]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - kernel/fork.c
rtmutex: Turn the plist into an rb-tree
[mirror_ubuntu-focal-kernel.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/personality.h>
21 #include <linux/mempolicy.h>
22 #include <linux/sem.h>
23 #include <linux/file.h>
24 #include <linux/fdtable.h>
25 #include <linux/iocontext.h>
26 #include <linux/key.h>
27 #include <linux/binfmts.h>
28 #include <linux/mman.h>
29 #include <linux/mmu_notifier.h>
30 #include <linux/fs.h>
31 #include <linux/nsproxy.h>
32 #include <linux/capability.h>
33 #include <linux/cpu.h>
34 #include <linux/cgroup.h>
35 #include <linux/security.h>
36 #include <linux/hugetlb.h>
37 #include <linux/seccomp.h>
38 #include <linux/swap.h>
39 #include <linux/syscalls.h>
40 #include <linux/jiffies.h>
41 #include <linux/futex.h>
42 #include <linux/compat.h>
43 #include <linux/kthread.h>
44 #include <linux/task_io_accounting_ops.h>
45 #include <linux/rcupdate.h>
46 #include <linux/ptrace.h>
47 #include <linux/mount.h>
48 #include <linux/audit.h>
49 #include <linux/memcontrol.h>
50 #include <linux/ftrace.h>
51 #include <linux/proc_fs.h>
52 #include <linux/profile.h>
53 #include <linux/rmap.h>
54 #include <linux/ksm.h>
55 #include <linux/acct.h>
56 #include <linux/tsacct_kern.h>
57 #include <linux/cn_proc.h>
58 #include <linux/freezer.h>
59 #include <linux/delayacct.h>
60 #include <linux/taskstats_kern.h>
61 #include <linux/random.h>
62 #include <linux/tty.h>
63 #include <linux/blkdev.h>
64 #include <linux/fs_struct.h>
65 #include <linux/magic.h>
66 #include <linux/perf_event.h>
67 #include <linux/posix-timers.h>
68 #include <linux/user-return-notifier.h>
69 #include <linux/oom.h>
70 #include <linux/khugepaged.h>
71 #include <linux/signalfd.h>
72 #include <linux/uprobes.h>
73 #include <linux/aio.h>
74
75 #include <asm/pgtable.h>
76 #include <asm/pgalloc.h>
77 #include <asm/uaccess.h>
78 #include <asm/mmu_context.h>
79 #include <asm/cacheflush.h>
80 #include <asm/tlbflush.h>
81
82 #include <trace/events/sched.h>
83
84 #define CREATE_TRACE_POINTS
85 #include <trace/events/task.h>
86
87 /*
88 * Protected counters by write_lock_irq(&tasklist_lock)
89 */
90 unsigned long total_forks; /* Handle normal Linux uptimes. */
91 int nr_threads; /* The idle threads do not count.. */
92
93 int max_threads; /* tunable limit on nr_threads */
94
95 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
96
97 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
98
99 #ifdef CONFIG_PROVE_RCU
100 int lockdep_tasklist_lock_is_held(void)
101 {
102 return lockdep_is_held(&tasklist_lock);
103 }
104 EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
105 #endif /* #ifdef CONFIG_PROVE_RCU */
106
107 int nr_processes(void)
108 {
109 int cpu;
110 int total = 0;
111
112 for_each_possible_cpu(cpu)
113 total += per_cpu(process_counts, cpu);
114
115 return total;
116 }
117
118 void __weak arch_release_task_struct(struct task_struct *tsk)
119 {
120 }
121
122 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
123 static struct kmem_cache *task_struct_cachep;
124
125 static inline struct task_struct *alloc_task_struct_node(int node)
126 {
127 return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
128 }
129
130 static inline void free_task_struct(struct task_struct *tsk)
131 {
132 kmem_cache_free(task_struct_cachep, tsk);
133 }
134 #endif
135
136 void __weak arch_release_thread_info(struct thread_info *ti)
137 {
138 }
139
140 #ifndef CONFIG_ARCH_THREAD_INFO_ALLOCATOR
141
142 /*
143 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
144 * kmemcache based allocator.
145 */
146 # if THREAD_SIZE >= PAGE_SIZE
147 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
148 int node)
149 {
150 struct page *page = alloc_pages_node(node, THREADINFO_GFP_ACCOUNTED,
151 THREAD_SIZE_ORDER);
152
153 return page ? page_address(page) : NULL;
154 }
155
156 static inline void free_thread_info(struct thread_info *ti)
157 {
158 free_memcg_kmem_pages((unsigned long)ti, THREAD_SIZE_ORDER);
159 }
160 # else
161 static struct kmem_cache *thread_info_cache;
162
163 static struct thread_info *alloc_thread_info_node(struct task_struct *tsk,
164 int node)
165 {
166 return kmem_cache_alloc_node(thread_info_cache, THREADINFO_GFP, node);
167 }
168
169 static void free_thread_info(struct thread_info *ti)
170 {
171 kmem_cache_free(thread_info_cache, ti);
172 }
173
174 void thread_info_cache_init(void)
175 {
176 thread_info_cache = kmem_cache_create("thread_info", THREAD_SIZE,
177 THREAD_SIZE, 0, NULL);
178 BUG_ON(thread_info_cache == NULL);
179 }
180 # endif
181 #endif
182
183 /* SLAB cache for signal_struct structures (tsk->signal) */
184 static struct kmem_cache *signal_cachep;
185
186 /* SLAB cache for sighand_struct structures (tsk->sighand) */
187 struct kmem_cache *sighand_cachep;
188
189 /* SLAB cache for files_struct structures (tsk->files) */
190 struct kmem_cache *files_cachep;
191
192 /* SLAB cache for fs_struct structures (tsk->fs) */
193 struct kmem_cache *fs_cachep;
194
195 /* SLAB cache for vm_area_struct structures */
196 struct kmem_cache *vm_area_cachep;
197
198 /* SLAB cache for mm_struct structures (tsk->mm) */
199 static struct kmem_cache *mm_cachep;
200
201 static void account_kernel_stack(struct thread_info *ti, int account)
202 {
203 struct zone *zone = page_zone(virt_to_page(ti));
204
205 mod_zone_page_state(zone, NR_KERNEL_STACK, account);
206 }
207
208 void free_task(struct task_struct *tsk)
209 {
210 account_kernel_stack(tsk->stack, -1);
211 arch_release_thread_info(tsk->stack);
212 free_thread_info(tsk->stack);
213 rt_mutex_debug_task_free(tsk);
214 ftrace_graph_exit_task(tsk);
215 put_seccomp_filter(tsk);
216 arch_release_task_struct(tsk);
217 free_task_struct(tsk);
218 }
219 EXPORT_SYMBOL(free_task);
220
221 static inline void free_signal_struct(struct signal_struct *sig)
222 {
223 taskstats_tgid_free(sig);
224 sched_autogroup_exit(sig);
225 kmem_cache_free(signal_cachep, sig);
226 }
227
228 static inline void put_signal_struct(struct signal_struct *sig)
229 {
230 if (atomic_dec_and_test(&sig->sigcnt))
231 free_signal_struct(sig);
232 }
233
234 void __put_task_struct(struct task_struct *tsk)
235 {
236 WARN_ON(!tsk->exit_state);
237 WARN_ON(atomic_read(&tsk->usage));
238 WARN_ON(tsk == current);
239
240 security_task_free(tsk);
241 exit_creds(tsk);
242 delayacct_tsk_free(tsk);
243 put_signal_struct(tsk->signal);
244
245 if (!profile_handoff_task(tsk))
246 free_task(tsk);
247 }
248 EXPORT_SYMBOL_GPL(__put_task_struct);
249
250 void __init __weak arch_task_cache_init(void) { }
251
252 void __init fork_init(unsigned long mempages)
253 {
254 #ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
255 #ifndef ARCH_MIN_TASKALIGN
256 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
257 #endif
258 /* create a slab on which task_structs can be allocated */
259 task_struct_cachep =
260 kmem_cache_create("task_struct", sizeof(struct task_struct),
261 ARCH_MIN_TASKALIGN, SLAB_PANIC | SLAB_NOTRACK, NULL);
262 #endif
263
264 /* do the arch specific task caches init */
265 arch_task_cache_init();
266
267 /*
268 * The default maximum number of threads is set to a safe
269 * value: the thread structures can take up at most half
270 * of memory.
