]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/fork.c
[PATCH] sanitize handling of shared descriptor tables in failing execve()
[mirror_ubuntu-kernels.git] / kernel / fork.c
1 /*
2 * linux/kernel/fork.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'fork.c' contains the help-routines for the 'fork' system call
9 * (see also entry.S and others).
10 * Fork is rather simple, once you get the hang of it, but the memory
11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
12 */
13
14 #include <linux/slab.h>
15 #include <linux/init.h>
16 #include <linux/unistd.h>
17 #include <linux/module.h>
18 #include <linux/vmalloc.h>
19 #include <linux/completion.h>
20 #include <linux/mnt_namespace.h>
21 #include <linux/personality.h>
22 #include <linux/mempolicy.h>
23 #include <linux/sem.h>
24 #include <linux/file.h>
25 #include <linux/key.h>
26 #include <linux/binfmts.h>
27 #include <linux/mman.h>
28 #include <linux/fs.h>
29 #include <linux/nsproxy.h>
30 #include <linux/capability.h>
31 #include <linux/cpu.h>
32 #include <linux/cgroup.h>
33 #include <linux/security.h>
34 #include <linux/swap.h>
35 #include <linux/syscalls.h>
36 #include <linux/jiffies.h>
37 #include <linux/futex.h>
38 #include <linux/task_io_accounting_ops.h>
39 #include <linux/rcupdate.h>
40 #include <linux/ptrace.h>
41 #include <linux/mount.h>
42 #include <linux/audit.h>
43 #include <linux/memcontrol.h>
44 #include <linux/profile.h>
45 #include <linux/rmap.h>
46 #include <linux/acct.h>
47 #include <linux/tsacct_kern.h>
48 #include <linux/cn_proc.h>
49 #include <linux/freezer.h>
50 #include <linux/delayacct.h>
51 #include <linux/taskstats_kern.h>
52 #include <linux/random.h>
53 #include <linux/tty.h>
54 #include <linux/proc_fs.h>
55 #include <linux/blkdev.h>
56
57 #include <asm/pgtable.h>
58 #include <asm/pgalloc.h>
59 #include <asm/uaccess.h>
60 #include <asm/mmu_context.h>
61 #include <asm/cacheflush.h>
62 #include <asm/tlbflush.h>
63
64 /*
65 * Protected counters by write_lock_irq(&tasklist_lock)
66 */
67 unsigned long total_forks; /* Handle normal Linux uptimes. */
68 int nr_threads; /* The idle threads do not count.. */
69
70 int max_threads; /* tunable limit on nr_threads */
71
72 DEFINE_PER_CPU(unsigned long, process_counts) = 0;
73
74 __cacheline_aligned DEFINE_RWLOCK(tasklist_lock); /* outer */
75
76 int nr_processes(void)
77 {
78 int cpu;
79 int total = 0;
80
81 for_each_online_cpu(cpu)
82 total += per_cpu(process_counts, cpu);
83
84 return total;
85 }
86
87 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
88 # define alloc_task_struct() kmem_cache_alloc(task_struct_cachep, GFP_KERNEL)
89 # define free_task_struct(tsk) kmem_cache_free(task_struct_cachep, (tsk))
90 static struct kmem_cache *task_struct_cachep;
91 #endif
92
93 /* SLAB cache for signal_struct structures (tsk->signal) */
94 static struct kmem_cache *signal_cachep;
95
96 /* SLAB cache for sighand_struct structures (tsk->sighand) */
97 struct kmem_cache *sighand_cachep;
98
99 /* SLAB cache for files_struct structures (tsk->files) */
100 struct kmem_cache *files_cachep;
101
102 /* SLAB cache for fs_struct structures (tsk->fs) */
103 struct kmem_cache *fs_cachep;
104
105 /* SLAB cache for vm_area_struct structures */
106 struct kmem_cache *vm_area_cachep;
107
108 /* SLAB cache for mm_struct structures (tsk->mm) */
109 static struct kmem_cache *mm_cachep;
110
111 void free_task(struct task_struct *tsk)
112 {
113 prop_local_destroy_single(&tsk->dirties);
114 free_thread_info(tsk->stack);
115 rt_mutex_debug_task_free(tsk);
116 free_task_struct(tsk);
117 }
118 EXPORT_SYMBOL(free_task);
119
120 void __put_task_struct(struct task_struct *tsk)
121 {
122 WARN_ON(!tsk->exit_state);
123 WARN_ON(atomic_read(&tsk->usage));
124 WARN_ON(tsk == current);
125
126 security_task_free(tsk);
127 free_uid(tsk->user);
128 put_group_info(tsk->group_info);
129 delayacct_tsk_free(tsk);
130
131 if (!profile_handoff_task(tsk))
132 free_task(tsk);
133 }
134
135 /*
136 * macro override instead of weak attribute alias, to workaround
137 * gcc 4.1.0 and 4.1.1 bugs with weak attribute and empty functions.
138 */
139 #ifndef arch_task_cache_init
140 #define arch_task_cache_init()
141 #endif
142
143 void __init fork_init(unsigned long mempages)
144 {
145 #ifndef __HAVE_ARCH_TASK_STRUCT_ALLOCATOR
146 #ifndef ARCH_MIN_TASKALIGN
147 #define ARCH_MIN_TASKALIGN L1_CACHE_BYTES
148 #endif
149 /* create a slab on which task_structs can be allocated */
150 task_struct_cachep =
151 kmem_cache_create("task_struct", sizeof(struct task_struct),
152 ARCH_MIN_TASKALIGN, SLAB_PANIC, NULL);
153 #endif
154
155 /* do the arch specific task caches init */
156 arch_task_cache_init();
157
158 /*
159 * The default maximum number of threads is set to a safe
160 * value: the thread structures can take up at most half
161 * of memory.
