]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/fork.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/davem/sparc-next-2.6
[mirror_ubuntu-bionic-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/swap.h>
38 #include <linux/syscalls.h>
39 #include <linux/jiffies.h>
40 #include <linux/tracehook.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/task_io_accounting_ops.h>
44 #include <linux/rcupdate.h>
45 #include <linux/ptrace.h>
46 #include <linux/mount.h>
47 #include <linux/audit.h>
48 #include <linux/memcontrol.h>
49 #include <linux/ftrace.h>
50 #include <linux/profile.h>
51 #include <linux/rmap.h>
52 #include <linux/ksm.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <linux/fs_struct.h>
64 #include <linux/magic.h>
65 #include <linux/perf_event.h>
66 #include <linux/posix-timers.h>
67
68 #include <asm/pgtable.h>
69 #include <asm/pgalloc.h>
70 #include <asm/uaccess.h>
71 #include <asm/mmu_context.h>
72 #include <asm/cacheflush.h>
73 #include <asm/tlbflush.h>
74
75 #include <trace/events/sched.h>
76
77 /*
78 * Protected counters by write_lock_irq(&tasklist_lock)
79 */
80 unsigned long total_forks; /* Handle normal Linux uptimes. */
81 int nr_threads; /* The idle threads do not count.. */
82
83 int max_threads; /* tunable limit on nr_threads */
84
85 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
86
87 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
88
89 int nr_processes(void)
90 {
91 int cpu;
92 int total = 0;
93
94 for_each_possible_cpu(cpu)
95 total += per_cpu(process_counts, cpu);
96
97 return total;
98 }
99
100 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
101 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
102 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
103 static struct kmem_cache *task_struct_cachep;
104 #endif
105
106 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
107 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
108 {
109 #ifdef CONFIG_DEBUG_STACK_USAGE
110 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
111 #else
112 gfp_t mask = GFP_KERNEL;
113 #endif
114 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
115 }
116
117 static inline void free_thread_info(struct thread_info *ti)
118 {
119 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
120 }
121 #endif
122
123 /* SLAB cache for signal_struct structures (tsk->signal) */
124 static struct kmem_cache *signal_cachep;
125
126 /* SLAB cache for sighand_struct structures (tsk->sighand) */
127 struct kmem_cache *sighand_cachep;
128
129 /* SLAB cache for files_struct structures (tsk->files) */
130 struct kmem_cache *files_cachep;
131
132 /* SLAB cache for fs_struct structures (tsk->fs) */
133 struct kmem_cache *fs_cachep;
134
135 /* SLAB cache for vm_area_struct structures */
136 struct kmem_cache *vm_area_cachep;
137
138 /* SLAB cache for mm_struct structures (tsk->mm) */
139 static struct kmem_cache *mm_cachep;
140
141 static void account_kernel_stack(struct thread_info *ti, int account)
142 {
143 struct zone *zone = page_zone(virt_to_page(ti));
144
145 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
146 }
147
148 void free_task(struct task_struct *tsk)
149 {
150 prop_local_destroy_single(&tsk->dirties);
151 account_kernel_stack(tsk->stack, -1);
152 free_thread_info(tsk->stack);
153 rt_mutex_debug_task_free(tsk);
154 ftrace_graph_exit_task(tsk);
155 free_task_struct(tsk);
156 }
157 EXPORT_SYMBOL(free_task);
158
159 void __put_task_struct(struct task_struct *tsk)
160 {
161 WARN_ON(!tsk->exit_state);
162 WARN_ON(atomic_read(&tsk->usage));
163 WARN_ON(tsk == current);
164
165 exit_creds(tsk);
166 delayacct_tsk_free(tsk);
167
168 if (!profile_handoff_task(tsk))
169 free_task(tsk);
170 }
171
172 /*
173 * macro override instead of weak attribute alias, to workaround
174 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
175 */
176 #ifndef arch_task_cache_init
177 #define arch_task_cache_init()
178 #endif
179
180 void __init fork_init(unsigned long mempages)
181 {
182 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
183 #ifndef ARCH_MIN_TASKALIGN
184 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
185 #endif
186 /* create a slab on which task_structs can be allocated */
187 task_struct_cachep =
188 kmem_cache_create("task_struct", sizeof(struct task_struct),
189 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
190 #endif
191
192 /* do the arch specific task caches init */
193 arch_task_cache_init();
194
195 /*
196 * The default maximum number of threads is set to a safe
197 * value: the thread structures can take up at most half
198 * of memory.
199 */
200 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
201
202 /*
203 * we need to allow at least 20 threads to boot a system
204 */
205 if(max_threads < 20)
206 max_threads = 20;
207
208 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
209 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
210 init_task.signal->rlim[RLIMIT_SIGPENDING] =
211 init_task.signal->rlim[RLIMIT_NPROC];
212 }
213
214 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
215 struct task_struct *src)
216 {
217 *dst = *src;
218 return 0;
219 }
220
221 static struct task_struct *dup_task_struct(struct task_struct *orig)
222 {
223 struct task_struct *tsk;
224 struct thread_info *ti;
225 unsigned long *stackend;
226
227 int err;
228
229 prepare_to_copy(orig);
230
231 tsk = alloc_task_struct();
232 if (!tsk)
233 return NULL;
234
235 ti = alloc_thread_info(tsk);
236 if (!ti) {
237 free_task_struct(tsk);
238 return NULL;
239 }
240
241 err = arch_dup_task_struct(tsk, orig);
242 if (err)
243 goto out;
244
245 tsk->stack = ti;
246
247 err = prop_local_init_single(&tsk->dirties);
248 if (err)
249 goto out;
250
251 setup_thread_stack(tsk, orig);
252 stackend = end_of_stack(tsk);
253 *stackend = STACK_END_MAGIC; /* for overflow detection */
254
255 #ifdef CONFIG_CC_STACKPROTECTOR
256 tsk->stack_canary = get_random_int();
257 #endif
258