271 */
272 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
273
274 /*
275 * we need to allow at least 20 threads to boot a system
276 */
277 if (max_threads < 20)
278 max_threads = 20;
279
280 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
281 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
282 init_task.signal->rlim[RLIMIT_SIGPENDING] =
283 init_task.signal->rlim[RLIMIT_NPROC];
284 }
285
286 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
287 struct task_struct *src)
288 {
289 *dst = *src;
290 return 0;
291 }
292
293 static struct task_struct *dup_task_struct(struct task_struct *orig)
294 {
295 struct task_struct *tsk;
296 struct thread_info *ti;
297 unsigned long *stackend;
298 int node = tsk_fork_get_node(orig);
299 int err;
300
301 tsk = alloc_task_struct_node(node);
302 if (!tsk)
303 return NULL;
304
305 ti = alloc_thread_info_node(tsk, node);
306 if (!ti)
307 goto free_tsk;
308
309 err = arch_dup_task_struct(tsk, orig);
310 if (err)
311 goto free_ti;
312
313 tsk->stack = ti;
314
315 setup_thread_stack(tsk, orig);
316 clear_user_return_notifier(tsk);
317 clear_tsk_need_resched(tsk);
318 stackend = end_of_stack(tsk);
319 *stackend = STACK_END_MAGIC; /* for overflow detection */
320
321 #ifdef CONFIG_CC_STACKPROTECTOR
322 tsk->stack_canary = get_random_int();
323 #endif
324
325 /*
326 * One for us, one for whoever does the "release_task()" (usually
327 * parent)
328 */
329 atomic_set(&tsk->usage, 2);
330 #ifdef CONFIG_BLK_DEV_IO_TRACE
331 tsk->btrace_seq = 0;
332 #endif
333 tsk->splice_pipe = NULL;
334 tsk->task_frag.page = NULL;
335
336 account_kernel_stack(ti, 1);
337
338 return tsk;
339
340 free_ti:
341 free_thread_info(ti);
342 free_tsk:
343 free_task_struct(tsk);
344 return NULL;
345 }
346
347 #ifdef CONFIG_MMU
348 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
349 {
350 struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
351 struct rb_node **rb_link, *rb_parent;
352 int retval;
353 unsigned long charge;
354
355 uprobe_start_dup_mmap();
356 down_write(&oldmm->mmap_sem);
357 flush_cache_dup_mm(oldmm);
358 uprobe_dup_mmap(oldmm, mm);
359 /*
360 * Not linked in yet - no deadlock potential:
361 */
362 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
363
364 mm->locked_vm = 0;
365 mm->mmap = NULL;
366 mm->mmap_cache = NULL;
367 mm->map_count = 0;
368 cpumask_clear(mm_cpumask(mm));
369 mm->mm_rb = RB_ROOT;
370 rb_link = &mm->mm_rb.rb_node;
371 rb_parent = NULL;
372 pprev = &mm->mmap;
373 retval = ksm_fork(mm, oldmm);
374 if (retval)
375 goto out;
376 retval = khugepaged_fork(mm, oldmm);
377 if (retval)
378 goto out;
379
380 prev = NULL;
381 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
382 struct file *file;
383
384 if (mpnt->vm_flags & VM_DONTCOPY) {
385 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
386 -vma_pages(mpnt));
387 continue;
388 }
389 charge = 0;
390 if (mpnt->vm_flags & VM_ACCOUNT) {
391 unsigned long len = vma_pages(mpnt);
392
393 if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
394 goto fail_nomem;
395 charge = len;
396 }
397 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
398 if (!tmp)
399 goto fail_nomem;
400 *tmp = *mpnt;
401 INIT_LIST_HEAD(&tmp->anon_vma_chain);
402 retval = vma_dup_policy(mpnt, tmp);
403 if (retval)
404 goto fail_nomem_policy;
405 tmp->vm_mm = mm;
406 if (anon_vma_fork(tmp, mpnt))
407 goto fail_nomem_anon_vma_fork;
408 tmp->vm_flags &= ~VM_LOCKED;
409 tmp->vm_next = tmp->vm_prev = NULL;
410 file = tmp->vm_file;
411 if (file) {
412 struct inode *inode = file_inode(file);
413 struct address_space *mapping = file->f_mapping;
414
415 get_file(file);
416 if (tmp->vm_flags & VM_DENYWRITE)
417 atomic_dec(&inode->i_writecount);
418 mutex_lock(&mapping->i_mmap_mutex);
419 if (tmp->vm_flags & VM_SHARED)
420 mapping->i_mmap_writable++;
421 flush_dcache_mmap_lock(mapping);
422 /* insert tmp into the share list, just after mpnt */
423 if (unlikely(tmp->vm_flags & VM_NONLINEAR))
424 vma_nonlinear_insert(tmp,
425 &mapping->i_mmap_nonlinear);
426 else
427 vma_interval_tree_insert_after(tmp, mpnt,
428 &mapping->i_mmap);
429 flush_dcache_mmap_unlock(mapping);
430 mutex_unlock(&mapping->i_mmap_mutex);
431 }
432
433 /*
434 * Clear hugetlb-related page reserves for children. This only
435 * affects MAP_PRIVATE mappings. Faults generated by the child
436 * are not guaranteed to succeed, even if read-only
437 */
438 if (is_vm_hugetlb_page(tmp))
439 reset_vma_resv_huge_pages(tmp);
440
441 /*
442 * Link in the new vma and copy the page table entries.
443 */
444 *pprev = tmp;
445 pprev = &tmp->vm_next;
446 tmp->vm_prev = prev;
447 prev = tmp;
448
449 __vma_link_rb(mm, tmp, rb_link, rb_parent);
450 rb_link = &tmp->vm_rb.rb_right;
451 rb_parent = &tmp->vm_rb;
452
453 mm->map_count++;
454 retval = copy_page_range(mm, oldmm, mpnt);
455
456 if (tmp->vm_ops && tmp->vm_ops->open)
457 tmp->vm_ops->open(tmp);
458
459 if (retval)
460 goto out;
461 }
462 /* a new mm has just been created */
463 arch_dup_mmap(oldmm, mm);
464 retval = 0;
465 out:
466 up_write(&mm->mmap_sem);
467 flush_tlb_mm(oldmm);
468 up_write(&oldmm->mmap_sem);
469 uprobe_end_dup_mmap();
470 return retval;
471 fail_nomem_anon_vma_fork:
472 mpol_put(vma_policy(tmp));
473 fail_nomem_policy:
474 kmem_cache_free(vm_area_cachep, tmp);
475 fail_nomem:
476 retval = -ENOMEM;
477 vm_unacct_memory(charge);
478 goto out;
479 }
480
481 static inline int mm_alloc_pgd(struct mm_struct *mm)
482 {
483 mm->pgd = pgd_alloc(mm);
484 if (unlikely(!mm->pgd))
485 return -ENOMEM;
486 return 0;
487 }
488
489 static inline void mm_free_pgd(struct mm_struct *mm)
490 {
491 pgd_free(mm, mm->pgd);
492 }
493 #else
494 #define dup_mmap(mm, oldmm) (0)
495 #define mm_alloc_pgd(mm) (0)
496 #define mm_free_pgd(mm)
497 #endif /* CONFIG_MMU */
498
499 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
500
501 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
502 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
503
504 static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
505
506 static int __init coredump_filter_setup(char *s)
507 {
508 default_dump_filter =
509 (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
510 MMF_DUMP_FILTER_MASK;
511 return 1;
512 }
513
514 __setup("coredump_filter=", coredump_filter_setup);
515
516 #include <linux/init_task.h>
517
518 static void mm_init_aio(struct mm_struct *mm)
519 {
520 #ifdef CONFIG_AIO
521 spin_lock_init(&mm->ioctx_lock);
522 mm->ioctx_table = NULL;
523 #endif
524 }
525
526 static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p)
527 {
528 atomic_set(&mm->mm_users, 1);
529 atomic_set(&mm->mm_count, 1);
530 init_rwsem(&mm->mmap_sem);
531 INIT_LIST_HEAD(&mm->mmlist);
532 mm->flags = (current->mm) ?
