]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/fork.c
Merge branch 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-zesty-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/fdtable.h>
26 #include <linux/iocontext.h>
27 #include <linux/key.h>
28 #include <linux/binfmts.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/fs.h>
32 #include <linux/nsproxy.h>
33 #include <linux/capability.h>
34 #include <linux/cpu.h>
35 #include <linux/cgroup.h>
36 #include <linux/security.h>
37 #include <linux/hugetlb.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/tracehook.h>
42 #include <linux/futex.h>
43 #include <linux/compat.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/profile.h>
52 #include <linux/rmap.h>
53 #include <linux/acct.h>
54 #include <linux/tsacct_kern.h>
55 #include <linux/cn_proc.h>
56 #include <linux/freezer.h>
57 #include <linux/delayacct.h>
58 #include <linux/taskstats_kern.h>
59 #include <linux/random.h>
60 #include <linux/tty.h>
61 #include <linux/proc_fs.h>
62 #include <linux/blkdev.h>
63 #include <trace/sched.h>
64
65 #include <asm/pgtable.h>
66 #include <asm/pgalloc.h>
67 #include <asm/uaccess.h>
68 #include <asm/mmu_context.h>
69 #include <asm/cacheflush.h>
70 #include <asm/tlbflush.h>
71
72 /*
73 * Protected counters by write_lock_irq(&tasklist_lock)
74 */
75 unsigned long total_forks; /* Handle normal Linux uptimes. */
76 int nr_threads; /* The idle threads do not count.. */
77
78 int max_threads; /* tunable limit on nr_threads */
79
80 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
81
82 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
83
84 DEFINE_TRACE(sched_process_fork);
85
86 int nr_processes(void)
87 {
88 int cpu;
89 int total = 0;
90
91 for_each_online_cpu(cpu)
92 total += per_cpu(process_counts, cpu);
93
94 return total;
95 }
96
97 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
98 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
99 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
100 static struct kmem_cache *task_struct_cachep;
101 #endif
102
103 #ifndef __HAVE_ARCH_THREAD_INFO_ALLOCATOR
104 static inline struct thread_info *alloc_thread_info(struct task_struct *tsk)
105 {
106 #ifdef CONFIG_DEBUG_STACK_USAGE
107 gfp_t mask = GFP_KERNEL | __GFP_ZERO;
108 #else
109 gfp_t mask = GFP_KERNEL;
110 #endif
111 return (struct thread_info *)__get_free_pages(mask, THREAD_SIZE_ORDER);
112 }
113
114 static inline void free_thread_info(struct thread_info *ti)
115 {
116 free_pages((unsigned long)ti, THREAD_SIZE_ORDER);
117 }
118 #endif
119
120 /* SLAB cache for signal_struct structures (tsk->signal) */
121 static struct kmem_cache *signal_cachep;
122
123 /* SLAB cache for sighand_struct structures (tsk->sighand) */
124 struct kmem_cache *sighand_cachep;
125
126 /* SLAB cache for files_struct structures (tsk->files) */
127 struct kmem_cache *files_cachep;
128
129 /* SLAB cache for fs_struct structures (tsk->fs) */
130 struct kmem_cache *fs_cachep;
131
132 /* SLAB cache for vm_area_struct structures */
133 struct kmem_cache *vm_area_cachep;
134
135 /* SLAB cache for mm_struct structures (tsk->mm) */
136 static struct kmem_cache *mm_cachep;
137
138 void free_task(struct task_struct *tsk)
139 {
140 prop_local_destroy_single(&tsk->dirties);
141 free_thread_info(tsk->stack);
142 rt_mutex_debug_task_free(tsk);
143 ftrace_graph_exit_task(tsk);
144 free_task_struct(tsk);
145 }
146 EXPORT_SYMBOL(free_task);
147
148 void __put_task_struct(struct task_struct *tsk)
149 {
150 WARN_ON(!tsk->exit_state);
151 WARN_ON(atomic_read(&tsk->usage));
152 WARN_ON(tsk == current);
153
154 put_cred(tsk->real_cred);
155 put_cred(tsk->cred);
156 delayacct_tsk_free(tsk);
157
158 if (!profile_handoff_task(tsk))
159 free_task(tsk);
160 }
161
162 /*
163 * macro override instead of weak attribute alias, to workaround
164 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
165 */
166 #ifndef arch_task_cache_init
167 #define arch_task_cache_init()
168 #endif
169
170 void __init fork_init(unsigned long mempages)
171 {
172 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
173 #ifndef ARCH_MIN_TASKALIGN
174 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
175 #endif
176 /* create a slab on which task_structs can be allocated */
177 task_struct_cachep =
178 kmem_cache_create("task_struct", sizeof(struct task_struct),
179 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
180 #endif
181
182 /* do the arch specific task caches init */
183 arch_task_cache_init();
184
185 /*
186 * The default maximum number of threads is set to a safe
187 * value: the thread structures can take up at most half
188 * of memory.