259 /* One for us, one for whoever does the "release_task()" (usually parent) */
260 atomic_set(&tsk->usage,2);
261 atomic_set(&tsk->fs_excl, 0);
262 #ifdef CONFIG_BLK_DEV_IO_TRACE
263 tsk->btrace_seq = 0;
264 #endif
265 tsk->splice_pipe = NULL;
266
267 account_kernel_stack(ti, 1);
268
269 return tsk;
270
271 out:
272 free_thread_info(ti);
273 free_task_struct(tsk);
274 return NULL;
275 }
276
277 #ifdef CONFIG_MMU
278 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
279 {
280 struct vm_area_struct *mpnt, *tmp, **pprev;
281 struct rb_node **rb_link, *rb_parent;
282 int retval;
283 unsigned long charge;
284 struct mempolicy *pol;
285
286 down_write(&oldmm->mmap_sem);
287 flush_cache_dup_mm(oldmm);
288 /*
289 * Not linked in yet - no deadlock potential:
290 */
291 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
292
293 mm->locked_vm = 0;
294 mm->mmap = NULL;
295 mm->mmap_cache = NULL;
296 mm->free_area_cache = oldmm->mmap_base;
297 mm->cached_hole_size = ~0UL;
298 mm->map_count = 0;
299 cpumask_clear(mm_cpumask(mm));
300 mm->mm_rb = RB_ROOT;
301 rb_link = &mm->mm_rb.rb_node;
302 rb_parent = NULL;
303 pprev = &mm->mmap;
304 retval = ksm_fork(mm, oldmm);
305 if (retval)
306 goto out;
307
308 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
309 struct file *file;
310
311 if (mpnt->vm_flags & VM_DONTCOPY) {
312 long pages = vma_pages(mpnt);
313 mm->total_vm -= pages;
314 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
315 -pages);
316 continue;
317 }
318 charge = 0;
319 if (mpnt->vm_flags & VM_ACCOUNT) {
320 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
321 if (security_vm_enough_memory(len))
322 goto fail_nomem;
323 charge = len;
324 }
325 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
326 if (!tmp)
327 goto fail_nomem;
328 *tmp = *mpnt;
329 pol = mpol_dup(vma_policy(mpnt));
330 retval = PTR_ERR(pol);
331 if (IS_ERR(pol))
332 goto fail_nomem_policy;
333 vma_set_policy(tmp, pol);
334 tmp->vm_flags &= ~VM_LOCKED;
335 tmp->vm_mm = mm;
336 tmp->vm_next = NULL;
337 anon_vma_link(tmp);
338 file = tmp->vm_file;
339 if (file) {
340 struct inode *inode = file->f_path.dentry->d_inode;
341 struct address_space *mapping = file->f_mapping;
342
343 get_file(file);
344 if (tmp->vm_flags & VM_DENYWRITE)
345 atomic_dec(&inode->i_writecount);
346 spin_lock(&mapping->i_mmap_lock);
347 if (tmp->vm_flags & VM_SHARED)
348 mapping->i_mmap_writable++;
349 tmp->vm_truncate_count = mpnt->vm_truncate_count;
350 flush_dcache_mmap_lock(mapping);
351 /* insert tmp into the share list, just after mpnt */
352 vma_prio_tree_add(tmp, mpnt);
353 flush_dcache_mmap_unlock(mapping);
354 spin_unlock(&mapping->i_mmap_lock);
355 }
356
357 /*
358 * Clear hugetlb-related page reserves for children. This only
359 * affects MAP_PRIVATE mappings. Faults generated by the child
360 * are not guaranteed to succeed, even if read-only
361 */
362 if (is_vm_hugetlb_page(tmp))
363 reset_vma_resv_huge_pages(tmp);
364
365 /*
366 * Link in the new vma and copy the page table entries.
367 */
368 *pprev = tmp;
369 pprev = &tmp->vm_next;
370
371 __vma_link_rb(mm, tmp, rb_link, rb_parent);
372 rb_link = &tmp->vm_rb.rb_right;
373 rb_parent = &tmp->vm_rb;
374
375 mm->map_count++;
376 retval = copy_page_range(mm, oldmm, mpnt);
377
378 if (tmp->vm_ops && tmp->vm_ops->open)
379 tmp->vm_ops->open(tmp);
380
381 if (retval)
382 goto out;
383 }
384 /* a new mm has just been created */
385 arch_dup_mmap(oldmm, mm);
386 retval = 0;
387 out:
388 up_write(&mm->mmap_sem);
389 flush_tlb_mm(oldmm);
390 up_write(&oldmm->mmap_sem);
391 return retval;
392 fail_nomem_policy:
393 kmem_cache_free(vm_area_cachep, tmp);
394 fail_nomem:
395 retval = -ENOMEM;
396 vm_unacct_memory(charge);
397 goto out;
398 }
399
400 static inline int mm_alloc_pgd(struct mm_struct * mm)
401 {
402 mm->pgd = pgd_alloc(mm);
403 if (unlikely(!mm->pgd))
404 return -ENOMEM;
405 return 0;
406 }
407
408 static inline void mm_free_pgd(struct mm_struct * mm)
409 {
410 pgd_free(mm, mm->pgd);
411 }
412 #else
413 #define dup_mmap(mm, oldmm) (0)
414 #define mm_alloc_pgd(mm) (0)
415 #define mm_free_pgd(mm)
416 #endif /* CONFIG_MMU */
417
418 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
419
420 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
421 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
422
423 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
424
425 static int __init coredump_filter_setup(char *s)
426 {
427 default_dump_filter =
428 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
429 MMF_DUMP_FILTER_MASK;
430 return 1;
431 }
432
433 __setup("coredump_filter=", coredump_filter_setup);
434
435 #include <linux/init_task.h>
436
437 static void mm_init_aio(struct mm_struct *mm)
438 {
439 #ifdef CONFIG_AIO
440 spin_lock_init(&mm->ioctx_lock);
441 INIT_HLIST_HEAD(&mm->ioctx_list);
442 #endif
443 }
444
445 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
446 {
447 atomic_set(&mm->mm_users, 1);
448 atomic_set(&mm->mm_count, 1);
449 init_rwsem(&mm->mmap_sem);
450 INIT_LIST_HEAD(&mm->mmlist);
451 mm->flags = (current->mm) ?
452 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
453 mm->core_state = NULL;
454 mm->nr_ptes = 0;
455 set_mm_counter(mm, file_rss, 0);
456 set_mm_counter(mm, anon_rss, 0);
457 spin_lock_init(&mm->page_table_lock);
458 mm->free_area_cache = TASK_UNMAPPED_BASE;
459 mm->cached_hole_size = ~0UL;
460 mm_init_aio(mm);
461 mm_init_owner(mm, p);
462
463 if (likely(!mm_alloc_pgd(mm))) {
464 mm->def_flags = 0;
465 mmu_notifier_mm_init(mm);
466 return mm;
467 }
468
469 free_mm(mm);
470 return NULL;
471 }
472
473 /*
474 * Allocate and initialize an mm_struct.
475 */
476 struct mm_struct * mm_alloc(void)
477 {
478 struct mm_struct * mm;
479
480 mm = allocate_mm();
481 if (mm) {
482 memset(mm, 0, sizeof(*mm));
483 mm = mm_init(mm, current);
484 }
485 return mm;
486 }
487
488 /*
489 * Called when the last reference to the mm
490 * is dropped: either by a lazy thread or by
491 * mmput. Free the page directory and the mm.