162 */
163 max_threads = mempages / (8 * THREAD_SIZE / PAGE_SIZE);
164
165 /*
166 * we need to allow at least 20 threads to boot a system
167 */
168 if(max_threads < 20)
169 max_threads = 20;
170
171 init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
172 init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
173 init_task.signal->rlim[RLIMIT_SIGPENDING] =
174 init_task.signal->rlim[RLIMIT_NPROC];
175 }
176
177 int __attribute__((weak)) arch_dup_task_struct(struct task_struct *dst,
178 struct task_struct *src)
179 {
180 *dst = *src;
181 return 0;
182 }
183
184 static struct task_struct *dup_task_struct(struct task_struct *orig)
185 {
186 struct task_struct *tsk;
187 struct thread_info *ti;
188 int err;
189
190 prepare_to_copy(orig);
191
192 tsk = alloc_task_struct();
193 if (!tsk)
194 return NULL;
195
196 ti = alloc_thread_info(tsk);
197 if (!ti) {
198 free_task_struct(tsk);
199 return NULL;
200 }
201
202 err = arch_dup_task_struct(tsk, orig);
203 if (err)
204 goto out;
205
206 tsk->stack = ti;
207
208 err = prop_local_init_single(&tsk->dirties);
209 if (err)
210 goto out;
211
212 setup_thread_stack(tsk, orig);
213
214 #ifdef CONFIG_CC_STACKPROTECTOR
215 tsk->stack_canary = get_random_int();
216 #endif
217
218 /* One for us, one for whoever does the "release_task()" (usually parent) */
219 atomic_set(&tsk->usage,2);
220 atomic_set(&tsk->fs_excl, 0);
221 #ifdef CONFIG_BLK_DEV_IO_TRACE
222 tsk->btrace_seq = 0;
223 #endif
224 tsk->splice_pipe = NULL;
225 return tsk;
226
227 out:
228 free_thread_info(ti);
229 free_task_struct(tsk);
230 return NULL;
231 }
232
233 #ifdef CONFIG_MMU
234 static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
235 {
236 struct vm_area_struct *mpnt, *tmp, **pprev;
237 struct rb_node **rb_link, *rb_parent;
238 int retval;
239 unsigned long charge;
240 struct mempolicy *pol;
241
242 down_write(&oldmm->mmap_sem);
243 flush_cache_dup_mm(oldmm);
244 /*
245 * Not linked in yet - no deadlock potential:
246 */
247 down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
248
249 mm->locked_vm = 0;
250 mm->mmap = NULL;
251 mm->mmap_cache = NULL;
252 mm->free_area_cache = oldmm->mmap_base;
253 mm->cached_hole_size = ~0UL;
254 mm->map_count = 0;
255 cpus_clear(mm->cpu_vm_mask);
256 mm->mm_rb = RB_ROOT;
257 rb_link = &mm->mm_rb.rb_node;
258 rb_parent = NULL;
259 pprev = &mm->mmap;
260
261 for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
262 struct file *file;
263
264 if (mpnt->vm_flags & VM_DONTCOPY) {
265 long pages = vma_pages(mpnt);
266 mm->total_vm -= pages;
267 vm_stat_account(mm, mpnt->vm_flags, mpnt->vm_file,
268 -pages);
269 continue;
270 }
271 charge = 0;
272 if (mpnt->vm_flags & VM_ACCOUNT) {
273 unsigned int len = (mpnt->vm_end - mpnt->vm_start) >> PAGE_SHIFT;
274 if (security_vm_enough_memory(len))
275 goto fail_nomem;
276 charge = len;
277 }
278 tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
279 if (!tmp)
280 goto fail_nomem;
281 *tmp = *mpnt;
282 pol = mpol_copy(vma_policy(mpnt));
283 retval = PTR_ERR(pol);
284 if (IS_ERR(pol))
285 goto fail_nomem_policy;
286 vma_set_policy(tmp, pol);
287 tmp->vm_flags &= ~VM_LOCKED;
288 tmp->vm_mm = mm;
289 tmp->vm_next = NULL;
290 anon_vma_link(tmp);
291 file = tmp->vm_file;
292 if (file) {
293 struct inode *inode = file->f_path.dentry->d_inode;
294 get_file(file);
295 if (tmp->vm_flags & VM_DENYWRITE)
296 atomic_dec(&inode->i_writecount);
297
298 /* insert tmp into the share list, just after mpnt */
299 spin_lock(&file->f_mapping->i_mmap_lock);
300 tmp->vm_truncate_count = mpnt->vm_truncate_count;
301 flush_dcache_mmap_lock(file->f_mapping);
302 vma_prio_tree_add(tmp, mpnt);
303 flush_dcache_mmap_unlock(file->f_mapping);
304 spin_unlock(&file->f_mapping->i_mmap_lock);
305 }
306
307 /*
308 * Link in the new vma and copy the page table entries.
309 */
310 *pprev = tmp;
311 pprev = &tmp->vm_next;
312
313 __vma_link_rb(mm, tmp, rb_link, rb_parent);
314 rb_link = &tmp->vm_rb.rb_right;
315 rb_parent = &tmp->vm_rb;
316
317 mm->map_count++;
318 retval = copy_page_range(mm, oldmm, mpnt);
319
320 if (tmp->vm_ops && tmp->vm_ops->open)
321 tmp->vm_ops->open(tmp);
322
323 if (retval)
324 goto out;
325 }
326 /* a new mm has just been created */
327 arch_dup_mmap(oldmm, mm);
328 retval = 0;
329 out:
330 up_write(&mm->mmap_sem);
331 flush_tlb_mm(oldmm);
332 up_write(&oldmm->mmap_sem);
333 return retval;
334 fail_nomem_policy:
335 kmem_cache_free(vm_area_cachep, tmp);
336 fail_nomem:
337 retval = -ENOMEM;
338 vm_unacct_memory(charge);
339 goto out;
340 }
341
342 static inline int mm_alloc_pgd(struct mm_struct * mm)
343 {
344 mm->pgd = pgd_alloc(mm);
345 if (unlikely(!mm->pgd))
346 return -ENOMEM;
347 return 0;
348 }
349
350 static inline void mm_free_pgd(struct mm_struct * mm)
351 {
352 pgd_free(mm, mm->pgd);
353 }
354 #else
355 #define dup_mmap(mm, oldmm) (0)
356 #define mm_alloc_pgd(mm) (0)
357 #define mm_free_pgd(mm)
358 #endif /* CONFIG_MMU */
359
360 __cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
361
362 #define allocate_mm() (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
363 #define free_mm(mm) (kmem_cache_free(mm_cachep, (mm)))
364
365 #include <linux/init_task.h>
366
367 static struct mm_struct * mm_init(struct mm_struct * mm, struct task_struct *p)
368 {
369 atomic_set(&mm->mm_users, 1);
370 atomic_set(&mm->mm_count, 1);
371 init_rwsem(&mm->mmap_sem);
372 INIT_LIST_HEAD(&mm->mmlist);
373 mm->flags = (current->mm) ? current->mm->flags
374 : MMF_DUMP_FILTER_DEFAULT;
375 mm->core_waiters = 0;
376 mm->nr_ptes = 0;
377 set_mm_counter(mm, file_rss, 0);
378 set_mm_counter(mm, anon_rss, 0);
379 spin_lock_init(&mm->page_table_lock);
380 rwlock_init(&mm->ioctx_list_lock);
381 mm->ioctx_list = NULL;
382 mm->free_area_cache = TASK_UNMAPPED_BASE;
383 mm->cached_hole_size = ~0UL;
384 mm_init_cgroup(mm, p);
385
386 if (likely(!mm_alloc_pgd(mm))) {
387 mm->def_flags = 0;
388 return mm;
389 }
390
391 mm_free_cgroup(mm);
392 free_mm(mm);
393 return NULL;
394 }
395
396 /*
397 * Allocate and initialize an mm_struct.
398 */
399 struct mm_struct * mm_alloc(void)
400 {
401 struct mm_struct * mm;
402
403 mm = allocate_mm();
404 if (mm) {
405 memset(mm, 0, sizeof(*mm));
406 mm = mm_init(mm, current);
407 }
408 return mm;
409 }
410
411 /*
412 * Called when the last reference to the mm
413 * is dropped: either by a lazy thread or by
414 * mmput. Free the page directory and the mm.
415 */
416 void __mmdrop(struct mm_struct *mm)
417 {
418 BUG_ON(mm == &init_mm);
419 mm_free_pgd(mm);
420 destroy_context(mm);
421 free_mm(mm);
422 }
423 EXPORT_SYMBOL_GPL(__mmdrop);
424
425 /*
426 * Decrement the use count and release all resources for an mm.
427 */
428 void mmput(struct mm_struct *mm)
429 {
430 might_sleep();
431
432 if (atomic_dec_and_test(&mm->mm_users)) {
433 exit_aio(mm);
434 exit_mmap(mm);
435 if (!list_empty(&mm->mmlist)) {
436 spin_lock(&mmlist_lock);
437 list_del(&mm->mmlist);
438 spin_unlock(&mmlist_lock);
439 }
440 put_swap_token(mm);
441 mm_free_cgroup(mm);
442 mmdrop(mm);
443 }
444 }
445 EXPORT_SYMBOL_GPL(mmput);
446
447 /**
448 * get_task_mm - acquire a reference to the task's mm
449 *
450 * Returns %NULL if the task has no mm. Checks PF_BORROWED_MM (meaning
451 * this kernel workthread has transiently adopted a user mm with use_mm,
452 * to do its AIO) is not set and if so returns a reference to it, after
453 * bumping up the use count. User must release the mm via mmput()
454 * after use. Typically used by /proc and ptrace.
