_init_owner(mm, p);
855 RCU_INIT_POINTER(mm->exe_file, NULL);
856 mmu_notifier_mm_init(mm);
857 hmm_mm_init(mm);
858 init_tlb_flush_pending(mm);
859 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
860 mm->pmd_huge_pte = NULL;
861 #endif
862 mm_init_uprobes_state(mm);
863
864 if (current->mm) {
865 mm->flags = current->mm->flags & MMF_INIT_MASK;
866 mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
867 } else {
868 mm->flags = default_dump_filter;
869 mm->def_flags = 0;
870 }
871
872 if (mm_alloc_pgd(mm))
873 goto fail_nopgd;
874
875 if (init_new_context(p, mm))
876 goto fail_nocontext;
877
878 mm->user_ns = get_user_ns(user_ns);
879 return mm;
880
881 fail_nocontext:
882 mm_free_pgd(mm);
883 fail_nopgd:
884 free_mm(mm);
885 return NULL;
886 }
887
888 static void check_mm(struct mm_struct *mm)
889 {
890 int i;
891
892 for (i = 0; i < NR_MM_COUNTERS; i++) {
893 long x = atomic_long_read(&mm->rss_stat.count[i]);
894
895 if (unlikely(x))
896 printk(KERN_ALERT "BUG: Bad rss-counter state "
897 "mm:%p idx:%d val:%ld\n", mm, i, x);
898 }
899
900 if (mm_pgtables_bytes(mm))
901 pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
902 mm_pgtables_bytes(mm));
903
904 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
905 VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
906 #endif
907 }
908
909 /*
910 * Allocate and initialize an mm_struct.
911 */
912 struct mm_struct *mm_alloc(void)
913 {
914 struct mm_struct *mm;
915
916 mm = allocate_mm();
917 if (!mm)
918 return NULL;
919
920 memset(mm, 0, sizeof(*mm));
921 return mm_init(mm, current, current_user_ns());
922 }
923
924 /*
925 * Called when the last reference to the mm
926 * is dropped: either by a lazy thread or by
927 * mmput. Free the page directory and the mm.
928 */
929 void __mmdrop(struct mm_struct *mm)
930 {
931 BUG_ON(mm == &init_mm);
932 mm_free_pgd(mm);
933 destroy_context(mm);
934 hmm_mm_destroy(mm);
935 mmu_notifier_mm_destroy(mm);
936 check_mm(mm);
937 put_user_ns(mm->user_ns);
938 free_mm(mm);
939 }
940 EXPORT_SYMBOL_GPL(__mmdrop);
941
942 static inline void __mmput(struct mm_struct *mm)
943 {
944 VM_BUG_ON(atomic_read(&mm->mm_users));
945
946 uprobe_clear_state(mm);
947 exit_aio(mm);
948 ksm_exit(mm);
949 khugepaged_exit(mm); /* must run before exit_mmap */
950 exit_mmap(mm);
951 mm_put_huge_zero_page(mm);
952 set_mm_exe_file(mm, NULL);
953 if (!list_empty(&mm->mmlist)) {
954 spin_lock(&mmlist_lock);
955 list_del(&mm->mmlist);
956 spin_unlock(&mmlist_lock);
957 }
958 if (mm->binfmt)
959 module_put(mm->binfmt->module);
960 mmdrop(mm);
961 }
962
963 /*
964 * Decrement the use count and release all resources for an mm.
965 */
966 void mmput(struct mm_struct *mm)
967 {
968 might_sleep();
969
970 if (atomic_dec_and_test(&mm->mm_users))
971 __mmput(mm);
972 }
973 EXPORT_SYMBOL_GPL(mmput);
974
975 #ifdef CONFIG_MMU
976 static void mmput_async_fn(struct work_struct *work)
977 {
978 struct mm_struct *mm = container_of(work, struct mm_struct,
979 async_put_work);
980
981 __mmput(mm);
982 }
983
984 void mmput_async(struct mm_struct *mm)
985 {
986 if (atomic_dec_and_test(&mm->mm_users)) {
987 INIT_WORK(&mm->async_put_work, mmput_async_fn);
988 schedule_work(&mm->async_put_work);
989 }
990 }
991 #endif
992
993 /**
994 * set_mm_exe_file - change a reference to the mm's executable file
995 *
996 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
997 *
998 * Main users are mmput() and sys_execve(). Callers prevent concurrent
999 * invocations: in mmput() nobody alive left, in execve task is single
1000 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1001 * mm->exe_file, but does so without using set_mm_exe_file() in order
1002 * to do avoid the need for any locks.
1003 */
1004 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1005 {
1006 struct file *old_exe_file;
1007
1008 /*
1009 * It is safe to dereference the exe_file without RCU as
1010 * this function is only called if nobody else can access
1011 * this mm -- see comment above for justification.
1012 */
1013 old_exe_file = rcu_dereference_raw(mm->exe_file);
1014
1015 if (new_exe_file)
1016 get_file(new_exe_file);
1017 rcu_assign_pointer(mm->exe_file, new_exe_file);
1018 if (old_exe_file)
1019 fput(old_exe_file);
1020 }
1021
1022 /**
1023 * get_mm_exe_file - acquire a reference to the mm's executable file
1024 *
1025 * Returns %NULL if mm has no associated executable file.
1026 * User must release file via fput().
1027 */
1028 struct file *get_mm_exe_file(struct mm_struct *mm)
1029 {
1030 struct file *exe_file;
1031
1032 rcu_read_lock();
1033 exe_file = rcu_dereference(mm->exe_file);
1034 if (exe_file && !get_file_rcu(exe_file))
1035 exe_file = NULL;
1036 rcu_read_unlock();
1037 return exe_file;
1038 }
1039 EXPORT_SYMBOL(get_mm_exe_file);
1040
1041 /**
1042 * get_task_exe_file - acquire a reference to the task's executable file
1043 *
1044 * Returns %NULL if task's mm (if any) has no associated executable file or
1045 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1046 * User must release file via fput().
1047 */
1048 struct file *get_task_exe_file(struct task_struct *task)
1049 {
1050 struct file *exe_file = NULL;
1051 struct mm_struct *mm;
1052
1053 task_lock(task);
1054 mm = task->mm;
1055 if (mm) {
1056 if (!(task->flags & PF_KTHREAD))
1057 exe_file = get_mm_exe_file(mm);
1058 }
1059 task_unlock(task);
1060 return exe_file;
1061 }
1062 EXPORT_SYMBOL(get_task_exe_file);
1063
1064 /**
1065 * get_task_mm - acquire a reference to the task's mm
1066 *
1067 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
1068 * this kernel workthread has transiently adopted a user mm with use_mm,
1069 * to do its AIO) is not set and if so returns a reference to it, after
1070 * bumping up the use count. User must release the mm via mmput()
1071 * after use. Typically used by /proc and ptrace.