533 (current->mm->flags & MMF_INIT_MASK) : default_dump_filter;
534 mm->core_state = NULL;
535 atomic_long_set(&mm->nr_ptes, 0);
536 memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
537 spin_lock_init(&mm->page_table_lock);
538 mm_init_aio(mm);
539 mm_init_owner(mm, p);
540 clear_tlb_flush_pending(mm);
541
542 if (likely(!mm_alloc_pgd(mm))) {
543 mm->def_flags = 0;
544 mmu_notifier_mm_init(mm);
545 return mm;
546 }
547
548 free_mm(mm);
549 return NULL;
550 }
551
552 static void check_mm(struct mm_struct *mm)
553 {
554 int i;
555
556 for (i = 0; i < NR_MM_COUNTERS; i++) {
557 long x = atomic_long_read(&mm->rss_stat.count[i]);
558
559 if (unlikely(x))
560 printk(KERN_ALERT "BUG: Bad rss-counter state "
561 "mm:%p idx:%d val:%ld\n", mm, i, x);
562 }
563
564 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
565 VM_BUG_ON(mm->pmd_huge_pte);
566 #endif
567 }
568
569 /*
570 * Allocate and initialize an mm_struct.
571 */
572 struct mm_struct *mm_alloc(void)
573 {
574 struct mm_struct *mm;
575
576 mm = allocate_mm();
577 if (!mm)
578 return NULL;
579
580 memset(mm, 0, sizeof(*mm));
581 mm_init_cpumask(mm);
582 return mm_init(mm, current);
583 }
584
585 /*
586 * Called when the last reference to the mm
587 * is dropped: either by a lazy thread or by
588 * mmput. Free the page directory and the mm.
589 */
590 void __mmdrop(struct mm_struct *mm)
591 {
592 BUG_ON(mm == &init_mm);
593 mm_free_pgd(mm);
594 destroy_context(mm);
595 mmu_notifier_mm_destroy(mm);
596 check_mm(mm);
597 free_mm(mm);
598 }
599 EXPORT_SYMBOL_GPL(__mmdrop);
600
601 /*
602 * Decrement the use count and release all resources for an mm.
603 */
604 void mmput(struct mm_struct *mm)
605 {
606 might_sleep();
607
608 if (atomic_dec_and_test(&mm->mm_users)) {
609 uprobe_clear_state(mm);
610 exit_aio(mm);
611 ksm_exit(mm);
612 khugepaged_exit(mm); /* must run before exit_mmap */
613 exit_mmap(mm);
614 set_mm_exe_file(mm, NULL);
615 if (!list_empty(&mm->mmlist)) {
616 spin_lock(&mmlist_lock);
617 list_del(&mm->mmlist);
618 spin_unlock(&mmlist_lock);
619 }
620 if (mm->binfmt)
621 module_put(mm->binfmt->module);
622 mmdrop(mm);
623 }
624 }
625 EXPORT_SYMBOL_GPL(mmput);
626
627 void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
628 {
629 if (new_exe_file)
630 get_file(new_exe_file);
631 if (mm->exe_file)
632 fput(mm->exe_file);
633 mm->exe_file = new_exe_file;
634 }
635
636 struct file *get_mm_exe_file(struct mm_struct *mm)
637 {
638 struct file *exe_file;
639
640 /* We need mmap_sem to protect against races with removal of exe_file */
641 down_read(&mm->mmap_sem);
642 exe_file = mm->exe_file;
643 if (exe_file)
644 get_file(exe_file);
645 up_read(&mm->mmap_sem);
646 return exe_file;
647 }
648
649 static void dup_mm_exe_file(struct mm_struct *oldmm, struct mm_struct *newmm)
650 {
651 /* It's safe to write the exe_file pointer without exe_file_lock because
652 * this is called during fork when the task is not yet in /proc */
653 newmm->exe_file = get_mm_exe_file(oldmm);
654 }
655
656 /**
657 * get_task_mm - acquire a reference to the task's mm
658 *
659 * Returns %NULL if the task has no mm. Checks PF_KTHREAD (meaning
660 * this kernel workthread has transiently adopted a user mm with use_mm,
661 * to do its AIO) is not set and if so returns a reference to it, after
662 * bumping up the use count. User must release the mm via mmput()
663 * after use. Typically used by /proc and ptrace.
664 */
665 struct mm_struct *get_task_mm(struct task_struct *task)
666 {
667 struct mm_struct *mm;
668
669 task_lock(task);
670 mm = task->mm;
671 if (mm) {
672 if (task->flags & PF_KTHREAD)
673 mm = NULL;
674 else
675 atomic_inc(&mm->mm_users);
676 }
677 task_unlock(task);
678 return mm;
679 }
680 EXPORT_SYMBOL_GPL(get_task_mm);
681
682 struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
683 {
684 struct mm_struct *mm;
685 int err;
686
687 err = mutex_lock_killable(&task->signal->cred_guard_mutex);
688 if (err)
689 return ERR_PTR(err);
690
691 mm = get_task_mm(task);
692 if (mm && mm != current->mm &&
693 !ptrace_may_access(task, mode)) {
694 mmput(mm);
695 mm = ERR_PTR(-EACCES);
696 }
697 mutex_unlock(&task->signal->cred_guard_mutex);
698
699 return mm;
700 }
701
702 static void complete_vfork_done(struct task_struct *tsk)
703 {
704 struct completion *vfork;
705
706 task_lock(tsk);
707 vfork = tsk->vfork_done;
708 if (likely(vfork)) {
709 tsk->vfork_done = NULL;
710 complete(vfork);
711 }
712 task_unlock(tsk);
713 }
714
715 static int wait_for_vfork_done(struct task_struct *child,
716 struct completion *vfork)
717 {
718 int killed;
719
720 freezer_do_not_count();
721 killed = wait_for_completion_killable(vfork);
722 freezer_count();
723
724 if (killed) {
725 task_lock(child);
726 child->vfork_done = NULL;
727 task_unlock(child);
728 }
729
730 put_task_struct(child);
731 return killed;
732 }
733
734 /* Please note the differences between mmput and mm_release.
735 * mmput is called whenever we stop holding onto a mm_struct,
736 * error success whatever.
737 *
738 * mm_release is called after a mm_struct has been removed
739 * from the current process.
740 *
741 * This difference is important for error handling, when we
742 * only half set up a mm_struct for a new process and need to restore
743 * the old one. Because we mmput the new mm_struct before
744 * restoring the old one. . .