455 */
456 struct mm_struct *get_task_mm(struct task_struct *task)
457 {
458 struct mm_struct *mm;
459
460 task_lock(task);
461 mm = task->mm;
462 if (mm) {
463 if (task->flags & PF_BORROWED_MM)
464 mm = NULL;
465 else
466 atomic_inc(&mm->mm_users);
467 }
468 task_unlock(task);
469 return mm;
470 }
471 EXPORT_SYMBOL_GPL(get_task_mm);
472
473 /* Please note the differences between mmput and mm_release.
474 * mmput is called whenever we stop holding onto a mm_struct,
475 * error success whatever.
476 *
477 * mm_release is called after a mm_struct has been removed
478 * from the current process.
479 *
480 * This difference is important for error handling, when we
481 * only half set up a mm_struct for a new process and need to restore
482 * the old one. Because we mmput the new mm_struct before
483 * restoring the old one. . .
484 * Eric Biederman 10 January 1998
485 */
486 void mm_release(struct task_struct *tsk, struct mm_struct *mm)
487 {
488 struct completion *vfork_done = tsk->vfork_done;
489
490 /* Get rid of any cached register state */
491 deactivate_mm(tsk, mm);
492
493 /* notify parent sleeping on vfork() */
494 if (vfork_done) {
495 tsk->vfork_done = NULL;
496 complete(vfork_done);
497 }
498
499 /*
500 * If we're exiting normally, clear a user-space tid field if
501 * requested. We leave this alone when dying by signal, to leave
502 * the value intact in a core dump, and to save the unnecessary
503 * trouble otherwise. Userland only wants this done for a sys_exit.
504 */
505 if (tsk->clear_child_tid
506 && !(tsk->flags & PF_SIGNALED)
507 && atomic_read(&mm->mm_users) > 1) {
508 u32 __user * tidptr = tsk->clear_child_tid;
509 tsk->clear_child_tid = NULL;
510
511 /*
512 * We don't check the error code - if userspace has
513 * not set up a proper pointer then tough luck.
514 */
515 put_user(0, tidptr);
516 sys_futex(tidptr, FUTEX_WAKE, 1, NULL, NULL, 0);
517 }
518 }
519
520 /*
521 * Allocate a new mm structure and copy contents from the
522 * mm structure of the passed in task structure.
523 */
524 static struct mm_struct *dup_mm(struct task_struct *tsk)
525 {
526 struct mm_struct *mm, *oldmm = current->mm;
527 int err;
528
529 if (!oldmm)
530 return NULL;
531
532 mm = allocate_mm();
533 if (!mm)
534 goto fail_nomem;
535
536 memcpy(mm, oldmm, sizeof(*mm));
537
538 /* Initializing for Swap token stuff */
539 mm->token_priority = 0;
540 mm->last_interval = 0;
541
542 if (!mm_init(mm, tsk))
543 goto fail_nomem;
544
545 if (init_new_context(tsk, mm))
546 goto fail_nocontext;
547
548 err = dup_mmap(mm, oldmm);
549 if (err)
550 goto free_pt;
551
552 mm->hiwater_rss = get_mm_rss(mm);
553 mm->hiwater_vm = mm->total_vm;
554
555 return mm;
556
557 free_pt:
558 mmput(mm);
559
560 fail_nomem:
561 return NULL;
562
563 fail_nocontext:
564 /*
565 * If init_new_context() failed, we cannot use mmput() to free the mm
566 * because it calls destroy_context()
567 */
568 mm_free_pgd(mm);
569 free_mm(mm);
570 return NULL;
571 }
572
573 static int copy_mm(unsigned long clone_flags, struct task_struct * tsk)
574 {
575 struct mm_struct * mm, *oldmm;
576 int retval;
577
578 tsk->min_flt = tsk->maj_flt = 0;
579 tsk->nvcsw = tsk->nivcsw = 0;
580
581 tsk->mm = NULL;
582 tsk->active_mm = NULL;
583
584 /*
585 * Are we cloning a kernel thread?
586 *
587 * We need to steal a active VM for that..
588 */
589 oldmm = current->mm;
590 if (!oldmm)
591 return 0;
592
593 if (clone_flags & CLONE_VM) {
594 atomic_inc(&oldmm->mm_users);
595 mm = oldmm;
596 goto good_mm;
597 }
598
599 retval = -ENOMEM;
600 mm = dup_mm(tsk);
601 if (!mm)
602 goto fail_nomem;
603
604 good_mm:
605 /* Initializing for Swap token stuff */
606 mm->token_priority = 0;
607 mm->last_interval = 0;
608
609 tsk->mm = mm;
610 tsk->active_mm = mm;
611 return 0;
612
613 fail_nomem:
614 return retval;
615 }
616
617 static struct fs_struct *__copy_fs_struct(struct fs_struct *old)
618 {
619 struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);
620 /* We don't need to lock fs - think why ;-) */
621 if (fs) {
622 atomic_set(&fs->count, 1);
623 rwlock_init(&fs->lock);
624 fs->umask = old->umask;
625 read_lock(&old->lock);
626 fs->root = old->root;
627 path_get(&old->root);
628 fs->pwd = old->pwd;
629 path_get(&old->pwd);
630 if (old->altroot.dentry) {
631 fs->altroot = old->altroot;
632 path_get(&old->altroot);
633 } else {
634 fs->altroot.mnt = NULL;
635 fs->altroot.dentry = NULL;
636 }
637 read_unlock(&old->lock);
638 }
639 return fs;
640 }
641
642 struct fs_struct *copy_fs_struct(struct fs_struct *old)
643 {
644 return __copy_fs_struct(old);
645 }
646
647 EXPORT_SYMBOL_GPL(copy_fs_struct);
648
649 static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
650 {
651 if (clone_flags & CLONE_FS) {
652 atomic_inc(&current->fs->count);
653 return 0;
654 }
655 tsk->fs = __copy_fs_struct(current->fs);
656 if (!tsk->fs)
657 return -ENOMEM;
658 return 0;
659 }
660
661 static int count_open_files(struct fdtable *fdt)
662 {
663 int size = fdt->max_fds;
664 int i;
665
666 /* Find the last open fd */
667 for (i = size/(8*sizeof(long)); i > 0; ) {
668 if (fdt->open_fds->fds_bits[--i])
669 break;
670 }
671 i = (i+1) * 8 * sizeof(long);
672 return i;
673 }
674
675 static struct files_struct *alloc_files(void)
676 {
677 struct files_struct *newf;
678 struct fdtable *fdt;
679
680 newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);
681 if (!newf)
682 goto out;
683
684 atomic_set(&newf->count, 1);
685
686 spin_lock_init(&newf->file_lock);
687 newf->next_fd = 0;
688 fdt = &newf->fdtab;
689 fdt->max_fds = NR_OPEN_DEFAULT;
690 fdt->close_on_exec = (fd_set *)&newf->close_on_exec_init;
691 fdt->open_fds = (fd_set *)&newf->open_fds_init;
692 fdt->fd = &newf->fd_array[0];
693 INIT_RCU_HEAD(&fdt->rcu);
694 fdt->next = NULL;
695 rcu_assign_pointer(newf->fdt, fdt);
696 out:
697 return newf;
698 }
699
700 /*
701 * Allocate a new files structure and copy contents from the
702 * passed in files structure.
703 * errorp will be valid only when the returned files_struct is NULL.
704 */
705 static struct files_struct *dup_fd(struct files_struct *oldf, int *errorp)
706 {
707 struct files_struct *newf;
708 struct file **old_fds, **new_fds;
709 int open_files, size, i;
710 struct fdtable *old_fdt, *new_fdt;
711
712 *errorp = -ENOMEM;
713 newf = alloc_files();
714 if (!newf)
715 goto out;
716
717 spin_lock(&oldf->file_lock);
718 old_fdt = files_fdtable(oldf);
719 new_fdt = files_fdtable(newf);
720 open_files = count_open_files(old_fdt);
721
722 /*
723 * Check whether we need to allocate a larger fd array and fd set.
724 * Note: we're not a clone task, so the open count won't change.