1072 */
1073 struct mm_struct *get_task_mm(struct task_struct *task)
1074 {
1075 struct mm_struct *mm;
1076
1077 task_lock(task);
1078 mm = task->mm;
1079 if (mm) {
1080 if (task->flags & PF_KTHREAD)
1081 mm = NULL;
1082 else
1083 mmget(mm);
1084 }
1085 task_unlock(task);
1086 return mm;
1087 }
1088 EXPORT_SYMBOL_GPL(get_task_mm);
1089
1090 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1091 {
1092 struct mm_struct *mm;
1093 int err;
1094
1095 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
1096 if (err)
1097 return ERR_PTR(err);
1098
1099 mm = get_task_mm(task);
1100 if (mm && mm != current->mm &&
1101 !ptrace_may_access(task, mode)) {
1102 mmput(mm);
1103 mm = ERR_PTR(-EACCES);
1104 }
1105 mutex_unlock(&task->signal->cred_guard_mutex);
1106
1107 return mm;
1108 }
1109
1110 static void complete_vfork_done(struct task_struct *tsk)
1111 {
1112 struct completion *vfork;
1113
1114 task_lock(tsk);
1115 vfork = tsk->vfork_done;
1116 if (likely(vfork)) {
1117 tsk->vfork_done = NULL;
1118 complete(vfork);
1119 }
1120 task_unlock(tsk);
1121 }
1122
1123 static int wait_for_vfork_done(struct task_struct *child,
1124 struct completion *vfork)
1125 {
1126 int killed;
1127
1128 freezer_do_not_count();
1129 killed = wait_for_completion_killable(vfork);
1130 freezer_count();
1131
1132 if (killed) {
1133 task_lock(child);
1134 child->vfork_done = NULL;
1135 task_unlock(child);
1136 }
1137
1138 put_task_struct(child);
1139 return killed;
1140 }
1141
1142 /* Please note the differences between mmput and mm_release.
1143 * mmput is called whenever we stop holding onto a mm_struct,
1144 * error success whatever.
1145 *
1146 * mm_release is called after a mm_struct has been removed
1147 * from the current process.
1148 *
1149 * This difference is important for error handling, when we
1150 * only half set up a mm_struct for a new process and need to restore
1151 * the old one. Because we mmput the new mm_struct before
1152 * restoring the old one. . .
1153 * Eric Biederman 10 January 1998
1154 */
1155 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1156 {
1157 /* Get rid of any futexes when releasing the mm */
1158 #ifdef CONFIG_FUTEX
1159 if (unlikely(tsk->robust_list)) {
1160 exit_robust_list(tsk);
1161 tsk->robust_list = NULL;
1162 }
1163 #ifdef CONFIG_COMPAT
1164 if (unlikely(tsk->compat_robust_list)) {
1165 compat_exit_robust_list(tsk);
1166 tsk->compat_robust_list = NULL;
1167 }
1168 #endif
1169 if (unlikely(!list_empty(&tsk->pi_state_list)))
1170 exit_pi_state_list(tsk);
1171 #endif
1172
1173 uprobe_free_utask(tsk);
1174
1175 /* Get rid of any cached register state */
1176 deactivate_mm(tsk, mm);
1177
1178 /*
1179 * Signal userspace if we're not exiting with a core dump
1180 * because we want to leave the value intact for debugging
1181 * purposes.
1182 */
1183 if (tsk->clear_child_tid) {
1184 if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1185 atomic_read(&mm->mm_users) > 1) {
1186 /*
1187 * We don't check the error code - if userspace has
1188 * not set up a proper pointer then tough luck.
1189 */
1190 put_user(0, tsk->clear_child_tid);
1191 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
1192 1, NULL, NULL, 0);
1193 }
1194 tsk->clear_child_tid = NULL;
1195 }
1196
1197 /*
1198 * All done, finally we can wake up parent and return this mm to him.
1199 * Also kthread_stop() uses this completion for synchronization.
1200 */
1201 if (tsk->vfork_done)
1202 complete_vfork_done(tsk);
1203 }
1204
1205 /*
1206 * Allocate a new mm structure and copy contents from the
1207 * mm structure of the passed in task structure.
1208 */
1209 static struct mm_struct *dup_mm(struct task_struct *tsk)
1210 {
1211 struct mm_struct *mm, *oldmm = current->mm;
1212 int err;
1213
1214 mm = allocate_mm();
1215 if (!mm)
1216 goto fail_nomem;
1217
1218 memcpy(mm, oldmm, sizeof(*mm));
1219
1220 if (!mm_init(mm, tsk, mm->user_ns))
1221 goto fail_nomem;
1222
1223 err = dup_mmap(mm, oldmm);
1224 if (err)
1225 goto free_pt;
1226
1227 mm->hiwater_rss = get_mm_rss(mm);
1228 mm->hiwater_vm = mm->total_vm;
1229
1230 if (mm->binfmt && !try_module_get(mm->binfmt->module))
1231 goto free_pt;
1232
1233 return mm;
1234
1235 free_pt:
1236 /* don't put binfmt in mmput, we haven't got module yet */
1237 mm->binfmt = NULL;
1238 mmput(mm);
1239
1240 fail_nomem:
1241 return NULL;
1242 }
1243
1244 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1245 {
1246 struct mm_struct *mm, *oldmm;
1247 int retval;
1248
1249 tsk->min_flt = tsk->maj_flt = 0;
1250 tsk->nvcsw = tsk->nivcsw = 0;
1251 #ifdef CONFIG_DETECT_HUNG_TASK
1252 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1253 #endif
1254
1255 tsk->mm = NULL;
1256 tsk->active_mm = NULL;
1257
1258 /*
1259 * Are we cloning a kernel thread?
1260 *
1261 * We need to steal a active VM for that..
