]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
USB: Force disconnect Huawei 4G modem during suspend
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
700 }
701
702 out:
703 put_page(page);
704 return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709 drop_futex_key_refs(key);
710 }
711
712 /**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
733
734 return ret < 0 ? ret : 0;
735 }
736
737 /**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
741 *
742 * Must be called with the hb lock held.
743 */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746 {
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
758 {
759 int ret;
760
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
764
765 return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 int ret;
771
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
775
776 return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781 * PI code:
782 */
783 static int refill_pi_state_cache(void)
784 {
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792 if (!pi_state)
793 return -ENOMEM;
794
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 */
825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827 if (!pi_state)
828 return;
829
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
838 struct task_struct *owner;
839
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 }
850
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863 }
864
865 /*
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
868 */
869 static struct task_struct *futex_find_get_task(pid_t pid)
870 {
871 struct task_struct *p;
872
873 rcu_read_lock();
874 p = find_task_by_vpid(pid);
875 if (p)
876 get_task_struct(p);
877
878 rcu_read_unlock();
879
880 return p;
881 }
882
883 #ifdef CONFIG_FUTEX_PI
884
885 /*
886 * This task is holding PI mutexes at exit time => bad.
887 * Kernel cleans up PI-state, but userspace is likely hosed.
888 * (Robust-futex cleanup is separate and might save the day for userspace.)
889 */
890 void exit_pi_state_list(struct task_struct *curr)
891 {
892 struct list_head *next, *head = &curr->pi_state_list;
893 struct futex_pi_state *pi_state;
894 struct futex_hash_bucket *hb;
895 union futex_key key = FUTEX_KEY_INIT;
896
897 if (!futex_cmpxchg_enabled)
898 return;
899 /*
900 * We are a ZOMBIE and nobody can enqueue itself on
901 * pi_state_list anymore, but we have to be careful
902 * versus waiters unqueueing themselves:
903 */
904 raw_spin_lock_irq(&curr->pi_lock);
905 while (!list_empty(head)) {
906
907 next = head->next;
908 pi_state = list_entry(next, struct futex_pi_state, list);
909 key = pi_state->key;
910 hb = hash_futex(&key);
911 raw_spin_unlock_irq(&curr->pi_lock);
912
913 spin_lock(&hb->lock);
914 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
915 raw_spin_lock(&curr->pi_lock);
916 /*
917 * We dropped the pi-lock, so re-check whether this
918 * task still owns the PI-state:
919 */
920 if (head->next != next) {
921 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
922 spin_unlock(&hb->lock);
923 continue;
924 }
925
926 WARN_ON(pi_state->owner != curr);
927 WARN_ON(list_empty(&pi_state->list));
928 list_del_init(&pi_state->list);
929 pi_state->owner = NULL;
930 raw_spin_unlock(&curr->pi_lock);
931
932 get_pi_state(pi_state);
933 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
934 spin_unlock(&hb->lock);
935
936 rt_mutex_futex_unlock(&pi_state->pi_mutex);
937 put_pi_state(pi_state);
938
939 raw_spin_lock_irq(&curr->pi_lock);
940 }
941 raw_spin_unlock_irq(&curr->pi_lock);
942 }
943
944 #endif
945
946 /*
947 * We need to check the following states:
948 *
949 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
950 *
951 * [1] NULL | --- | --- | 0 | 0/1 | Valid
952 * [2] NULL | --- | --- | >0 | 0/1 | Valid
953 *
954 * [3] Found | NULL | -- | Any | 0/1 | Invalid
955 *
956 * [4] Found | Found | NULL | 0 | 1 | Valid
957 * [5] Found | Found | NULL | >0 | 1 | Invalid
958 *
959 * [6] Found | Found | task | 0 | 1 | Valid
960 *
961 * [7] Found | Found | NULL | Any | 0 | Invalid
962 *
963 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
964 * [9] Found | Found | task | 0 | 0 | Invalid
965 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
966 *
967 * [1] Indicates that the kernel can acquire the futex atomically. We
968 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
969 *
970 * [2] Valid, if TID does not belong to a kernel thread. If no matching
971 * thread is found then it indicates that the owner TID has died.
972 *
973 * [3] Invalid. The waiter is queued on a non PI futex
974 *
975 * [4] Valid state after exit_robust_list(), which sets the user space
976 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
977 *
978 * [5] The user space value got manipulated between exit_robust_list()
979 * and exit_pi_state_list()
980 *
981 * [6] Valid state after exit_pi_state_list() which sets the new owner in
982 * the pi_state but cannot access the user space value.
983 *
984 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
985 *
986 * [8] Owner and user space value match
987 *
988 * [9] There is no transient state which sets the user space TID to 0
989 * except exit_robust_list(), but this is indicated by the
990 * FUTEX_OWNER_DIED bit. See [4]
991 *
992 * [10] There is no transient state which leaves owner and user space
993 * TID out of sync.
994 *
995 *
996 * Serialization and lifetime rules:
997 *
998 * hb->lock:
999 *
1000 * hb -> futex_q, relation
1001 * futex_q -> pi_state, relation
1002 *
1003 * (cannot be raw because hb can contain arbitrary amount
1004 * of futex_q's)
1005 *
1006 * pi_mutex->wait_lock:
1007 *
1008 * {uval, pi_state}
1009 *
1010 * (and pi_mutex 'obviously')
1011 *
1012 * p->pi_lock:
1013 *
1014 * p->pi_state_list -> pi_state->list, relation
1015 *
1016 * pi_state->refcount:
1017 *
1018 * pi_state lifetime
1019 *
1020 *
1021 * Lock order:
1022 *
1023 * hb->lock
1024 * pi_mutex->wait_lock
1025 * p->pi_lock
1026 *
1027 */
1028
1029 /*
1030 * Validate that the existing waiter has a pi_state and sanity check
1031 * the pi_state against the user space value. If correct, attach to
1032 * it.
1033 */
1034 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1035 struct futex_pi_state *pi_state,
1036 struct futex_pi_state **ps)
1037 {
1038 pid_t pid = uval & FUTEX_TID_MASK;
1039 u32 uval2;
1040 int ret;
1041
1042 /*
1043 * Userspace might have messed up non-PI and PI futexes [3]
1044 */
1045 if (unlikely(!pi_state))
1046 return -EINVAL;
1047
1048 /*
1049 * We get here with hb->lock held, and having found a
1050 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1051 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1052 * which in turn means that futex_lock_pi() still has a reference on
1053 * our pi_state.
1054 *
1055 * The waiter holding a reference on @pi_state also protects against
1056 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1057 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1058 * free pi_state before we can take a reference ourselves.
1059 */
1060 WARN_ON(!atomic_read(&pi_state->refcount));
1061
1062 /*
1063 * Now that we have a pi_state, we can acquire wait_lock
1064 * and do the state validation.
1065 */
1066 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1067
1068 /*
1069 * Since {uval, pi_state} is serialized by wait_lock, and our current
1070 * uval was read without holding it, it can have changed. Verify it
1071 * still is what we expect it to be, otherwise retry the entire
1072 * operation.
1073 */
1074 if (get_futex_value_locked(&uval2, uaddr))
1075 goto out_efault;
1076
1077 if (uval != uval2)
1078 goto out_eagain;
1079
1080 /*
1081 * Handle the owner died case:
1082 */
1083 if (uval & FUTEX_OWNER_DIED) {
1084 /*
1085 * exit_pi_state_list sets owner to NULL and wakes the
1086 * topmost waiter. The task which acquires the
1087 * pi_state->rt_mutex will fixup owner.
1088 */
1089 if (!pi_state->owner) {
1090 /*
1091 * No pi state owner, but the user space TID
1092 * is not 0. Inconsistent state. [5]
1093 */
1094 if (pid)
1095 goto out_einval;
1096 /*
1097 * Take a ref on the state and return success. [4]
1098 */
1099 goto out_attach;
1100 }
1101
1102 /*
1103 * If TID is 0, then either the dying owner has not
1104 * yet executed exit_pi_state_list() or some waiter
1105 * acquired the rtmutex in the pi state, but did not
1106 * yet fixup the TID in user space.
1107 *
1108 * Take a ref on the state and return success. [6]
1109 */
1110 if (!pid)
1111 goto out_attach;
1112 } else {
1113 /*
1114 * If the owner died bit is not set, then the pi_state
1115 * must have an owner. [7]
1116 */
1117 if (!pi_state->owner)
1118 goto out_einval;
1119 }
1120
1121 /*
1122 * Bail out if user space manipulated the futex value. If pi
1123 * state exists then the owner TID must be the same as the
1124 * user space TID. [9/10]
1125 */
1126 if (pid != task_pid_vnr(pi_state->owner))
1127 goto out_einval;
1128
1129 out_attach:
1130 get_pi_state(pi_state);
1131 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1132 *ps = pi_state;
1133 return 0;
1134
1135 out_einval:
1136 ret = -EINVAL;
1137 goto out_error;
1138
1139 out_eagain:
1140 ret = -EAGAIN;
1141 goto out_error;
1142
1143 out_efault:
1144 ret = -EFAULT;
1145 goto out_error;
1146
1147 out_error:
1148 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1149 return ret;
1150 }
1151
1152 /*
1153 * Lookup the task for the TID provided from user space and attach to
1154 * it after doing proper sanity checks.
1155 */
1156 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1157 struct futex_pi_state **ps)
1158 {
1159 pid_t pid = uval & FUTEX_TID_MASK;
1160 struct futex_pi_state *pi_state;
1161 struct task_struct *p;
1162
1163 /*
1164 * We are the first waiter - try to look up the real owner and attach
1165 * the new pi_state to it, but bail out when TID = 0 [1]
1166 */
1167 if (!pid)
1168 return -ESRCH;
1169 p = futex_find_get_task(pid);
1170 if (!p)
1171 return -ESRCH;
1172
1173 if (unlikely(p->flags & PF_KTHREAD)) {
1174 put_task_struct(p);
1175 return -EPERM;
1176 }
1177
1178 /*
1179 * We need to look at the task state flags to figure out,
1180 * whether the task is exiting. To protect against the do_exit
1181 * change of the task flags, we do this protected by
1182 * p->pi_lock:
1183 */
1184 raw_spin_lock_irq(&p->pi_lock);
1185 if (unlikely(p->flags & PF_EXITING)) {
1186 /*
1187 * The task is on the way out. When PF_EXITPIDONE is
1188 * set, we know that the task has finished the
1189 * cleanup:
1190 */
1191 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1192
1193 raw_spin_unlock_irq(&p->pi_lock);
1194 put_task_struct(p);
1195 return ret;
1196 }
1197
1198 /*
1199 * No existing pi state. First waiter. [2]
1200 *
1201 * This creates pi_state, we have hb->lock held, this means nothing can
1202 * observe this state, wait_lock is irrelevant.