492 */
493 void __mmdrop(struct mm_struct *mm)
494 {
495 BUG_ON(mm == &init_mm);
496 mm_free_pgd(mm);
497 destroy_context(mm);
498 mmu_notifier_mm_destroy(mm);
499 free_mm(mm);
500 }
501 EXPORT_SYMBOL_GPL(__mmdrop);
502
503 /*
504 * Decrement the use count and release all resources for an mm.
505 */
506 void mmput(struct mm_struct *mm)
507 {
508 might_sleep();
509
510 if (atomic_dec_and_test(&mm->mm_users)) {
511 exit_aio(mm);
512 ksm_exit(mm);
513 exit_mmap(mm);
514 set_mm_exe_file(mm, NULL);
515 if (!list_empty(&mm->mmlist)) {
516 spin_lock(&mmlist_lock);
517 list_del(&mm->mmlist);
518 spin_unlock(&mmlist_lock);
519 }
520 put_swap_token(mm);
521 if (mm->binfmt)
522 module_put(mm->binfmt->module);
523 mmdrop(mm);
524 }
525 }
526 EXPORT_SYMBOL_GPL(mmput);
527
528 /**
529 * get_task_mm - acquire a reference to the task's mm
530 *
531 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
532 * this kernel workthread has transiently adopted a user mm with use_mm,
533 * to do its AIO) is not set and if so returns a reference to it, after
534 * bumping up the use count. User must release the mm via mmput()
535 * after use. Typically used by /proc and ptrace.
536 */
537 struct mm_struct *get_task_mm(struct task_struct *task)
538 {
539 struct mm_struct *mm;
540
541 task_lock(task);
542 mm = task->mm;
543 if (mm) {
544 if (task->flags & PF_KTHREAD)
545 mm = NULL;
546 else
547 atomic_inc(&mm->mm_users);
548 }
549 task_unlock(task);
550 return mm;
551 }
552 EXPORT_SYMBOL_GPL(get_task_mm);
553
554 /* Please note the differences between mmput and mm_release.
555 * mmput is called whenever we stop holding onto a mm_struct,
556 * error success whatever.
557 *
558 * mm_release is called after a mm_struct has been removed
559 * from the current process.
560 *
561 * This difference is important for error handling, when we
562 * only half set up a mm_struct for a new process and need to restore
563 * the old one. Because we mmput the new mm_struct before
564 * restoring the old one. . .
565 * Eric Biederman 10 January 1998
566 */
567 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
568 {
569 struct completion *vfork_done = tsk->vfork_done;
570
571 /* Get rid of any futexes when releasing the mm */
572 #ifdef CONFIG_FUTEX
573 if (unlikely(tsk->robust_list)) {
574 exit_robust_list(tsk);
575 tsk->robust_list = NULL;
576 }
577 #ifdef CONFIG_COMPAT
578 if (unlikely(tsk->compat_robust_list)) {
579 compat_exit_robust_list(tsk);
580 tsk->compat_robust_list = NULL;
581 }
582 #endif
583 if (unlikely(!list_empty(&tsk->pi_state_list)))
584 exit_pi_state_list(tsk);
585 #endif
586
587 /* Get rid of any cached register state */
588 deactivate_mm(tsk, mm);
589
590 /* notify parent sleeping on vfork() */
591 if (vfork_done) {
592 tsk->vfork_done = NULL;
593 complete(vfork_done);
594 }
595
596 /*
597 * If we're exiting normally, clear a user-space tid field if
598 * requested. We leave this alone when dying by signal, to leave
599 * the value intact in a core dump, and to save the unnecessary
600 * trouble otherwise. Userland only wants this done for a sys_exit.
601 */
602 if (tsk->clear_child_tid) {
603 if (!(tsk->flags & PF_SIGNALED) &&
604 atomic_read(&mm->mm_users) > 1) {
605 /*
606 * We don't check the error code - if userspace has
607 * not set up a proper pointer then tough luck.
608 */
609 put_user(0, tsk->clear_child_tid);
610 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
611 1, NULL, NULL, 0);
612 }
613 tsk->clear_child_tid = NULL;
614 }
615 }
616
617 /*
618 * Allocate a new mm structure and copy contents from the
619 * mm structure of the passed in task structure.
620 */
621 struct mm_struct *dup_mm(struct task_struct *tsk)
622 {
623 struct mm_struct *mm, *oldmm = current->mm;
624 int err;
625
626 if (!oldmm)
627 return NULL;
628
629 mm = allocate_mm();
630 if (!mm)
631 goto fail_nomem;
632
633 memcpy(mm, oldmm, sizeof(*mm));
634
635 /* Initializing for Swap token stuff */
636 mm->token_priority = 0;
637 mm->last_interval = 0;
638
639 if (!mm_init(mm, tsk))
640 goto fail_nomem;
641
642 if (init_new_context(tsk, mm))
643 goto fail_nocontext;
644
645 dup_mm_exe_file(oldmm, mm);
646
647 err = dup_mmap(mm, oldmm);
648 if (err)
649 goto free_pt;
650
651 mm->hiwater_rss = get_mm_rss(mm);
652 mm->hiwater_vm = mm->total_vm;
653
654 if (mm->binfmt && !try_module_get(mm->binfmt->module))
655 goto free_pt;
656
657 return mm;
658
659 free_pt:
660 /* don't put binfmt in mmput, we haven't got module yet */
661 mm->binfmt = NULL;
662 mmput(mm);
663
664 fail_nomem:
665 return NULL;
666
667 fail_nocontext:
668 /*
669 * If init_new_context() failed, we cannot use mmput() to free the mm
670 * because it calls destroy_context()
671 */
672 mm_free_pgd(mm);
673 free_mm(mm);
674 return NULL;
675 }
676
677 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
678 {
679 struct mm_struct * mm, *oldmm;
680 int retval;
681
682 tsk->min_flt = tsk->maj_flt = 0;
683 tsk->nvcsw = tsk->nivcsw = 0;
684 #ifdef CONFIG_DETECT_HUNG_TASK
685 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
686 #endif
687
688 tsk->mm = NULL;
689 tsk->active_mm = NULL;
690
691 /*
692 * Are we cloning a kernel thread?
693 *
694 * We need to steal a active VM for that..
695 */
696 oldmm = current->mm;
697 if (!oldmm)
698 return 0;
699
700 if (clone_flags & CLONE_VM) {
701 atomic_inc(&oldmm->mm_users);
702 mm = oldmm;
703 goto good_mm;
704 }
705
706 retval = -ENOMEM;
707 mm = dup_mm(tsk);
708 if (!mm)
709 goto fail_nomem;
710
711 good_mm:
712 /* Initializing for Swap token stuff */
713 mm->token_priority = 0;
714 mm->last_interval = 0;
715
716 tsk->mm = mm;
717 tsk->active_mm = mm;
718 return 0;
719
720 fail_nomem:
721 return retval;
722 }
723
724 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
725 {
726 struct fs_struct *fs = current->fs;
727 if (clone_flags & CLONE_FS) {
728 /* tsk->fs is already what we want */
729 write_lock(&fs->lock);
730 if (fs->in_exec) {
731 write_unlock(&fs->lock);
732 return -EAGAIN;
733 }
734 fs->users++;
735 write_unlock(&fs->lock);
736 return 0;
737 }
738 tsk->fs = copy_fs_struct(fs);
739 if (!tsk->fs)
740 return -ENOMEM;
741 return 0;
742 }
743
744 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
745 {
746 struct files_struct *oldf, *newf;
747 int error = 0;
748
749 /*
750 * A background process may not have any files ...