745 * Eric Biederman 10 January 1998
746 */
747 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
748 {
749 /* Get rid of any futexes when releasing the mm */
750 #ifdef CONFIG_FUTEX
751 if (unlikely(tsk->robust_list)) {
752 exit_robust_list(tsk);
753 tsk->robust_list = NULL;
754 }
755 #ifdef CONFIG_COMPAT
756 if (unlikely(tsk->compat_robust_list)) {
757 compat_exit_robust_list(tsk);
758 tsk->compat_robust_list = NULL;
759 }
760 #endif
761 if (unlikely(!list_empty(&tsk->pi_state_list)))
762 exit_pi_state_list(tsk);
763 #endif
764
765 uprobe_free_utask(tsk);
766
767 /* Get rid of any cached register state */
768 deactivate_mm(tsk, mm);
769
770 /*
771 * If we're exiting normally, clear a user-space tid field if
772 * requested. We leave this alone when dying by signal, to leave
773 * the value intact in a core dump, and to save the unnecessary
774 * trouble, say, a killed vfork parent shouldn't touch this mm.
775 * Userland only wants this done for a sys_exit.
776 */
777 if (tsk->clear_child_tid) {
778 if (!(tsk->flags & PF_SIGNALED) &&
779 atomic_read(&mm->mm_users) > 1) {
780 /*
781 * We don't check the error code - if userspace has
782 * not set up a proper pointer then tough luck.
783 */
784 put_user(0, tsk->clear_child_tid);
785 sys_futex(tsk->clear_child_tid, FUTEX_WAKE,
786 1, NULL, NULL, 0);
787 }
788 tsk->clear_child_tid = NULL;
789 }
790
791 /*
792 * All done, finally we can wake up parent and return this mm to him.
793 * Also kthread_stop() uses this completion for synchronization.
794 */
795 if (tsk->vfork_done)
796 complete_vfork_done(tsk);
797 }
798
799 /*
800 * Allocate a new mm structure and copy contents from the
801 * mm structure of the passed in task structure.
802 */
803 struct mm_struct *dup_mm(struct task_struct *tsk)
804 {
805 struct mm_struct *mm, *oldmm = current->mm;
806 int err;
807
808 if (!oldmm)
809 return NULL;
810
811 mm = allocate_mm();
812 if (!mm)
813 goto fail_nomem;
814
815 memcpy(mm, oldmm, sizeof(*mm));
816 mm_init_cpumask(mm);
817
818 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
819 mm->pmd_huge_pte = NULL;
820 #endif
821 if (!mm_init(mm, tsk))
822 goto fail_nomem;
823
824 if (init_new_context(tsk, mm))
825 goto fail_nocontext;
826
827 dup_mm_exe_file(oldmm, mm);
828
829 err = dup_mmap(mm, oldmm);
830 if (err)
831 goto free_pt;
832
833 mm->hiwater_rss = get_mm_rss(mm);
834 mm->hiwater_vm = mm->total_vm;
835
836 if (mm->binfmt && !try_module_get(mm->binfmt->module))
837 goto free_pt;
838
839 return mm;
840
841 free_pt:
842 /* don't put binfmt in mmput, we haven't got module yet */
843 mm->binfmt = NULL;
844 mmput(mm);
845
846 fail_nomem:
847 return NULL;
848
849 fail_nocontext:
850 /*
851 * If init_new_context() failed, we cannot use mmput() to free the mm
852 * because it calls destroy_context()
853 */
854 mm_free_pgd(mm);
855 free_mm(mm);
856 return NULL;
857 }
858
859 static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
860 {
861 struct mm_struct *mm, *oldmm;
862 int retval;
863
864 tsk->min_flt = tsk->maj_flt = 0;
865 tsk->nvcsw = tsk->nivcsw = 0;
866 #ifdef CONFIG_DETECT_HUNG_TASK
867 tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
868 #endif
869
870 tsk->mm = NULL;
871 tsk->active_mm = NULL;
872
873 /*
874 * Are we cloning a kernel thread?
875 *
876 * We need to steal a active VM for that..
877 */
878 oldmm = current->mm;
879 if (!oldmm)
880 return 0;
881
882 if (clone_flags & CLONE_VM) {
883 atomic_inc(&oldmm->mm_users);
884 mm = oldmm;
885 goto good_mm;
886 }
887
888 retval = -ENOMEM;
889 mm = dup_mm(tsk);
890 if (!mm)
891 goto fail_nomem;
892
893 good_mm:
894 tsk->mm = mm;
895 tsk->active_mm = mm;
896 return 0;
897
898 fail_nomem:
899 return retval;
900 }
901
902 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
903 {
904 struct fs_struct *fs = current->fs;
905 if (clone_flags & CLONE_FS) {
906 /* tsk->fs is already what we want */
907 spin_lock(&fs->lock);
908 if (fs->in_exec) {
909 spin_unlock(&fs->lock);
910 return -EAGAIN;
911 }
912 fs->users++;
913 spin_unlock(&fs->lock);
914 return 0;
915 }
916 tsk->fs = copy_fs_struct(fs);
917 if (!tsk->fs)
918 return -ENOMEM;
919 return 0;
920 }
921
922 static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
923 {
924 struct files_struct *oldf, *newf;
925 int error = 0;
926
927 /*
928 * A background process may not have any files ...
929 */
930 oldf = current->files;
931 if (!oldf)
932 goto out;
933
934 if (clone_flags & CLONE_FILES) {
935 atomic_inc(&oldf->count);
936 goto out;
937 }
938
939 newf = dup_fd(oldf, &error);
940 if (!newf)
941 goto out;
942
943 tsk->files = newf;
944 error = 0;
945 out:
946 return error;
947 }
948
949 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
950 {
951 #ifdef CONFIG_BLOCK
952 struct io_context *ioc = current->io_context;
953 struct io_context *new_ioc;
954
955 if (!ioc)
956 return 0;
957 /*
958 * Share io context with parent, if CLONE_IO is set
959 */
960 if (clone_flags & CLONE_IO) {
961 ioc_task_link(ioc);
962 tsk->io_context = ioc;
963 } else if (ioprio_valid(ioc->ioprio)) {
964 new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
965 if (unlikely(!new_ioc))
966 return -ENOMEM;
967
968 new_ioc->ioprio = ioc->ioprio;
969 put_io_context(new_ioc);
970 }
971 #endif
972 return 0;
973 }
974
975 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
976 {
977 struct sighand_struct *sig;
978
979 if (clone_flags & CLONE_SIGHAND) {
980 atomic_inc(&current->sighand->count);
981 return 0;
982 }
983 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
984 rcu_assign_pointer(tsk->sighand, sig);
985 if (!sig)
986 return -ENOMEM;
987 atomic_set(&sig->count, 1);
988 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
989 return 0;
990 }
991
992 void __cleanup_sighand(struct sighand_struct *sighand)
993 {
994 if (atomic_dec_and_test(&sighand->count)) {
995 signalfd_cleanup(sighand);
996 kmem_cache_free(sighand_cachep, sighand);
997 }
998 }
999
1000
1001 /*
1002 * Initialize POSIX timer handling for a thread group.