1203 */
1204 pi_state = alloc_pi_state();
1205
1206 /*
1207 * Initialize the pi_mutex in locked state and make @p
1208 * the owner of it:
1209 */
1210 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1211
1212 /* Store the key for possible exit cleanups: */
1213 pi_state->key = *key;
1214
1215 WARN_ON(!list_empty(&pi_state->list));
1216 list_add(&pi_state->list, &p->pi_state_list);
1217 /*
1218 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1219 * because there is no concurrency as the object is not published yet.
1220 */
1221 pi_state->owner = p;
1222 raw_spin_unlock_irq(&p->pi_lock);
1223
1224 put_task_struct(p);
1225
1226 *ps = pi_state;
1227
1228 return 0;
1229 }
1230
1231 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1232 struct futex_hash_bucket *hb,
1233 union futex_key *key, struct futex_pi_state **ps)
1234 {
1235 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1236
1237 /*
1238 * If there is a waiter on that futex, validate it and
1239 * attach to the pi_state when the validation succeeds.
1240 */
1241 if (top_waiter)
1242 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1243
1244 /*
1245 * We are the first waiter - try to look up the owner based on
1246 * @uval and attach to it.
1247 */
1248 return attach_to_pi_owner(uval, key, ps);
1249 }
1250
1251 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1252 {
1253 u32 uninitialized_var(curval);
1254
1255 if (unlikely(should_fail_futex(true)))
1256 return -EFAULT;
1257
1258 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1259 return -EFAULT;
1260
1261 /* If user space value changed, let the caller retry */
1262 return curval != uval ? -EAGAIN : 0;
1263 }
1264
1265 /**
1266 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1267 * @uaddr: the pi futex user address
1268 * @hb: the pi futex hash bucket
1269 * @key: the futex key associated with uaddr and hb
1270 * @ps: the pi_state pointer where we store the result of the
1271 * lookup
1272 * @task: the task to perform the atomic lock work for. This will
1273 * be "current" except in the case of requeue pi.
1274 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1275 *
1276 * Return:
1277 * - 0 - ready to wait;
1278 * - 1 - acquired the lock;
1279 * - <0 - error
1280 *
1281 * The hb->lock and futex_key refs shall be held by the caller.
1282 */
1283 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1284 union futex_key *key,
1285 struct futex_pi_state **ps,
1286 struct task_struct *task, int set_waiters)
1287 {
1288 u32 uval, newval, vpid = task_pid_vnr(task);
1289 struct futex_q *top_waiter;
1290 int ret;
1291
1292 /*
1293 * Read the user space value first so we can validate a few
1294 * things before proceeding further.
1295 */
1296 if (get_futex_value_locked(&uval, uaddr))
1297 return -EFAULT;
1298
1299 if (unlikely(should_fail_futex(true)))
1300 return -EFAULT;
1301
1302 /*
1303 * Detect deadlocks.
1304 */
1305 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1306 return -EDEADLK;
1307
1308 if ((unlikely(should_fail_futex(true))))
1309 return -EDEADLK;
1310
1311 /*
1312 * Lookup existing state first. If it exists, try to attach to
1313 * its pi_state.
1314 */
1315 top_waiter = futex_top_waiter(hb, key);
1316 if (top_waiter)
1317 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1318
1319 /*
1320 * No waiter and user TID is 0. We are here because the
1321 * waiters or the owner died bit is set or called from
1322 * requeue_cmp_pi or for whatever reason something took the
1323 * syscall.
1324 */
1325 if (!(uval & FUTEX_TID_MASK)) {
1326 /*
1327 * We take over the futex. No other waiters and the user space
1328 * TID is 0. We preserve the owner died bit.
1329 */
1330 newval = uval & FUTEX_OWNER_DIED;
1331 newval |= vpid;
1332
1333 /* The futex requeue_pi code can enforce the waiters bit */
1334 if (set_waiters)
1335 newval |= FUTEX_WAITERS;
1336
1337 ret = lock_pi_update_atomic(uaddr, uval, newval);
1338 /* If the take over worked, return 1 */
1339 return ret < 0 ? ret : 1;
1340 }
1341
1342 /*
1343 * First waiter. Set the waiters bit before attaching ourself to
1344 * the owner. If owner tries to unlock, it will be forced into
1345 * the kernel and blocked on hb->lock.
1346 */
1347 newval = uval | FUTEX_WAITERS;
1348 ret = lock_pi_update_atomic(uaddr, uval, newval);
1349 if (ret)
1350 return ret;
1351 /*
1352 * If the update of the user space value succeeded, we try to
1353 * attach to the owner. If that fails, no harm done, we only
1354 * set the FUTEX_WAITERS bit in the user space variable.
1355 */
1356 return attach_to_pi_owner(uval, key, ps);
1357 }
1358
1359 /**
1360 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1361 * @q: The futex_q to unqueue
1362 *
1363 * The q->lock_ptr must not be NULL and must be held by the caller.
1364 */
1365 static void __unqueue_futex(struct futex_q *q)
1366 {
1367 struct futex_hash_bucket *hb;
1368
1369 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1370 || WARN_ON(plist_node_empty(&q->list)))
1371 return;
1372
1373 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1374 plist_del(&q->list, &hb->chain);
1375 hb_waiters_dec(hb);
1376 }
1377
1378 /*
1379 * The hash bucket lock must be held when this is called.
1380 * Afterwards, the futex_q must not be accessed. Callers
1381 * must ensure to later call wake_up_q() for the actual
1382 * wakeups to occur.
1383 */
1384 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1385 {
1386 struct task_struct *p = q->task;
1387
1388 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1389 return;
1390
1391 /*
1392 * Queue the task for later wakeup for after we've released
1393 * the hb->lock. wake_q_add() grabs reference to p.
1394 */
1395 wake_q_add(wake_q, p);
1396 __unqueue_futex(q);
1397 /*
1398 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1399 * is written, without taking any locks. This is possible in the event
1400 * of a spurious wakeup, for example. A memory barrier is required here
1401 * to prevent the following store to lock_ptr from getting ahead of the
1402 * plist_del in __unqueue_futex().
1403 */
1404 smp_store_release(&q->lock_ptr, NULL);
1405 }
1406
1407 /*
1408 * Caller must hold a reference on @pi_state.
1409 */
1410 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1411 {
1412 u32 uninitialized_var(curval), newval;
1413 struct task_struct *new_owner;
1414 bool postunlock = false;
1415 DEFINE_WAKE_Q(wake_q);
1416 int ret = 0;
1417
1418 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1419 if (WARN_ON_ONCE(!new_owner)) {
1420 /*
1421 * As per the comment in futex_unlock_pi() this should not happen.
1422 *
1423 * When this happens, give up our locks and try again, giving
1424 * the futex_lock_pi() instance time to complete, either by
1425 * waiting on the rtmutex or removing itself from the futex
1426 * queue.
1427 */
1428 ret = -EAGAIN;
1429 goto out_unlock;
1430 }
1431
1432 /*
1433 * We pass it to the next owner. The WAITERS bit is always kept
1434 * enabled while there is PI state around. We cleanup the owner
1435 * died bit, because we are the owner.
1436 */
1437 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1438
1439 if (unlikely(should_fail_futex(true)))
1440 ret = -EFAULT;
1441
1442 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1443 ret = -EFAULT;
1444
1445 } else if (curval != uval) {
1446 /*
1447 * If a unconditional UNLOCK_PI operation (user space did not
1448 * try the TID->0 transition) raced with a waiter setting the
1449 * FUTEX_WAITERS flag between get_user() and locking the hash
1450 * bucket lock, retry the operation.
1451 */
1452 if ((FUTEX_TID_MASK & curval) == uval)
1453 ret = -EAGAIN;
1454 else
1455 ret = -EINVAL;
1456 }
1457
1458 if (ret)
1459 goto out_unlock;
1460
1461 /*
1462 * This is a point of no return; once we modify the uval there is no
1463 * going back and subsequent operations must not fail.
1464 */
1465
1466 raw_spin_lock(&pi_state->owner->pi_lock);
1467 WARN_ON(list_empty(&pi_state->list));
1468 list_del_init(&pi_state->list);
1469 raw_spin_unlock(&pi_state->owner->pi_lock);
1470
1471 raw_spin_lock(&new_owner->pi_lock);
1472 WARN_ON(!list_empty(&pi_state->list));
1473 list_add(&pi_state->list, &new_owner->pi_state_list);
1474 pi_state->owner = new_owner;
1475 raw_spin_unlock(&new_owner->pi_lock);
1476
1477 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1478
1479 out_unlock:
1480 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1481
1482 if (postunlock)
1483 rt_mutex_postunlock(&wake_q);
1484
1485 return ret;
1486 }
1487
1488 /*
1489 * Express the locking dependencies for lockdep:
1490 */
1491 static inline void
1492 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1493 {
1494 if (hb1 <= hb2) {
1495 spin_lock(&hb1->lock);
1496 if (hb1 < hb2)
1497 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1498 } else { /* hb1 > hb2 */
1499 spin_lock(&hb2->lock);
1500 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1501 }
1502 }
1503
1504 static inline void
1505 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1506 {
1507 spin_unlock(&hb1->lock);
1508 if (hb1 != hb2)
1509 spin_unlock(&hb2->lock);
1510 }
1511
1512 /*
1513 * Wake up waiters matching bitset queued on this futex (uaddr).