751 */
752 oldf = current->files;
753 if (!oldf)
754 goto out;
755
756 if (clone_flags & CLONE_FILES) {
757 atomic_inc(&oldf->count);
758 goto out;
759 }
760
761 newf = dup_fd(oldf, &error);
762 if (!newf)
763 goto out;
764
765 tsk->files = newf;
766 error = 0;
767 out:
768 return error;
769 }
770
771 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
772 {
773 #ifdef CONFIG_BLOCK
774 struct io_context *ioc = current->io_context;
775
776 if (!ioc)
777 return 0;
778 /*
779 * Share io context with parent, if CLONE_IO is set
780 */
781 if (clone_flags & CLONE_IO) {
782 tsk->io_context = ioc_task_link(ioc);
783 if (unlikely(!tsk->io_context))
784 return -ENOMEM;
785 } else if (ioprio_valid(ioc->ioprio)) {
786 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
787 if (unlikely(!tsk->io_context))
788 return -ENOMEM;
789
790 tsk->io_context->ioprio = ioc->ioprio;
791 }
792 #endif
793 return 0;
794 }
795
796 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
797 {
798 struct sighand_struct *sig;
799
800 if (clone_flags & CLONE_SIGHAND) {
801 atomic_inc(&current->sighand->count);
802 return 0;
803 }
804 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
805 rcu_assign_pointer(tsk->sighand, sig);
806 if (!sig)
807 return -ENOMEM;
808 atomic_set(&sig->count, 1);
809 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
810 return 0;
811 }
812
813 void __cleanup_sighand(struct sighand_struct *sighand)
814 {
815 if (atomic_dec_and_test(&sighand->count))
816 kmem_cache_free(sighand_cachep, sighand);
817 }
818
819
820 /*
821 * Initialize POSIX timer handling for a thread group.
822 */
823 static void posix_cpu_timers_init_group(struct signal_struct *sig)
824 {
825 /* Thread group counters. */
826 thread_group_cputime_init(sig);
827
828 /* Expiration times and increments. */
829 sig->it[CPUCLOCK_PROF].expires = cputime_zero;
830 sig->it[CPUCLOCK_PROF].incr = cputime_zero;
831 sig->it[CPUCLOCK_VIRT].expires = cputime_zero;
832 sig->it[CPUCLOCK_VIRT].incr = cputime_zero;
833
834 /* Cached expiration times. */
835 sig->cputime_expires.prof_exp = cputime_zero;
836 sig->cputime_expires.virt_exp = cputime_zero;
837 sig->cputime_expires.sched_exp = 0;
838
839 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
840 sig->cputime_expires.prof_exp =
841 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
842 sig->cputimer.running = 1;
843 }
844
845 /* The timer lists. */
846 INIT_LIST_HEAD(&sig->cpu_timers[0]);
847 INIT_LIST_HEAD(&sig->cpu_timers[1]);
848 INIT_LIST_HEAD(&sig->cpu_timers[2]);
849 }
850
851 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
852 {
853 struct signal_struct *sig;
854
855 if (clone_flags & CLONE_THREAD)
856 return 0;
857
858 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
859 tsk->signal = sig;
860 if (!sig)
861 return -ENOMEM;
862
863 atomic_set(&sig->count, 1);
864 atomic_set(&sig->live, 1);
865 init_waitqueue_head(&sig->wait_chldexit);
866 sig->flags = 0;
867 if (clone_flags & CLONE_NEWPID)
868 sig->flags |= SIGNAL_UNKILLABLE;
869 sig->group_exit_code = 0;
870 sig->group_exit_task = NULL;
871 sig->group_stop_count = 0;
872 sig->curr_target = tsk;
873 init_sigpending(&sig->shared_pending);
874 INIT_LIST_HEAD(&sig->posix_timers);
875
876 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
877 sig->it_real_incr.tv64 = 0;
878 sig->real_timer.function = it_real_fn;
879
880 sig->leader = 0; /* session leadership doesn't inherit */
881 sig->tty_old_pgrp = NULL;
882 sig->tty = NULL;
883
884 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
885 sig->gtime = cputime_zero;
886 sig->cgtime = cputime_zero;
887 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
888 sig->prev_utime = sig->prev_stime = cputime_zero;
889 #endif
890 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
891 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
892 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
893 sig->maxrss = sig->cmaxrss = 0;
894 task_io_accounting_init(&sig->ioac);
895 sig->sum_sched_runtime = 0;
896 taskstats_tgid_init(sig);
897
898 task_lock(current->group_leader);
899 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
900 task_unlock(current->group_leader);
901
902 posix_cpu_timers_init_group(sig);
903
904 acct_init_pacct(&sig->pacct);
905
906 tty_audit_fork(sig);
907
908 sig->oom_adj = current->signal->oom_adj;
909
910 return 0;
911 }
912
913 void __cleanup_signal(struct signal_struct *sig)
914 {
915 thread_group_cputime_free(sig);
916 tty_kref_put(sig->tty);
917 kmem_cache_free(signal_cachep, sig);
918 }
919
920 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
921 {
922 unsigned long new_flags = p->flags;
923
924 new_flags &= ~PF_SUPERPRIV;
925 new_flags |= PF_FORKNOEXEC;
926 new_flags |= PF_STARTING;
927 p->flags = new_flags;
928 clear_freeze_flag(p);
929 }
930
931 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
932 {
933 current->clear_child_tid = tidptr;
934
935 return task_pid_vnr(current);
936 }
937
938 static void rt_mutex_init_task(struct task_struct *p)
939 {
940 spin_lock_init(&p->pi_lock);
941 #ifdef CONFIG_RT_MUTEXES
942 plist_head_init(&p->pi_waiters, &p->pi_lock);
943 p->pi_blocked_on = NULL;
944 #endif
945 }
946
947 #ifdef CONFIG_MM_OWNER
948 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
949 {
950 mm->owner = p;
951 }
952 #endif /* CONFIG_MM_OWNER */
953
954 /*
955 * Initialize POSIX timer handling for a single task.