1003 */
1004 static void posix_cpu_timers_init_group(struct signal_struct *sig)
1005 {
1006 unsigned long cpu_limit;
1007
1008 /* Thread group counters. */
1009 thread_group_cputime_init(sig);
1010
1011 cpu_limit = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1012 if (cpu_limit != RLIM_INFINITY) {
1013 sig->cputime_expires.prof_exp = secs_to_cputime(cpu_limit);
1014 sig->cputimer.running = 1;
1015 }
1016
1017 /* The timer lists. */
1018 INIT_LIST_HEAD(&sig->cpu_timers[0]);
1019 INIT_LIST_HEAD(&sig->cpu_timers[1]);
1020 INIT_LIST_HEAD(&sig->cpu_timers[2]);
1021 }
1022
1023 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1024 {
1025 struct signal_struct *sig;
1026
1027 if (clone_flags & CLONE_THREAD)
1028 return 0;
1029
1030 sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1031 tsk->signal = sig;
1032 if (!sig)
1033 return -ENOMEM;
1034
1035 sig->nr_threads = 1;
1036 atomic_set(&sig->live, 1);
1037 atomic_set(&sig->sigcnt, 1);
1038 init_waitqueue_head(&sig->wait_chldexit);
1039 sig->curr_target = tsk;
1040 init_sigpending(&sig->shared_pending);
1041 INIT_LIST_HEAD(&sig->posix_timers);
1042
1043 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1044 sig->real_timer.function = it_real_fn;
1045
1046 task_lock(current->group_leader);
1047 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1048 task_unlock(current->group_leader);
1049
1050 posix_cpu_timers_init_group(sig);
1051
1052 tty_audit_fork(sig);
1053 sched_autogroup_fork(sig);
1054
1055 #ifdef CONFIG_CGROUPS
1056 init_rwsem(&sig->group_rwsem);
1057 #endif
1058
1059 sig->oom_score_adj = current->signal->oom_score_adj;
1060 sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1061
1062 sig->has_child_subreaper = current->signal->has_child_subreaper ||
1063 current->signal->is_child_subreaper;
1064
1065 mutex_init(&sig->cred_guard_mutex);
1066
1067 return 0;
1068 }
1069
1070 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
1071 {
1072 unsigned long new_flags = p->flags;
1073
1074 new_flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER);
1075 new_flags |= PF_FORKNOEXEC;
1076 p->flags = new_flags;
1077 }
1078
1079 SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1080 {
1081 current->clear_child_tid = tidptr;
1082
1083 return task_pid_vnr(current);
1084 }
1085
1086 static void rt_mutex_init_task(struct task_struct *p)
1087 {
1088 raw_spin_lock_init(&p->pi_lock);
1089 #ifdef CONFIG_RT_MUTEXES
1090 p->pi_waiters = RB_ROOT;
1091 p->pi_waiters_leftmost = NULL;
1092 p->pi_blocked_on = NULL;
1093 #endif
1094 }
1095
1096 #ifdef CONFIG_MM_OWNER
1097 void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
1098 {
1099 mm->owner = p;
1100 }
1101 #endif /* CONFIG_MM_OWNER */
1102
1103 /*
1104 * Initialize POSIX timer handling for a single task.
1105 */
1106 static void posix_cpu_timers_init(struct task_struct *tsk)
1107 {
1108 tsk->cputime_expires.prof_exp = 0;
1109 tsk->cputime_expires.virt_exp = 0;
1110 tsk->cputime_expires.sched_exp = 0;
1111 INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1112 INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1113 INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1114 }
1115
1116 static inline void
1117 init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1118 {
1119 task->pids[type].pid = pid;
1120 }
1121
1122 /*
1123 * This creates a new process as a copy of the old one,
1124 * but does not actually start it yet.
1125 *
1126 * It copies the registers, and all the appropriate
1127 * parts of the process environment (as per the clone
1128 * flags). The actual kick-off is left to the caller.
1129 */
1130 static struct task_struct *copy_process(unsigned long clone_flags,
1131 unsigned long stack_start,
1132 unsigned long stack_size,
1133 int __user *child_tidptr,
1134 struct pid *pid,
1135 int trace)
1136 {
1137 int retval;
1138 struct task_struct *p;
1139
1140 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1141 return ERR_PTR(-EINVAL);
1142
1143 if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1144 return ERR_PTR(-EINVAL);
1145
1146 /*
1147 * Thread groups must share signals as well, and detached threads
1148 * can only be started up within the thread group.
1149 */
1150 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1151 return ERR_PTR(-EINVAL);
1152
1153 /*
1154 * Shared signal handlers imply shared VM. By way of the above,
1155 * thread groups also imply shared VM. Blocking this case allows
1156 * for various simplifications in other code.
1157 */
1158 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1159 return ERR_PTR(-EINVAL);
1160
1161 /*
1162 * Siblings of global init remain as zombies on exit since they are
1163 * not reaped by their parent (swapper). To solve this and to avoid
1164 * multi-rooted process trees, prevent global and container-inits
1165 * from creating siblings.
1166 */
1167 if ((clone_flags & CLONE_PARENT) &&
1168 current->signal->flags & SIGNAL_UNKILLABLE)
1169 return ERR_PTR(-EINVAL);
1170
1171 /*
1172 * If the new process will be in a different pid or user namespace
1173 * do not allow it to share a thread group or signal handlers or
1174 * parent with the forking task.
1175 */
1176 if (clone_flags & (CLONE_SIGHAND | CLONE_PARENT)) {
1177 if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1178 (task_active_pid_ns(current) !=
1179 current->nsproxy->pid_ns_for_children))
1180 return ERR_PTR(-EINVAL);
1181 }
1182
1183 retval = security_task_create(clone_flags);
1184 if (retval)
1185 goto fork_out;
1186
1187 retval = -ENOMEM;
1188 p = dup_task_struct(current);
1189 if (!p)
1190 goto fork_out;
1191
1192 ftrace_graph_init_task(p);
1193 get_seccomp_filter(p);
1194
1195 rt_mutex_init_task(p);
1196
1197 #ifdef CONFIG_PROVE_LOCKING
1198 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1199 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1200 #endif
1201 retval = -EAGAIN;
1202 if (atomic_read(&p->real_cred->user->processes) >=
1203 task_rlimit(p, RLIMIT_NPROC)) {
1204 if (p->real_cred->user != INIT_USER &&
1205 !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1206 goto bad_fork_free;
1207 }
1208 current->flags &= ~PF_NPROC_EXCEEDED;
1209
1210 retval = copy_creds(p, clone_flags);
1211 if (retval < 0)
1212 goto bad_fork_free;
1213
1214 /*
1215 * If multiple threads are within copy_process(), then this check
1216 * triggers too late. This doesn't hurt, the check is only there
1217 * to stop root fork bombs.