1514 */
1515 static int
1516 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1517 {
1518 struct futex_hash_bucket *hb;
1519 struct futex_q *this, *next;
1520 union futex_key key = FUTEX_KEY_INIT;
1521 int ret;
1522 DEFINE_WAKE_Q(wake_q);
1523
1524 if (!bitset)
1525 return -EINVAL;
1526
1527 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1528 if (unlikely(ret != 0))
1529 goto out;
1530
1531 hb = hash_futex(&key);
1532
1533 /* Make sure we really have tasks to wakeup */
1534 if (!hb_waiters_pending(hb))
1535 goto out_put_key;
1536
1537 spin_lock(&hb->lock);
1538
1539 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1540 if (match_futex (&this->key, &key)) {
1541 if (this->pi_state || this->rt_waiter) {
1542 ret = -EINVAL;
1543 break;
1544 }
1545
1546 /* Check if one of the bits is set in both bitsets */
1547 if (!(this->bitset & bitset))
1548 continue;
1549
1550 mark_wake_futex(&wake_q, this);
1551 if (++ret >= nr_wake)
1552 break;
1553 }
1554 }
1555
1556 spin_unlock(&hb->lock);
1557 wake_up_q(&wake_q);
1558 out_put_key:
1559 put_futex_key(&key);
1560 out:
1561 return ret;
1562 }
1563
1564 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1565 {
1566 unsigned int op = (encoded_op & 0x70000000) >> 28;
1567 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1568 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1569 int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1570 int oldval, ret;
1571
1572 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1573 if (oparg < 0 || oparg > 31)
1574 return -EINVAL;
1575 oparg = 1 << oparg;
1576 }
1577
1578 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1579 return -EFAULT;
1580
1581 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1582 if (ret)
1583 return ret;
1584
1585 switch (cmp) {
1586 case FUTEX_OP_CMP_EQ:
1587 return oldval == cmparg;
1588 case FUTEX_OP_CMP_NE:
1589 return oldval != cmparg;
1590 case FUTEX_OP_CMP_LT:
1591 return oldval < cmparg;
1592 case FUTEX_OP_CMP_GE:
1593 return oldval >= cmparg;
1594 case FUTEX_OP_CMP_LE:
1595 return oldval <= cmparg;
1596 case FUTEX_OP_CMP_GT:
1597 return oldval > cmparg;
1598 default:
1599 return -ENOSYS;
1600 }
1601 }
1602
1603 /*
1604 * Wake up all waiters hashed on the physical page that is mapped
1605 * to this virtual address:
1606 */
1607 static int
1608 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1609 int nr_wake, int nr_wake2, int op)
1610 {
1611 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1612 struct futex_hash_bucket *hb1, *hb2;
1613 struct futex_q *this, *next;
1614 int ret, op_ret;
1615 DEFINE_WAKE_Q(wake_q);
1616
1617 retry:
1618 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1619 if (unlikely(ret != 0))
1620 goto out;
1621 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1622 if (unlikely(ret != 0))
1623 goto out_put_key1;
1624
1625 hb1 = hash_futex(&key1);
1626 hb2 = hash_futex(&key2);
1627
1628 retry_private:
1629 double_lock_hb(hb1, hb2);
1630 op_ret = futex_atomic_op_inuser(op, uaddr2);
1631 if (unlikely(op_ret < 0)) {
1632
1633 double_unlock_hb(hb1, hb2);
1634
1635 #ifndef CONFIG_MMU
1636 /*
1637 * we don't get EFAULT from MMU faults if we don't have an MMU,
1638 * but we might get them from range checking
1639 */
1640 ret = op_ret;
1641 goto out_put_keys;
1642 #endif
1643
1644 if (unlikely(op_ret != -EFAULT)) {
1645 ret = op_ret;
1646 goto out_put_keys;
1647 }
1648
1649 ret = fault_in_user_writeable(uaddr2);
1650 if (ret)
1651 goto out_put_keys;
1652
1653 if (!(flags & FLAGS_SHARED))
1654 goto retry_private;
1655
1656 put_futex_key(&key2);
1657 put_futex_key(&key1);
1658 goto retry;
1659 }
1660
1661 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1662 if (match_futex (&this->key, &key1)) {
1663 if (this->pi_state || this->rt_waiter) {
1664 ret = -EINVAL;
1665 goto out_unlock;
1666 }
1667 mark_wake_futex(&wake_q, this);
1668 if (++ret >= nr_wake)
1669 break;
1670 }
1671 }
1672
1673 if (op_ret > 0) {
1674 op_ret = 0;
1675 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1676 if (match_futex (&this->key, &key2)) {
1677 if (this->pi_state || this->rt_waiter) {
1678 ret = -EINVAL;
1679 goto out_unlock;
1680 }
1681 mark_wake_futex(&wake_q, this);
1682 if (++op_ret >= nr_wake2)
1683 break;
1684 }
1685 }
1686 ret += op_ret;
1687 }
1688
1689 out_unlock:
1690 double_unlock_hb(hb1, hb2);
1691 wake_up_q(&wake_q);
1692 out_put_keys:
1693 put_futex_key(&key2);
1694 out_put_key1:
1695 put_futex_key(&key1);
1696 out:
1697 return ret;
1698 }
1699
1700 /**
1701 * requeue_futex() - Requeue a futex_q from one hb to another
1702 * @q: the futex_q to requeue
1703 * @hb1: the source hash_bucket
1704 * @hb2: the target hash_bucket
1705 * @key2: the new key for the requeued futex_q
1706 */
1707 static inline
1708 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1709 struct futex_hash_bucket *hb2, union futex_key *key2)
1710 {
1711
1712 /*
1713 * If key1 and key2 hash to the same bucket, no need to
1714 * requeue.
1715 */
1716 if (likely(&hb1->chain != &hb2->chain)) {
1717 plist_del(&q->list, &hb1->chain);
1718 hb_waiters_dec(hb1);
1719 hb_waiters_inc(hb2);
1720 plist_add(&q->list, &hb2->chain);
1721 q->lock_ptr = &hb2->lock;
1722 }
1723 get_futex_key_refs(key2);
1724 q->key = *key2;
1725 }
1726
1727 /**
1728 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1729 * @q: the futex_q
1730 * @key: the key of the requeue target futex
1731 * @hb: the hash_bucket of the requeue target futex
1732 *
1733 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1734 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1735 * to the requeue target futex so the waiter can detect the wakeup on the right
1736 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1737 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1738 * to protect access to the pi_state to fixup the owner later. Must be called
1739 * with both q->lock_ptr and hb->lock held.
1740 */
1741 static inline
1742 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1743 struct futex_hash_bucket *hb)
1744 {
1745 get_futex_key_refs(key);
1746 q->key = *key;
1747
1748 __unqueue_futex(q);
1749
1750 WARN_ON(!q->rt_waiter);
1751 q->rt_waiter = NULL;
1752
1753 q->lock_ptr = &hb->lock;
1754
1755 wake_up_state(q->task, TASK_NORMAL);
1756 }
1757
1758 /**
1759 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1760 * @pifutex: the user address of the to futex
1761 * @hb1: the from futex hash bucket, must be locked by the caller
1762 * @hb2: the to futex hash bucket, must be locked by the caller
1763 * @key1: the from futex key
1764 * @key2: the to futex key
1765 * @ps: address to store the pi_state pointer
1766 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1767 *
1768 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1769 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1770 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1771 * hb1 and hb2 must be held by the caller.
1772 *
1773 * Return:
1774 * - 0 - failed to acquire the lock atomically;
1775 * - >0 - acquired the lock, return value is vpid of the top_waiter
1776 * - <0 - error
1777 */
1778 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1779 struct futex_hash_bucket *hb1,
1780 struct futex_hash_bucket *hb2,
1781 union futex_key *key1, union futex_key *key2,
1782 struct futex_pi_state **ps, int set_waiters)
1783 {
1784 struct futex_q *top_waiter = NULL;
1785 u32 curval;
1786 int ret, vpid;
1787
1788 if (get_futex_value_locked(&curval, pifutex))
1789 return -EFAULT;
1790
1791 if (unlikely(should_fail_futex(true)))
1792 return -EFAULT;
1793
1794 /*
1795 * Find the top_waiter and determine if there are additional waiters.
1796 * If the caller intends to requeue more than 1 waiter to pifutex,
1797 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1798 * as we have means to handle the possible fault. If not, don't set
1799 * the bit unecessarily as it will force the subsequent unlock to enter
1800 * the kernel.
1801 */
1802 top_waiter = futex_top_waiter(hb1, key1);
1803
1804 /* There are no waiters, nothing for us to do. */
1805 if (!top_waiter)
1806 return 0;
1807
1808 /* Ensure we requeue to the expected futex. */
1809 if (!match_futex(top_waiter->requeue_pi_key, key2))
1810 return -EINVAL;
1811
1812 /*
1813 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1814 * the contended case or if set_waiters is 1. The pi_state is returned
1815 * in ps in contended cases.
1816 */
1817 vpid = task_pid_vnr(top_waiter->task);
1818 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1819 set_waiters);
1820 if (ret == 1) {
1821 requeue_pi_wake_futex(top_waiter, key2, hb2);
1822 return vpid;
1823 }
1824 return ret;
1825 }
1826
1827 /**
1828 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1829 * @uaddr1: source futex user address
1830 * @flags: futex flags (FLAGS_SHARED, etc.)
1831 * @uaddr2: target futex user address
1832 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1833 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1834 * @cmpval: @uaddr1 expected value (or %NULL)
1835 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1836 * pi futex (pi to pi requeue is not supported)
1837 *
1838 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1839 * uaddr2 atomically on behalf of the top waiter.
1840 *
1841 * Return:
1842 * - >=0 - on success, the number of tasks requeued or woken;
1843 * - <0 - on error
1844 */
1845 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1846 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1847 u32 *cmpval, int requeue_pi)
1848 {
1849 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1850 int drop_count = 0, task_count = 0, ret;
1851 struct futex_pi_state *pi_state = NULL;
1852 struct futex_hash_bucket *hb1, *hb2;
1853 struct futex_q *this, *next;
1854 DEFINE_WAKE_Q(wake_q);
1855
1856 /*
1857 * When PI not supported: return -ENOSYS if requeue_pi is true,
1858 * consequently the compiler knows requeue_pi is always false past
1859 * this point which will optimize away all the conditional code
1860 * further down.