956 */
957 static void posix_cpu_timers_init(struct task_struct *tsk)
958 {
959 tsk->cputime_expires.prof_exp = cputime_zero;
960 tsk->cputime_expires.virt_exp = cputime_zero;
961 tsk->cputime_expires.sched_exp = 0;
962 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
963 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
964 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
965 }
966
967 /*
968 * This creates a new process as a copy of the old one,
969 * but does not actually start it yet.
970 *
971 * It copies the registers, and all the appropriate
972 * parts of the process environment (as per the clone
973 * flags). The actual kick-off is left to the caller.
974 */
975 static struct task_struct *copy_process(unsigned long clone_flags,
976 unsigned long stack_start,
977 struct pt_regs *regs,
978 unsigned long stack_size,
979 int __user *child_tidptr,
980 struct pid *pid,
981 int trace)
982 {
983 int retval;
984 struct task_struct *p;
985 int cgroup_callbacks_done = 0;
986
987 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
988 return ERR_PTR(-EINVAL);
989
990 /*
991 * Thread groups must share signals as well, and detached threads
992 * can only be started up within the thread group.
993 */
994 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
995 return ERR_PTR(-EINVAL);
996
997 /*
998 * Shared signal handlers imply shared VM. By way of the above,
999 * thread groups also imply shared VM. Blocking this case allows
1000 * for various simplifications in other code.
1001 */
1002 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1003 return ERR_PTR(-EINVAL);
1004
1005 /*
1006 * Siblings of global init remain as zombies on exit since they are
1007 * not reaped by their parent (swapper). To solve this and to avoid
1008 * multi-rooted process trees, prevent global and container-inits
1009 * from creating siblings.
1010 */
1011 if ((clone_flags & CLONE_PARENT) &&
1012 current->signal->flags & SIGNAL_UNKILLABLE)
1013 return ERR_PTR(-EINVAL);
1014
1015 retval = security_task_create(clone_flags);
1016 if (retval)
1017 goto fork_out;
1018
1019 retval = -ENOMEM;
1020 p = dup_task_struct(current);
1021 if (!p)
1022 goto fork_out;
1023
1024 ftrace_graph_init_task(p);
1025
1026 rt_mutex_init_task(p);
1027
1028 #ifdef CONFIG_PROVE_LOCKING
1029 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1030 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1031 #endif
1032 retval = -EAGAIN;
1033 if (atomic_read(&p->real_cred->user->processes) >=
1034 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1035 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1036 p->real_cred->user != INIT_USER)
1037 goto bad_fork_free;
1038 }
1039
1040 retval = copy_creds(p, clone_flags);
1041 if (retval < 0)
1042 goto bad_fork_free;
1043
1044 /*
1045 * If multiple threads are within copy_process(), then this check
1046 * triggers too late. This doesn't hurt, the check is only there
1047 * to stop root fork bombs.
1048 */
1049 retval = -EAGAIN;
1050 if (nr_threads >= max_threads)
1051 goto bad_fork_cleanup_count;
1052
1053 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1054 goto bad_fork_cleanup_count;
1055
1056 p->did_exec = 0;
1057 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1058 copy_flags(clone_flags, p);
1059 INIT_LIST_HEAD(&p->children);
1060 INIT_LIST_HEAD(&p->sibling);
1061 rcu_copy_process(p);
1062 p->vfork_done = NULL;
1063 spin_lock_init(&p->alloc_lock);
1064
1065 init_sigpending(&p->pending);
1066
1067 p->utime = cputime_zero;
1068 p->stime = cputime_zero;
1069 p->gtime = cputime_zero;
1070 p->utimescaled = cputime_zero;
1071 p->stimescaled = cputime_zero;
1072 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
1073 p->prev_utime = cputime_zero;
1074 p->prev_stime = cputime_zero;
1075 #endif
1076
1077 p->default_timer_slack_ns = current->timer_slack_ns;
1078
1079 task_io_accounting_init(&p->ioac);
1080 acct_clear_integrals(p);
1081
1082 posix_cpu_timers_init(p);
1083
1084 p->lock_depth = -1; /* -1 = no lock */
1085 do_posix_clock_monotonic_gettime(&p->start_time);
1086 p->real_start_time = p->start_time;
1087 monotonic_to_bootbased(&p->real_start_time);
1088 p->io_context = NULL;
1089 p->audit_context = NULL;
1090 cgroup_fork(p);
1091 #ifdef CONFIG_NUMA
1092 p->mempolicy = mpol_dup(p->mempolicy);
1093 if (IS_ERR(p->mempolicy)) {
1094 retval = PTR_ERR(p->mempolicy);
1095 p->mempolicy = NULL;
1096 goto bad_fork_cleanup_cgroup;
1097 }
1098 mpol_fix_fork_child_flag(p);
1099 #endif
1100 #ifdef CONFIG_TRACE_IRQFLAGS
1101 p->irq_events = 0;
1102 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1103 p->hardirqs_enabled = 1;
1104 #else
1105 p->hardirqs_enabled = 0;
1106 #endif
1107 p->hardirq_enable_ip = 0;
1108 p->hardirq_enable_event = 0;
1109 p->hardirq_disable_ip = _THIS_IP_;
1110 p->hardirq_disable_event = 0;
1111 p->softirqs_enabled = 1;
1112 p->softirq_enable_ip = _THIS_IP_;
1113 p->softirq_enable_event = 0;
1114 p->softirq_disable_ip = 0;
1115 p->softirq_disable_event = 0;
1116 p->hardirq_context = 0;
1117 p->softirq_context = 0;
1118 #endif
1119 #ifdef CONFIG_LOCKDEP
1120 p->lockdep_depth = 0; /* no locks held yet */
1121 p->curr_chain_key = 0;
1122 p->lockdep_recursion = 0;
1123 #endif
1124
1125 #ifdef CONFIG_DEBUG_MUTEXES
1126 p->blocked_on = NULL; /* not blocked yet */
1127 #endif
1128
1129 p->bts = NULL;
1130
1131 p->stack_start = stack_start;
1132
1133 /* Perform scheduler related setup. Assign this task to a CPU. */
1134 sched_fork(p, clone_flags);
1135
1136 retval = perf_event_init_task(p);
1137 if (retval)
1138 goto bad_fork_cleanup_policy;
1139
1140 if ((retval = audit_alloc(p)))
1141 goto bad_fork_cleanup_policy;
1142 /* copy all the process information */
1143 if ((retval = copy_semundo(clone_flags, p)))
1144 goto bad_fork_cleanup_audit;
1145 if ((retval = copy_files(clone_flags, p)))
1146 goto bad_fork_cleanup_semundo;
1147 if ((retval = copy_fs(clone_flags, p)))
1148 goto bad_fork_cleanup_files;
1149 if ((retval = copy_sighand(clone_flags, p)))
1150 goto bad_fork_cleanup_fs;
1151 if ((retval = copy_signal(clone_flags, p)))
1152 goto bad_fork_cleanup_sighand;
1153 if ((retval = copy_mm(clone_flags, p)))
1154 goto bad_fork_cleanup_signal;
1155 if ((retval = copy_namespaces(clone_flags, p)))
1156 goto bad_fork_cleanup_mm;
1157 if ((retval = copy_io(clone_flags, p)))
1158 goto bad_fork_cleanup_namespaces;
1159 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
1160 if (retval)
1161 goto bad_fork_cleanup_io;
1162
1163 if (pid != &init_struct_pid) {
1164 retval = -ENOMEM;
1165 pid = alloc_pid(p->nsproxy->pid_ns);
1166 if (!pid)
1167 goto bad_fork_cleanup_io;
1168
1169 if (clone_flags & CLONE_NEWPID) {
1170 retval = pid_ns_prepare_proc(p->nsproxy->pid_ns);
1171 if (retval < 0)
1172 goto bad_fork_free_pid;
1173 }
1174 }
1175
1176 p->pid = pid_nr(pid);
1177 p->tgid = p->pid;
1178 if (clone_flags & CLONE_THREAD)
1179 p->tgid = current->tgid;
1180
1181 if (current->nsproxy != p->nsproxy) {
1182 retval = ns_cgroup_clone(p, pid);
1183 if (retval)
1184 goto bad_fork_free_pid;
1185 }
1186
1187 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1188 /*
1189 * Clear TID on mm_release()?