189 */
190 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
191
192 /*
193 * we need to allow at least 20 threads to boot a system
194 */
195 if(max_threads < 20)
196 max_threads = 20;
197
198 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
199 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
200 init_task.signal->rlim[RLIMIT_SIGPENDING] =
201 init_task.signal->rlim[RLIMIT_NPROC];
202 }
203
204 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
205 struct task_struct *src)
206 {
207 *dst = *src;
208 return 0;
209 }
210
211 static struct task_struct *dup_task_struct(struct task_struct *orig)
212 {
213 struct task_struct *tsk;
214 struct thread_info *ti;
215 int err;
216
217 prepare_to_copy(orig);
218
219 tsk = alloc_task_struct();
220 if (!tsk)
221 return NULL;
222
223 ti = alloc_thread_info(tsk);
224 if (!ti) {
225 free_task_struct(tsk);
226 return NULL;
227 }
228
229 err = arch_dup_task_struct(tsk, orig);
230 if (err)
231 goto out;
232
233 tsk->stack = ti;
234
235 err = prop_local_init_single(&tsk->dirties);
236 if (err)
237 goto out;
238
239 setup_thread_stack(tsk, orig);
240
241 #ifdef CONFIG_CC_STACKPROTECTOR
242 tsk->stack_canary = get_random_int();
243 #endif
244
245 /* One for us, one for whoever does the "release_task()" (usually parent) */
246 atomic_set(&tsk->usage,2);
247 atomic_set(&tsk->fs_excl, 0);
248 #ifdef CONFIG_BLK_DEV_IO_TRACE
249 tsk->btrace_seq = 0;
250 #endif
251 tsk->splice_pipe = NULL;
252 return tsk;
253
254 out:
255 free_thread_info(ti);
256 free_task_struct(tsk);
257 return NULL;
258 }
259
260 #ifdef CONFIG_MMU
261 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
262 {
263 struct vm_area_struct *mpnt, *tmp, **pprev;
264 struct rb_node **rb_link, *rb_parent;
265 int retval;
266 unsigned long charge;
267 struct mempolicy *pol;
268
269 down_write(&oldmm->mmap_sem);
270 flush_cache_dup_mm(oldmm);
271 /*
272 * Not linked in yet - no deadlock potential:
273 */
274 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
275
276 mm->locked_vm = 0;
277 mm->mmap = NULL;
278 mm->mmap_cache = NULL;
279 mm->free_area_cache = oldmm->mmap_base;
280 mm->cached_hole_size = ~0UL;
281 mm->map_count = 0;
282 cpus_clear(mm->cpu_vm_mask);
283 mm->mm_rb = RB_ROOT;
284 rb_link = &mm->mm_rb.rb_node;
285 rb_parent = NULL;
286 pprev = &mm->mmap;
287
288 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
289 struct file *file;
290
291 if (mpnt->vm_flags & VM_DONTCOPY) {
292 long pages = vma_pages(mpnt);
293 mm->total_vm -= pages;
294 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
295 -pages);
296 continue;
297 }
298 charge = 0;
299 if (mpnt->vm_flags & VM_ACCOUNT) {
300 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
301 if (security_vm_enough_memory(len))
302 goto fail_nomem;
303 charge = len;
304 }
305 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
306 if (!tmp)
307 goto fail_nomem;
308 *tmp = *mpnt;
309 pol = mpol_dup(vma_policy(mpnt));
310 retval = PTR_ERR(pol);
311 if (IS_ERR(pol))
312 goto fail_nomem_policy;
313 vma_set_policy(tmp, pol);
314 tmp->vm_flags &= ~VM_LOCKED;
315 tmp->vm_mm = mm;
316 tmp->vm_next = NULL;
317 anon_vma_link(tmp);
318 file = tmp->vm_file;
319 if (file) {
320 struct inode *inode = file->f_path.dentry->d_inode;
321 struct address_space *mapping = file->f_mapping;
322
323 get_file(file);
324 if (tmp->vm_flags & VM_DENYWRITE)
325 atomic_dec(&inode->i_writecount);
326 spin_lock(&mapping->i_mmap_lock);
327 if (tmp->vm_flags & VM_SHARED)
328 mapping->i_mmap_writable++;
329 tmp->vm_truncate_count = mpnt->vm_truncate_count;
330 flush_dcache_mmap_lock(mapping);
331 /* insert tmp into the share list, just after mpnt */
332 vma_prio_tree_add(tmp, mpnt);
333 flush_dcache_mmap_unlock(mapping);
334 spin_unlock(&mapping->i_mmap_lock);
335 }
336
337 /*
338 * Clear hugetlb-related page reserves for children. This only
339 * affects MAP_PRIVATE mappings. Faults generated by the child
340 * are not guaranteed to succeed, even if read-only
341 */
342 if (is_vm_hugetlb_page(tmp))
343 reset_vma_resv_huge_pages(tmp);
344
345 /*
346 * Link in the new vma and copy the page table entries.
347 */
348 *pprev = tmp;
349 pprev = &tmp->vm_next;
350
351 __vma_link_rb(mm, tmp, rb_link, rb_parent);
352 rb_link = &tmp->vm_rb.rb_right;
353 rb_parent = &tmp->vm_rb;
354
355 mm->map_count++;
356 retval = copy_page_range(mm, oldmm, mpnt);
357
358 if (tmp->vm_ops && tmp->vm_ops->open)
359 tmp->vm_ops->open(tmp);
360
361 if (retval)
362 goto out;
363 }
364 /* a new mm has just been created */
365 arch_dup_mmap(oldmm, mm);
366 retval = 0;
367 out:
368 up_write(&mm->mmap_sem);
369 flush_tlb_mm(oldmm);
370 up_write(&oldmm->mmap_sem);
371 return retval;
372 fail_nomem_policy:
373 kmem_cache_free(vm_area_cachep, tmp);
374 fail_nomem:
375 retval = -ENOMEM;
376 vm_unacct_memory(charge);
377 goto out;
378 }
379
380 static inline int mm_alloc_pgd(struct mm_struct * mm)
381 {
382 mm->pgd = pgd_alloc(mm);
383 if (unlikely(!mm->pgd))
384 return -ENOMEM;
385 return 0;
386 }
387
388 static inline void mm_free_pgd(struct mm_struct * mm)
389 {
390 pgd_free(mm, mm->pgd);
391 }
392 #else
393 #define dup_mmap(mm, oldmm) (0)
394 #define mm_alloc_pgd(mm) (0)
395 #define mm_free_pgd(mm)
396 #endif /* CONFIG_MMU */
397
398 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
399
400 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
401 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
402
403 #include <linux/init_task.h>
404
405 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
406 {
407 atomic_set(&mm->mm_users, 1);
408 atomic_set(&mm->mm_count, 1);
409 init_rwsem(&mm->mmap_sem);
410 INIT_LIST_HEAD(&mm->mmlist);
411 mm->flags = (current->mm) ? current->mm->flags
412 : MMF_DUMP_FILTER_DEFAULT;
413 mm->core_state = NULL;
414 mm->nr_ptes = 0;
415 set_mm_counter(mm, file_rss, 0);
416 set_mm_counter(mm, anon_rss, 0);
417 spin_lock_init(&mm->page_table_lock);
418 spin_lock_init(&mm->ioctx_lock);
419 INIT_HLIST_HEAD(&mm->ioctx_list);
420 mm->free_area_cache = TASK_UNMAPPED_BASE;
421 mm->cached_hole_size = ~0UL;
422 mm_init_owner(mm, p);
423
424 if (likely(!mm_alloc_pgd(mm))) {
425 mm->def_flags = 0;
426 mmu_notifier_mm_init(mm);
427 return mm;
428 }
429
430 free_mm(mm);
431 return NULL;
432 }
433
434 /*
435 * Allocate and initialize an mm_struct.
436 */
437 struct mm_struct * mm_alloc(void)
438 {
439 struct mm_struct * mm;
440
441 mm = allocate_mm();
442 if (mm) {
443 memset(mm, 0, sizeof(*mm));
444 mm = mm_init(mm, current);
445 }
446 return mm;
447 }
448
449 /*
450 * Called when the last reference to the mm
451 * is dropped: either by a lazy thread or by
452 * mmput. Free the page directory and the mm.
453 */
454 void __mmdrop(struct mm_struct *mm)
455 {
456 BUG_ON(mm == &init_mm);
457 mm_free_pgd(mm);
458 destroy_context(mm);
459 mmu_notifier_mm_destroy(mm);
460 free_mm(mm);
461 }
462 EXPORT_SYMBOL_GPL(__mmdrop);
463
464 /*
465 * Decrement the use count and release all resources for an mm.