1861 */
1862 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1863 return -ENOSYS;
1864
1865 if (requeue_pi) {
1866 /*
1867 * Requeue PI only works on two distinct uaddrs. This
1868 * check is only valid for private futexes. See below.
1869 */
1870 if (uaddr1 == uaddr2)
1871 return -EINVAL;
1872
1873 /*
1874 * requeue_pi requires a pi_state, try to allocate it now
1875 * without any locks in case it fails.
1876 */
1877 if (refill_pi_state_cache())
1878 return -ENOMEM;
1879 /*
1880 * requeue_pi must wake as many tasks as it can, up to nr_wake
1881 * + nr_requeue, since it acquires the rt_mutex prior to
1882 * returning to userspace, so as to not leave the rt_mutex with
1883 * waiters and no owner. However, second and third wake-ups
1884 * cannot be predicted as they involve race conditions with the
1885 * first wake and a fault while looking up the pi_state. Both
1886 * pthread_cond_signal() and pthread_cond_broadcast() should
1887 * use nr_wake=1.
1888 */
1889 if (nr_wake != 1)
1890 return -EINVAL;
1891 }
1892
1893 retry:
1894 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1895 if (unlikely(ret != 0))
1896 goto out;
1897 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1898 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1899 if (unlikely(ret != 0))
1900 goto out_put_key1;
1901
1902 /*
1903 * The check above which compares uaddrs is not sufficient for
1904 * shared futexes. We need to compare the keys:
1905 */
1906 if (requeue_pi && match_futex(&key1, &key2)) {
1907 ret = -EINVAL;
1908 goto out_put_keys;
1909 }
1910
1911 hb1 = hash_futex(&key1);
1912 hb2 = hash_futex(&key2);
1913
1914 retry_private:
1915 hb_waiters_inc(hb2);
1916 double_lock_hb(hb1, hb2);
1917
1918 if (likely(cmpval != NULL)) {
1919 u32 curval;
1920
1921 ret = get_futex_value_locked(&curval, uaddr1);
1922
1923 if (unlikely(ret)) {
1924 double_unlock_hb(hb1, hb2);
1925 hb_waiters_dec(hb2);
1926
1927 ret = get_user(curval, uaddr1);
1928 if (ret)
1929 goto out_put_keys;
1930
1931 if (!(flags & FLAGS_SHARED))
1932 goto retry_private;
1933
1934 put_futex_key(&key2);
1935 put_futex_key(&key1);
1936 goto retry;
1937 }
1938 if (curval != *cmpval) {
1939 ret = -EAGAIN;
1940 goto out_unlock;
1941 }
1942 }
1943
1944 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1945 /*
1946 * Attempt to acquire uaddr2 and wake the top waiter. If we
1947 * intend to requeue waiters, force setting the FUTEX_WAITERS
1948 * bit. We force this here where we are able to easily handle
1949 * faults rather in the requeue loop below.
1950 */
1951 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1952 &key2, &pi_state, nr_requeue);
1953
1954 /*
1955 * At this point the top_waiter has either taken uaddr2 or is
1956 * waiting on it. If the former, then the pi_state will not
1957 * exist yet, look it up one more time to ensure we have a
1958 * reference to it. If the lock was taken, ret contains the
1959 * vpid of the top waiter task.
1960 * If the lock was not taken, we have pi_state and an initial
1961 * refcount on it. In case of an error we have nothing.
1962 */
1963 if (ret > 0) {
1964 WARN_ON(pi_state);
1965 drop_count++;
1966 task_count++;
1967 /*
1968 * If we acquired the lock, then the user space value
1969 * of uaddr2 should be vpid. It cannot be changed by
1970 * the top waiter as it is blocked on hb2 lock if it
1971 * tries to do so. If something fiddled with it behind
1972 * our back the pi state lookup might unearth it. So
1973 * we rather use the known value than rereading and
1974 * handing potential crap to lookup_pi_state.
1975 *
1976 * If that call succeeds then we have pi_state and an
1977 * initial refcount on it.
1978 */
1979 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1980 }
1981
1982 switch (ret) {
1983 case 0:
1984 /* We hold a reference on the pi state. */
1985 break;
1986
1987 /* If the above failed, then pi_state is NULL */
1988 case -EFAULT:
1989 double_unlock_hb(hb1, hb2);
1990 hb_waiters_dec(hb2);
1991 put_futex_key(&key2);
1992 put_futex_key(&key1);
1993 ret = fault_in_user_writeable(uaddr2);
1994 if (!ret)
1995 goto retry;
1996 goto out;
1997 case -EAGAIN:
1998 /*
1999 * Two reasons for this:
2000 * - Owner is exiting and we just wait for the
2001 * exit to complete.
2002 * - The user space value changed.
2003 */
2004 double_unlock_hb(hb1, hb2);
2005 hb_waiters_dec(hb2);
2006 put_futex_key(&key2);
2007 put_futex_key(&key1);
2008 cond_resched();
2009 goto retry;
2010 default:
2011 goto out_unlock;
2012 }
2013 }
2014
2015 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2016 if (task_count - nr_wake >= nr_requeue)
2017 break;
2018
2019 if (!match_futex(&this->key, &key1))
2020 continue;
2021
2022 /*
2023 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2024 * be paired with each other and no other futex ops.
2025 *
2026 * We should never be requeueing a futex_q with a pi_state,
2027 * which is awaiting a futex_unlock_pi().
2028 */
2029 if ((requeue_pi && !this->rt_waiter) ||
2030 (!requeue_pi && this->rt_waiter) ||
2031 this->pi_state) {
2032 ret = -EINVAL;
2033 break;
2034 }
2035
2036 /*
2037 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2038 * lock, we already woke the top_waiter. If not, it will be
2039 * woken by futex_unlock_pi().
2040 */
2041 if (++task_count <= nr_wake && !requeue_pi) {
2042 mark_wake_futex(&wake_q, this);
2043 continue;
2044 }
2045
2046 /* Ensure we requeue to the expected futex for requeue_pi. */
2047 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2048 ret = -EINVAL;
2049 break;
2050 }
2051
2052 /*
2053 * Requeue nr_requeue waiters and possibly one more in the case
2054 * of requeue_pi if we couldn't acquire the lock atomically.
2055 */
2056 if (requeue_pi) {
2057 /*
2058 * Prepare the waiter to take the rt_mutex. Take a
2059 * refcount on the pi_state and store the pointer in
2060 * the futex_q object of the waiter.
2061 */
2062 get_pi_state(pi_state);
2063 this->pi_state = pi_state;
2064 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2065 this->rt_waiter,
2066 this->task);
2067 if (ret == 1) {
2068 /*
2069 * We got the lock. We do neither drop the
2070 * refcount on pi_state nor clear
2071 * this->pi_state because the waiter needs the
2072 * pi_state for cleaning up the user space
2073 * value. It will drop the refcount after
2074 * doing so.
2075 */
2076 requeue_pi_wake_futex(this, &key2, hb2);
2077 drop_count++;
2078 continue;
2079 } else if (ret) {
2080 /*
2081 * rt_mutex_start_proxy_lock() detected a
2082 * potential deadlock when we tried to queue
2083 * that waiter. Drop the pi_state reference
2084 * which we took above and remove the pointer
2085 * to the state from the waiters futex_q
2086 * object.
2087 */
2088 this->pi_state = NULL;
2089 put_pi_state(pi_state);
2090 /*
2091 * We stop queueing more waiters and let user
2092 * space deal with the mess.
2093 */
2094 break;
2095 }
2096 }
2097 requeue_futex(this, hb1, hb2, &key2);
2098 drop_count++;
2099 }
2100
2101 /*
2102 * We took an extra initial reference to the pi_state either
2103 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2104 * need to drop it here again.
2105 */
2106 put_pi_state(pi_state);
2107
2108 out_unlock:
2109 double_unlock_hb(hb1, hb2);
2110 wake_up_q(&wake_q);
2111 hb_waiters_dec(hb2);
2112
2113 /*
2114 * drop_futex_key_refs() must be called outside the spinlocks. During
2115 * the requeue we moved futex_q's from the hash bucket at key1 to the
2116 * one at key2 and updated their key pointer. We no longer need to
2117 * hold the references to key1.
2118 */
2119 while (--drop_count >= 0)
2120 drop_futex_key_refs(&key1);
2121
2122 out_put_keys:
2123 put_futex_key(&key2);
2124 out_put_key1:
2125 put_futex_key(&key1);
2126 out:
2127 return ret ? ret : task_count;
2128 }
2129
2130 /* The key must be already stored in q->key. */
2131 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2132 __acquires(&hb->lock)
2133 {
2134 struct futex_hash_bucket *hb;
2135
2136 hb = hash_futex(&q->key);
2137
2138 /*
2139 * Increment the counter before taking the lock so that
2140 * a potential waker won't miss a to-be-slept task that is
2141 * waiting for the spinlock. This is safe as all queue_lock()
2142 * users end up calling queue_me(). Similarly, for housekeeping,
2143 * decrement the counter at queue_unlock() when some error has
2144 * occurred and we don't end up adding the task to the list.
2145 */
2146 hb_waiters_inc(hb);
2147
2148 q->lock_ptr = &hb->lock;
2149
2150 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2151 return hb;
2152 }
2153
2154 static inline void
2155 queue_unlock(struct futex_hash_bucket *hb)
2156 __releases(&hb->lock)
2157 {
2158 spin_unlock(&hb->lock);
2159 hb_waiters_dec(hb);
2160 }
2161
2162 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2163 {
2164 int prio;
2165
2166 /*
2167 * The priority used to register this element is
2168 * - either the real thread-priority for the real-time threads
2169 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2170 * - or MAX_RT_PRIO for non-RT threads.
2171 * Thus, all RT-threads are woken first in priority order, and
2172 * the others are woken last, in FIFO order.