1190 */
1191 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1192 #ifdef CONFIG_FUTEX
1193 p->robust_list = NULL;
1194 #ifdef CONFIG_COMPAT
1195 p->compat_robust_list = NULL;
1196 #endif
1197 INIT_LIST_HEAD(&p->pi_state_list);
1198 p->pi_state_cache = NULL;
1199 #endif
1200 /*
1201 * sigaltstack should be cleared when sharing the same VM
1202 */
1203 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1204 p->sas_ss_sp = p->sas_ss_size = 0;
1205
1206 /*
1207 * Syscall tracing should be turned off in the child regardless
1208 * of CLONE_PTRACE.
1209 */
1210 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1211 #ifdef TIF_SYSCALL_EMU
1212 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1213 #endif
1214 clear_all_latency_tracing(p);
1215
1216 /* ok, now we should be set up.. */
1217 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1218 p->pdeath_signal = 0;
1219 p->exit_state = 0;
1220
1221 /*
1222 * Ok, make it visible to the rest of the system.
1223 * We dont wake it up yet.
1224 */
1225 p->group_leader = p;
1226 INIT_LIST_HEAD(&p->thread_group);
1227
1228 /* Now that the task is set up, run cgroup callbacks if
1229 * necessary. We need to run them before the task is visible
1230 * on the tasklist. */
1231 cgroup_fork_callbacks(p);
1232 cgroup_callbacks_done = 1;
1233
1234 /* Need tasklist lock for parent etc handling! */
1235 write_lock_irq(&tasklist_lock);
1236
1237 /*
1238 * The task hasn't been attached yet, so its cpus_allowed mask will
1239 * not be changed, nor will its assigned CPU.
1240 *
1241 * The cpus_allowed mask of the parent may have changed after it was
1242 * copied first time - so re-copy it here, then check the child's CPU
1243 * to ensure it is on a valid CPU (and if not, just force it back to
1244 * parent's CPU). This avoids alot of nasty races.
1245 */
1246 p->cpus_allowed = current->cpus_allowed;
1247 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1248 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1249 !cpu_online(task_cpu(p))))
1250 set_task_cpu(p, smp_processor_id());
1251
1252 /* CLONE_PARENT re-uses the old parent */
1253 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1254 p->real_parent = current->real_parent;
1255 p->parent_exec_id = current->parent_exec_id;
1256 } else {
1257 p->real_parent = current;
1258 p->parent_exec_id = current->self_exec_id;
1259 }
1260
1261 spin_lock(&current->sighand->siglock);
1262
1263 /*
1264 * Process group and session signals need to be delivered to just the
1265 * parent before the fork or both the parent and the child after the
1266 * fork. Restart if a signal comes in before we add the new process to
1267 * it's process group.
1268 * A fatal signal pending means that current will exit, so the new
1269 * thread can't slip out of an OOM kill (or normal SIGKILL).
1270 */
1271 recalc_sigpending();
1272 if (signal_pending(current)) {
1273 spin_unlock(&current->sighand->siglock);
1274 write_unlock_irq(&tasklist_lock);
1275 retval = -ERESTARTNOINTR;
1276 goto bad_fork_free_pid;
1277 }
1278
1279 if (clone_flags & CLONE_THREAD) {
1280 atomic_inc(&current->signal->count);
1281 atomic_inc(&current->signal->live);
1282 p->group_leader = current->group_leader;
1283 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1284 }
1285
1286 if (likely(p->pid)) {
1287 list_add_tail(&p->sibling, &p->real_parent->children);
1288 tracehook_finish_clone(p, clone_flags, trace);
1289
1290 if (thread_group_leader(p)) {
1291 if (clone_flags & CLONE_NEWPID)
1292 p->nsproxy->pid_ns->child_reaper = p;
1293
1294 p->signal->leader_pid = pid;
1295 tty_kref_put(p->signal->tty);
1296 p->signal->tty = tty_kref_get(current->signal->tty);
1297 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1298 attach_pid(p, PIDTYPE_SID, task_session(current));
1299 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1300 __get_cpu_var(process_counts)++;
1301 }
1302 attach_pid(p, PIDTYPE_PID, pid);
1303 nr_threads++;
1304 }
1305
1306 total_forks++;
1307 spin_unlock(&current->sighand->siglock);
1308 write_unlock_irq(&tasklist_lock);
1309 proc_fork_connector(p);
1310 cgroup_post_fork(p);
1311 perf_event_fork(p);
1312 return p;
1313
1314 bad_fork_free_pid:
1315 if (pid != &init_struct_pid)
1316 free_pid(pid);
1317 bad_fork_cleanup_io:
1318 put_io_context(p->io_context);
1319 bad_fork_cleanup_namespaces:
1320 exit_task_namespaces(p);
1321 bad_fork_cleanup_mm:
1322 if (p->mm)
1323 mmput(p->mm);
1324 bad_fork_cleanup_signal:
1325 if (!(clone_flags & CLONE_THREAD))
1326 __cleanup_signal(p->signal);
1327 bad_fork_cleanup_sighand:
1328 __cleanup_sighand(p->sighand);
1329 bad_fork_cleanup_fs:
1330 exit_fs(p); /* blocking */
1331 bad_fork_cleanup_files:
1332 exit_files(p); /* blocking */
1333 bad_fork_cleanup_semundo:
1334 exit_sem(p);
1335 bad_fork_cleanup_audit:
1336 audit_free(p);
1337 bad_fork_cleanup_policy:
1338 perf_event_free_task(p);
1339 #ifdef CONFIG_NUMA
1340 mpol_put(p->mempolicy);
1341 bad_fork_cleanup_cgroup:
1342 #endif
1343 cgroup_exit(p, cgroup_callbacks_done);
1344 delayacct_tsk_free(p);
1345 module_put(task_thread_info(p)->exec_domain->module);
1346 bad_fork_cleanup_count:
1347 atomic_dec(&p->cred->user->processes);
1348 exit_creds(p);
1349 bad_fork_free:
1350 free_task(p);
1351 fork_out:
1352 return ERR_PTR(retval);
1353 }
1354
1355 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1356 {
1357 memset(regs, 0, sizeof(struct pt_regs));
1358 return regs;
1359 }
1360
1361 struct task_struct * __cpuinit fork_idle(int cpu)
1362 {
1363 struct task_struct *task;
1364 struct pt_regs regs;
1365
1366 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1367 &init_struct_pid, 0);
1368 if (!IS_ERR(task))
1369 init_idle(task, cpu);
1370
1371 return task;
1372 }
1373
1374 /*
1375 * Ok, this is the main fork-routine.