725 */
726 if (open_files > new_fdt->max_fds) {
727 new_fdt->max_fds = 0;
728 spin_unlock(&oldf->file_lock);
729 spin_lock(&newf->file_lock);
730 *errorp = expand_files(newf, open_files-1);
731 spin_unlock(&newf->file_lock);
732 if (*errorp < 0)
733 goto out_release;
734 new_fdt = files_fdtable(newf);
735 /*
736 * Reacquire the oldf lock and a pointer to its fd table
737 * who knows it may have a new bigger fd table. We need
738 * the latest pointer.
739 */
740 spin_lock(&oldf->file_lock);
741 old_fdt = files_fdtable(oldf);
742 }
743
744 old_fds = old_fdt->fd;
745 new_fds = new_fdt->fd;
746
747 memcpy(new_fdt->open_fds->fds_bits,
748 old_fdt->open_fds->fds_bits, open_files/8);
749 memcpy(new_fdt->close_on_exec->fds_bits,
750 old_fdt->close_on_exec->fds_bits, open_files/8);
751
752 for (i = open_files; i != 0; i--) {
753 struct file *f = *old_fds++;
754 if (f) {
755 get_file(f);
756 } else {
757 /*
758 * The fd may be claimed in the fd bitmap but not yet
759 * instantiated in the files array if a sibling thread
760 * is partway through open(). So make sure that this
761 * fd is available to the new process.
762 */
763 FD_CLR(open_files - i, new_fdt->open_fds);
764 }
765 rcu_assign_pointer(*new_fds++, f);
766 }
767 spin_unlock(&oldf->file_lock);
768
769 /* compute the remainder to be cleared */
770 size = (new_fdt->max_fds - open_files) * sizeof(struct file *);
771
772 /* This is long word aligned thus could use a optimized version */
773 memset(new_fds, 0, size);
774
775 if (new_fdt->max_fds > open_files) {
776 int left = (new_fdt->max_fds-open_files)/8;
777 int start = open_files / (8 * sizeof(unsigned long));
778
779 memset(&new_fdt->open_fds->fds_bits[start], 0, left);
780 memset(&new_fdt->close_on_exec->fds_bits[start], 0, left);
781 }
782
783 return newf;
784
785 out_release:
786 kmem_cache_free(files_cachep, newf);
787 out:
788 return NULL;
789 }
790
791 static int copy_files(unsigned long clone_flags, struct task_struct * tsk)
792 {
793 struct files_struct *oldf, *newf;
794 int error = 0;
795
796 /*
797 * A background process may not have any files ...
798 */
799 oldf = current->files;
800 if (!oldf)
801 goto out;
802
803 if (clone_flags & CLONE_FILES) {
804 atomic_inc(&oldf->count);
805 goto out;
806 }
807
808 newf = dup_fd(oldf, &error);
809 if (!newf)
810 goto out;
811
812 tsk->files = newf;
813 error = 0;
814 out:
815 return error;
816 }
817
818 static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
819 {
820 #ifdef CONFIG_BLOCK
821 struct io_context *ioc = current->io_context;
822
823 if (!ioc)
824 return 0;
825 /*
826 * Share io context with parent, if CLONE_IO is set
827 */
828 if (clone_flags & CLONE_IO) {
829 tsk->io_context = ioc_task_link(ioc);
830 if (unlikely(!tsk->io_context))
831 return -ENOMEM;
832 } else if (ioprio_valid(ioc->ioprio)) {
833 tsk->io_context = alloc_io_context(GFP_KERNEL, -1);
834 if (unlikely(!tsk->io_context))
835 return -ENOMEM;
836
837 tsk->io_context->ioprio = ioc->ioprio;
838 }
839 #endif
840 return 0;
841 }
842
843 /*
844 * Helper to unshare the files of the current task.
845 * We don't want to expose copy_files internals to
846 * the exec layer of the kernel.
847 */
848
849 int unshare_files(void)
850 {
851 struct files_struct *files = current->files;
852 struct files_struct *newf;
853 int error = 0;
854
855 BUG_ON(!files);
856
857 /* This can race but the race causes us to copy when we don't
858 need to and drop the copy */
859 if(atomic_read(&files->count) == 1)
860 {
861 atomic_inc(&files->count);
862 return 0;
863 }
864 newf = dup_fd(files, &error);
865 if (newf) {
866 task_lock(current);
867 current->files = newf;
868 task_unlock(current);
869 }
870 return error;
871 }
872
873 static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
874 {
875 struct sighand_struct *sig;
876
877 if (clone_flags & (CLONE_SIGHAND | CLONE_THREAD)) {
878 atomic_inc(&current->sighand->count);
879 return 0;
880 }
881 sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
882 rcu_assign_pointer(tsk->sighand, sig);
883 if (!sig)
884 return -ENOMEM;
885 atomic_set(&sig->count, 1);
886 memcpy(sig->action, current->sighand->action, sizeof(sig->action));
887 return 0;
888 }
889
890 void __cleanup_sighand(struct sighand_struct *sighand)
891 {
892 if (atomic_dec_and_test(&sighand->count))
893 kmem_cache_free(sighand_cachep, sighand);
894 }
895
896 static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
897 {
898 struct signal_struct *sig;
899 int ret;
900
901 if (clone_flags & CLONE_THREAD) {
902 atomic_inc(&current->signal->count);
903 atomic_inc(&current->signal->live);
904 return 0;
905 }
906 sig = kmem_cache_alloc(signal_cachep, GFP_KERNEL);
907 tsk->signal = sig;
908 if (!sig)
909 return -ENOMEM;
910
911 ret = copy_thread_group_keys(tsk);
912 if (ret < 0) {
913 kmem_cache_free(signal_cachep, sig);
914 return ret;
915 }
916
917 atomic_set(&sig->count, 1);
918 atomic_set(&sig->live, 1);
919 init_waitqueue_head(&sig->wait_chldexit);
920 sig->flags = 0;
921 sig->group_exit_code = 0;
922 sig->group_exit_task = NULL;
923 sig->group_stop_count = 0;
924 sig->curr_target = NULL;
925 init_sigpending(&sig->shared_pending);
926 INIT_LIST_HEAD(&sig->posix_timers);
927
928 hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
929 sig->it_real_incr.tv64 = 0;
930 sig->real_timer.function = it_real_fn;
931
932 sig->it_virt_expires = cputime_zero;
933 sig->it_virt_incr = cputime_zero;
934 sig->it_prof_expires = cputime_zero;
935 sig->it_prof_incr = cputime_zero;
936
937 sig->leader = 0; /* session leadership doesn't inherit */
938 sig->tty_old_pgrp = NULL;
939
940 sig->utime = sig->stime = sig->cutime = sig->cstime = cputime_zero;
941 sig->gtime = cputime_zero;
942 sig->cgtime = cputime_zero;
943 sig->nvcsw = sig->nivcsw = sig->cnvcsw = sig->cnivcsw = 0;
944 sig->min_flt = sig->maj_flt = sig->cmin_flt = sig->cmaj_flt = 0;
945 sig->inblock = sig->oublock = sig->cinblock = sig->coublock = 0;
946 sig->sum_sched_runtime = 0;
947 INIT_LIST_HEAD(&sig->cpu_timers[0]);
948 INIT_LIST_HEAD(&sig->cpu_timers[1]);
949 INIT_LIST_HEAD(&sig->cpu_timers[2]);
950 taskstats_tgid_init(sig);
951
952 task_lock(current->group_leader);
953 memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
954 task_unlock(current->group_leader);
955
956 if (sig->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) {
957 /*
958 * New sole thread in the process gets an expiry time
959 * of the whole CPU time limit.