466 */
467 void mmput(struct mm_struct *mm)
468 {
469 might_sleep();
470
471 if (atomic_dec_and_test(&mm->mm_users)) {
472 exit_aio(mm);
473 exit_mmap(mm);
474 set_mm_exe_file(mm, NULL);
475 if (!list_empty(&mm->mmlist)) {
476 spin_lock(&mmlist_lock);
477 list_del(&mm->mmlist);
478 spin_unlock(&mmlist_lock);
479 }
480 put_swap_token(mm);
481 mmdrop(mm);
482 }
483 }
484 EXPORT_SYMBOL_GPL(mmput);
485
486 /**
487 * get_task_mm - acquire a reference to the task's mm
488 *
489 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
490 * this kernel workthread has transiently adopted a user mm with use_mm,
491 * to do its AIO) is not set and if so returns a reference to it, after
492 * bumping up the use count. User must release the mm via mmput()
493 * after use. Typically used by /proc and ptrace.
494 */
495 struct mm_struct *get_task_mm(struct task_struct *task)
496 {
497 struct mm_struct *mm;
498
499 task_lock(task);
500 mm = task->mm;
501 if (mm) {
502 if (task->flags & PF_KTHREAD)
503 mm = NULL;
504 else
505 atomic_inc(&mm->mm_users);
506 }
507 task_unlock(task);
508 return mm;
509 }
510 EXPORT_SYMBOL_GPL(get_task_mm);
511
512 /* Please note the differences between mmput and mm_release.
513 * mmput is called whenever we stop holding onto a mm_struct,
514 * error success whatever.
515 *
516 * mm_release is called after a mm_struct has been removed
517 * from the current process.
518 *
519 * This difference is important for error handling, when we
520 * only half set up a mm_struct for a new process and need to restore
521 * the old one. Because we mmput the new mm_struct before
522 * restoring the old one. . .
523 * Eric Biederman 10 January 1998
524 */
525 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
526 {
527 struct completion *vfork_done = tsk->vfork_done;
528
529 /* Get rid of any futexes when releasing the mm */
530 #ifdef CONFIG_FUTEX
531 if (unlikely(tsk->robust_list))
532 exit_robust_list(tsk);
533 #ifdef CONFIG_COMPAT
534 if (unlikely(tsk->compat_robust_list))
535 compat_exit_robust_list(tsk);
536 #endif
537 #endif
538
539 /* Get rid of any cached register state */
540 deactivate_mm(tsk, mm);
541
542 /* notify parent sleeping on vfork() */
543 if (vfork_done) {
544 tsk->vfork_done = NULL;
545 complete(vfork_done);
546 }
547
548 /*
549 * If we're exiting normally, clear a user-space tid field if
550 * requested. We leave this alone when dying by signal, to leave
551 * the value intact in a core dump, and to save the unnecessary
552 * trouble otherwise. Userland only wants this done for a sys_exit.
553 */
554 if (tsk->clear_child_tid
555 && !(tsk->flags & PF_SIGNALED)
556 && atomic_read(&mm->mm_users) > 1) {
557 u32 __user * tidptr = tsk->clear_child_tid;
558 tsk->clear_child_tid = NULL;
559
560 /*
561 * We don't check the error code - if userspace has
562 * not set up a proper pointer then tough luck.
563 */
564 put_user(0, tidptr);
565 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
566 }
567 }
568
569 /*
570 * Allocate a new mm structure and copy contents from the
571 * mm structure of the passed in task structure.
572 */
573 struct mm_struct *dup_mm(struct task_struct *tsk)
574 {
575 struct mm_struct *mm, *oldmm = current->mm;
576 int err;
577
578 if (!oldmm)
579 return NULL;
580
581 mm = allocate_mm();
582 if (!mm)
583 goto fail_nomem;
584
585 memcpy(mm, oldmm, sizeof(*mm));
586
587 /* Initializing for Swap token stuff */
588 mm->token_priority = 0;
589 mm->last_interval = 0;
590
591 if (!mm_init(mm, tsk))
592 goto fail_nomem;
593
594 if (init_new_context(tsk, mm))
595 goto fail_nocontext;
596
597 dup_mm_exe_file(oldmm, mm);
598
599 err = dup_mmap(mm, oldmm);
600 if (err)
601 goto free_pt;
602
603 mm->hiwater_rss = get_mm_rss(mm);
604 mm->hiwater_vm = mm->total_vm;
605
606 return mm;
607
608 free_pt:
609 mmput(mm);
610
611 fail_nomem:
612 return NULL;
613
614 fail_nocontext:
615 /*
616 * If init_new_context() failed, we cannot use mmput() to free the mm
617 * because it calls destroy_context()
618 */
619 mm_free_pgd(mm);
620 free_mm(mm);
621 return NULL;
622 }
623
624 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
625 {
626 struct mm_struct * mm, *oldmm;
627 int retval;
628
629 tsk->min_flt = tsk->maj_flt = 0;
630 tsk->nvcsw = tsk->nivcsw = 0;
631
632 tsk->mm = NULL;
633 tsk->active_mm = NULL;
634
635 /*
636 * Are we cloning a kernel thread?
637 *
638 * We need to steal a active VM for that..
639 */
640 oldmm = current->mm;
641 if (!oldmm)
642 return 0;
643
644 if (clone_flags & CLONE_VM) {
645 atomic_inc(&oldmm->mm_users);
646 mm = oldmm;
647 goto good_mm;
648 }
649
650 retval = -ENOMEM;
651 mm = dup_mm(tsk);
652 if (!mm)
653 goto fail_nomem;
654
655 good_mm:
656 /* Initializing for Swap token stuff */
657 mm->token_priority = 0;
658 mm->last_interval = 0;
659
660 tsk->mm = mm;
661 tsk->active_mm = mm;
662 return 0;
663
664 fail_nomem:
665 return retval;
666 }
667
668 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
669 {
670 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
671 /* We don't need to lock fs - think why ;-) */
672 if (fs) {
673 atomic_set(&fs->count, 1);
674 rwlock_init(&fs->lock);
675 fs->umask = old->umask;
676 read_lock(&old->lock);
677 fs->root = old->root;
678 path_get(&old->root);
679 fs->pwd = old->pwd;
680 path_get(&old->pwd);
681 read_unlock(&old->lock);
682 }
683 return fs;
684 }
685
686 struct fs_struct *copy_fs_struct(struct fs_struct *old)
687 {
688 return __copy_fs_struct(old);
689 }
690
691 EXPORT_SYMBOL_GPL(copy_fs_struct);
692
693 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
694 {
695 if (clone_flags & CLONE_FS) {
696 atomic_inc(&current->fs->count);
697 return 0;
698 }
699 tsk->fs = __copy_fs_struct(current->fs);
700 if (!tsk->fs)
701 return -ENOMEM;
702 return 0;
703 }
704
705 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
706 {
707 struct files_struct *oldf, *newf;
708 int error = 0;
709
710 /*
711 * A background process may not have any files ...