1376 *
1377 * It copies the process, and if successful kick-starts
1378 * it and waits for it to finish using the VM if required.
1379 */
1380 long do_fork(unsigned long clone_flags,
1381 unsigned long stack_start,
1382 struct pt_regs *regs,
1383 unsigned long stack_size,
1384 int __user *parent_tidptr,
1385 int __user *child_tidptr)
1386 {
1387 struct task_struct *p;
1388 int trace = 0;
1389 long nr;
1390
1391 /*
1392 * Do some preliminary argument and permissions checking before we
1393 * actually start allocating stuff
1394 */
1395 if (clone_flags & CLONE_NEWUSER) {
1396 if (clone_flags & CLONE_THREAD)
1397 return -EINVAL;
1398 /* hopefully this check will go away when userns support is
1399 * complete
1400 */
1401 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1402 !capable(CAP_SETGID))
1403 return -EPERM;
1404 }
1405
1406 /*
1407 * We hope to recycle these flags after 2.6.26
1408 */
1409 if (unlikely(clone_flags & CLONE_STOPPED)) {
1410 static int __read_mostly count = 100;
1411
1412 if (count > 0 && printk_ratelimit()) {
1413 char comm[TASK_COMM_LEN];
1414
1415 count--;
1416 printk(KERN_INFO "fork(): process `%s' used deprecated "
1417 "clone flags 0x%lx\n",
1418 get_task_comm(comm, current),
1419 clone_flags & CLONE_STOPPED);
1420 }
1421 }
1422
1423 /*
1424 * When called from kernel_thread, don't do user tracing stuff.
1425 */
1426 if (likely(user_mode(regs)))
1427 trace = tracehook_prepare_clone(clone_flags);
1428
1429 p = copy_process(clone_flags, stack_start, regs, stack_size,
1430 child_tidptr, NULL, trace);
1431 /*
1432 * Do this prior waking up the new thread - the thread pointer
1433 * might get invalid after that point, if the thread exits quickly.
1434 */
1435 if (!IS_ERR(p)) {
1436 struct completion vfork;
1437
1438 trace_sched_process_fork(current, p);
1439
1440 nr = task_pid_vnr(p);
1441
1442 if (clone_flags & CLONE_PARENT_SETTID)
1443 put_user(nr, parent_tidptr);
1444
1445 if (clone_flags & CLONE_VFORK) {
1446 p->vfork_done = &vfork;
1447 init_completion(&vfork);
1448 }
1449
1450 audit_finish_fork(p);
1451 tracehook_report_clone(regs, clone_flags, nr, p);
1452
1453 /*
1454 * We set PF_STARTING at creation in case tracing wants to
1455 * use this to distinguish a fully live task from one that
1456 * hasn't gotten to tracehook_report_clone() yet. Now we
1457 * clear it and set the child going.
1458 */
1459 p->flags &= ~PF_STARTING;
1460
1461 if (unlikely(clone_flags & CLONE_STOPPED)) {
1462 /*
1463 * We'll start up with an immediate SIGSTOP.
1464 */
1465 sigaddset(&p->pending.signal, SIGSTOP);
1466 set_tsk_thread_flag(p, TIF_SIGPENDING);
1467 __set_task_state(p, TASK_STOPPED);
1468 } else {
1469 wake_up_new_task(p, clone_flags);
1470 }
1471
1472 tracehook_report_clone_complete(trace, regs,
1473 clone_flags, nr, p);
1474
1475 if (clone_flags & CLONE_VFORK) {
1476 freezer_do_not_count();
1477 wait_for_completion(&vfork);
1478 freezer_count();
1479 tracehook_report_vfork_done(p, nr);
1480 }
1481 } else {
1482 nr = PTR_ERR(p);
1483 }
1484 return nr;
1485 }
1486
1487 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1488 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1489 #endif
1490
1491 static void sighand_ctor(void *data)
1492 {
1493 struct sighand_struct *sighand = data;
1494
1495 spin_lock_init(&sighand->siglock);
1496 init_waitqueue_head(&sighand->signalfd_wqh);
1497 }
1498
1499 void __init proc_caches_init(void)
1500 {
1501 sighand_cachep = kmem_cache_create("sighand_cache",
1502 sizeof(struct sighand_struct), 0,
1503 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1504 SLAB_NOTRACK, sighand_ctor);
1505 signal_cachep = kmem_cache_create("signal_cache",
1506 sizeof(struct signal_struct), 0,
1507 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1508 files_cachep = kmem_cache_create("files_cache",
1509 sizeof(struct files_struct), 0,
1510 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1511 fs_cachep = kmem_cache_create("fs_cache",
1512 sizeof(struct fs_struct), 0,
1513 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1514 mm_cachep = kmem_cache_create("mm_struct",
1515 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1516 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1517 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1518 mmap_init();
1519 }
1520
1521 /*
1522 * Check constraints on flags passed to the unshare system call and
1523 * force unsharing of additional process context as appropriate.
1524 */
1525 static void check_unshare_flags(unsigned long *flags_ptr)
1526 {
1527 /*
1528 * If unsharing a thread from a thread group, must also
1529 * unshare vm.
1530 */
1531 if (*flags_ptr & CLONE_THREAD)
1532 *flags_ptr |= CLONE_VM;
1533
1534 /*
1535 * If unsharing vm, must also unshare signal handlers.