960 */
961 tsk->it_prof_expires =
962 secs_to_cputime(sig->rlim[RLIMIT_CPU].rlim_cur);
963 }
964 acct_init_pacct(&sig->pacct);
965
966 tty_audit_fork(sig);
967
968 return 0;
969 }
970
971 void __cleanup_signal(struct signal_struct *sig)
972 {
973 exit_thread_group_keys(sig);
974 kmem_cache_free(signal_cachep, sig);
975 }
976
977 static void cleanup_signal(struct task_struct *tsk)
978 {
979 struct signal_struct *sig = tsk->signal;
980
981 atomic_dec(&sig->live);
982
983 if (atomic_dec_and_test(&sig->count))
984 __cleanup_signal(sig);
985 }
986
987 static void copy_flags(unsigned long clone_flags, struct task_struct *p)
988 {
989 unsigned long new_flags = p->flags;
990
991 new_flags &= ~PF_SUPERPRIV;
992 new_flags |= PF_FORKNOEXEC;
993 if (!(clone_flags & CLONE_PTRACE))
994 p->ptrace = 0;
995 p->flags = new_flags;
996 clear_freeze_flag(p);
997 }
998
999 asmlinkage long sys_set_tid_address(int __user *tidptr)
1000 {
1001 current->clear_child_tid = tidptr;
1002
1003 return task_pid_vnr(current);
1004 }
1005
1006 static void rt_mutex_init_task(struct task_struct *p)
1007 {
1008 spin_lock_init(&p->pi_lock);
1009 #ifdef CONFIG_RT_MUTEXES
1010 plist_head_init(&p->pi_waiters, &p->pi_lock);
1011 p->pi_blocked_on = NULL;
1012 #endif
1013 }
1014
1015 /*
1016 * This creates a new process as a copy of the old one,
1017 * but does not actually start it yet.
1018 *
1019 * It copies the registers, and all the appropriate
1020 * parts of the process environment (as per the clone
1021 * flags). The actual kick-off is left to the caller.
1022 */
1023 static struct task_struct *copy_process(unsigned long clone_flags,
1024 unsigned long stack_start,
1025 struct pt_regs *regs,
1026 unsigned long stack_size,
1027 int __user *child_tidptr,
1028 struct pid *pid)
1029 {
1030 int retval;
1031 struct task_struct *p;
1032 int cgroup_callbacks_done = 0;
1033
1034 if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1035 return ERR_PTR(-EINVAL);
1036
1037 /*
1038 * Thread groups must share signals as well, and detached threads
1039 * can only be started up within the thread group.
1040 */
1041 if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1042 return ERR_PTR(-EINVAL);
1043
1044 /*
1045 * Shared signal handlers imply shared VM. By way of the above,
1046 * thread groups also imply shared VM. Blocking this case allows
1047 * for various simplifications in other code.
1048 */
1049 if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1050 return ERR_PTR(-EINVAL);
1051
1052 retval = security_task_create(clone_flags);
1053 if (retval)
1054 goto fork_out;
1055
1056 retval = -ENOMEM;
1057 p = dup_task_struct(current);
1058 if (!p)
1059 goto fork_out;
1060
1061 rt_mutex_init_task(p);
1062
1063 #ifdef CONFIG_TRACE_IRQFLAGS
1064 DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1065 DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1066 #endif
1067 retval = -EAGAIN;
1068 if (atomic_read(&p->user->processes) >=
1069 p->signal->rlim[RLIMIT_NPROC].rlim_cur) {
1070 if (!capable(CAP_SYS_ADMIN) && !capable(CAP_SYS_RESOURCE) &&
1071 p->user != current->nsproxy->user_ns->root_user)
1072 goto bad_fork_free;
1073 }
1074
1075 atomic_inc(&p->user->__count);
1076 atomic_inc(&p->user->processes);
1077 get_group_info(p->group_info);
1078
1079 /*
1080 * If multiple threads are within copy_process(), then this check
1081 * triggers too late. This doesn't hurt, the check is only there
1082 * to stop root fork bombs.
1083 */
1084 if (nr_threads >= max_threads)
1085 goto bad_fork_cleanup_count;
1086
1087 if (!try_module_get(task_thread_info(p)->exec_domain->module))
1088 goto bad_fork_cleanup_count;
1089
1090 if (p->binfmt && !try_module_get(p->binfmt->module))
1091 goto bad_fork_cleanup_put_domain;
1092
1093 p->did_exec = 0;
1094 delayacct_tsk_init(p); /* Must remain after dup_task_struct() */
1095 copy_flags(clone_flags, p);
1096 INIT_LIST_HEAD(&p->children);
1097 INIT_LIST_HEAD(&p->sibling);
1098 #ifdef CONFIG_PREEMPT_RCU
1099 p->rcu_read_lock_nesting = 0;
1100 p->rcu_flipctr_idx = 0;
1101 #endif /* #ifdef CONFIG_PREEMPT_RCU */
1102 p->vfork_done = NULL;
1103 spin_lock_init(&p->alloc_lock);
1104
1105 clear_tsk_thread_flag(p, TIF_SIGPENDING);
1106 init_sigpending(&p->pending);
1107
1108 p->utime = cputime_zero;
1109 p->stime = cputime_zero;
1110 p->gtime = cputime_zero;
1111 p->utimescaled = cputime_zero;
1112 p->stimescaled = cputime_zero;
1113 p->prev_utime = cputime_zero;
1114 p->prev_stime = cputime_zero;
1115
1116 #ifdef CONFIG_DETECT_SOFTLOCKUP
1117 p->last_switch_count = 0;
1118 p->last_switch_timestamp = 0;
1119 #endif
1120
1121 #ifdef CONFIG_TASK_XACCT
1122 p->rchar = 0; /* I/O counter: bytes read */
1123 p->wchar = 0; /* I/O counter: bytes written */
1124 p->syscr = 0; /* I/O counter: read syscalls */
1125 p->syscw = 0; /* I/O counter: write syscalls */
1126 #endif
1127 task_io_accounting_init(p);
1128 acct_clear_integrals(p);
1129
1130 p->it_virt_expires = cputime_zero;
1131 p->it_prof_expires = cputime_zero;
1132 p->it_sched_expires = 0;
1133 INIT_LIST_HEAD(&p->cpu_timers[0]);
1134 INIT_LIST_HEAD(&p->cpu_timers[1]);
1135 INIT_LIST_HEAD(&p->cpu_timers[2]);
1136
1137 p->lock_depth = -1; /* -1 = no lock */
1138 do_posix_clock_monotonic_gettime(&p->start_time);
1139 p->real_start_time = p->start_time;
1140 monotonic_to_bootbased(&p->real_start_time);
1141 #ifdef CONFIG_SECURITY
1142 p->security = NULL;
1143 #endif
1144 p->cap_bset = current->cap_bset;
1145 p->io_context = NULL;
1146 p->audit_context = NULL;
1147 cgroup_fork(p);
1148 #ifdef CONFIG_NUMA
1149 p->mempolicy = mpol_copy(p->mempolicy);
1150 if (IS_ERR(p->mempolicy)) {
1151 retval = PTR_ERR(p->mempolicy);
1152 p->mempolicy = NULL;
1153 goto bad_fork_cleanup_cgroup;
1154 }
1155 mpol_fix_fork_child_flag(p);
1156 #endif
1157 #ifdef CONFIG_TRACE_IRQFLAGS
1158 p->irq_events = 0;
1159 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1160 p->hardirqs_enabled = 1;
1161 #else
1162 p->hardirqs_enabled = 0;
1163 #endif
1164 p->hardirq_enable_ip = 0;
1165 p->hardirq_enable_event = 0;
1166 p->hardirq_disable_ip = _THIS_IP_;
1167 p->hardirq_disable_event = 0;