712 */
713 oldf = current->files;
714 if (!oldf)
715 goto out;
716
717 if (clone_flags & CLONE_FILES) {
718 atomic_inc(&oldf->count);
719 goto out;
720 }
721
722 newf = dup_fd(oldf, &error);
723 if (!newf)
724 goto out;
725
726 tsk->files = newf;
727 error = 0;
728 out:
729 return error;
730 }
731
732 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
733 {
734 #ifdef CONFIG_BLOCK
735 struct io_context *ioc = current->io_context;
736
737 if (!ioc)
738 return 0;
739 /*
740 * Share io context with parent, if CLONE_IO is set
741 */
742 if (clone_flags & CLONE_IO) {
743 tsk->io_context = ioc_task_link(ioc);
744 if (unlikely(!tsk->io_context))
745 return -ENOMEM;
746 } else if (ioprio_valid(ioc->ioprio)) {
747 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
748 if (unlikely(!tsk->io_context))
749 return -ENOMEM;
750
751 tsk->io_context->ioprio = ioc->ioprio;
752 }
753 #endif
754 return 0;
755 }
756
757 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
758 {
759 struct sighand_struct *sig;
760
761 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
762 atomic_inc(&current->sighand->count);
763 return 0;
764 }
765 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
766 rcu_assign_pointer(tsk->sighand, sig);
767 if (!sig)
768 return -ENOMEM;
769 atomic_set(&sig->count, 1);
770 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
771 return 0;
772 }
773
774 void __cleanup_sighand(struct sighand_struct *sighand)
775 {
776 if (atomic_dec_and_test(&sighand->count))
777 kmem_cache_free(sighand_cachep, sighand);
778 }
779
780
781 /*
782 * Initialize POSIX timer handling for a thread group.
783 */
784 static void posix_cpu_timers_init_group(struct signal_struct *sig)
785 {
786 /* Thread group counters. */
787 thread_group_cputime_init(sig);
788
789 /* Expiration times and increments. */
790 sig->it_virt_expires = cputime_zero;
791 sig->it_virt_incr = cputime_zero;
792 sig->it_prof_expires = cputime_zero;
793 sig->it_prof_incr = cputime_zero;
794
795 /* Cached expiration times. */
796 sig->cputime_expires.prof_exp = cputime_zero;
797 sig->cputime_expires.virt_exp = cputime_zero;
798 sig->cputime_expires.sched_exp = 0;
799
800 /* The timer lists. */
801 INIT_LIST_HEAD(&sig->cpu_timers[0]);
802 INIT_LIST_HEAD(&sig->cpu_timers[1]);
803 INIT_LIST_HEAD(&sig->cpu_timers[2]);
804 }
805
806 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
807 {
808 struct signal_struct *sig;
809 int ret;
810
811 if (clone_flags & CLONE_THREAD) {
812 ret = thread_group_cputime_clone_thread(current);
813 if (likely(!ret)) {
814 atomic_inc(&current->signal->count);
815 atomic_inc(&current->signal->live);
816 }
817 return ret;
818 }
819 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
820 tsk->signal = sig;
821 if (!sig)
822 return -ENOMEM;
823
824 atomic_set(&sig->count, 1);
825 atomic_set(&sig->live, 1);
826 init_waitqueue_head(&sig->wait_chldexit);
827 sig->flags = 0;
828 sig->group_exit_code = 0;
829 sig->group_exit_task = NULL;
830 sig->group_stop_count = 0;
831 sig->curr_target = tsk;
832 init_sigpending(&sig->shared_pending);
833 INIT_LIST_HEAD(&sig->posix_timers);
834
835 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
836 sig->it_real_incr.tv64 = 0;
837 sig->real_timer.function = it_real_fn;
838
839 sig->leader = 0; /* session leadership doesn't inherit */
840 sig->tty_old_pgrp = NULL;
841 sig->tty = NULL;
842
843 sig->cutime = sig->cstime = cputime_zero;
844 sig->gtime = cputime_zero;
845 sig->cgtime = cputime_zero;
846 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
847 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
848 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
849 task_io_accounting_init(&sig->ioac);
850 taskstats_tgid_init(sig);
851
852 task_lock(current->group_leader);
853 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
854 task_unlock(current->group_leader);
855
856 posix_cpu_timers_init_group(sig);
857
858 acct_init_pacct(&sig->pacct);
859
860 tty_audit_fork(sig);
861
862 return 0;
863 }
864
865 void __cleanup_signal(struct signal_struct *sig)
866 {
867 thread_group_cputime_free(sig);
868 tty_kref_put(sig->tty);
869 kmem_cache_free(signal_cachep, sig);
870 }
871
872 static void cleanup_signal(struct task_struct *tsk)
873 {
874 struct signal_struct *sig = tsk->signal;
875
876 atomic_dec(&sig->live);
877
878 if (atomic_dec_and_test(&sig->count))
879 __cleanup_signal(sig);
880 }
881
882 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
883 {
884 unsigned long new_flags = p->flags;
885
886 new_flags &= ~PF_SUPERPRIV;
887 new_flags |= PF_FORKNOEXEC;
888 new_flags |= PF_STARTING;
889 p->flags = new_flags;
890 clear_freeze_flag(p);
891 }
892
893 asmlinkage long sys_set_tid_address(int __user *tidptr)
894 {
895 current->clear_child_tid = tidptr;
896
897 return task_pid_vnr(current);
898 }
899
900 static void rt_mutex_init_task(struct task_struct *p)
901 {
902 spin_lock_init(&p->pi_lock);
903 #ifdef CONFIG_RT_MUTEXES
904 plist_head_init(&p->pi_waiters, &p->pi_lock);
905 p->pi_blocked_on = NULL;
906 #endif
907 }
908
909 #ifdef CONFIG_MM_OWNER
910 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
911 {
912 mm->owner = p;
913 }
914 #endif /* CONFIG_MM_OWNER */
915
916 /*
917 * Initialize POSIX timer handling for a single task.
918 */
919 static void posix_cpu_timers_init(struct task_struct *tsk)
920 {
921 tsk->cputime_expires.prof_exp = cputime_zero;
922 tsk->cputime_expires.virt_exp = cputime_zero;
923 tsk->cputime_expires.sched_exp = 0;
924 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
925 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
926 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
927 }
928
929 /*
930 * This creates a new process as a copy of the old one,
931 * but does not actually start it yet.