1536 */
1537 if (*flags_ptr & CLONE_VM)
1538 *flags_ptr |= CLONE_SIGHAND;
1539
1540 /*
1541 * If unsharing signal handlers and the task was created
1542 * using CLONE_THREAD, then must unshare the thread
1543 */
1544 if ((*flags_ptr & CLONE_SIGHAND) &&
1545 (atomic_read(&current->signal->count) > 1))
1546 *flags_ptr |= CLONE_THREAD;
1547
1548 /*
1549 * If unsharing namespace, must also unshare filesystem information.
1550 */
1551 if (*flags_ptr & CLONE_NEWNS)
1552 *flags_ptr |= CLONE_FS;
1553 }
1554
1555 /*
1556 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1557 */
1558 static int unshare_thread(unsigned long unshare_flags)
1559 {
1560 if (unshare_flags & CLONE_THREAD)
1561 return -EINVAL;
1562
1563 return 0;
1564 }
1565
1566 /*
1567 * Unshare the filesystem structure if it is being shared
1568 */
1569 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1570 {
1571 struct fs_struct *fs = current->fs;
1572
1573 if (!(unshare_flags & CLONE_FS) || !fs)
1574 return 0;
1575
1576 /* don't need lock here; in the worst case we'll do useless copy */
1577 if (fs->users == 1)
1578 return 0;
1579
1580 *new_fsp = copy_fs_struct(fs);
1581 if (!*new_fsp)
1582 return -ENOMEM;
1583
1584 return 0;
1585 }
1586
1587 /*
1588 * Unsharing of sighand is not supported yet
1589 */
1590 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1591 {
1592 struct sighand_struct *sigh = current->sighand;
1593
1594 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1595 return -EINVAL;
1596 else
1597 return 0;
1598 }
1599
1600 /*
1601 * Unshare vm if it is being shared
1602 */
1603 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1604 {
1605 struct mm_struct *mm = current->mm;
1606
1607 if ((unshare_flags & CLONE_VM) &&
1608 (mm && atomic_read(&mm->mm_users) > 1)) {
1609 return -EINVAL;
1610 }
1611
1612 return 0;
1613 }
1614
1615 /*
1616 * Unshare file descriptor table if it is being shared
1617 */
1618 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1619 {
1620 struct files_struct *fd = current->files;
1621 int error = 0;
1622
1623 if ((unshare_flags & CLONE_FILES) &&
1624 (fd && atomic_read(&fd->count) > 1)) {
1625 *new_fdp = dup_fd(fd, &error);
1626 if (!*new_fdp)
1627 return error;
1628 }
1629
1630 return 0;
1631 }
1632
1633 /*
1634 * unshare allows a process to 'unshare' part of the process
1635 * context which was originally shared using clone. copy_*
1636 * functions used by do_fork() cannot be used here directly
1637 * because they modify an inactive task_struct that is being
1638 * constructed. Here we are modifying the current, active,
1639 * task_struct.
1640 */
1641 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1642 {
1643 int err = 0;
1644 struct fs_struct *fs, *new_fs = NULL;
1645 struct sighand_struct *new_sigh = NULL;
1646 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1647 struct files_struct *fd, *new_fd = NULL;
1648 struct nsproxy *new_nsproxy = NULL;
1649 int do_sysvsem = 0;
1650
1651 check_unshare_flags(&unshare_flags);
1652
1653 /* Return -EINVAL for all unsupported flags */
1654 err = -EINVAL;
1655 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1656 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1657 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1658 goto bad_unshare_out;
1659
1660 /*
1661 * CLONE_NEWIPC must also detach from the undolist: after switching
1662 * to a new ipc namespace, the semaphore arrays from the old
1663 * namespace are unreachable.
1664 */
1665 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1666 do_sysvsem = 1;
1667 if ((err = unshare_thread(unshare_flags)))
1668 goto bad_unshare_out;
1669 if ((err = unshare_fs(unshare_flags, &new_fs)))
1670 goto bad_unshare_cleanup_thread;
1671 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1672 goto bad_unshare_cleanup_fs;
1673 if ((err = unshare_vm(unshare_flags, &new_mm)))
1674 goto bad_unshare_cleanup_sigh;
1675 if ((err = unshare_fd(unshare_flags, &new_fd)))
1676 goto bad_unshare_cleanup_vm;
1677 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1678 new_fs)))
1679 goto bad_unshare_cleanup_fd;
1680
1681 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1682 if (do_sysvsem) {
1683 /*
1684 * CLONE_SYSVSEM is equivalent to sys_exit().
1685 */
1686 exit_sem(current);
1687 }
1688
1689 if (new_nsproxy) {
1690 switch_task_namespaces(current, new_nsproxy);
1691 new_nsproxy = NULL;
1692 }
1693
1694 task_lock(current);
1695
1696 if (new_fs) {
1697 fs = current->fs;
1698 write_lock(&fs->lock);
1699 current->fs = new_fs;
1700 if (--fs->users)
1701 new_fs = NULL;
1702 else
1703 new_fs = fs;
1704 write_unlock(&fs->lock);
1705 }
1706
1707 if (new_mm) {
1708 mm = current->mm;
1709 active_mm = current->active_mm;
1710 current->mm = new_mm;
1711 current->active_mm = new_mm;
1712 activate_mm(active_mm, new_mm);
1713 new_mm = mm;
1714 }
1715
1716 if (new_fd) {
1717 fd = current->files;
1718 current->files = new_fd;
1719 new_fd = fd;
1720 }
1721
1722 task_unlock(current);
1723 }
1724
1725 if (new_nsproxy)
1726 put_nsproxy(new_nsproxy);
1727
1728 bad_unshare_cleanup_fd:
1729 if (new_fd)
1730 put_files_struct(new_fd);
1731
1732 bad_unshare_cleanup_vm:
1733 if (new_mm)
1734 mmput(new_mm);
1735
1736 bad_unshare_cleanup_sigh:
1737 if (new_sigh)
1738 if (atomic_dec_and_test(&new_sigh->count))
1739 kmem_cache_free(sighand_cachep, new_sigh);
1740
1741 bad_unshare_cleanup_fs:
1742 if (new_fs)
1743 free_fs_struct(new_fs);
1744
1745 bad_unshare_cleanup_thread:
1746 bad_unshare_out:
1747 return err;
1748 }
1749
1750 /*
1751 * Helper to unshare the files of the current task.
1752 * We don't want to expose copy_files internals to
1753 * the exec layer of the kernel.
1754 */
1755
1756 int unshare_files(struct files_struct **displaced)
1757 {
1758 struct task_struct *task = current;
1759 struct files_struct *copy = NULL;
1760 int error;
1761
1762 error = unshare_fd(CLONE_FILES, &copy);
1763 if (error || !copy) {
1764 *displaced = NULL;
1765 return error;
1766 }
1767 *displaced = task->files;
1768 task_lock(task);
1769 task->files = copy;
1770 task_unlock(task);
1771 return 0;
1772 }