1168 p->softirqs_enabled = 1;
1169 p->softirq_enable_ip = _THIS_IP_;
1170 p->softirq_enable_event = 0;
1171 p->softirq_disable_ip = 0;
1172 p->softirq_disable_event = 0;
1173 p->hardirq_context = 0;
1174 p->softirq_context = 0;
1175 #endif
1176 #ifdef CONFIG_LOCKDEP
1177 p->lockdep_depth = 0; /* no locks held yet */
1178 p->curr_chain_key = 0;
1179 p->lockdep_recursion = 0;
1180 #endif
1181
1182 #ifdef CONFIG_DEBUG_MUTEXES
1183 p->blocked_on = NULL; /* not blocked yet */
1184 #endif
1185
1186 /* Perform scheduler related setup. Assign this task to a CPU. */
1187 sched_fork(p, clone_flags);
1188
1189 if ((retval = security_task_alloc(p)))
1190 goto bad_fork_cleanup_policy;
1191 if ((retval = audit_alloc(p)))
1192 goto bad_fork_cleanup_security;
1193 /* copy all the process information */
1194 if ((retval = copy_semundo(clone_flags, p)))
1195 goto bad_fork_cleanup_audit;
1196 if ((retval = copy_files(clone_flags, p)))
1197 goto bad_fork_cleanup_semundo;
1198 if ((retval = copy_fs(clone_flags, p)))
1199 goto bad_fork_cleanup_files;
1200 if ((retval = copy_sighand(clone_flags, p)))
1201 goto bad_fork_cleanup_fs;
1202 if ((retval = copy_signal(clone_flags, p)))
1203 goto bad_fork_cleanup_sighand;
1204 if ((retval = copy_mm(clone_flags, p)))
1205 goto bad_fork_cleanup_signal;
1206 if ((retval = copy_keys(clone_flags, p)))
1207 goto bad_fork_cleanup_mm;
1208 if ((retval = copy_namespaces(clone_flags, p)))
1209 goto bad_fork_cleanup_keys;
1210 if ((retval = copy_io(clone_flags, p)))
1211 goto bad_fork_cleanup_namespaces;
1212 retval = copy_thread(0, clone_flags, stack_start, stack_size, p, regs);
1213 if (retval)
1214 goto bad_fork_cleanup_io;
1215
1216 if (pid != &init_struct_pid) {
1217 retval = -ENOMEM;
1218 pid = alloc_pid(task_active_pid_ns(p));
1219 if (!pid)
1220 goto bad_fork_cleanup_io;
1221
1222 if (clone_flags & CLONE_NEWPID) {
1223 retval = pid_ns_prepare_proc(task_active_pid_ns(p));
1224 if (retval < 0)
1225 goto bad_fork_free_pid;
1226 }
1227 }
1228
1229 p->pid = pid_nr(pid);
1230 p->tgid = p->pid;
1231 if (clone_flags & CLONE_THREAD)
1232 p->tgid = current->tgid;
1233
1234 p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1235 /*
1236 * Clear TID on mm_release()?
1237 */
1238 p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr: NULL;
1239 #ifdef CONFIG_FUTEX
1240 p->robust_list = NULL;
1241 #ifdef CONFIG_COMPAT
1242 p->compat_robust_list = NULL;
1243 #endif
1244 INIT_LIST_HEAD(&p->pi_state_list);
1245 p->pi_state_cache = NULL;
1246 #endif
1247 /*
1248 * sigaltstack should be cleared when sharing the same VM
1249 */
1250 if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1251 p->sas_ss_sp = p->sas_ss_size = 0;
1252
1253 /*
1254 * Syscall tracing should be turned off in the child regardless
1255 * of CLONE_PTRACE.
1256 */
1257 clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1258 #ifdef TIF_SYSCALL_EMU
1259 clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1260 #endif
1261 clear_all_latency_tracing(p);
1262
1263 /* Our parent execution domain becomes current domain
1264 These must match for thread signalling to apply */
1265 p->parent_exec_id = p->self_exec_id;
1266
1267 /* ok, now we should be set up.. */
1268 p->exit_signal = (clone_flags & CLONE_THREAD) ? -1 : (clone_flags & CSIGNAL);
1269 p->pdeath_signal = 0;
1270 p->exit_state = 0;
1271
1272 /*
1273 * Ok, make it visible to the rest of the system.
1274 * We dont wake it up yet.
1275 */
1276 p->group_leader = p;
1277 INIT_LIST_HEAD(&p->thread_group);
1278 INIT_LIST_HEAD(&p->ptrace_children);
1279 INIT_LIST_HEAD(&p->ptrace_list);
1280
1281 /* Now that the task is set up, run cgroup callbacks if
1282 * necessary. We need to run them before the task is visible
1283 * on the tasklist. */
1284 cgroup_fork_callbacks(p);
1285 cgroup_callbacks_done = 1;
1286
1287 /* Need tasklist lock for parent etc handling! */
1288 write_lock_irq(&tasklist_lock);
1289
1290 /*
1291 * The task hasn't been attached yet, so its cpus_allowed mask will
1292 * not be changed, nor will its assigned CPU.
1293 *
1294 * The cpus_allowed mask of the parent may have changed after it was
1295 * copied first time - so re-copy it here, then check the child's CPU
1296 * to ensure it is on a valid CPU (and if not, just force it back to
1297 * parent's CPU). This avoids alot of nasty races.
1298 */
1299 p->cpus_allowed = current->cpus_allowed;
1300 p->rt.nr_cpus_allowed = current->rt.nr_cpus_allowed;
1301 if (unlikely(!cpu_isset(task_cpu(p), p->cpus_allowed) ||
1302 !cpu_online(task_cpu(p))))
1303 set_task_cpu(p, smp_processor_id());
1304
1305 /* CLONE_PARENT re-uses the old parent */
1306 if (clone_flags & (CLONE_PARENT|CLONE_THREAD))
1307 p->real_parent = current->real_parent;
1308 else
1309 p->real_parent = current;
1310 p->parent = p->real_parent;
1311
1312 spin_lock(&current->sighand->siglock);
1313
1314 /*
1315 * Process group and session signals need to be delivered to just the
1316 * parent before the fork or both the parent and the child after the
1317 * fork. Restart if a signal comes in before we add the new process to
1318 * it's process group.
1319 * A fatal signal pending means that current will exit, so the new
1320 * thread can't slip out of an OOM kill (or normal SIGKILL).
1321 */
1322 recalc_sigpending();
1323 if (signal_pending(current)) {
1324 spin_unlock(&current->sighand->siglock);
1325 write_unlock_irq(&tasklist_lock);
1326 retval = -ERESTARTNOINTR;
1327 goto bad_fork_free_pid;
1328 }
1329
1330 if (clone_flags & CLONE_THREAD) {
1331 p->group_leader = current->group_leader;
1332 list_add_tail_rcu(&p->thread_group, &p->group_leader->thread_group);
1333
1334 if (!cputime_eq(current->signal->it_virt_expires,
1335 cputime_zero) ||
1336 !cputime_eq(current->signal->it_prof_expires,
1337 cputime_zero) ||
1338 current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY ||
1339 !list_empty(&current->signal->cpu_timers[0]) ||
1340 !list_empty(&current->signal->cpu_timers[1]) ||
1341 !list_empty(&current->signal->cpu_timers[2])) {
1342 /*
1343 * Have child wake up on its first tick to check
1344 * for process CPU timers.