1218 */
1219 retval = -EAGAIN;
1220 if (nr_threads >= max_threads)
1221 goto bad_fork_cleanup_count;
1222
1223 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1224 goto bad_fork_cleanup_count;
1225
1226 p->did_exec = 0;
1227 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1228 copy_flags(clone_flags, p);
1229 INIT_LIST_HEAD(&p->children);
1230 INIT_LIST_HEAD(&p->sibling);
1231 rcu_copy_process(p);
1232 p->vfork_done = NULL;
1233 spin_lock_init(&p->alloc_lock);
1234
1235 init_sigpending(&p->pending);
1236
1237 p->utime = p->stime = p->gtime = 0;
1238 p->utimescaled = p->stimescaled = 0;
1239 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
1240 p->prev_cputime.utime = p->prev_cputime.stime = 0;
1241 #endif
1242 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1243 seqlock_init(&p->vtime_seqlock);
1244 p->vtime_snap = 0;
1245 p->vtime_snap_whence = VTIME_SLEEPING;
1246 #endif
1247
1248 #if defined(SPLIT_RSS_COUNTING)
1249 memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1250 #endif
1251
1252 p->default_timer_slack_ns = current->timer_slack_ns;
1253
1254 task_io_accounting_init(&p->ioac);
1255 acct_clear_integrals(p);
1256
1257 posix_cpu_timers_init(p);
1258
1259 do_posix_clock_monotonic_gettime(&p->start_time);
1260 p->real_start_time = p->start_time;
1261 monotonic_to_bootbased(&p->real_start_time);
1262 p->io_context = NULL;
1263 p->audit_context = NULL;
1264 if (clone_flags & CLONE_THREAD)
1265 threadgroup_change_begin(current);
1266 cgroup_fork(p);
1267 #ifdef CONFIG_NUMA
1268 p->mempolicy = mpol_dup(p->mempolicy);
1269 if (IS_ERR(p->mempolicy)) {
1270 retval = PTR_ERR(p->mempolicy);
1271 p->mempolicy = NULL;
1272 goto bad_fork_cleanup_cgroup;
1273 }
1274 mpol_fix_fork_child_flag(p);
1275 #endif
1276 #ifdef CONFIG_CPUSETS
1277 p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1278 p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1279 seqcount_init(&p->mems_allowed_seq);
1280 #endif
1281 #ifdef CONFIG_TRACE_IRQFLAGS
1282 p->irq_events = 0;
1283 p->hardirqs_enabled = 0;
1284 p->hardirq_enable_ip = 0;
1285 p->hardirq_enable_event = 0;
1286 p->hardirq_disable_ip = _THIS_IP_;
1287 p->hardirq_disable_event = 0;
1288 p->softirqs_enabled = 1;
1289 p->softirq_enable_ip = _THIS_IP_;
1290 p->softirq_enable_event = 0;
1291 p->softirq_disable_ip = 0;
1292 p->softirq_disable_event = 0;
1293 p->hardirq_context = 0;
1294 p->softirq_context = 0;
1295 #endif
1296 #ifdef CONFIG_LOCKDEP
1297 p->lockdep_depth = 0; /* no locks held yet */
1298 p->curr_chain_key = 0;
1299 p->lockdep_recursion = 0;
1300 #endif
1301
1302 #ifdef CONFIG_DEBUG_MUTEXES
1303 p->blocked_on = NULL; /* not blocked yet */
1304 #endif
1305 #ifdef CONFIG_MEMCG
1306 p->memcg_batch.do_batch = 0;
1307 p->memcg_batch.memcg = NULL;
1308 #endif
1309 #ifdef CONFIG_BCACHE
1310 p->sequential_io = 0;
1311 p->sequential_io_avg = 0;
1312 #endif
1313
1314 /* Perform scheduler related setup. Assign this task to a CPU. */
1315 retval = sched_fork(clone_flags, p);
1316 if (retval)
1317 goto bad_fork_cleanup_policy;
1318
1319 retval = perf_event_init_task(p);
1320 if (retval)
1321 goto bad_fork_cleanup_policy;
1322 retval = audit_alloc(p);
1323 if (retval)
1324 goto bad_fork_cleanup_policy;
1325 /* copy all the process information */
1326 retval = copy_semundo(clone_flags, p);
1327 if (retval)
1328 goto bad_fork_cleanup_audit;
1329 retval = copy_files(clone_flags, p);
1330 if (retval)
1331 goto bad_fork_cleanup_semundo;
1332 retval = copy_fs(clone_flags, p);
1333 if (retval)
1334 goto bad_fork_cleanup_files;
1335 retval = copy_sighand(clone_flags, p);
1336 if (retval)
1337 goto bad_fork_cleanup_fs;
1338 retval = copy_signal(clone_flags, p);
1339 if (retval)
1340 goto bad_fork_cleanup_sighand;
1341 retval = copy_mm(clone_flags, p);
1342 if (retval)
1343 goto bad_fork_cleanup_signal;
1344 retval = copy_namespaces(clone_flags, p);
1345 if (retval)
1346 goto bad_fork_cleanup_mm;
1347 retval = copy_io(clone_flags, p);
1348 if (retval)
1349 goto bad_fork_cleanup_namespaces;
1350 retval = copy_thread(clone_flags, stack_start, stack_size, p);
1351 if (retval)
1352 goto bad_fork_cleanup_io;
1353
1354 if (pid != &init_struct_pid) {
1355 retval = -ENOMEM;
1356 pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1357 if (!pid)
1358 goto bad_fork_cleanup_io;
1359 }
1360
1361 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1362 /*
1363 * Clear TID on mm_release()?
1364 */
1365 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1366 #ifdef CONFIG_BLOCK
1367 p->plug = NULL;
1368 #endif
1369 #ifdef CONFIG_FUTEX
1370 p->robust_list = NULL;
1371 #ifdef CONFIG_COMPAT
1372 p->compat_robust_list = NULL;
1373 #endif
1374 INIT_LIST_HEAD(&p->pi_state_list);
1375 p->pi_state_cache = NULL;
1376 #endif
1377 /*
1378 * sigaltstack should be cleared when sharing the same VM
1379 */
1380 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1381 p->sas_ss_sp = p->sas_ss_size = 0;
1382
1383 /*
1384 * Syscall tracing and stepping should be turned off in the
1385 * child regardless of CLONE_PTRACE.
1386 */
1387 user_disable_single_step(p);
1388 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1389 #ifdef TIF_SYSCALL_EMU
1390 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1391 #endif
1392 clear_all_latency_tracing(p);
1393
1394 /* ok, now we should be set up.. */
1395 p->pid = pid_nr(pid);
1396 if (clone_flags & CLONE_THREAD) {
1397 p->exit_signal = -1;
1398 p->group_leader = current->group_leader;
1399 p->tgid = current->tgid;
1400 } else {
1401 if (clone_flags & CLONE_PARENT)
1402 p->exit_signal = current->group_leader->exit_signal;
1403 else
1404 p->exit_signal = (clone_flags & CSIGNAL);
1405 p->group_leader = p;
1406 p->tgid = p->pid;
1407 }
1408
1409 p->nr_dirtied = 0;
1410 p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1411 p->dirty_paused_when = 0;
1412
1413 p->pdeath_signal = 0;
1414 INIT_LIST_HEAD(&p->thread_group);
1415 p->task_works = NULL;
1416
1417 /*
1418 * Make it visible to the rest of the system, but dont wake it up yet.
1419 * Need tasklist lock for parent etc handling!
1420 */
1421 write_lock_irq(&tasklist_lock);
1422
1423 /* CLONE_PARENT re-uses the old parent */
1424 if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1425 p->real_parent = current->real_parent;
1426 p->parent_exec_id = current->parent_exec_id;
1427 } else {
1428 p->real_parent = current;
1429 p->parent_exec_id = current->self_exec_id;
1430 }
1431
1432 spin_lock(&current->sighand->siglock);
1433
1434 /*
1435 * Process group and session signals need to be delivered to just the
1436 * parent before the fork or both the parent and the child after the
1437 * fork. Restart if a signal comes in before we add the new process to
1438 * it's process group.
1439 * A fatal signal pending means that current will exit, so the new
1440 * thread can't slip out of an OOM kill (or normal SIGKILL).