1262 */
1263 oldmm = current->mm;
1264 if (!oldmm)
1265 return 0;
1266
1267 /* initialize the new vmacache entries */
1268 vmacache_flush(tsk);
1269
1270 if (clone_flags & CLONE_VM) {
1271 mmget(oldmm);
1272 mm = oldmm;
1273 goto good_mm;
1274 }
1275
1276 retval = -ENOMEM;
1277 mm = dup_mm(tsk);
1278 if (!mm)
1279 goto fail_nomem;
1280
1281 good_mm:
1282 tsk->mm = mm;
1283 tsk->active_mm = mm;
1284 return 0;
1285
1286 fail_nomem:
1287 return retval;
1288 }
1289
1290 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1291 {
1292 struct fs_struct *fs = current->fs;
1293 if (clone_flags & CLONE_FS) {
1294 /* tsk->fs is already what we want */
1295 spin_lock(&fs->lock);
1296 if (fs->in_exec) {
1297 spin_unlock(&fs->lock);
1298 return -EAGAIN;
1299 }
1300 fs->users++;
1301 spin_unlock(&fs->lock);
1302 return 0;
1303 }
1304 tsk->fs = copy_fs_struct(fs);
1305 if (!tsk->fs)
1306 return -ENOMEM;
1307 return 0;
1308 }
1309
1310 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1311 {
1312 struct files_struct *oldf, *newf;
1313 int error = 0;
1314
1315 /*
1316 * A background process may not have any files ...
1317 */
1318 oldf = current->files;
1319 if (!oldf)
1320 goto out;
1321
1322 if (clone_flags & CLONE_FILES) {
1323 atomic_inc(&oldf->count);
1324 goto out;
1325 }
1326
1327 newf = dup_fd(oldf, &error);
1328 if (!newf)
1329 goto out;
1330
1331 tsk->files = newf;
1332 error = 0;
1333 out:
1334 return error;
1335 }
1336
1337 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1338 {
1339 #ifdef CONFIG_BLOCK
1340 struct io_context *ioc = current->io_context;
1341 struct io_context *new_ioc;
1342
1343 if (!ioc)
1344 return 0;
1345 /*
1346 * Share io context with parent, if CLONE_IO is set
1347 */
1348 if (clone_flags & CLONE_IO) {
1349 ioc_task_link(ioc);
1350 tsk->io_context = ioc;
1351 } else if (ioprio_valid(ioc->ioprio)) {
1352 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1353 if (unlikely(!new_ioc))
1354 return -ENOMEM;
1355
1356 new_ioc->ioprio = ioc->ioprio;
1357 put_io_context(new_ioc);
1358 }
1359 #endif
1360 return 0;
1361 }
1362
1363 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1364 {
1365 struct sighand_struct *sig;
1366
1367 if (clone_flags & CLONE_SIGHAND) {
1368 atomic_inc(&current->sighand->count);
1369 return 0;
1370 }
1371 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1372 rcu_assign_pointer(tsk->sighand, sig);
1373 if (!sig)
1374 return -ENOMEM;
1375
1376 atomic_set(&sig->count, 1);
1377 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1378 return 0;
1379 }
1380
1381 void __cleanup_sighand(struct sighand_struct *sighand)
1382 {
1383 if (atomic_dec_and_test(&sighand->count)) {
1384 signalfd_cleanup(sighand);
1385 /*
1386 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1387 * without an RCU grace period, see __lock_task_sighand().
1388 */
1389 kmem_cache_free(sighand_cachep, sighand);
1390 }
1391 }
1392
1393 #ifdef CONFIG_POSIX_TIMERS
1394 /*
1395 * Initialize POSIX timer handling for a thread group.
1396 */
1397 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1398 {
1399 unsigned long cpu_limit;
1400
1401 cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1402 if (cpu_limit != RLIM_INFINITY) {
1403 sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1404 sig->cputimer.running = true;
1405 }
1406
1407 /* The timer lists. */
1408 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1409 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1410 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1411 }
1412 #else
1413 static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1414 #endif
1415
1416 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1417 {
1418 struct signal_struct *sig;
1419
1420 if (clone_flags & CLONE_THREAD)
1421 return 0;
1422
1423 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1424 tsk->signal = sig;
1425 if (!sig)
1426 return -ENOMEM;
1427
1428 sig->nr_threads = 1;
1429 atomic_set(&sig->live, 1);
1430 atomic_set(&sig->sigcnt, 1);
1431
1432 /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1433 sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1434 tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1435
1436 init_waitqueue_head(&sig->wait_chldexit);
1437 sig->curr_target = tsk;
1438 init_sigpending(&sig->shared_pending);
1439 seqlock_init(&sig->stats_lock);
1440 prev_cputime_init(&sig->prev_cputime);
1441
1442 #ifdef CONFIG_POSIX_TIMERS
1443 INIT_LIST_HEAD(&sig->posix_timers);
1444 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1445 sig->real_timer.function = it_real_fn;
1446 #endif
1447
1448 task_lock(current->group_leader);
1449 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1450 task_unlock(current->group_leader);
1451
1452 posix_cpu_timers_init_group(sig);
1453
1454 tty_audit_fork(sig);
1455 sched_autogroup_fork(sig);
1456
1457 sig->oom_score_adj = current->signal->oom_score_adj;
1458 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1459
1460 mutex_init(&sig->cred_guard_mutex);
1461
1462 return 0;
1463 }
1464
1465 static void copy_seccomp(struct task_struct *p)
1466 {
1467 #ifdef CONFIG_SECCOMP
1468 /*
1469 * Must be called with sighand->lock held, which is common to
1470 * all threads in the group. Holding cred_guard_mutex is not
1471 * needed because this new task is not yet running and cannot
1472 * be racing exec.
1473 */
1474 assert_spin_locked(&current->sighand->siglock);
1475
1476 /* Ref-count the new filter user, and assign it. */
1477 get_seccomp_filter(current);
1478 p->seccomp = current->seccomp;
1479
1480 /*
1481 * Explicitly enable no_new_privs here in case it got set
1482 * between the task_struct being duplicated and holding the
1483 * sighand lock. The seccomp state and nnp must be in sync.
1484 */
1485 if (task_no_new_privs(current))
1486 task_set_no_new_privs(p);
1487
1488 /*
1489 * If the parent gained a seccomp mode after copying thread
1490 * flags and between before we held the sighand lock, we have
1491 * to manually enable the seccomp thread flag here.
1492 */
1493 if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1494 set_tsk_thread_flag(p, TIF_SECCOMP);
1495 #endif
1496 }
1497
1498 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1499 {
1500 current->clear_child_tid = tidptr;
1501
1502 return task_pid_vnr(current);
1503 }
1504
1505 static void rt_mutex_init_task(struct task_struct *p)
1506 {
1507 raw_spin_lock_init(&p->pi_lock);
1508 #ifdef CONFIG_RT_MUTEXES
1509 p->pi_waiters = RB_ROOT_CACHED;
1510 p->pi_top_task = NULL;
1511 p->pi_blocked_on = NULL;
1512 #endif
1513 }
1514
1515 #ifdef CONFIG_POSIX_TIMERS
1516 /*
1517 * Initialize POSIX timer handling for a single task.