1345 */
1346 p->it_prof_expires = jiffies_to_cputime(1);
1347 }
1348 }
1349
1350 if (likely(p->pid)) {
1351 add_parent(p);
1352 if (unlikely(p->ptrace & PT_PTRACED))
1353 __ptrace_link(p, current->parent);
1354
1355 if (thread_group_leader(p)) {
1356 if (clone_flags & CLONE_NEWPID)
1357 p->nsproxy->pid_ns->child_reaper = p;
1358
1359 p->signal->leader_pid = pid;
1360 p->signal->tty = current->signal->tty;
1361 set_task_pgrp(p, task_pgrp_nr(current));
1362 set_task_session(p, task_session_nr(current));
1363 attach_pid(p, PIDTYPE_PGID, task_pgrp(current));
1364 attach_pid(p, PIDTYPE_SID, task_session(current));
1365 list_add_tail_rcu(&p->tasks, &init_task.tasks);
1366 __get_cpu_var(process_counts)++;
1367 }
1368 attach_pid(p, PIDTYPE_PID, pid);
1369 nr_threads++;
1370 }
1371
1372 total_forks++;
1373 spin_unlock(&current->sighand->siglock);
1374 write_unlock_irq(&tasklist_lock);
1375 proc_fork_connector(p);
1376 cgroup_post_fork(p);
1377 return p;
1378
1379 bad_fork_free_pid:
1380 if (pid != &init_struct_pid)
1381 free_pid(pid);
1382 bad_fork_cleanup_io:
1383 put_io_context(p->io_context);
1384 bad_fork_cleanup_namespaces:
1385 exit_task_namespaces(p);
1386 bad_fork_cleanup_keys:
1387 exit_keys(p);
1388 bad_fork_cleanup_mm:
1389 if (p->mm)
1390 mmput(p->mm);
1391 bad_fork_cleanup_signal:
1392 cleanup_signal(p);
1393 bad_fork_cleanup_sighand:
1394 __cleanup_sighand(p->sighand);
1395 bad_fork_cleanup_fs:
1396 exit_fs(p); /* blocking */
1397 bad_fork_cleanup_files:
1398 exit_files(p); /* blocking */
1399 bad_fork_cleanup_semundo:
1400 exit_sem(p);
1401 bad_fork_cleanup_audit:
1402 audit_free(p);
1403 bad_fork_cleanup_security:
1404 security_task_free(p);
1405 bad_fork_cleanup_policy:
1406 #ifdef CONFIG_NUMA
1407 mpol_free(p->mempolicy);
1408 bad_fork_cleanup_cgroup:
1409 #endif
1410 cgroup_exit(p, cgroup_callbacks_done);
1411 delayacct_tsk_free(p);
1412 if (p->binfmt)
1413 module_put(p->binfmt->module);
1414 bad_fork_cleanup_put_domain:
1415 module_put(task_thread_info(p)->exec_domain->module);
1416 bad_fork_cleanup_count:
1417 put_group_info(p->group_info);
1418 atomic_dec(&p->user->processes);
1419 free_uid(p->user);
1420 bad_fork_free:
1421 free_task(p);
1422 fork_out:
1423 return ERR_PTR(retval);
1424 }
1425
1426 noinline struct pt_regs * __cpuinit __attribute__((weak)) idle_regs(struct pt_regs *regs)
1427 {
1428 memset(regs, 0, sizeof(struct pt_regs));
1429 return regs;
1430 }
1431
1432 struct task_struct * __cpuinit fork_idle(int cpu)
1433 {
1434 struct task_struct *task;
1435 struct pt_regs regs;
1436
1437 task = copy_process(CLONE_VM, 0, idle_regs(&regs), 0, NULL,
1438 &init_struct_pid);
1439 if (!IS_ERR(task))
1440 init_idle(task, cpu);
1441
1442 return task;
1443 }
1444
1445 static int fork_traceflag(unsigned clone_flags)
1446 {
1447 if (clone_flags & CLONE_UNTRACED)
1448 return 0;
1449 else if (clone_flags & CLONE_VFORK) {
1450 if (current->ptrace & PT_TRACE_VFORK)
1451 return PTRACE_EVENT_VFORK;
1452 } else if ((clone_flags & CSIGNAL) != SIGCHLD) {
1453 if (current->ptrace & PT_TRACE_CLONE)
1454 return PTRACE_EVENT_CLONE;
1455 } else if (current->ptrace & PT_TRACE_FORK)
1456 return PTRACE_EVENT_FORK;
1457
1458 return 0;
1459 }
1460
1461 /*
1462 * Ok, this is the main fork-routine.
1463 *
1464 * It copies the process, and if successful kick-starts
1465 * it and waits for it to finish using the VM if required.
1466 */
1467 long do_fork(unsigned long clone_flags,
1468 unsigned long stack_start,
1469 struct pt_regs *regs,
1470 unsigned long stack_size,
1471 int __user *parent_tidptr,
1472 int __user *child_tidptr)
1473 {
1474 struct task_struct *p;
1475 int trace = 0;
1476 long nr;
1477
1478 /*
1479 * We hope to recycle these flags after 2.6.26
1480 */
1481 if (unlikely(clone_flags & CLONE_STOPPED)) {
1482 static int __read_mostly count = 100;
1483
1484 if (count > 0 && printk_ratelimit()) {
1485 char comm[TASK_COMM_LEN];
1486
1487 count--;
1488 printk(KERN_INFO "fork(): process `%s' used deprecated "
1489 "clone flags 0x%lx\n",
1490 get_task_comm(comm, current),
1491 clone_flags & CLONE_STOPPED);
1492 }
1493 }
1494
1495 if (unlikely(current->ptrace)) {
1496 trace = fork_traceflag (clone_flags);
1497 if (trace)
1498 clone_flags |= CLONE_PTRACE;
1499 }
1500
1501 p = copy_process(clone_flags, stack_start, regs, stack_size,
1502 child_tidptr, NULL);
1503 /*
1504 * Do this prior waking up the new thread - the thread pointer
1505 * might get invalid after that point, if the thread exits quickly.
1506 */
1507 if (!IS_ERR(p)) {
1508 struct completion vfork;
1509
1510 nr = task_pid_vnr(p);
1511
1512 if (clone_flags & CLONE_PARENT_SETTID)
1513 put_user(nr, parent_tidptr);
1514
1515 if (clone_flags & CLONE_VFORK) {
1516 p->vfork_done = &vfork;
1517 init_completion(&vfork);
1518 }
1519
1520 if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
1521 /*
1522 * We'll start up with an immediate SIGSTOP.
1523 */
1524 sigaddset(&p->pending.signal, SIGSTOP);
1525 set_tsk_thread_flag(p, TIF_SIGPENDING);
1526 }
1527
1528 if (!(clone_flags & CLONE_STOPPED))
1529 wake_up_new_task(p, clone_flags);
1530 else
1531 __set_task_state(p, TASK_STOPPED);
1532
1533 if (unlikely (trace)) {
1534 current->ptrace_message = nr;
1535 ptrace_notify ((trace << 8) | SIGTRAP);
1536 }
1537
1538 if (clone_flags & CLONE_VFORK) {
1539 freezer_do_not_count();
1540 wait_for_completion(&vfork);
1541 freezer_count();
1542 if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) {
1543 current->ptrace_message = nr;
1544 ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1545 }
1546 }
1547 } else {
1548 nr = PTR_ERR(p);
1549 }
1550 return nr;
1551 }
1552
1553 #ifndef ARCH_MIN_MMSTRUCT_ALIGN
1554 #define ARCH_MIN_MMSTRUCT_ALIGN 0
1555 #endif
1556
1557 static void sighand_ctor(struct kmem_cache *cachep, void *data)
1558 {
1559 struct sighand_struct *sighand = data;
1560
1561 spin_lock_init(&sighand->siglock);
1562 init_waitqueue_head(&sighand->signalfd_wqh);
1563 }
1564
1565 void __init proc_caches_init(void)
1566 {
1567 sighand_cachep = kmem_cache_create("sighand_cache",
1568 sizeof(struct sighand_struct), 0,
1569 SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_DESTROY_BY_RCU,
1570 sighand_ctor);
1571 signal_cachep = kmem_cache_create("signal_cache",
1572 sizeof(struct signal_struct), 0,
1573 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1574 files_cachep = kmem_cache_create("files_cache",
1575 sizeof(struct files_struct), 0,
1576 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1577 fs_cachep = kmem_cache_create("fs_cache",
1578 sizeof(struct fs_struct), 0,
1579 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1580 vm_area_cachep = kmem_cache_create("vm_area_struct",
1581 sizeof(struct vm_area_struct), 0,
1582 SLAB_PANIC, NULL);
1583 mm_cachep = kmem_cache_create("mm_struct",
1584 sizeof(struct mm_struct), ARCH_MIN_MMSTRUCT_ALIGN,
1585 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1586 }
1587
1588 /*
1589 * Check constraints on flags passed to the unshare system call and
1590 * force unsharing of additional process context as appropriate.