1441 */
1442 recalc_sigpending();
1443 if (signal_pending(current)) {
1444 spin_unlock(&current->sighand->siglock);
1445 write_unlock_irq(&tasklist_lock);
1446 retval = -ERESTARTNOINTR;
1447 goto bad_fork_free_pid;
1448 }
1449
1450 if (likely(p->pid)) {
1451 ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1452
1453 init_task_pid(p, PIDTYPE_PID, pid);
1454 if (thread_group_leader(p)) {
1455 init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
1456 init_task_pid(p, PIDTYPE_SID, task_session(current));
1457
1458 if (is_child_reaper(pid)) {
1459 ns_of_pid(pid)->child_reaper = p;
1460 p->signal->flags |= SIGNAL_UNKILLABLE;
1461 }
1462
1463 p->signal->leader_pid = pid;
1464 p->signal->tty = tty_kref_get(current->signal->tty);
1465 list_add_tail(&p->sibling, &p->real_parent->children);
1466 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1467 attach_pid(p, PIDTYPE_PGID);
1468 attach_pid(p, PIDTYPE_SID);
1469 __this_cpu_inc(process_counts);
1470 } else {
1471 current->signal->nr_threads++;
1472 atomic_inc(&current->signal->live);
1473 atomic_inc(&current->signal->sigcnt);
1474 list_add_tail_rcu(&p->thread_group,
1475 &p->group_leader->thread_group);
1476 }
1477 attach_pid(p, PIDTYPE_PID);
1478 nr_threads++;
1479 }
1480
1481 total_forks++;
1482 spin_unlock(&current->sighand->siglock);
1483 write_unlock_irq(&tasklist_lock);
1484 proc_fork_connector(p);
1485 cgroup_post_fork(p);
1486 if (clone_flags & CLONE_THREAD)
1487 threadgroup_change_end(current);
1488 perf_event_fork(p);
1489
1490 trace_task_newtask(p, clone_flags);
1491 uprobe_copy_process(p, clone_flags);
1492
1493 return p;
1494
1495 bad_fork_free_pid:
1496 if (pid != &init_struct_pid)
1497 free_pid(pid);
1498 bad_fork_cleanup_io:
1499 if (p->io_context)
1500 exit_io_context(p);
1501 bad_fork_cleanup_namespaces:
1502 exit_task_namespaces(p);
1503 bad_fork_cleanup_mm:
1504 if (p->mm)
1505 mmput(p->mm);
1506 bad_fork_cleanup_signal:
1507 if (!(clone_flags & CLONE_THREAD))
1508 free_signal_struct(p->signal);
1509 bad_fork_cleanup_sighand:
1510 __cleanup_sighand(p->sighand);
1511 bad_fork_cleanup_fs:
1512 exit_fs(p); /* blocking */
1513 bad_fork_cleanup_files:
1514 exit_files(p); /* blocking */
1515 bad_fork_cleanup_semundo:
1516 exit_sem(p);
1517 bad_fork_cleanup_audit:
1518 audit_free(p);
1519 bad_fork_cleanup_policy:
1520 perf_event_free_task(p);
1521 #ifdef CONFIG_NUMA
1522 mpol_put(p->mempolicy);
1523 bad_fork_cleanup_cgroup:
1524 #endif
1525 if (clone_flags & CLONE_THREAD)
1526 threadgroup_change_end(current);
1527 cgroup_exit(p, 0);
1528 delayacct_tsk_free(p);
1529 module_put(task_thread_info(p)->exec_domain->module);
1530 bad_fork_cleanup_count:
1531 atomic_dec(&p->cred->user->processes);
1532 exit_creds(p);
1533 bad_fork_free:
1534 free_task(p);
1535 fork_out:
1536 return ERR_PTR(retval);
1537 }
1538
1539 static inline void init_idle_pids(struct pid_link *links)
1540 {
1541 enum pid_type type;
1542
1543 for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1544 INIT_HLIST_NODE(&links[type].node); /* not really needed */
1545 links[type].pid = &init_struct_pid;
1546 }
1547 }
1548
1549 struct task_struct *fork_idle(int cpu)
1550 {
1551 struct task_struct *task;
1552 task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0);
1553 if (!IS_ERR(task)) {
1554 init_idle_pids(task->pids);
1555 init_idle(task, cpu);
1556 }
1557
1558 return task;
1559 }
1560
1561 /*
1562 * Ok, this is the main fork-routine.
1563 *
1564 * It copies the process, and if successful kick-starts
1565 * it and waits for it to finish using the VM if required.
1566 */
1567 long do_fork(unsigned long clone_flags,
1568 unsigned long stack_start,
1569 unsigned long stack_size,
1570 int __user *parent_tidptr,
1571 int __user *child_tidptr)
1572 {
1573 struct task_struct *p;
1574 int trace = 0;
1575 long nr;
1576
1577 /*
1578 * Determine whether and which event to report to ptracer. When
1579 * called from kernel_thread or CLONE_UNTRACED is explicitly
1580 * requested, no event is reported; otherwise, report if the event
1581 * for the type of forking is enabled.
1582 */
1583 if (!(clone_flags & CLONE_UNTRACED)) {
1584 if (clone_flags & CLONE_VFORK)
1585 trace = PTRACE_EVENT_VFORK;
1586 else if ((clone_flags & CSIGNAL) != SIGCHLD)
1587 trace = PTRACE_EVENT_CLONE;
1588 else
1589 trace = PTRACE_EVENT_FORK;
1590
1591 if (likely(!ptrace_event_enabled(current, trace)))
1592 trace = 0;
1593 }
1594
1595 p = copy_process(clone_flags, stack_start, stack_size,
1596 child_tidptr, NULL, trace);
1597 /*
1598 * Do this prior waking up the new thread - the thread pointer
1599 * might get invalid after that point, if the thread exits quickly.
1600 */
1601 if (!IS_ERR(p)) {
1602 struct completion vfork;
1603
1604 trace_sched_process_fork(current, p);
1605
1606 nr = task_pid_vnr(p);
1607
1608 if (clone_flags & CLONE_PARENT_SETTID)
1609 put_user(nr, parent_tidptr);
1610
1611 if (clone_flags & CLONE_VFORK) {
1612 p->vfork_done = &vfork;
1613 init_completion(&vfork);
1614 get_task_struct(p);
1615 }
1616
1617 wake_up_new_task(p);
1618
1619 /* forking complete and child started to run, tell ptracer */
1620 if (unlikely(trace))
1621 ptrace_event(trace, nr);
1622
1623 if (clone_flags & CLONE_VFORK) {
1624 if (!wait_for_vfork_done(p, &vfork))
1625 ptrace_event(PTRACE_EVENT_VFORK_DONE, nr);
1626 }
1627 } else {
1628 nr = PTR_ERR(p);
1629 }
1630 return nr;
1631 }
1632
1633 /*
1634 * Create a kernel thread.
1635 */
1636 pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
1637 {
1638 return do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
1639 (unsigned long)arg, NULL, NULL);
1640 }
1641
1642 #ifdef __ARCH_WANT_SYS_FORK
1643 SYSCALL_DEFINE0(fork)
1644 {
1645 #ifdef CONFIG_MMU
1646 return do_fork(SIGCHLD, 0, 0, NULL, NULL);
1647 #else
1648 /* can not support in nommu mode */
1649 return(-EINVAL);
1650 #endif
1651 }
1652 #endif
1653
1654 #ifdef __ARCH_WANT_SYS_VFORK
1655 SYSCALL_DEFINE0(vfork)
1656 {
1657 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
1658 0, NULL, NULL);
1659 }
1660 #endif
1661
1662 #ifdef __ARCH_WANT_SYS_CLONE
1663 #ifdef CONFIG_CLONE_BACKWARDS
1664 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1665 int __user *, parent_tidptr,
1666 int, tls_val,
1667 int __user *, child_tidptr)
1668 #elif defined(CONFIG_CLONE_BACKWARDS2)
1669 SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
1670 int __user *, parent_tidptr,
1671 int __user *, child_tidptr,
1672 int, tls_val)
1673 #elif defined(CONFIG_CLONE_BACKWARDS3)
1674 SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
1675 int, stack_size,
1676 int __user *, parent_tidptr,
1677 int __user *, child_tidptr,
1678 int, tls_val)
1679 #else
1680 SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
1681 int __user *, parent_tidptr,
1682 int __user *, child_tidptr,
1683 int, tls_val)
1684 #endif
1685 {
1686 return do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr);
1687 }
1688 #endif
1689
1690 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1691 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1692 #endif
1693
1694 static void sighand_ctor(void *data)
1695 {
1696 struct sighand_struct *sighand = data;
1697
1698 spin_lock_init(&sighand->siglock);
1699 init_waitqueue_head(&sighand->signalfd_wqh);
1700 }
1701
1702 void __init proc_caches_init(void)
1703 {
1704 sighand_cachep = kmem_cache_create("sighand_cache",
1705 sizeof(struct sighand_struct), 0,
1706 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU|
1707 SLAB_NOTRACK, sighand_ctor);
1708 signal_cachep = kmem_cache_create("signal_cache",
1709 sizeof(struct signal_struct), 0,
1710 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1711 files_cachep = kmem_cache_create("files_cache",
1712 sizeof(struct files_struct), 0,
1713 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1714 fs_cachep = kmem_cache_create("fs_cache",
1715 sizeof(struct fs_struct), 0,
1716 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1717 /*
1718 * FIXME! The "sizeof(struct mm_struct)" currently includes the
1719 * whole struct cpumask for the OFFSTACK case. We could change
1720 * this to *only* allocate as much of it as required by the
1721 * maximum number of CPU's we can ever have. The cpumask_allocation
1722 * is at the end of the structure, exactly for that reason.