932 *
933 * It copies the registers, and all the appropriate
934 * parts of the process environment (as per the clone
935 * flags). The actual kick-off is left to the caller.
936 */
937 static struct task_struct *copy_process(unsigned long clone_flags,
938 unsigned long stack_start,
939 struct pt_regs *regs,
940 unsigned long stack_size,
941 int __user *child_tidptr,
942 struct pid *pid,
943 int trace)
944 {
945 int retval;
946 struct task_struct *p;
947 int cgroup_callbacks_done = 0;
948
949 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
950 return ERR_PTR(-EINVAL);
951
952 /*
953 * Thread groups must share signals as well, and detached threads
954 * can only be started up within the thread group.
955 */
956 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
957 return ERR_PTR(-EINVAL);
958
959 /*
960 * Shared signal handlers imply shared VM. By way of the above,
961 * thread groups also imply shared VM. Blocking this case allows
962 * for various simplifications in other code.
963 */
964 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
965 return ERR_PTR(-EINVAL);
966
967 retval = security_task_create(clone_flags);
968 if (retval)
969 goto fork_out;
970
971 retval = -ENOMEM;
972 p = dup_task_struct(current);
973 if (!p)
974 goto fork_out;
975
976 rt_mutex_init_task(p);
977
978 #ifdef CONFIG_PROVE_LOCKING
979 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
980 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
981 #endif
982 retval = -EAGAIN;
983 if (atomic_read(&p->real_cred->user->processes) >=
984 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
985 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
986 p->real_cred->user != INIT_USER)
987 goto bad_fork_free;
988 }
989
990 retval = copy_creds(p, clone_flags);
991 if (retval < 0)
992 goto bad_fork_free;
993
994 /*
995 * If multiple threads are within copy_process(), then this check
996 * triggers too late. This doesn't hurt, the check is only there
997 * to stop root fork bombs.
998 */
999 if (nr_threads >= max_threads)
1000 goto bad_fork_cleanup_count;
1001
1002 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1003 goto bad_fork_cleanup_count;
1004
1005 if (p->binfmt && !try_module_get(p->binfmt->module))
1006 goto bad_fork_cleanup_put_domain;
1007
1008 p->did_exec = 0;
1009 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1010 copy_flags(clone_flags, p);
1011 INIT_LIST_HEAD(&p->children);
1012 INIT_LIST_HEAD(&p->sibling);
1013 #ifdef CONFIG_PREEMPT_RCU
1014 p->rcu_read_lock_nesting = 0;
1015 p->rcu_flipctr_idx = 0;
1016 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1017 p->vfork_done = NULL;
1018 spin_lock_init(&p->alloc_lock);
1019
1020 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1021 init_sigpending(&p->pending);
1022
1023 p->utime = cputime_zero;
1024 p->stime = cputime_zero;
1025 p->gtime = cputime_zero;
1026 p->utimescaled = cputime_zero;
1027 p->stimescaled = cputime_zero;
1028 p->prev_utime = cputime_zero;
1029 p->prev_stime = cputime_zero;
1030
1031 p->default_timer_slack_ns = current->timer_slack_ns;
1032
1033 #ifdef CONFIG_DETECT_SOFTLOCKUP
1034 p->last_switch_count = 0;
1035 p->last_switch_timestamp = 0;
1036 #endif
1037
1038 task_io_accounting_init(&p->ioac);
1039 acct_clear_integrals(p);
1040
1041 posix_cpu_timers_init(p);
1042
1043 p->lock_depth = -1; /* -1 = no lock */
1044 do_posix_clock_monotonic_gettime(&p->start_time);
1045 p->real_start_time = p->start_time;
1046 monotonic_to_bootbased(&p->real_start_time);
1047 p->io_context = NULL;
1048 p->audit_context = NULL;
1049 cgroup_fork(p);
1050 #ifdef CONFIG_NUMA
1051 p->mempolicy = mpol_dup(p->mempolicy);
1052 if (IS_ERR(p->mempolicy)) {
1053 retval = PTR_ERR(p->mempolicy);
1054 p->mempolicy = NULL;
1055 goto bad_fork_cleanup_cgroup;
1056 }
1057 mpol_fix_fork_child_flag(p);
1058 #endif
1059 #ifdef CONFIG_TRACE_IRQFLAGS
1060 p->irq_events = 0;
1061 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1062 p->hardirqs_enabled = 1;
1063 #else
1064 p->hardirqs_enabled = 0;
1065 #endif
1066 p->hardirq_enable_ip = 0;
1067 p->hardirq_enable_event = 0;
1068 p->hardirq_disable_ip = _THIS_IP_;
1069 p->hardirq_disable_event = 0;
1070 p->softirqs_enabled = 1;
1071 p->softirq_enable_ip = _THIS_IP_;
1072 p->softirq_enable_event = 0;
1073 p->softirq_disable_ip = 0;
1074 p->softirq_disable_event = 0;
1075 p->hardirq_context = 0;
1076 p->softirq_context = 0;
1077 #endif
1078 #ifdef CONFIG_LOCKDEP
1079 p->lockdep_depth = 0; /* no locks held yet */
1080 p->curr_chain_key = 0;
1081 p->lockdep_recursion = 0;
1082 #endif
1083
1084 #ifdef CONFIG_DEBUG_MUTEXES
1085 p->blocked_on = NULL; /* not blocked yet */
1086 #endif
1087 if (unlikely(ptrace_reparented(current)))
1088 ptrace_fork(p, clone_flags);
1089
1090 /* Perform scheduler related setup. Assign this task to a CPU. */
1091 sched_fork(p, clone_flags);
1092
1093 if ((retval = audit_alloc(p)))
1094 goto bad_fork_cleanup_policy;
1095 /* copy all the process information */
1096 if ((retval = copy_semundo(clone_flags, p)))
1097 goto bad_fork_cleanup_audit;
1098 if ((retval = copy_files(clone_flags, p)))
1099 goto bad_fork_cleanup_semundo;
1100 if ((retval = copy_fs(clone_flags, p)))
1101 goto bad_fork_cleanup_files;
1102 if ((retval = copy_sighand(clone_flags, p)))
1103 goto bad_fork_cleanup_fs;
1104 if ((retval = copy_signal(clone_flags, p)))
1105 goto bad_fork_cleanup_sighand;
1106 if ((retval = copy_mm(clone_flags, p)))
1107 goto bad_fork_cleanup_signal;
1108 if ((retval = copy_namespaces(clone_flags, p)))
1109 goto bad_fork_cleanup_mm;
1110 if ((retval = copy_io(clone_flags, p)))
1111 goto bad_fork_cleanup_namespaces;
1112 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1113 if (retval)
1114 goto bad_fork_cleanup_io;
1115
1116 if (pid != &init_struct_pid) {
1117 retval = -ENOMEM;
1118 pid = alloc_pid(task_active_pid_ns(p));
1119 if (!pid)
1120 goto bad_fork_cleanup_io;
1121
1122 if (clone_flags & CLONE_NEWPID) {
1123 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1124 if (retval < 0)
1125 goto bad_fork_free_pid;
1126 }
1127 }
1128
1129 ftrace_graph_init_task(p);
1130
1131 p->pid = pid_nr(pid);
1132 p->tgid = p->pid;
1133 if (clone_flags & CLONE_THREAD)
1134 p->tgid = current->tgid;
1135
1136 if (current->nsproxy != p->nsproxy) {
1137 retval = ns_cgroup_clone(p, pid);
1138 if (retval)
1139 goto bad_fork_free_graph;
1140 }
1141
1142 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1143 /*
1144 * Clear TID on mm_release()?