1518 */
1519 static void posix_cpu_timers_init(struct task_struct *tsk)
1520 {
1521 tsk->cputime_expires.prof_exp = 0;
1522 tsk->cputime_expires.virt_exp = 0;
1523 tsk->cputime_expires.sched_exp = 0;
1524 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1525 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1526 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1527 }
1528 #else
1529 static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1530 #endif
1531
1532 static inline void
1533 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1534 {
1535 task->pids[type].pid = pid;
1536 }
1537
1538 static inline void rcu_copy_process(struct task_struct *p)
1539 {
1540 #ifdef CONFIG_PREEMPT_RCU
1541 p->rcu_read_lock_nesting = 0;
1542 p->rcu_read_unlock_special.s = 0;
1543 p->rcu_blocked_node = NULL;
1544 INIT_LIST_HEAD(&p->rcu_node_entry);
1545 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1546 #ifdef CONFIG_TASKS_RCU
1547 p->rcu_tasks_holdout = false;
1548 INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1549 p->rcu_tasks_idle_cpu = -1;
1550 #endif /* #ifdef CONFIG_TASKS_RCU */
1551 }
1552
1553 /*
1554 * This creates a new process as a copy of the old one,
1555 * but does not actually start it yet.
1556 *
1557 * It copies the registers, and all the appropriate
1558 * parts of the process environment (as per the clone
1559 * flags). The actual kick-off is left to the caller.
1560 */
1561 static __latent_entropy struct task_struct *copy_process(
1562 unsigned long clone_flags,
1563 unsigned long stack_start,
1564 unsigned long stack_size,
1565 int __user *child_tidptr,
1566 struct pid *pid,
1567 int trace,
1568 unsigned long tls,
1569 int node)
1570 {
1571 int retval;
1572 struct task_struct *p;
1573
1574 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1575 return ERR_PTR(-EINVAL);
1576
1577 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1578 return ERR_PTR(-EINVAL);
1579
1580 if ((clone_flags & CLONE_NEWUSER) && !unprivileged_userns_clone)
1581 if (!capable(CAP_SYS_ADMIN))
1582 return ERR_PTR(-EPERM);
1583
1584 /*
1585 * Thread groups must share signals as well, and detached threads
1586 * can only be started up within the thread group.
1587 */
1588 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1589 return ERR_PTR(-EINVAL);
1590
1591 /*
1592 * Shared signal handlers imply shared VM. By way of the above,
1593 * thread groups also imply shared VM. Blocking this case allows
1594 * for various simplifications in other code.
1595 */
1596 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1597 return ERR_PTR(-EINVAL);
1598
1599 /*
1600 * Siblings of global init remain as zombies on exit since they are
1601 * not reaped by their parent (swapper). To solve this and to avoid
1602 * multi-rooted process trees, prevent global and container-inits
1603 * from creating siblings.
1604 */
1605 if ((clone_flags & CLONE_PARENT) &&
1606 current->signal->flags & SIGNAL_UNKILLABLE)
1607 return ERR_PTR(-EINVAL);
1608
1609 /*
1610 * If the new process will be in a different pid or user namespace
1611 * do not allow it to share a thread group with the forking task.
1612 */
1613 if (clone_flags & CLONE_THREAD) {
1614 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1615 (task_active_pid_ns(current) !=
1616 current->nsproxy->pid_ns_for_children))
1617 return ERR_PTR(-EINVAL);
1618 }
1619
1620 retval = -ENOMEM;
1621 p = dup_task_struct(current, node);
1622 if (!p)
1623 goto fork_out;
1624
1625 /*
1626 * This _must_ happen before we call free_task(), i.e. before we jump
1627 * to any of the bad_fork_* labels. This is to avoid freeing
1628 * p->set_child_tid which is (ab)used as a kthread's data pointer for
1629 * kernel threads (PF_KTHREAD).
1630 */
1631 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1632 /*
1633 * Clear TID on mm_release()?
1634 */
1635 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1636
1637 ftrace_graph_init_task(p);
1638
1639 rt_mutex_init_task(p);
1640
1641 #ifdef CONFIG_PROVE_LOCKING
1642 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1643 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1644 #endif
1645 retval = -EAGAIN;
1646 if (atomic_read(&p->real_cred->user->processes) >=
1647 task_rlimit(p, RLIMIT_NPROC)) {
1648 if (p->real_cred->user != INIT_USER &&
1649 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1650 goto bad_fork_free;
1651 }
1652 current->flags &= ~PF_NPROC_EXCEEDED;
1653
1654 retval = copy_creds(p, clone_flags);
1655 if (retval < 0)
1656 goto bad_fork_free;
1657
1658 /*
1659 * If multiple threads are within copy_process(), then this check
1660 * triggers too late. This doesn't hurt, the check is only there
1661 * to stop root fork bombs.
1662 */
1663 retval = -EAGAIN;
1664 if (nr_threads >= max_threads)
1665 goto bad_fork_cleanup_count;
1666
1667 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1668 p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1669 p->flags |= PF_FORKNOEXEC;
1670 INIT_LIST_HEAD(&p->children);
1671 INIT_LIST_HEAD(&p->sibling);
1672 rcu_copy_process(p);
1673 p->vfork_done = NULL;
1674 spin_lock_init(&p->alloc_lock);
1675
1676 init_sigpending(&p->pending);
1677
1678 p->utime = p->stime = p->gtime = 0;
1679 #ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1680 p->utimescaled = p->stimescaled = 0;
1681 #endif
1682 prev_cputime_init(&p->prev_cputime);
1683
1684 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1685 seqcount_init(&p->vtime.seqcount);
1686 p->vtime.starttime = 0;
1687 p->vtime.state = VTIME_INACTIVE;
1688 #endif
1689
1690 #if defined(SPLIT_RSS_COUNTING)
1691 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1692 #endif
1693
1694 p->default_timer_slack_ns = current->timer_slack_ns;
1695
1696 task_io_accounting_init(&p->ioac);
1697 acct_clear_integrals(p);
1698
1699 posix_cpu_timers_init(p);
1700
1701 p->io_context = NULL;
1702 p->audit_context = NULL;
1703 cgroup_fork(p);
1704 #ifdef CONFIG_NUMA
1705 p->mempolicy = mpol_dup(p->mempolicy);
1706 if (IS_ERR(p->mempolicy)) {
1707 retval = PTR_ERR(p->mempolicy);