2173 */
2174 prio = min(current->normal_prio, MAX_RT_PRIO);
2175
2176 plist_node_init(&q->list, prio);
2177 plist_add(&q->list, &hb->chain);
2178 q->task = current;
2179 }
2180
2181 /**
2182 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2183 * @q: The futex_q to enqueue
2184 * @hb: The destination hash bucket
2185 *
2186 * The hb->lock must be held by the caller, and is released here. A call to
2187 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2188 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2189 * or nothing if the unqueue is done as part of the wake process and the unqueue
2190 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2191 * an example).
2192 */
2193 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2194 __releases(&hb->lock)
2195 {
2196 __queue_me(q, hb);
2197 spin_unlock(&hb->lock);
2198 }
2199
2200 /**
2201 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2202 * @q: The futex_q to unqueue
2203 *
2204 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2205 * be paired with exactly one earlier call to queue_me().
2206 *
2207 * Return:
2208 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2209 * - 0 - if the futex_q was already removed by the waking thread
2210 */
2211 static int unqueue_me(struct futex_q *q)
2212 {
2213 spinlock_t *lock_ptr;
2214 int ret = 0;
2215
2216 /* In the common case we don't take the spinlock, which is nice. */
2217 retry:
2218 /*
2219 * q->lock_ptr can change between this read and the following spin_lock.
2220 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2221 * optimizing lock_ptr out of the logic below.
2222 */
2223 lock_ptr = READ_ONCE(q->lock_ptr);
2224 if (lock_ptr != NULL) {
2225 spin_lock(lock_ptr);
2226 /*
2227 * q->lock_ptr can change between reading it and
2228 * spin_lock(), causing us to take the wrong lock. This
2229 * corrects the race condition.
2230 *
2231 * Reasoning goes like this: if we have the wrong lock,
2232 * q->lock_ptr must have changed (maybe several times)
2233 * between reading it and the spin_lock(). It can
2234 * change again after the spin_lock() but only if it was
2235 * already changed before the spin_lock(). It cannot,
2236 * however, change back to the original value. Therefore
2237 * we can detect whether we acquired the correct lock.
2238 */
2239 if (unlikely(lock_ptr != q->lock_ptr)) {
2240 spin_unlock(lock_ptr);
2241 goto retry;
2242 }
2243 __unqueue_futex(q);
2244
2245 BUG_ON(q->pi_state);
2246
2247 spin_unlock(lock_ptr);
2248 ret = 1;
2249 }
2250
2251 drop_futex_key_refs(&q->key);
2252 return ret;
2253 }
2254
2255 /*
2256 * PI futexes can not be requeued and must remove themself from the
2257 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2258 * and dropped here.
2259 */
2260 static void unqueue_me_pi(struct futex_q *q)
2261 __releases(q->lock_ptr)
2262 {
2263 __unqueue_futex(q);
2264
2265 BUG_ON(!q->pi_state);
2266 put_pi_state(q->pi_state);
2267 q->pi_state = NULL;
2268
2269 spin_unlock(q->lock_ptr);
2270 }
2271
2272 /*
2273 * Fixup the pi_state owner with the new owner.
2274 *
2275 * Must be called with hash bucket lock held and mm->sem held for non
2276 * private futexes.
2277 */
2278 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2279 struct task_struct *newowner)
2280 {
2281 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2282 struct futex_pi_state *pi_state = q->pi_state;
2283 u32 uval, uninitialized_var(curval), newval;
2284 struct task_struct *oldowner;
2285 int ret;
2286
2287 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2288
2289 oldowner = pi_state->owner;
2290 /* Owner died? */
2291 if (!pi_state->owner)
2292 newtid |= FUTEX_OWNER_DIED;
2293
2294 /*
2295 * We are here either because we stole the rtmutex from the
2296 * previous highest priority waiter or we are the highest priority
2297 * waiter but have failed to get the rtmutex the first time.
2298 *
2299 * We have to replace the newowner TID in the user space variable.
2300 * This must be atomic as we have to preserve the owner died bit here.
2301 *
2302 * Note: We write the user space value _before_ changing the pi_state
2303 * because we can fault here. Imagine swapped out pages or a fork
2304 * that marked all the anonymous memory readonly for cow.
2305 *
2306 * Modifying pi_state _before_ the user space value would leave the
2307 * pi_state in an inconsistent state when we fault here, because we
2308 * need to drop the locks to handle the fault. This might be observed
2309 * in the PID check in lookup_pi_state.
2310 */
2311 retry:
2312 if (get_futex_value_locked(&uval, uaddr))
2313 goto handle_fault;
2314
2315 for (;;) {
2316 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2317
2318 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2319 goto handle_fault;
2320 if (curval == uval)
2321 break;
2322 uval = curval;
2323 }
2324
2325 /*
2326 * We fixed up user space. Now we need to fix the pi_state
2327 * itself.
2328 */
2329 if (pi_state->owner != NULL) {
2330 raw_spin_lock(&pi_state->owner->pi_lock);
2331 WARN_ON(list_empty(&pi_state->list));
2332 list_del_init(&pi_state->list);
2333 raw_spin_unlock(&pi_state->owner->pi_lock);
2334 }
2335
2336 pi_state->owner = newowner;
2337
2338 raw_spin_lock(&newowner->pi_lock);
2339 WARN_ON(!list_empty(&pi_state->list));
2340 list_add(&pi_state->list, &newowner->pi_state_list);
2341 raw_spin_unlock(&newowner->pi_lock);
2342 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2343
2344 return 0;
2345
2346 /*
2347 * To handle the page fault we need to drop the locks here. That gives
2348 * the other task (either the highest priority waiter itself or the
2349 * task which stole the rtmutex) the chance to try the fixup of the
2350 * pi_state. So once we are back from handling the fault we need to
2351 * check the pi_state after reacquiring the locks and before trying to
2352 * do another fixup. When the fixup has been done already we simply
2353 * return.
2354 *
2355 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2356 * drop hb->lock since the caller owns the hb -> futex_q relation.
2357 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2358 */
2359 handle_fault:
2360 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2361 spin_unlock(q->lock_ptr);
2362
2363 ret = fault_in_user_writeable(uaddr);
2364
2365 spin_lock(q->lock_ptr);
2366 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2367
2368 /*
2369 * Check if someone else fixed it for us:
2370 */
2371 if (pi_state->owner != oldowner) {
2372 ret = 0;
2373 goto out_unlock;
2374 }
2375
2376 if (ret)
2377 goto out_unlock;
2378
2379 goto retry;
2380
2381 out_unlock:
2382 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2383 return ret;
2384 }
2385
2386 static long futex_wait_restart(struct restart_block *restart);
2387
2388 /**
2389 * fixup_owner() - Post lock pi_state and corner case management
2390 * @uaddr: user address of the futex
2391 * @q: futex_q (contains pi_state and access to the rt_mutex)
2392 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2393 *
2394 * After attempting to lock an rt_mutex, this function is called to cleanup
2395 * the pi_state owner as well as handle race conditions that may allow us to
2396 * acquire the lock. Must be called with the hb lock held.
2397 *
2398 * Return:
2399 * - 1 - success, lock taken;
2400 * - 0 - success, lock not taken;
2401 * - <0 - on error (-EFAULT)
2402 */
2403 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2404 {
2405 int ret = 0;
2406
2407 if (locked) {
2408 /*
2409 * Got the lock. We might not be the anticipated owner if we
2410 * did a lock-steal - fix up the PI-state in that case:
2411 *
2412 * We can safely read pi_state->owner without holding wait_lock
2413 * because we now own the rt_mutex, only the owner will attempt
2414 * to change it.
2415 */
2416 if (q->pi_state->owner != current)
2417 ret = fixup_pi_state_owner(uaddr, q, current);
2418 goto out;
2419 }
2420
2421 /*
2422 * Paranoia check. If we did not take the lock, then we should not be
2423 * the owner of the rt_mutex.
2424 */
2425 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2426 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2427 "pi-state %p\n", ret,
2428 q->pi_state->pi_mutex.owner,
2429 q->pi_state->owner);
2430 }
2431
2432 out:
2433 return ret ? ret : locked;
2434 }
2435
2436 /**
2437 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2438 * @hb: the futex hash bucket, must be locked by the caller
2439 * @q: the futex_q to queue up on
2440 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2441 */
2442 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2443 struct hrtimer_sleeper *timeout)
2444 {
2445 /*
2446 * The task state is guaranteed to be set before another task can
2447 * wake it. set_current_state() is implemented using smp_store_mb() and
2448 * queue_me() calls spin_unlock() upon completion, both serializing
2449 * access to the hash list and forcing another memory barrier.
2450 */
2451 set_current_state(TASK_INTERRUPTIBLE);
2452 queue_me(q, hb);
2453
2454 /* Arm the timer */
2455 if (timeout)
2456 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2457
2458 /*
2459 * If we have been removed from the hash list, then another task
2460 * has tried to wake us, and we can skip the call to schedule().
2461 */
2462 if (likely(!plist_node_empty(&q->list))) {
2463 /*
2464 * If the timer has already expired, current will already be
2465 * flagged for rescheduling. Only call schedule if there
2466 * is no timeout, or if it has yet to expire.
2467 */
2468 if (!timeout || timeout->task)
2469 freezable_schedule();
2470 }
2471 __set_current_state(TASK_RUNNING);
2472 }
2473
2474 /**
2475 * futex_wait_setup() - Prepare to wait on a futex
2476 * @uaddr: the futex userspace address
2477 * @val: the expected value
2478 * @flags: futex flags (FLAGS_SHARED, etc.)
2479 * @q: the associated futex_q
2480 * @hb: storage for hash_bucket pointer to be returned to caller
2481 *
2482 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2483 * compare it with the expected value. Handle atomic faults internally.
2484 * Return with the hb lock held and a q.key reference on success, and unlocked
2485 * with no q.key reference on failure.
2486 *
2487 * Return:
2488 * - 0 - uaddr contains val and hb has been locked;
2489 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2490 */
2491 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2492 struct futex_q *q, struct futex_hash_bucket **hb)
2493 {
2494 u32 uval;
2495 int ret;
2496
2497 /*
2498 * Access the page AFTER the hash-bucket is locked.