1145 */
1146 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1147 #ifdef CONFIG_FUTEX
1148 p->robust_list = NULL;
1149 #ifdef CONFIG_COMPAT
1150 p->compat_robust_list = NULL;
1151 #endif
1152 INIT_LIST_HEAD(&p->pi_state_list);
1153 p->pi_state_cache = NULL;
1154 #endif
1155 /*
1156 * sigaltstack should be cleared when sharing the same VM
1157 */
1158 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1159 p->sas_ss_sp = p->sas_ss_size = 0;
1160
1161 /*
1162 * Syscall tracing should be turned off in the child regardless
1163 * of CLONE_PTRACE.
1164 */
1165 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1166 #ifdef TIF_SYSCALL_EMU
1167 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1168 #endif
1169 clear_all_latency_tracing(p);
1170
1171 /* Our parent execution domain becomes current domain
1172 These must match for thread signalling to apply */
1173 p->parent_exec_id = p->self_exec_id;
1174
1175 /* ok, now we should be set up.. */
1176 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1177 p->pdeath_signal = 0;
1178 p->exit_state = 0;
1179
1180 /*
1181 * Ok, make it visible to the rest of the system.
1182 * We dont wake it up yet.
1183 */
1184 p->group_leader = p;
1185 INIT_LIST_HEAD(&p->thread_group);
1186
1187 /* Now that the task is set up, run cgroup callbacks if
1188 * necessary. We need to run them before the task is visible
1189 * on the tasklist. */
1190 cgroup_fork_callbacks(p);
1191 cgroup_callbacks_done = 1;
1192
1193 /* Need tasklist lock for parent etc handling! */
1194 write_lock_irq(&tasklist_lock);
1195
1196 /*
1197 * The task hasn't been attached yet, so its cpus_allowed mask will
1198 * not be changed, nor will its assigned CPU.
1199 *
1200 * The cpus_allowed mask of the parent may have changed after it was
1201 * copied first time - so re-copy it here, then check the child's CPU
1202 * to ensure it is on a valid CPU (and if not, just force it back to
1203 * parent's CPU). This avoids alot of nasty races.
1204 */
1205 p->cpus_allowed = current->cpus_allowed;
1206 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1207 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1208 !cpu_online(task_cpu(p))))
1209 set_task_cpu(p, smp_processor_id());
1210
1211 /* CLONE_PARENT re-uses the old parent */
1212 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1213 p->real_parent = current->real_parent;
1214 else
1215 p->real_parent = current;
1216
1217 spin_lock(&current->sighand->siglock);
1218
1219 /*
1220 * Process group and session signals need to be delivered to just the
1221 * parent before the fork or both the parent and the child after the
1222 * fork. Restart if a signal comes in before we add the new process to
1223 * it's process group.
1224 * A fatal signal pending means that current will exit, so the new
1225 * thread can't slip out of an OOM kill (or normal SIGKILL).
1226 */
1227 recalc_sigpending();
1228 if (signal_pending(current)) {
1229 spin_unlock(&current->sighand->siglock);
1230 write_unlock_irq(&tasklist_lock);
1231 retval = -ERESTARTNOINTR;
1232 goto bad_fork_free_graph;
1233 }
1234
1235 if (clone_flags & CLONE_THREAD) {
1236 p->group_leader = current->group_leader;
1237 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1238 }
1239
1240 if (likely(p->pid)) {
1241 list_add_tail(&p->sibling, &p->real_parent->children);
1242 tracehook_finish_clone(p, clone_flags, trace);
1243
1244 if (thread_group_leader(p)) {
1245 if (clone_flags & CLONE_NEWPID)
1246 p->nsproxy->pid_ns->child_reaper = p;
1247
1248 p->signal->leader_pid = pid;
1249 tty_kref_put(p->signal->tty);
1250 p->signal->tty = tty_kref_get(current->signal->tty);
1251 set_task_pgrp(p, task_pgrp_nr(current));
1252 set_task_session(p, task_session_nr(current));
1253 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1254 attach_pid(p, PIDTYPE_SID, task_session(current));
1255 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1256 __get_cpu_var(process_counts)++;
1257 }
1258 attach_pid(p, PIDTYPE_PID, pid);
1259 nr_threads++;
1260 }
1261
1262 total_forks++;
1263 spin_unlock(&current->sighand->siglock);
1264 write_unlock_irq(&tasklist_lock);
1265 proc_fork_connector(p);
1266 cgroup_post_fork(p);
1267 return p;
1268
1269 bad_fork_free_graph:
1270 ftrace_graph_exit_task(p);
1271 bad_fork_free_pid:
1272 if (pid != &init_struct_pid)
1273 free_pid(pid);
1274 bad_fork_cleanup_io:
1275 put_io_context(p->io_context);
1276 bad_fork_cleanup_namespaces:
1277 exit_task_namespaces(p);
1278 bad_fork_cleanup_mm:
1279 if (p->mm)
1280 mmput(p->mm);
1281 bad_fork_cleanup_signal:
1282 cleanup_signal(p);
1283 bad_fork_cleanup_sighand:
1284 __cleanup_sighand(p->sighand);
1285 bad_fork_cleanup_fs:
1286 exit_fs(p); /* blocking */
1287 bad_fork_cleanup_files:
1288 exit_files(p); /* blocking */
1289 bad_fork_cleanup_semundo:
1290 exit_sem(p);
1291 bad_fork_cleanup_audit:
1292 audit_free(p);
1293 bad_fork_cleanup_policy:
1294 #ifdef CONFIG_NUMA
1295 mpol_put(p->mempolicy);
1296 bad_fork_cleanup_cgroup:
1297 #endif
1298 cgroup_exit(p, cgroup_callbacks_done);
1299 delayacct_tsk_free(p);
1300 if (p->binfmt)
1301 module_put(p->binfmt->module);
1302 bad_fork_cleanup_put_domain:
1303 module_put(task_thread_info(p)->exec_domain->module);
1304 bad_fork_cleanup_count:
1305 atomic_dec(&p->cred->user->processes);
1306 put_cred(p->real_cred);
1307 put_cred(p->cred);
1308 bad_fork_free:
1309 free_task(p);
1310 fork_out:
1311 return ERR_PTR(retval);
1312 }
1313
1314 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1315 {
1316 memset(regs, 0, sizeof(struct pt_regs));
1317 return regs;
1318 }
1319
1320 struct task_struct * __cpuinit fork_idle(int cpu)
1321 {
1322 struct task_struct *task;
1323 struct pt_regs regs;
1324
1325 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1326 &init_struct_pid, 0);
1327 if (!IS_ERR(task))
1328 init_idle(task, cpu);
1329
1330 return task;
1331 }
1332
1333 /*
1334 * Ok, this is the main fork-routine.