1591 */
1592 static void check_unshare_flags(unsigned long *flags_ptr)
1593 {
1594 /*
1595 * If unsharing a thread from a thread group, must also
1596 * unshare vm.
1597 */
1598 if (*flags_ptr & CLONE_THREAD)
1599 *flags_ptr |= CLONE_VM;
1600
1601 /*
1602 * If unsharing vm, must also unshare signal handlers.
1603 */
1604 if (*flags_ptr & CLONE_VM)
1605 *flags_ptr |= CLONE_SIGHAND;
1606
1607 /*
1608 * If unsharing signal handlers and the task was created
1609 * using CLONE_THREAD, then must unshare the thread
1610 */
1611 if ((*flags_ptr & CLONE_SIGHAND) &&
1612 (atomic_read(&current->signal->count) > 1))
1613 *flags_ptr |= CLONE_THREAD;
1614
1615 /*
1616 * If unsharing namespace, must also unshare filesystem information.
1617 */
1618 if (*flags_ptr & CLONE_NEWNS)
1619 *flags_ptr |= CLONE_FS;
1620 }
1621
1622 /*
1623 * Unsharing of tasks created with CLONE_THREAD is not supported yet
1624 */
1625 static int unshare_thread(unsigned long unshare_flags)
1626 {
1627 if (unshare_flags & CLONE_THREAD)
1628 return -EINVAL;
1629
1630 return 0;
1631 }
1632
1633 /*
1634 * Unshare the filesystem structure if it is being shared
1635 */
1636 static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
1637 {
1638 struct fs_struct *fs = current->fs;
1639
1640 if ((unshare_flags & CLONE_FS) &&
1641 (fs && atomic_read(&fs->count) > 1)) {
1642 *new_fsp = __copy_fs_struct(current->fs);
1643 if (!*new_fsp)
1644 return -ENOMEM;
1645 }
1646
1647 return 0;
1648 }
1649
1650 /*
1651 * Unsharing of sighand is not supported yet
1652 */
1653 static int unshare_sighand(unsigned long unshare_flags, struct sighand_struct **new_sighp)
1654 {
1655 struct sighand_struct *sigh = current->sighand;
1656
1657 if ((unshare_flags & CLONE_SIGHAND) && atomic_read(&sigh->count) > 1)
1658 return -EINVAL;
1659 else
1660 return 0;
1661 }
1662
1663 /*
1664 * Unshare vm if it is being shared
1665 */
1666 static int unshare_vm(unsigned long unshare_flags, struct mm_struct **new_mmp)
1667 {
1668 struct mm_struct *mm = current->mm;
1669
1670 if ((unshare_flags & CLONE_VM) &&
1671 (mm && atomic_read(&mm->mm_users) > 1)) {
1672 return -EINVAL;
1673 }
1674
1675 return 0;
1676 }
1677
1678 /*
1679 * Unshare file descriptor table if it is being shared
1680 */
1681 static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
1682 {
1683 struct files_struct *fd = current->files;
1684 int error = 0;
1685
1686 if ((unshare_flags & CLONE_FILES) &&
1687 (fd && atomic_read(&fd->count) > 1)) {
1688 *new_fdp = dup_fd(fd, &error);
1689 if (!*new_fdp)
1690 return error;
1691 }
1692
1693 return 0;
1694 }
1695
1696 /*
1697 * Unsharing of semundo for tasks created with CLONE_SYSVSEM is not
1698 * supported yet
1699 */
1700 static int unshare_semundo(unsigned long unshare_flags, struct sem_undo_list **new_ulistp)
1701 {
1702 if (unshare_flags & CLONE_SYSVSEM)
1703 return -EINVAL;
1704
1705 return 0;
1706 }
1707
1708 /*
1709 * unshare allows a process to 'unshare' part of the process
1710 * context which was originally shared using clone. copy_*
1711 * functions used by do_fork() cannot be used here directly
1712 * because they modify an inactive task_struct that is being
1713 * constructed. Here we are modifying the current, active,
1714 * task_struct.
1715 */
1716 asmlinkage long sys_unshare(unsigned long unshare_flags)
1717 {
1718 int err = 0;
1719 struct fs_struct *fs, *new_fs = NULL;
1720 struct sighand_struct *new_sigh = NULL;
1721 struct mm_struct *mm, *new_mm = NULL, *active_mm = NULL;
1722 struct files_struct *fd, *new_fd = NULL;
1723 struct sem_undo_list *new_ulist = NULL;
1724 struct nsproxy *new_nsproxy = NULL;
1725
1726 check_unshare_flags(&unshare_flags);
1727
1728 /* Return -EINVAL for all unsupported flags */
1729 err = -EINVAL;
1730 if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
1731 CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
1732 CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWUSER|
1733 CLONE_NEWNET))
1734 goto bad_unshare_out;
1735
1736 if ((err = unshare_thread(unshare_flags)))
1737 goto bad_unshare_out;
1738 if ((err = unshare_fs(unshare_flags, &new_fs)))
1739 goto bad_unshare_cleanup_thread;
1740 if ((err = unshare_sighand(unshare_flags, &new_sigh)))
1741 goto bad_unshare_cleanup_fs;
1742 if ((err = unshare_vm(unshare_flags, &new_mm)))
1743 goto bad_unshare_cleanup_sigh;
1744 if ((err = unshare_fd(unshare_flags, &new_fd)))
1745 goto bad_unshare_cleanup_vm;
1746 if ((err = unshare_semundo(unshare_flags, &new_ulist)))
1747 goto bad_unshare_cleanup_fd;
1748 if ((err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
1749 new_fs)))
1750 goto bad_unshare_cleanup_semundo;
1751
1752 if (new_fs || new_mm || new_fd || new_ulist || new_nsproxy) {
1753
1754 if (new_nsproxy) {
1755 switch_task_namespaces(current, new_nsproxy);
1756 new_nsproxy = NULL;
1757 }
1758
1759 task_lock(current);
1760
1761 if (new_fs) {
1762 fs = current->fs;
1763 current->fs = new_fs;
1764 new_fs = fs;
1765 }
1766
1767 if (new_mm) {
1768 mm = current->mm;
1769 active_mm = current->active_mm;
1770 current->mm = new_mm;
1771 current->active_mm = new_mm;
1772 activate_mm(active_mm, new_mm);
1773 new_mm = mm;
1774 }
1775
1776 if (new_fd) {
1777 fd = current->files;
1778 current->files = new_fd;
1779 new_fd = fd;
1780 }
1781
1782 task_unlock(current);
1783 }
1784
1785 if (new_nsproxy)
1786 put_nsproxy(new_nsproxy);
1787
1788 bad_unshare_cleanup_semundo:
1789 bad_unshare_cleanup_fd:
1790 if (new_fd)
1791 put_files_struct(new_fd);
1792
1793 bad_unshare_cleanup_vm:
1794 if (new_mm)
1795 mmput(new_mm);
1796
1797 bad_unshare_cleanup_sigh:
1798 if (new_sigh)
1799 if (atomic_dec_and_test(&new_sigh->count))
1800 kmem_cache_free(sighand_cachep, new_sigh);
1801
1802 bad_unshare_cleanup_fs:
1803 if (new_fs)
1804 put_fs_struct(new_fs);
1805
1806 bad_unshare_cleanup_thread:
1807 bad_unshare_out:
1808 return err;
1809 }