1723 */
1724 mm_cachep = kmem_cache_create("mm_struct",
1725 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1726 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_NOTRACK, NULL);
1727 vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC);
1728 mmap_init();
1729 nsproxy_cache_init();
1730 }
1731
1732 /*
1733 * Check constraints on flags passed to the unshare system call.
1734 */
1735 static int check_unshare_flags(unsigned long unshare_flags)
1736 {
1737 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1738 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1739 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
1740 CLONE_NEWUSER|CLONE_NEWPID))
1741 return -EINVAL;
1742 /*
1743 * Not implemented, but pretend it works if there is nothing to
1744 * unshare. Note that unsharing CLONE_THREAD or CLONE_SIGHAND
1745 * needs to unshare vm.
1746 */
1747 if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
1748 /* FIXME: get_task_mm() increments ->mm_users */
1749 if (atomic_read(&current->mm->mm_users) > 1)
1750 return -EINVAL;
1751 }
1752
1753 return 0;
1754 }
1755
1756 /*
1757 * Unshare the filesystem structure if it is being shared
1758 */
1759 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1760 {
1761 struct fs_struct *fs = current->fs;
1762
1763 if (!(unshare_flags & CLONE_FS) || !fs)
1764 return 0;
1765
1766 /* don't need lock here; in the worst case we'll do useless copy */
1767 if (fs->users == 1)
1768 return 0;
1769
1770 *new_fsp = copy_fs_struct(fs);
1771 if (!*new_fsp)
1772 return -ENOMEM;
1773
1774 return 0;
1775 }
1776
1777 /*
1778 * Unshare file descriptor table if it is being shared
1779 */
1780 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1781 {
1782 struct files_struct *fd = current->files;
1783 int error = 0;
1784
1785 if ((unshare_flags & CLONE_FILES) &&
1786 (fd && atomic_read(&fd->count) > 1)) {
1787 *new_fdp = dup_fd(fd, &error);
1788 if (!*new_fdp)
1789 return error;
1790 }
1791
1792 return 0;
1793 }
1794
1795 /*
1796 * unshare allows a process to 'unshare' part of the process
1797 * context which was originally shared using clone. copy_*
1798 * functions used by do_fork() cannot be used here directly
1799 * because they modify an inactive task_struct that is being
1800 * constructed. Here we are modifying the current, active,
1801 * task_struct.
1802 */
1803 SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
1804 {
1805 struct fs_struct *fs, *new_fs = NULL;
1806 struct files_struct *fd, *new_fd = NULL;
1807 struct cred *new_cred = NULL;
1808 struct nsproxy *new_nsproxy = NULL;
1809 int do_sysvsem = 0;
1810 int err;
1811
1812 /*
1813 * If unsharing a user namespace must also unshare the thread.
1814 */
1815 if (unshare_flags & CLONE_NEWUSER)
1816 unshare_flags |= CLONE_THREAD | CLONE_FS;
1817 /*
1818 * If unsharing a thread from a thread group, must also unshare vm.
1819 */
1820 if (unshare_flags & CLONE_THREAD)
1821 unshare_flags |= CLONE_VM;
1822 /*
1823 * If unsharing vm, must also unshare signal handlers.
1824 */
1825 if (unshare_flags & CLONE_VM)
1826 unshare_flags |= CLONE_SIGHAND;
1827 /*
1828 * If unsharing namespace, must also unshare filesystem information.
1829 */
1830 if (unshare_flags & CLONE_NEWNS)
1831 unshare_flags |= CLONE_FS;
1832
1833 err = check_unshare_flags(unshare_flags);
1834 if (err)
1835 goto bad_unshare_out;
1836 /*
1837 * CLONE_NEWIPC must also detach from the undolist: after switching
1838 * to a new ipc namespace, the semaphore arrays from the old
1839 * namespace are unreachable.
1840 */
1841 if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
1842 do_sysvsem = 1;
1843 err = unshare_fs(unshare_flags, &new_fs);
1844 if (err)
1845 goto bad_unshare_out;
1846 err = unshare_fd(unshare_flags, &new_fd);
1847 if (err)
1848 goto bad_unshare_cleanup_fs;
1849 err = unshare_userns(unshare_flags, &new_cred);
1850 if (err)
1851 goto bad_unshare_cleanup_fd;
1852 err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1853 new_cred, new_fs);
1854 if (err)
1855 goto bad_unshare_cleanup_cred;
1856
1857 if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
1858 if (do_sysvsem) {
1859 /*
1860 * CLONE_SYSVSEM is equivalent to sys_exit().
1861 */
1862 exit_sem(current);
1863 }
1864
1865 if (new_nsproxy)
1866 switch_task_namespaces(current, new_nsproxy);
1867
1868 task_lock(current);
1869
1870 if (new_fs) {
1871 fs = current->fs;
1872 spin_lock(&fs->lock);
1873 current->fs = new_fs;
1874 if (--fs->users)
1875 new_fs = NULL;
1876 else
1877 new_fs = fs;
1878 spin_unlock(&fs->lock);
1879 }
1880
1881 if (new_fd) {
1882 fd = current->files;
1883 current->files = new_fd;
1884 new_fd = fd;
1885 }
1886
1887 task_unlock(current);
1888
1889 if (new_cred) {
1890 /* Install the new user namespace */
1891 commit_creds(new_cred);
1892 new_cred = NULL;
1893 }
1894 }
1895
1896 bad_unshare_cleanup_cred:
1897 if (new_cred)
1898 put_cred(new_cred);
1899 bad_unshare_cleanup_fd:
1900 if (new_fd)
1901 put_files_struct(new_fd);
1902
1903 bad_unshare_cleanup_fs:
1904 if (new_fs)
1905 free_fs_struct(new_fs);
1906
1907 bad_unshare_out:
1908 return err;
1909 }
1910
1911 /*
1912 * Helper to unshare the files of the current task.
1913 * We don't want to expose copy_files internals to
1914 * the exec layer of the kernel.
1915 */
1916
1917 int unshare_files(struct files_struct **displaced)
1918 {
1919 struct task_struct *task = current;
1920 struct files_struct *copy = NULL;
1921 int error;
1922
1923 error = unshare_fd(CLONE_FILES, &copy);
1924 if (error || !copy) {
1925 *displaced = NULL;
1926 return error;
1927 }
1928 *displaced = task->files;
1929 task_lock(task);
1930 task->files = copy;
1931 task_unlock(task);
1932 return 0;
1933 }