1708 p->mempolicy = NULL;
1709 goto bad_fork_cleanup_threadgroup_lock;
1710 }
1711 #endif
1712 #ifdef CONFIG_CPUSETS
1713 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1714 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1715 seqcount_init(&p->mems_allowed_seq);
1716 #endif
1717 #ifdef CONFIG_TRACE_IRQFLAGS
1718 p->irq_events = 0;
1719 p->hardirqs_enabled = 0;
1720 p->hardirq_enable_ip = 0;
1721 p->hardirq_enable_event = 0;
1722 p->hardirq_disable_ip = _THIS_IP_;
1723 p->hardirq_disable_event = 0;
1724 p->softirqs_enabled = 1;
1725 p->softirq_enable_ip = _THIS_IP_;
1726 p->softirq_enable_event = 0;
1727 p->softirq_disable_ip = 0;
1728 p->softirq_disable_event = 0;
1729 p->hardirq_context = 0;
1730 p->softirq_context = 0;
1731 #endif
1732
1733 p->pagefault_disabled = 0;
1734
1735 #ifdef CONFIG_LOCKDEP
1736 p->lockdep_depth = 0; /* no locks held yet */
1737 p->curr_chain_key = 0;
1738 p->lockdep_recursion = 0;
1739 lockdep_init_task(p);
1740 #endif
1741
1742 #ifdef CONFIG_DEBUG_MUTEXES
1743 p->blocked_on = NULL; /* not blocked yet */
1744 #endif
1745 #ifdef CONFIG_BCACHE
1746 p->sequential_io = 0;
1747 p->sequential_io_avg = 0;
1748 #endif
1749 #ifdef CONFIG_SECURITY
1750 p->security = NULL;
1751 #endif
1752
1753 /* Perform scheduler related setup. Assign this task to a CPU. */
1754 retval = sched_fork(clone_flags, p);
1755 if (retval)
1756 goto bad_fork_cleanup_policy;
1757
1758 retval = perf_event_init_task(p);
1759 if (retval)
1760 goto bad_fork_cleanup_policy;
1761 retval = audit_alloc(p);
1762 if (retval)
1763 goto bad_fork_cleanup_perf;
1764 /* copy all the process information */
1765 shm_init_task(p);
1766 retval = security_task_alloc(p, clone_flags);
1767 if (retval)
1768 goto bad_fork_cleanup_audit;
1769 retval = copy_semundo(clone_flags, p);
1770 if (retval)
1771 goto bad_fork_cleanup_security;
1772 retval = copy_files(clone_flags, p);
1773 if (retval)
1774 goto bad_fork_cleanup_semundo;
1775 retval = copy_fs(clone_flags, p);
1776 if (retval)
1777 goto bad_fork_cleanup_files;
1778 retval = copy_sighand(clone_flags, p);
1779 if (retval)
1780 goto bad_fork_cleanup_fs;
1781 retval = copy_signal(clone_flags, p);
1782 if (retval)
1783 goto bad_fork_cleanup_sighand;
1784 retval = copy_mm(clone_flags, p);
1785 if (retval)
1786 goto bad_fork_cleanup_signal;
1787 retval = copy_namespaces(clone_flags, p);
1788 if (retval)
1789 goto bad_fork_cleanup_mm;
1790 retval = copy_io(clone_flags, p);
1791 if (retval)
1792 goto bad_fork_cleanup_namespaces;
1793 retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1794 if (retval)
1795 goto bad_fork_cleanup_io;
1796
1797 if (pid != &init_struct_pid) {
1798 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1799 if (IS_ERR(pid)) {
1800 retval = PTR_ERR(pid);
1801 goto bad_fork_cleanup_thread;
1802 }
1803 }
1804
1805 #ifdef CONFIG_BLOCK
1806 p->plug = NULL;
1807 #endif
1808 #ifdef CONFIG_FUTEX
1809 p->robust_list = NULL;
1810 #ifdef CONFIG_COMPAT
1811 p->compat_robust_list = NULL;
1812 #endif
1813 INIT_LIST_HEAD(&p->pi_state_list);
1814 p->pi_state_cache = NULL;
1815 #endif
1816 /*
1817 * sigaltstack should be cleared when sharing the same VM
1818 */
1819 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1820 sas_ss_reset(p);
1821
1822 /*
1823 * Syscall tracing and stepping should be turned off in the
1824 * child regardless of CLONE_PTRACE.
1825 */
1826 user_disable_single_step(p);
1827 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1828 #ifdef TIF_SYSCALL_EMU
1829 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1830 #endif
1831 clear_all_latency_tracing(p);
1832
1833 /* ok, now we should be set up.. */
1834 p->pid = pid_nr(pid);
1835 if (clone_flags & CLONE_THREAD) {
1836 p->exit_signal = -1;
1837 p->group_leader = current->group_leader;
1838 p->tgid = current->tgid;
1839 } else {
1840 if (clone_flags & CLONE_PARENT)
1841 p->exit_signal = current->group_leader->exit_signal;
1842 else
1843 p->exit_signal = (clone_flags & CSIGNAL);
1844 p->group_leader = p;
1845 p->tgid = p->pid;
1846 }
1847
1848 p->nr_dirtied = 0;
1849 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1850 p->dirty_paused_when = 0;
1851
1852 p->pdeath_signal = 0;
1853 INIT_LIST_HEAD(&p->thread_group);
1854 p->task_works = NULL;
1855
1856 cgroup_threadgroup_change_begin(current);
1857 /*
1858 * Ensure that the cgroup subsystem policies allow the new process to be
1859 * forked. It should be noted the the new process's css_set can be changed
1860 * between here and cgroup_post_fork() if an organisation operation is in
1861 * progress.
1862 */
1863 retval = cgroup_can_fork(p);
1864 if (retval)
1865 goto bad_fork_free_pid;
1866
1867 /*
1868 * From this point on we must avoid any synchronous user-space
1869 * communication until we take the tasklist-lock. In particular, we do
1870 * not want user-space to be able to predict the process start-time by
1871 * stalling fork(2) after we recorded the start_time but before it is
1872 * visible to the system.
1873 */
1874
1875 p->start_time = ktime_get_ns();
1876 p->real_start_time = ktime_get_boot_ns();
1877
1878 /*
1879 * Make it visible to the rest of the system, but dont wake it up yet.
1880 * Need tasklist lock for parent etc handling!
1881 */
1882 write_lock_irq(&tasklist_lock);
1883
1884 /* CLONE_PARENT re-uses the old parent */
1885 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1886 p->real_parent = current->real_parent;
1887 p->parent_exec_id = current->parent_exec_id;
1888 } else {
1889 p->real_parent = current;
1890 p->parent_exec_id = current->self_exec_id;
1891 }
1892
1893 klp_copy_process(p);
1894
1895 spin_lock(&current->sighand->siglock);
1896
1897 /*
1898 * Copy seccomp details explicitly here, in case they were changed
1899 * before holding sighand lock.
1900 */
1901 copy_seccomp(p);
1902
1903 /*
1904 * Process group and session signals need to be delivered to just the
1905 * parent before the fork or both the parent and the child after the
1906 * fork. Restart if a signal comes in before we add the new process to
1907 * it's process group.