2499 * Order is important:
2500 *
2501 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2502 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2503 *
2504 * The basic logical guarantee of a futex is that it blocks ONLY
2505 * if cond(var) is known to be true at the time of blocking, for
2506 * any cond. If we locked the hash-bucket after testing *uaddr, that
2507 * would open a race condition where we could block indefinitely with
2508 * cond(var) false, which would violate the guarantee.
2509 *
2510 * On the other hand, we insert q and release the hash-bucket only
2511 * after testing *uaddr. This guarantees that futex_wait() will NOT
2512 * absorb a wakeup if *uaddr does not match the desired values
2513 * while the syscall executes.
2514 */
2515 retry:
2516 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2517 if (unlikely(ret != 0))
2518 return ret;
2519
2520 retry_private:
2521 *hb = queue_lock(q);
2522
2523 ret = get_futex_value_locked(&uval, uaddr);
2524
2525 if (ret) {
2526 queue_unlock(*hb);
2527
2528 ret = get_user(uval, uaddr);
2529 if (ret)
2530 goto out;
2531
2532 if (!(flags & FLAGS_SHARED))
2533 goto retry_private;
2534
2535 put_futex_key(&q->key);
2536 goto retry;
2537 }
2538
2539 if (uval != val) {
2540 queue_unlock(*hb);
2541 ret = -EWOULDBLOCK;
2542 }
2543
2544 out:
2545 if (ret)
2546 put_futex_key(&q->key);
2547 return ret;
2548 }
2549
2550 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2551 ktime_t *abs_time, u32 bitset)
2552 {
2553 struct hrtimer_sleeper timeout, *to = NULL;
2554 struct restart_block *restart;
2555 struct futex_hash_bucket *hb;
2556 struct futex_q q = futex_q_init;
2557 int ret;
2558
2559 if (!bitset)
2560 return -EINVAL;
2561 q.bitset = bitset;
2562
2563 if (abs_time) {
2564 to = &timeout;
2565
2566 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2567 CLOCK_REALTIME : CLOCK_MONOTONIC,
2568 HRTIMER_MODE_ABS);
2569 hrtimer_init_sleeper(to, current);
2570 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2571 current->timer_slack_ns);
2572 }
2573
2574 retry:
2575 /*
2576 * Prepare to wait on uaddr. On success, holds hb lock and increments
2577 * q.key refs.
2578 */
2579 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2580 if (ret)
2581 goto out;
2582
2583 /* queue_me and wait for wakeup, timeout, or a signal. */
2584 futex_wait_queue_me(hb, &q, to);
2585
2586 /* If we were woken (and unqueued), we succeeded, whatever. */
2587 ret = 0;
2588 /* unqueue_me() drops q.key ref */
2589 if (!unqueue_me(&q))
2590 goto out;
2591 ret = -ETIMEDOUT;
2592 if (to && !to->task)
2593 goto out;
2594
2595 /*
2596 * We expect signal_pending(current), but we might be the
2597 * victim of a spurious wakeup as well.
2598 */
2599 if (!signal_pending(current))
2600 goto retry;
2601
2602 ret = -ERESTARTSYS;
2603 if (!abs_time)
2604 goto out;
2605
2606 restart = &current->restart_block;
2607 restart->fn = futex_wait_restart;
2608 restart->futex.uaddr = uaddr;
2609 restart->futex.val = val;
2610 restart->futex.time = *abs_time;
2611 restart->futex.bitset = bitset;
2612 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2613
2614 ret = -ERESTART_RESTARTBLOCK;
2615
2616 out:
2617 if (to) {
2618 hrtimer_cancel(&to->timer);
2619 destroy_hrtimer_on_stack(&to->timer);
2620 }
2621 return ret;
2622 }
2623
2624
2625 static long futex_wait_restart(struct restart_block *restart)
2626 {
2627 u32 __user *uaddr = restart->futex.uaddr;
2628 ktime_t t, *tp = NULL;
2629
2630 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2631 t = restart->futex.time;
2632 tp = &t;
2633 }
2634 restart->fn = do_no_restart_syscall;
2635
2636 return (long)futex_wait(uaddr, restart->futex.flags,
2637 restart->futex.val, tp, restart->futex.bitset);
2638 }
2639
2640
2641 /*
2642 * Userspace tried a 0 -> TID atomic transition of the futex value
2643 * and failed. The kernel side here does the whole locking operation:
2644 * if there are waiters then it will block as a consequence of relying
2645 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2646 * a 0 value of the futex too.).
2647 *
2648 * Also serves as futex trylock_pi()'ing, and due semantics.
2649 */
2650 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2651 ktime_t *time, int trylock)
2652 {
2653 struct hrtimer_sleeper timeout, *to = NULL;
2654 struct futex_pi_state *pi_state = NULL;
2655 struct rt_mutex_waiter rt_waiter;
2656 struct futex_hash_bucket *hb;
2657 struct futex_q q = futex_q_init;
2658 int res, ret;
2659
2660 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2661 return -ENOSYS;
2662
2663 if (refill_pi_state_cache())
2664 return -ENOMEM;
2665
2666 if (time) {
2667 to = &timeout;
2668 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2669 HRTIMER_MODE_ABS);
2670 hrtimer_init_sleeper(to, current);
2671 hrtimer_set_expires(&to->timer, *time);
2672 }
2673
2674 retry:
2675 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2676 if (unlikely(ret != 0))
2677 goto out;
2678
2679 retry_private:
2680 hb = queue_lock(&q);
2681
2682 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2683 if (unlikely(ret)) {
2684 /*
2685 * Atomic work succeeded and we got the lock,
2686 * or failed. Either way, we do _not_ block.
2687 */
2688 switch (ret) {
2689 case 1:
2690 /* We got the lock. */
2691 ret = 0;
2692 goto out_unlock_put_key;
2693 case -EFAULT:
2694 goto uaddr_faulted;
2695 case -EAGAIN:
2696 /*
2697 * Two reasons for this:
2698 * - Task is exiting and we just wait for the
2699 * exit to complete.
2700 * - The user space value changed.
2701 */
2702 queue_unlock(hb);
2703 put_futex_key(&q.key);
2704 cond_resched();
2705 goto retry;
2706 default:
2707 goto out_unlock_put_key;
2708 }
2709 }
2710
2711 WARN_ON(!q.pi_state);
2712
2713 /*
2714 * Only actually queue now that the atomic ops are done:
2715 */
2716 __queue_me(&q, hb);
2717
2718 if (trylock) {
2719 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2720 /* Fixup the trylock return value: */
2721 ret = ret ? 0 : -EWOULDBLOCK;
2722 goto no_block;
2723 }
2724
2725 rt_mutex_init_waiter(&rt_waiter);
2726
2727 /*
2728 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2729 * hold it while doing rt_mutex_start_proxy(), because then it will
2730 * include hb->lock in the blocking chain, even through we'll not in
2731 * fact hold it while blocking. This will lead it to report -EDEADLK
2732 * and BUG when futex_unlock_pi() interleaves with this.
2733 *
2734 * Therefore acquire wait_lock while holding hb->lock, but drop the
2735 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2736 * serializes against futex_unlock_pi() as that does the exact same
2737 * lock handoff sequence.
2738 */
2739 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2740 spin_unlock(q.lock_ptr);
2741 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2742 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2743
2744 if (ret) {
2745 if (ret == 1)
2746 ret = 0;
2747
2748 spin_lock(q.lock_ptr);
2749 goto no_block;
2750 }
2751
2752
2753 if (unlikely(to))
2754 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2755
2756 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2757
2758 spin_lock(q.lock_ptr);
2759 /*
2760 * If we failed to acquire the lock (signal/timeout), we must
2761 * first acquire the hb->lock before removing the lock from the
2762 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2763 * wait lists consistent.
2764 *
2765 * In particular; it is important that futex_unlock_pi() can not
2766 * observe this inconsistency.
2767 */
2768 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2769 ret = 0;
2770
2771 no_block:
2772 /*
2773 * Fixup the pi_state owner and possibly acquire the lock if we
2774 * haven't already.
2775 */
2776 res = fixup_owner(uaddr, &q, !ret);
2777 /*
2778 * If fixup_owner() returned an error, proprogate that. If it acquired
2779 * the lock, clear our -ETIMEDOUT or -EINTR.
2780 */
2781 if (res)
2782 ret = (res < 0) ? res : 0;
2783
2784 /*
2785 * If fixup_owner() faulted and was unable to handle the fault, unlock
2786 * it and return the fault to userspace.
2787 */
2788 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2789 pi_state = q.pi_state;
2790 get_pi_state(pi_state);
2791 }
2792
2793 /* Unqueue and drop the lock */
2794 unqueue_me_pi(&q);
2795
2796 if (pi_state) {
2797 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2798 put_pi_state(pi_state);
2799 }
2800
2801 goto out_put_key;
2802
2803 out_unlock_put_key:
2804 queue_unlock(hb);
2805
2806 out_put_key:
2807 put_futex_key(&q.key);
2808 out:
2809 if (to) {
2810 hrtimer_cancel(&to->timer);
2811 destroy_hrtimer_on_stack(&to->timer);
2812 }
2813 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2814
2815 uaddr_faulted:
2816 queue_unlock(hb);
2817
2818 ret = fault_in_user_writeable(uaddr);
2819 if (ret)
2820 goto out_put_key;
2821
2822 if (!(flags & FLAGS_SHARED))
2823 goto retry_private;
2824
2825 put_futex_key(&q.key);
2826 goto retry;
2827 }
2828
2829 /*
2830 * Userspace attempted a TID -> 0 atomic transition, and failed.
2831 * This is the in-kernel slowpath: we look up the PI state (if any),
2832 * and do the rt-mutex unlock.