1335 *
1336 * It copies the process, and if successful kick-starts
1337 * it and waits for it to finish using the VM if required.
1338 */
1339 long do_fork(unsigned long clone_flags,
1340 unsigned long stack_start,
1341 struct pt_regs *regs,
1342 unsigned long stack_size,
1343 int __user *parent_tidptr,
1344 int __user *child_tidptr)
1345 {
1346 struct task_struct *p;
1347 int trace = 0;
1348 long nr;
1349
1350 /*
1351 * Do some preliminary argument and permissions checking before we
1352 * actually start allocating stuff
1353 */
1354 if (clone_flags & CLONE_NEWUSER) {
1355 if (clone_flags & CLONE_THREAD)
1356 return -EINVAL;
1357 /* hopefully this check will go away when userns support is
1358 * complete
1359 */
1360 if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SETUID) ||
1361 !capable(CAP_SETGID))
1362 return -EPERM;
1363 }
1364
1365 /*
1366 * We hope to recycle these flags after 2.6.26
1367 */
1368 if (unlikely(clone_flags & CLONE_STOPPED)) {
1369 static int __read_mostly count = 100;
1370
1371 if (count > 0 && printk_ratelimit()) {
1372 char comm[TASK_COMM_LEN];
1373
1374 count--;
1375 printk(KERN_INFO "fork(): process `%s' used deprecated "
1376 "clone flags 0x%lx\n",
1377 get_task_comm(comm, current),
1378 clone_flags & CLONE_STOPPED);
1379 }
1380 }
1381
1382 /*
1383 * When called from kernel_thread, don't do user tracing stuff.
1384 */
1385 if (likely(user_mode(regs)))
1386 trace = tracehook_prepare_clone(clone_flags);
1387
1388 p = copy_process(clone_flags, stack_start, regs, stack_size,
1389 child_tidptr, NULL, trace);
1390 /*
1391 * Do this prior waking up the new thread - the thread pointer
1392 * might get invalid after that point, if the thread exits quickly.
1393 */
1394 if (!IS_ERR(p)) {
1395 struct completion vfork;
1396
1397 trace_sched_process_fork(current, p);
1398
1399 nr = task_pid_vnr(p);
1400
1401 if (clone_flags & CLONE_PARENT_SETTID)
1402 put_user(nr, parent_tidptr);
1403
1404 if (clone_flags & CLONE_VFORK) {
1405 p->vfork_done = &vfork;
1406 init_completion(&vfork);
1407 }
1408
1409 audit_finish_fork(p);
1410 tracehook_report_clone(trace, regs, clone_flags, nr, p);
1411
1412 /*
1413 * We set PF_STARTING at creation in case tracing wants to
1414 * use this to distinguish a fully live task from one that
1415 * hasn't gotten to tracehook_report_clone() yet. Now we
1416 * clear it and set the child going.
1417 */
1418 p->flags &= ~PF_STARTING;
1419
1420 if (unlikely(clone_flags & CLONE_STOPPED)) {
1421 /*
1422 * We'll start up with an immediate SIGSTOP.
1423 */
1424 sigaddset(&p->pending.signal, SIGSTOP);
1425 set_tsk_thread_flag(p, TIF_SIGPENDING);
1426 __set_task_state(p, TASK_STOPPED);
1427 } else {
1428 wake_up_new_task(p, clone_flags);
1429 }
1430
1431 tracehook_report_clone_complete(trace, regs,
1432 clone_flags, nr, p);
1433
1434 if (clone_flags & CLONE_VFORK) {
1435 freezer_do_not_count();
1436 wait_for_completion(&vfork);
1437 freezer_count();
1438 tracehook_report_vfork_done(p, nr);
1439 }
1440 } else {
1441 nr = PTR_ERR(p);
1442 }
1443 return nr;
1444 }
1445
1446 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1447 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1448 #endif
1449
1450 static void sighand_ctor(void *data)
1451 {
1452 struct sighand_struct *sighand = data;
1453
1454 spin_lock_init(&sighand->siglock);
1455 init_waitqueue_head(&sighand->signalfd_wqh);
1456 }
1457
1458 void __init proc_caches_init(void)
1459 {
1460 sighand_cachep = kmem_cache_create("sighand_cache",
1461 sizeof(struct sighand_struct), 0,
1462 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1463 sighand_ctor);
1464 signal_cachep = kmem_cache_create("signal_cache",
1465 sizeof(struct signal_struct), 0,
1466 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1467 files_cachep = kmem_cache_create("files_cache",
1468 sizeof(struct files_struct), 0,
1469 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1470 fs_cachep = kmem_cache_create("fs_cache",
1471 sizeof(struct fs_struct), 0,
1472 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1473 vm_area_cachep = kmem_cache_create("vm_area_struct",
1474 sizeof(struct vm_area_struct), 0,
1475 SLAB_PANIC, NULL);
1476 mm_cachep = kmem_cache_create("mm_struct",
1477 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1478 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1479 }
1480
1481 /*
1482 * Check constraints on flags passed to the unshare system call and
1483 * force unsharing of additional process context as appropriate.
1484 */
1485 static void check_unshare_flags(unsigned long *flags_ptr)
1486 {
1487 /*
1488 * If unsharing a thread from a thread group, must also
1489 * unshare vm.
1490 */
1491 if (*flags_ptr & CLONE_THREAD)
1492 *flags_ptr |= CLONE_VM;
1493
1494 /*
1495 * If unsharing vm, must also unshare signal handlers.