1908 * A fatal signal pending means that current will exit, so the new
1909 * thread can't slip out of an OOM kill (or normal SIGKILL).
1910 */
1911 recalc_sigpending();
1912 if (signal_pending(current)) {
1913 retval = -ERESTARTNOINTR;
1914 goto bad_fork_cancel_cgroup;
1915 }
1916 if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1917 retval = -ENOMEM;
1918 goto bad_fork_cancel_cgroup;
1919 }
1920
1921 if (likely(p->pid)) {
1922 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1923
1924 init_task_pid(p, PIDTYPE_PID, pid);
1925 if (thread_group_leader(p)) {
1926 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1927 init_task_pid(p, PIDTYPE_SID, task_session(current));
1928
1929 if (is_child_reaper(pid)) {
1930 ns_of_pid(pid)->child_reaper = p;
1931 p->signal->flags |= SIGNAL_UNKILLABLE;
1932 }
1933
1934 p->signal->leader_pid = pid;
1935 p->signal->tty = tty_kref_get(current->signal->tty);
1936 /*
1937 * Inherit has_child_subreaper flag under the same
1938 * tasklist_lock with adding child to the process tree
1939 * for propagate_has_child_subreaper optimization.
1940 */
1941 p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
1942 p->real_parent->signal->is_child_subreaper;
1943 list_add_tail(&p->sibling, &p->real_parent->children);
1944 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1945 attach_pid(p, PIDTYPE_PGID);
1946 attach_pid(p, PIDTYPE_SID);
1947 __this_cpu_inc(process_counts);
1948 } else {
1949 current->signal->nr_threads++;
1950 atomic_inc(&current->signal->live);
1951 atomic_inc(&current->signal->sigcnt);
1952 list_add_tail_rcu(&p->thread_group,
1953 &p->group_leader->thread_group);
1954 list_add_tail_rcu(&p->thread_node,
1955 &p->signal->thread_head);
1956 }
1957 attach_pid(p, PIDTYPE_PID);
1958 nr_threads++;
1959 }
1960
1961 total_forks++;
1962 spin_unlock(&current->sighand->siglock);
1963 syscall_tracepoint_update(p);
1964 write_unlock_irq(&tasklist_lock);
1965
1966 proc_fork_connector(p);
1967 cgroup_post_fork(p);
1968 cgroup_threadgroup_change_end(current);
1969 perf_event_fork(p);
1970
1971 trace_task_newtask(p, clone_flags);
1972 uprobe_copy_process(p, clone_flags);
1973
1974 return p;
1975
1976 bad_fork_cancel_cgroup:
1977 spin_unlock(&current->sighand->siglock);
1978 write_unlock_irq(&tasklist_lock);
1979 cgroup_cancel_fork(p);
1980 bad_fork_free_pid:
1981 cgroup_threadgroup_change_end(current);
1982 if (pid != &init_struct_pid)
1983 free_pid(pid);
1984 bad_fork_cleanup_thread:
1985 exit_thread(p);
1986 bad_fork_cleanup_io:
1987 if (p->io_context)
1988 exit_io_context(p);
1989 bad_fork_cleanup_namespaces:
1990 exit_task_namespaces(p);
1991 bad_fork_cleanup_mm:
1992 if (p->mm)
1993 mmput(p->mm);
1994 bad_fork_cleanup_signal:
1995 if (!(clone_flags & CLONE_THREAD))
1996 free_signal_struct(p->signal);
1997 bad_fork_cleanup_sighand:
1998 __cleanup_sighand(p->sighand);
1999 bad_fork_cleanup_fs:
2000 exit_fs(p); /* blocking */
2001 bad_fork_cleanup_files:
2002 exit_files(p); /* blocking */
2003 bad_fork_cleanup_semundo:
2004 exit_sem(p);
2005 bad_fork_cleanup_security:
2006 security_task_free(p);
2007 bad_fork_cleanup_audit:
2008 audit_free(p);
2009 bad_fork_cleanup_perf:
2010 perf_event_free_task(p);
2011 bad_fork_cleanup_policy:
2012 lockdep_free_task(p);
2013 #ifdef CONFIG_NUMA
2014 mpol_put(p->mempolicy);
2015 bad_fork_cleanup_threadgroup_lock:
2016 #endif
2017 delayacct_tsk_free(p);
2018 bad_fork_cleanup_count:
2019 atomic_dec(&p->cred->user->processes);
2020 exit_creds(p);
2021 bad_fork_free:
2022 p->state = TASK_DEAD;
2023 put_task_stack(p);
2024 free_task(p);
2025 fork_out:
2026 return ERR_PTR(retval);
2027 }
2028
2029 static inline void init_idle_pids(struct pid_link *links)
2030 {
2031 enum pid_type type;
2032
2033 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2034 INIT_HLIST_NODE(&links[type].node); /* not really needed */
2035 links[type].pid = &init_struct_pid;
2036 }
2037 }
2038
2039 struct task_struct *fork_idle(int cpu)
2040 {
2041 struct task_struct *task;
2042 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2043 cpu_to_node(cpu));
2044 if (!IS_ERR(task)) {
2045 init_idle_pids(task->pids);
2046 init_idle(task, cpu);
2047 }
2048
2049 return task;
2050 }
2051
2052 /*
2053 * Ok, this is the main fork-routine.
2054 *
2055 * It copies the process, and if successful kick-starts
2056 * it and waits for it to finish using the VM if required.
2057 */
2058 long _do_fork(unsigned long clone_flags,
2059 unsigned long stack_start,
2060 unsigned long stack_size,
2061 int __user *parent_tidptr,
2062 int __user *child_tidptr,
2063 unsigned long tls)
2064 {
2065 struct task_struct *p;
2066 int trace = 0;
2067 long nr;
2068
2069 /*
2070 * Determine whether and which event to report to ptracer. When
2071 * called from kernel_thread or CLONE_UNTRACED is explicitly
2072 * requested, no event is reported; otherwise, report if the event
2073 * for the type of forking is enabled.
2074 */
2075 if (!(clone_flags & CLONE_UNTRACED)) {
2076 if (clone_flags & CLONE_VFORK)
2077 trace = PTRACE_EVENT_VFORK;
2078 else if ((clone_flags & CSIGNAL) != SIGCHLD)
2079 trace = PTRACE_EVENT_CLONE;
2080 else
2081 trace = PTRACE_EVENT_FORK;
2082
2083 if (likely(!ptrace_event_enabled(current, trace)))
2084 trace = 0;
2085 }
2086
2087 p = copy_process(clone_flags, stack_start, stack_size,
2088 child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2089 add_latent_entropy();
2090 /*
2091 * Do this prior waking up the new thread - the thread pointer
2092 * might get invalid after that point, if the thread exits quickly.