2833 */
2834 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2835 {
2836 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2837 union futex_key key = FUTEX_KEY_INIT;
2838 struct futex_hash_bucket *hb;
2839 struct futex_q *top_waiter;
2840 int ret;
2841
2842 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2843 return -ENOSYS;
2844
2845 retry:
2846 if (get_user(uval, uaddr))
2847 return -EFAULT;
2848 /*
2849 * We release only a lock we actually own:
2850 */
2851 if ((uval & FUTEX_TID_MASK) != vpid)
2852 return -EPERM;
2853
2854 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2855 if (ret)
2856 return ret;
2857
2858 hb = hash_futex(&key);
2859 spin_lock(&hb->lock);
2860
2861 /*
2862 * Check waiters first. We do not trust user space values at
2863 * all and we at least want to know if user space fiddled
2864 * with the futex value instead of blindly unlocking.
2865 */
2866 top_waiter = futex_top_waiter(hb, &key);
2867 if (top_waiter) {
2868 struct futex_pi_state *pi_state = top_waiter->pi_state;
2869
2870 ret = -EINVAL;
2871 if (!pi_state)
2872 goto out_unlock;
2873
2874 /*
2875 * If current does not own the pi_state then the futex is
2876 * inconsistent and user space fiddled with the futex value.
2877 */
2878 if (pi_state->owner != current)
2879 goto out_unlock;
2880
2881 get_pi_state(pi_state);
2882 /*
2883 * By taking wait_lock while still holding hb->lock, we ensure
2884 * there is no point where we hold neither; and therefore
2885 * wake_futex_pi() must observe a state consistent with what we
2886 * observed.
2887 */
2888 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2889 spin_unlock(&hb->lock);
2890
2891 /* drops pi_state->pi_mutex.wait_lock */
2892 ret = wake_futex_pi(uaddr, uval, pi_state);
2893
2894 put_pi_state(pi_state);
2895
2896 /*
2897 * Success, we're done! No tricky corner cases.
2898 */
2899 if (!ret)
2900 goto out_putkey;
2901 /*
2902 * The atomic access to the futex value generated a
2903 * pagefault, so retry the user-access and the wakeup:
2904 */
2905 if (ret == -EFAULT)
2906 goto pi_faulted;
2907 /*
2908 * A unconditional UNLOCK_PI op raced against a waiter
2909 * setting the FUTEX_WAITERS bit. Try again.
2910 */
2911 if (ret == -EAGAIN) {
2912 put_futex_key(&key);
2913 goto retry;
2914 }
2915 /*
2916 * wake_futex_pi has detected invalid state. Tell user
2917 * space.
2918 */
2919 goto out_putkey;
2920 }
2921
2922 /*
2923 * We have no kernel internal state, i.e. no waiters in the
2924 * kernel. Waiters which are about to queue themselves are stuck
2925 * on hb->lock. So we can safely ignore them. We do neither
2926 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2927 * owner.
2928 */
2929 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2930 spin_unlock(&hb->lock);
2931 goto pi_faulted;
2932 }
2933
2934 /*
2935 * If uval has changed, let user space handle it.
2936 */
2937 ret = (curval == uval) ? 0 : -EAGAIN;
2938
2939 out_unlock:
2940 spin_unlock(&hb->lock);
2941 out_putkey:
2942 put_futex_key(&key);
2943 return ret;
2944
2945 pi_faulted:
2946 put_futex_key(&key);
2947
2948 ret = fault_in_user_writeable(uaddr);
2949 if (!ret)
2950 goto retry;
2951
2952 return ret;
2953 }
2954
2955 /**
2956 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2957 * @hb: the hash_bucket futex_q was original enqueued on
2958 * @q: the futex_q woken while waiting to be requeued
2959 * @key2: the futex_key of the requeue target futex
2960 * @timeout: the timeout associated with the wait (NULL if none)
2961 *
2962 * Detect if the task was woken on the initial futex as opposed to the requeue
2963 * target futex. If so, determine if it was a timeout or a signal that caused
2964 * the wakeup and return the appropriate error code to the caller. Must be
2965 * called with the hb lock held.
2966 *
2967 * Return:
2968 * - 0 = no early wakeup detected;
2969 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2970 */
2971 static inline
2972 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2973 struct futex_q *q, union futex_key *key2,
2974 struct hrtimer_sleeper *timeout)
2975 {
2976 int ret = 0;
2977
2978 /*
2979 * With the hb lock held, we avoid races while we process the wakeup.
2980 * We only need to hold hb (and not hb2) to ensure atomicity as the
2981 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2982 * It can't be requeued from uaddr2 to something else since we don't
2983 * support a PI aware source futex for requeue.
2984 */
2985 if (!match_futex(&q->key, key2)) {
2986 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2987 /*
2988 * We were woken prior to requeue by a timeout or a signal.
2989 * Unqueue the futex_q and determine which it was.
2990 */
2991 plist_del(&q->list, &hb->chain);
2992 hb_waiters_dec(hb);
2993
2994 /* Handle spurious wakeups gracefully */
2995 ret = -EWOULDBLOCK;
2996 if (timeout && !timeout->task)
2997 ret = -ETIMEDOUT;
2998 else if (signal_pending(current))
2999 ret = -ERESTARTNOINTR;
3000 }
3001 return ret;
3002 }
3003
3004 /**
3005 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3006 * @uaddr: the futex we initially wait on (non-pi)
3007 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3008 * the same type, no requeueing from private to shared, etc.
3009 * @val: the expected value of uaddr
3010 * @abs_time: absolute timeout
3011 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3012 * @uaddr2: the pi futex we will take prior to returning to user-space
3013 *
3014 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3015 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3016 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3017 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3018 * without one, the pi logic would not know which task to boost/deboost, if
3019 * there was a need to.
3020 *
3021 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3022 * via the following--
3023 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3024 * 2) wakeup on uaddr2 after a requeue
3025 * 3) signal
3026 * 4) timeout
3027 *
3028 * If 3, cleanup and return -ERESTARTNOINTR.
3029 *
3030 * If 2, we may then block on trying to take the rt_mutex and return via:
3031 * 5) successful lock
3032 * 6) signal
3033 * 7) timeout
3034 * 8) other lock acquisition failure
3035 *
3036 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3037 *
3038 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3039 *
3040 * Return:
3041 * - 0 - On success;
3042 * - <0 - On error
3043 */
3044 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3045 u32 val, ktime_t *abs_time, u32 bitset,
3046 u32 __user *uaddr2)
3047 {
3048 struct hrtimer_sleeper timeout, *to = NULL;
3049 struct futex_pi_state *pi_state = NULL;
3050 struct rt_mutex_waiter rt_waiter;
3051 struct futex_hash_bucket *hb;
3052 union futex_key key2 = FUTEX_KEY_INIT;
3053 struct futex_q q = futex_q_init;
3054 int res, ret;
3055
3056 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3057 return -ENOSYS;
3058
3059 if (uaddr == uaddr2)
3060 return -EINVAL;
3061
3062 if (!bitset)
3063 return -EINVAL;
3064
3065 if (abs_time) {
3066 to = &timeout;
3067 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3068 CLOCK_REALTIME : CLOCK_MONOTONIC,
3069 HRTIMER_MODE_ABS);
3070 hrtimer_init_sleeper(to, current);
3071 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3072 current->timer_slack_ns);
3073 }
3074
3075 /*
3076 * The waiter is allocated on our stack, manipulated by the requeue
3077 * code while we sleep on uaddr.
3078 */
3079 rt_mutex_init_waiter(&rt_waiter);
3080
3081 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3082 if (unlikely(ret != 0))
3083 goto out;
3084
3085 q.bitset = bitset;
3086 q.rt_waiter = &rt_waiter;
3087 q.requeue_pi_key = &key2;
3088
3089 /*
3090 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3091 * count.
3092 */
3093 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3094 if (ret)
3095 goto out_key2;
3096
3097 /*
3098 * The check above which compares uaddrs is not sufficient for
3099 * shared futexes. We need to compare the keys:
3100 */
3101 if (match_futex(&q.key, &key2)) {
3102 queue_unlock(hb);
3103 ret = -EINVAL;
3104 goto out_put_keys;
3105 }
3106
3107 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3108 futex_wait_queue_me(hb, &q, to);
3109
3110 spin_lock(&hb->lock);
3111 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3112 spin_unlock(&hb->lock);
3113 if (ret)
3114 goto out_put_keys;
3115
3116 /*
3117 * In order for us to be here, we know our q.key == key2, and since
3118 * we took the hb->lock above, we also know that futex_requeue() has
3119 * completed and we no longer have to concern ourselves with a wakeup
3120 * race with the atomic proxy lock acquisition by the requeue code. The
3121 * futex_requeue dropped our key1 reference and incremented our key2
3122 * reference count.
3123 */
3124
3125 /* Check if the requeue code acquired the second futex for us. */
3126 if (!q.rt_waiter) {
3127 /*
3128 * Got the lock. We might not be the anticipated owner if we
3129 * did a lock-steal - fix up the PI-state in that case.
3130 */
3131 if (q.pi_state && (q.pi_state->owner != current)) {
3132 spin_lock(q.lock_ptr);
3133 ret = fixup_pi_state_owner(uaddr2, &q, current);
3134 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3135 pi_state = q.pi_state;
3136 get_pi_state(pi_state);
3137 }
3138 /*
3139 * Drop the reference to the pi state which
3140 * the requeue_pi() code acquired for us.
3141 */
3142 put_pi_state(q.pi_state);
3143 spin_unlock(q.lock_ptr);
3144 }
3145 } else {
3146 struct rt_mutex *pi_mutex;
3147
3148 /*
3149 * We have been woken up by futex_unlock_pi(), a timeout, or a
3150 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3151 * the pi_state.
3152 */
3153 WARN_ON(!q.pi_state);
3154 pi_mutex = &q.pi_state->pi_mutex;
3155 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3156
3157 spin_lock(q.lock_ptr);
3158 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3159 ret = 0;
3160
3161 debug_rt_mutex_free_waiter(&rt_waiter);
3162 /*
3163 * Fixup the pi_state owner and possibly acquire the lock if we
3164 * haven't already.
3165 */
3166 res = fixup_owner(uaddr2, &q, !ret);
3167 /*
3168 * If fixup_owner() returned an error, proprogate that. If it
3169 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3170 */
3171 if (res)
3172 ret = (res < 0) ? res : 0;
3173
3174 /*
3175 * If fixup_pi_state_owner() faulted and was unable to handle
3176 * the fault, unlock the rt_mutex and return the fault to
3177 * userspace.