1496 */
1497 if (*flags_ptr & CLONE_VM)
1498 *flags_ptr |= CLONE_SIGHAND;
1499
1500 /*
1501 * If unsharing signal handlers and the task was created
1502 * using CLONE_THREAD, then must unshare the thread
1503 */
1504 if ((*flags_ptr & CLONE_SIGHAND) &&
1505 (atomic_read(&current->signal->count) > 1))
1506 *flags_ptr |= CLONE_THREAD;
1507
1508 /*
1509 * If unsharing namespace, must also unshare filesystem information.
1510 */
1511 if (*flags_ptr & CLONE_NEWNS)
1512 *flags_ptr |= CLONE_FS;
1513 }
1514
1515 /*
1516 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1517 */
1518 static int unshare_thread(unsigned long unshare_flags)
1519 {
1520 if (unshare_flags & CLONE_THREAD)
1521 return -EINVAL;
1522
1523 return 0;
1524 }
1525
1526 /*
1527 * Unshare the filesystem structure if it is being shared
1528 */
1529 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1530 {
1531 struct fs_struct *fs = current->fs;
1532
1533 if ((unshare_flags & CLONE_FS) &&
1534 (fs && atomic_read(&fs->count) > 1)) {
1535 *new_fsp = __copy_fs_struct(current->fs);
1536 if (!*new_fsp)
1537 return -ENOMEM;
1538 }
1539
1540 return 0;
1541 }
1542
1543 /*
1544 * Unsharing of sighand is not supported yet
1545 */
1546 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1547 {
1548 struct sighand_struct *sigh = current->sighand;
1549
1550 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1551 return -EINVAL;
1552 else
1553 return 0;
1554 }
1555
1556 /*
1557 * Unshare vm if it is being shared
1558 */
1559 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1560 {
1561 struct mm_struct *mm = current->mm;
1562
1563 if ((unshare_flags & CLONE_VM) &&
1564 (mm && atomic_read(&mm->mm_users) > 1)) {
1565 return -EINVAL;
1566 }
1567
1568 return 0;
1569 }
1570
1571 /*
1572 * Unshare file descriptor table if it is being shared
1573 */
1574 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1575 {
1576 struct files_struct *fd = current->files;
1577 int error = 0;
1578
1579 if ((unshare_flags & CLONE_FILES) &&
1580 (fd && atomic_read(&fd->count) > 1)) {
1581 *new_fdp = dup_fd(fd, &error);
1582 if (!*new_fdp)
1583 return error;
1584 }
1585
1586 return 0;
1587 }
1588
1589 /*
1590 * unshare allows a process to 'unshare' part of the process
1591 * context which was originally shared using clone. copy_*
1592 * functions used by do_fork() cannot be used here directly
1593 * because they modify an inactive task_struct that is being
1594 * constructed. Here we are modifying the current, active,
1595 * task_struct.
1596 */
1597 asmlinkage long sys_unshare(unsigned long unshare_flags)
1598 {
1599 int err = 0;
1600 struct fs_struct *fs, *new_fs = NULL;
1601 struct sighand_struct *new_sigh = NULL;
1602 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1603 struct files_struct *fd, *new_fd = NULL;
1604 struct nsproxy *new_nsproxy = NULL;
1605 int do_sysvsem = 0;
1606
1607 check_unshare_flags(&unshare_flags);
1608
1609 /* Return -EINVAL for all unsupported flags */
1610 err = -EINVAL;
1611 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1612 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1613 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET))
1614 goto bad_unshare_out;
1615
1616 /*
1617 * CLONE_NEWIPC must also detach from the undolist: after switching
1618 * to a new ipc namespace, the semaphore arrays from the old
1619 * namespace are unreachable.
1620 */
1621 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1622 do_sysvsem = 1;
1623 if ((err = unshare_thread(unshare_flags)))
1624 goto bad_unshare_out;
1625 if ((err = unshare_fs(unshare_flags, &new_fs)))
1626 goto bad_unshare_cleanup_thread;
1627 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1628 goto bad_unshare_cleanup_fs;
1629 if ((err = unshare_vm(unshare_flags, &new_mm)))
1630 goto bad_unshare_cleanup_sigh;
1631 if ((err = unshare_fd(unshare_flags, &new_fd)))
1632 goto bad_unshare_cleanup_vm;
1633 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1634 new_fs)))
1635 goto bad_unshare_cleanup_fd;
1636
1637 if (new_fs || new_mm || new_fd || do_sysvsem || new_nsproxy) {
1638 if (do_sysvsem) {
1639 /*
1640 * CLONE_SYSVSEM is equivalent to sys_exit().
1641 */
1642 exit_sem(current);
1643 }
1644
1645 if (new_nsproxy) {
1646 switch_task_namespaces(current, new_nsproxy);
1647 new_nsproxy = NULL;
1648 }
1649
1650 task_lock(current);
1651
1652 if (new_fs) {
1653 fs = current->fs;
1654 current->fs = new_fs;
1655 new_fs = fs;
1656 }
1657
1658 if (new_mm) {
1659 mm = current->mm;
1660 active_mm = current->active_mm;
1661 current->mm = new_mm;
1662 current->active_mm = new_mm;
1663 activate_mm(active_mm, new_mm);
1664 new_mm = mm;
1665 }
1666
1667 if (new_fd) {
1668 fd = current->files;
1669 current->files = new_fd;
1670 new_fd = fd;
1671 }
1672
1673 task_unlock(current);
1674 }
1675
1676 if (new_nsproxy)
1677 put_nsproxy(new_nsproxy);
1678
1679 bad_unshare_cleanup_fd:
1680 if (new_fd)
1681 put_files_struct(new_fd);
1682
1683 bad_unshare_cleanup_vm:
1684 if (new_mm)
1685 mmput(new_mm);
1686
1687 bad_unshare_cleanup_sigh:
1688 if (new_sigh)
1689 if (atomic_dec_and_test(&new_sigh->count))
1690 kmem_cache_free(sighand_cachep, new_sigh);
1691
1692 bad_unshare_cleanup_fs:
1693 if (new_fs)
1694 put_fs_struct(new_fs);
1695
1696 bad_unshare_cleanup_thread:
1697 bad_unshare_out:
1698 return err;
1699 }
1700
1701 /*
1702 * Helper to unshare the files of the current task.
1703 * We don't want to expose copy_files internals to
1704 * the exec layer of the kernel.
1705 */
1706
1707 int unshare_files(struct files_struct **displaced)
1708 {
1709 struct task_struct *task = current;
1710 struct files_struct *copy = NULL;
1711 int error;
1712
1713 error = unshare_fd(CLONE_FILES, &copy);
1714 if (error || !copy) {
1715 *displaced = NULL;
1716 return error;
1717 }
1718 *displaced = task->files;
1719 task_lock(task);
1720 task->files = copy;
1721 task_unlock(task);
1722 return 0;
1723 }