2093 */
2094 if (!IS_ERR(p)) {
2095 struct completion vfork;
2096 struct pid *pid;
2097
2098 trace_sched_process_fork(current, p);
2099
2100 pid = get_task_pid(p, PIDTYPE_PID);
2101 nr = pid_vnr(pid);
2102
2103 if (clone_flags & CLONE_PARENT_SETTID)
2104 put_user(nr, parent_tidptr);
2105
2106 if (clone_flags & CLONE_VFORK) {
2107 p->vfork_done = &vfork;
2108 init_completion(&vfork);
2109 get_task_struct(p);
2110 }
2111
2112 wake_up_new_task(p);
2113
2114 /* forking complete and child started to run, tell ptracer */
2115 if (unlikely(trace))
2116 ptrace_event_pid(trace, pid);
2117
2118 if (clone_flags & CLONE_VFORK) {
2119 if (!wait_for_vfork_done(p, &vfork))
2120 ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2121 }
2122
2123 put_pid(pid);
2124 } else {
2125 nr = PTR_ERR(p);
2126 }
2127 return nr;
2128 }
2129
2130 #ifndef CONFIG_HAVE_COPY_THREAD_TLS
2131 /* For compatibility with architectures that call do_fork directly rather than
2132 * using the syscall entry points below. */
2133 long do_fork(unsigned long clone_flags,
2134 unsigned long stack_start,
2135 unsigned long stack_size,
2136 int __user *parent_tidptr,
2137 int __user *child_tidptr)
2138 {
2139 return _do_fork(clone_flags, stack_start, stack_size,
2140 parent_tidptr, child_tidptr, 0);
2141 }
2142 #endif
2143
2144 /*
2145 * Create a kernel thread.
2146 */
2147 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2148 {
2149 return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2150 (unsigned long)arg, NULL, NULL, 0);
2151 }
2152
2153 #ifdef __ARCH_WANT_SYS_FORK
2154 SYSCALL_DEFINE0(fork)
2155 {
2156 #ifdef CONFIG_MMU
2157 return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2158 #else
2159 /* can not support in nommu mode */
2160 return -EINVAL;
2161 #endif
2162 }
2163 #endif
2164
2165 #ifdef __ARCH_WANT_SYS_VFORK
2166 SYSCALL_DEFINE0(vfork)
2167 {
2168 return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2169 0, NULL, NULL, 0);
2170 }
2171 #endif
2172
2173 #ifdef __ARCH_WANT_SYS_CLONE
2174 #ifdef CONFIG_CLONE_BACKWARDS
2175 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2176 int __user *, parent_tidptr,
2177 unsigned long, tls,
2178 int __user *, child_tidptr)
2179 #elif defined(CONFIG_CLONE_BACKWARDS2)
2180 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2181 int __user *, parent_tidptr,
2182 int __user *, child_tidptr,
2183 unsigned long, tls)
2184 #elif defined(CONFIG_CLONE_BACKWARDS3)
2185 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2186 int, stack_size,
2187 int __user *, parent_tidptr,
2188 int __user *, child_tidptr,
2189 unsigned long, tls)
2190 #else
2191 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2192 int __user *, parent_tidptr,
2193 int __user *, child_tidptr,
2194 unsigned long, tls)
2195 #endif
2196 {
2197 return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2198 }
2199 #endif
2200
2201 void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2202 {
2203 struct task_struct *leader, *parent, *child;
2204 int res;
2205
2206 read_lock(&tasklist_lock);
2207 leader = top = top->group_leader;
2208 down:
2209 for_each_thread(leader, parent) {
2210 list_for_each_entry(child, &parent->children, sibling) {
2211 res = visitor(child, data);
2212 if (res) {
2213 if (res < 0)
2214 goto out;
2215 leader = child;
2216 goto down;
2217 }
2218 up:
2219 ;
2220 }
2221 }
2222
2223 if (leader != top) {
2224 child = leader;
2225 parent = child->real_parent;
2226 leader = parent->group_leader;
2227 goto up;
2228 }
2229 out:
2230 read_unlock(&tasklist_lock);
2231 }
2232
2233 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
2234 #define ARCH_MIN_MMSTRUCT_ALIGN 0
2235 #endif
2236
2237 static void sighand_ctor(void *data)
2238 {
2239 struct sighand_struct *sighand = data;
2240
2241 spin_lock_init(&sighand->siglock);
2242 init_waitqueue_head(&sighand->signalfd_wqh);
2243 }
2244
2245 void __init proc_caches_init(void)
2246 {
2247 sighand_cachep = kmem_cache_create("sighand_cache",
2248 sizeof(struct sighand_struct), 0,
2249 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2250 SLAB_ACCOUNT, sighand_ctor);
2251 signal_cachep = kmem_cache_create("signal_cache",
2252 sizeof(struct signal_struct), 0,
2253 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2254 NULL);
2255 files_cachep = kmem_cache_create("files_cache",
2256 sizeof(struct files_struct), 0,
2257 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2258 NULL);
2259 fs_cachep = kmem_cache_create("fs_cache",
2260 sizeof(struct fs_struct), 0,
2261 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2262 NULL);
2263 /*
2264 * FIXME! The "sizeof(struct mm_struct)" currently includes the
2265 * whole struct cpumask for the OFFSTACK case. We could change
2266 * this to *only* allocate as much of it as required by the
2267 * maximum number of CPU's we can ever have. The cpumask_allocation
2268 * is at the end of the structure, exactly for that reason.
2269 */
2270 mm_cachep = kmem_cache_create("mm_struct",
2271 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
2272 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2273 NULL);
2274 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2275 mmap_init();
2276 nsproxy_cache_init();
2277 }
2278
2279 /*
2280 * Check constraints on flags passed to the unshare system call.
2281 */
2282 static int check_unshare_flags(unsigned long unshare_flags)
2283 {
2284 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2285 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2286 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2287 CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2288 return -EINVAL;
2289 /*
2290 * Not implemented, but pretend it works if there is nothing
2291 * to unshare. Note that unsharing the address space or the
2292 * signal handlers also need to unshare the signal queues (aka
2293 * CLONE_THREAD).
2294 */
2295 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2296 if (!thread_group_empty(current))
2297 return -EINVAL;
2298 }
2299 if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2300 if (atomic_read(&current->sighand->count) > 1)
2301 return -EINVAL;
2302 }
2303 if (unshare_flags & CLONE_VM) {
2304 if (!current_is_single_threaded())
2305 return -EINVAL;
2306 }
2307
2308 return 0;
2309 }
2310
2311 /*
2312 * Unshare the filesystem structure if it is being shared
2313 */
2314 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2315 {
2316 struct fs_struct *fs = current->fs;
2317
2318 if (!(unshare_flags & CLONE_FS) || !fs)
2319 return 0;
2320
2321 /* don't need lock here; in the worst case we'll do useless copy */
2322 if (fs->users == 1)
2323 return 0;
2324
2325 *new_fsp = copy_fs_struct(fs);
2326 if (!*new_fsp)
2327 return -ENOMEM;
2328
2329 return 0;
2330 }
2331
2332 /*
2333 * Unshare file descriptor table if it is being shared
2334 */
2335 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2336 {
2337 struct files_struct *fd = current->files;
2338 int error = 0;
2339
2340 if ((unshare_flags & CLONE_FILES) &&
2341 (fd && atomic_read(&fd->count) > 1)) {
2342 *new_fdp = dup_fd(fd, &error);
2343 if (!*new_fdp)
2344 return error;
2345 }
2346
2347 return 0;
2348 }
2349
2350 /*
2351 * unshare allows a process to 'unshare' part of the process
2352 * context which was originally shared using clone. copy_*
2353 * functions used by do_fork() cannot be used here directly
2354 * because they modify an inactive task_struct that is being
2355 * constructed. Here we are modifying the current, active,
2356 * task_struct.
2357 */
2358 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2359 {
2360 struct fs_struct *fs, *new_fs = NULL;
2361 struct files_struct *fd, *new_fd = NULL;
2362 struct cred *new_cred = NULL;
2363 struct nsproxy *new_nsproxy = NULL;
2364 int do_sysvsem = 0;
2365 int err;
2366
2367 /*
2368 * If unsharing a user namespace must also unshare the thread group
2369 * and unshare the filesystem root and working directories.
2370 */
2371 if (unshare_flags & CLONE_NEWUSER)
2372 unshare_flags |= CLONE_THREAD | CLONE_FS;
2373 /*
2374 * If unsharing vm, must also unshare signal handlers.
2375 */
2376 if (unshare_flags & CLONE_VM)
2377 unshare_flags |= CLONE_SIGHAND;
2378 /*
2379 * If unsharing a signal handlers, must also unshare the signal queues.
2380 */
2381 if (unshare_flags & CLONE_SIGHAND)
2382 unshare_flags |= CLONE_THREAD;
2383 /*
2384 * If unsharing namespace, must also unshare filesystem information.
2385 */
2386 if (unshare_flags & CLONE_NEWNS)
2387 unshare_flags |= CLONE_FS;
2388
2389 if ((unshare_flags & CLONE_NEWUSER) && !unprivileged_userns_clone) {
2390 err = -EPERM;
2391 if (!capable(CAP_SYS_ADMIN))
2392 goto bad_unshare_out;
2393 }
2394
2395 err = check_unshare_flags(unshare_flags);
2396 if (err)
2397 goto bad_unshare_out;
2398 /*
2399 * CLONE_NEWIPC must also detach from the undolist: after switching
2400 * to a new ipc namespace, the semaphore arrays from the old
2401 * namespace are unreachable.
2402 */
2403 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2404 do_sysvsem = 1;
2405 err = unshare_fs(unshare_flags, &new_fs);
2406 if (err)
2407 goto bad_unshare_out;
2408 err = unshare_fd(unshare_flags, &new_fd);
2409 if (err)
2410 goto bad_unshare_cleanup_fs;
2411 err = unshare_userns(unshare_flags, &new_cred);
2412 if (err)
2413 goto bad_unshare_cleanup_fd;
2414 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2415 new_cred, new_fs);
2416 if (err)
2417 goto bad_unshare_cleanup_cred;
2418
2419 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2420 if (do_sysvsem) {
2421 /*
2422 * CLONE_SYSVSEM is equivalent to sys_exit().
2423 */
2424 exit_sem(current);
2425 }
2426 if (unshare_flags & CLONE_NEWIPC) {
2427 /* Orphan segments in old ns (see sem above). */
2428 exit_shm(current);
2429 shm_init_task(current);
2430 }
2431
2432 if (new_nsproxy)
2433 switch_task_namespaces(current, new_nsproxy);
2434
2435 task_lock(current);
2436
2437 if (new_fs) {
2438 fs = current->fs;
2439 spin_lock(&fs->lock);
2440 current->fs = new_fs;
2441 if (--fs->users)
2442 new_fs = NULL;
2443 else
2444 new_fs = fs;
2445 spin_unlock(&fs->lock);
2446 }
2447
2448 if (new_fd) {
2449 fd = current->files;
2450 current->files = new_fd;
2451 new_fd = fd;
2452 }
2453
2454 task_unlock(current);
2455
2456 if (new_cred) {
2457 /* Install the new user namespace */
2458 commit_creds(new_cred);
2459 new_cred = NULL;
2460 }
2461 }
2462
2463 perf_event_namespaces(current);
2464
2465 bad_unshare_cleanup_cred:
2466 if (new_cred)
2467 put_cred(new_cred);
2468 bad_unshare_cleanup_fd:
2469 if (new_fd)
2470 put_files_struct(new_fd);
2471
2472 bad_unshare_cleanup_fs:
2473 if (new_fs)
2474 free_fs_struct(new_fs);
2475
2476 bad_unshare_out:
2477 return err;
2478 }
2479
2480 /*
2481 * Helper to unshare the files of the current task.
2482 * We don't want to expose copy_files internals to
2483 * the exec layer of the kernel.
2484 */
2485
2486 int unshare_files(struct files_struct **displaced)
2487 {
2488 struct task_struct *task = current;
2489 struct files_struct *copy = NULL;
2490 int error;
2491
2492 error = unshare_fd(CLONE_FILES, &copy);
2493 if (error || !copy) {
2494 *displaced = NULL;
2495 return error;
2496 }
2497 *displaced = task->files;
2498 task_lock(task);
2499 task->files = copy;
2500 task_unlock(task);
2501 return 0;
2502 }
2503
2504 int sysctl_max_threads(struct ctl_table *table, int write,
2505 void __user *buffer, size_t *lenp, loff_t *ppos)
2506 {
2507 struct ctl_table t;
2508 int ret;
2509 int threads = max_threads;
2510 int min = MIN_THREADS;
2511 int max = MAX_THREADS;
2512
2513 t = *table;
2514 t.data = &threads;
2515 t.extra1 = &min;
2516 t.extra2 = &max;
2517
2518 ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2519 if (ret || !write)
2520 return ret;
2521
2522 set_max_threads(threads);
2523
2524 return 0;
2525 }