3178 */
3179 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3180 pi_state = q.pi_state;
3181 get_pi_state(pi_state);
3182 }
3183
3184 /* Unqueue and drop the lock. */
3185 unqueue_me_pi(&q);
3186 }
3187
3188 if (pi_state) {
3189 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3190 put_pi_state(pi_state);
3191 }
3192
3193 if (ret == -EINTR) {
3194 /*
3195 * We've already been requeued, but cannot restart by calling
3196 * futex_lock_pi() directly. We could restart this syscall, but
3197 * it would detect that the user space "val" changed and return
3198 * -EWOULDBLOCK. Save the overhead of the restart and return
3199 * -EWOULDBLOCK directly.
3200 */
3201 ret = -EWOULDBLOCK;
3202 }
3203
3204 out_put_keys:
3205 put_futex_key(&q.key);
3206 out_key2:
3207 put_futex_key(&key2);
3208
3209 out:
3210 if (to) {
3211 hrtimer_cancel(&to->timer);
3212 destroy_hrtimer_on_stack(&to->timer);
3213 }
3214 return ret;
3215 }
3216
3217 /*
3218 * Support for robust futexes: the kernel cleans up held futexes at
3219 * thread exit time.
3220 *
3221 * Implementation: user-space maintains a per-thread list of locks it
3222 * is holding. Upon do_exit(), the kernel carefully walks this list,
3223 * and marks all locks that are owned by this thread with the
3224 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3225 * always manipulated with the lock held, so the list is private and
3226 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3227 * field, to allow the kernel to clean up if the thread dies after
3228 * acquiring the lock, but just before it could have added itself to
3229 * the list. There can only be one such pending lock.
3230 */
3231
3232 /**
3233 * sys_set_robust_list() - Set the robust-futex list head of a task
3234 * @head: pointer to the list-head
3235 * @len: length of the list-head, as userspace expects
3236 */
3237 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3238 size_t, len)
3239 {
3240 if (!futex_cmpxchg_enabled)
3241 return -ENOSYS;
3242 /*
3243 * The kernel knows only one size for now:
3244 */
3245 if (unlikely(len != sizeof(*head)))
3246 return -EINVAL;
3247
3248 current->robust_list = head;
3249
3250 return 0;
3251 }
3252
3253 /**
3254 * sys_get_robust_list() - Get the robust-futex list head of a task
3255 * @pid: pid of the process [zero for current task]
3256 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3257 * @len_ptr: pointer to a length field, the kernel fills in the header size
3258 */
3259 SYSCALL_DEFINE3(get_robust_list, int, pid,
3260 struct robust_list_head __user * __user *, head_ptr,
3261 size_t __user *, len_ptr)
3262 {
3263 struct robust_list_head __user *head;
3264 unsigned long ret;
3265 struct task_struct *p;
3266
3267 if (!futex_cmpxchg_enabled)
3268 return -ENOSYS;
3269
3270 rcu_read_lock();
3271
3272 ret = -ESRCH;
3273 if (!pid)
3274 p = current;
3275 else {
3276 p = find_task_by_vpid(pid);
3277 if (!p)
3278 goto err_unlock;
3279 }
3280
3281 ret = -EPERM;
3282 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3283 goto err_unlock;
3284
3285 head = p->robust_list;
3286 rcu_read_unlock();
3287
3288 if (put_user(sizeof(*head), len_ptr))
3289 return -EFAULT;
3290 return put_user(head, head_ptr);
3291
3292 err_unlock:
3293 rcu_read_unlock();
3294
3295 return ret;
3296 }
3297
3298 /*
3299 * Process a futex-list entry, check whether it's owned by the
3300 * dying task, and do notification if so:
3301 */
3302 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3303 {
3304 u32 uval, uninitialized_var(nval), mval;
3305
3306 retry:
3307 if (get_user(uval, uaddr))
3308 return -1;
3309
3310 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3311 /*
3312 * Ok, this dying thread is truly holding a futex
3313 * of interest. Set the OWNER_DIED bit atomically
3314 * via cmpxchg, and if the value had FUTEX_WAITERS
3315 * set, wake up a waiter (if any). (We have to do a
3316 * futex_wake() even if OWNER_DIED is already set -
3317 * to handle the rare but possible case of recursive
3318 * thread-death.) The rest of the cleanup is done in
3319 * userspace.
3320 */
3321 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3322 /*
3323 * We are not holding a lock here, but we want to have
3324 * the pagefault_disable/enable() protection because
3325 * we want to handle the fault gracefully. If the
3326 * access fails we try to fault in the futex with R/W
3327 * verification via get_user_pages. get_user() above
3328 * does not guarantee R/W access. If that fails we
3329 * give up and leave the futex locked.
3330 */
3331 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3332 if (fault_in_user_writeable(uaddr))
3333 return -1;
3334 goto retry;
3335 }
3336 if (nval != uval)
3337 goto retry;
3338
3339 /*
3340 * Wake robust non-PI futexes here. The wakeup of
3341 * PI futexes happens in exit_pi_state():
3342 */
3343 if (!pi && (uval & FUTEX_WAITERS))
3344 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3345 }
3346 return 0;
3347 }
3348
3349 /*
3350 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3351 */
3352 static inline int fetch_robust_entry(struct robust_list __user **entry,
3353 struct robust_list __user * __user *head,
3354 unsigned int *pi)
3355 {
3356 unsigned long uentry;
3357
3358 if (get_user(uentry, (unsigned long __user *)head))
3359 return -EFAULT;
3360
3361 *entry = (void __user *)(uentry & ~1UL);
3362 *pi = uentry & 1;
3363
3364 return 0;
3365 }
3366
3367 /*
3368 * Walk curr->robust_list (very carefully, it's a userspace list!)
3369 * and mark any locks found there dead, and notify any waiters.
3370 *
3371 * We silently return on any sign of list-walking problem.
3372 */
3373 void exit_robust_list(struct task_struct *curr)
3374 {
3375 struct robust_list_head __user *head = curr->robust_list;
3376 struct robust_list __user *entry, *next_entry, *pending;
3377 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3378 unsigned int uninitialized_var(next_pi);
3379 unsigned long futex_offset;
3380 int rc;
3381
3382 if (!futex_cmpxchg_enabled)
3383 return;
3384
3385 /*
3386 * Fetch the list head (which was registered earlier, via
3387 * sys_set_robust_list()):
3388 */
3389 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3390 return;
3391 /*
3392 * Fetch the relative futex offset:
3393 */
3394 if (get_user(futex_offset, &head->futex_offset))
3395 return;
3396 /*
3397 * Fetch any possibly pending lock-add first, and handle it
3398 * if it exists:
3399 */
3400 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3401 return;
3402
3403 next_entry = NULL; /* avoid warning with gcc */
3404 while (entry != &head->list) {
3405 /*
3406 * Fetch the next entry in the list before calling
3407 * handle_futex_death:
3408 */
3409 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3410 /*
3411 * A pending lock might already be on the list, so
3412 * don't process it twice:
3413 */
3414 if (entry != pending)
3415 if (handle_futex_death((void __user *)entry + futex_offset,
3416 curr, pi))
3417 return;
3418 if (rc)
3419 return;
3420 entry = next_entry;
3421 pi = next_pi;
3422 /*
3423 * Avoid excessively long or circular lists:
3424 */
3425 if (!--limit)
3426 break;
3427
3428 cond_resched();
3429 }
3430
3431 if (pending)
3432 handle_futex_death((void __user *)pending + futex_offset,
3433 curr, pip);
3434 }
3435
3436 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3437 u32 __user *uaddr2, u32 val2, u32 val3)
3438 {
3439 int cmd = op & FUTEX_CMD_MASK;
3440 unsigned int flags = 0;
3441
3442 if (!(op & FUTEX_PRIVATE_FLAG))
3443 flags |= FLAGS_SHARED;
3444
3445 if (op & FUTEX_CLOCK_REALTIME) {
3446 flags |= FLAGS_CLOCKRT;
3447 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3448 cmd != FUTEX_WAIT_REQUEUE_PI)
3449 return -ENOSYS;
3450 }
3451
3452 switch (cmd) {
3453 case FUTEX_LOCK_PI:
3454 case FUTEX_UNLOCK_PI:
3455 case FUTEX_TRYLOCK_PI:
3456 case FUTEX_WAIT_REQUEUE_PI:
3457 case FUTEX_CMP_REQUEUE_PI:
3458 if (!futex_cmpxchg_enabled)
3459 return -ENOSYS;
3460 }
3461
3462 switch (cmd) {
3463 case FUTEX_WAIT:
3464 val3 = FUTEX_BITSET_MATCH_ANY;
3465 case FUTEX_WAIT_BITSET:
3466 return futex_wait(uaddr, flags, val, timeout, val3);
3467 case FUTEX_WAKE:
3468 val3 = FUTEX_BITSET_MATCH_ANY;
3469 case FUTEX_WAKE_BITSET:
3470 return futex_wake(uaddr, flags, val, val3);
3471 case FUTEX_REQUEUE:
3472 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3473 case FUTEX_CMP_REQUEUE:
3474 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3475 case FUTEX_WAKE_OP:
3476 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3477 case FUTEX_LOCK_PI:
3478 return futex_lock_pi(uaddr, flags, timeout, 0);
3479 case FUTEX_UNLOCK_PI:
3480 return futex_unlock_pi(uaddr, flags);
3481 case FUTEX_TRYLOCK_PI:
3482 return futex_lock_pi(uaddr, flags, NULL, 1);
3483 case FUTEX_WAIT_REQUEUE_PI:
3484 val3 = FUTEX_BITSET_MATCH_ANY;
3485 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3486 uaddr2);
3487 case FUTEX_CMP_REQUEUE_PI:
3488 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3489 }
3490 return -ENOSYS;
3491 }
3492
3493
3494 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3495 struct timespec __user *, utime, u32 __user *, uaddr2,
3496 u32, val3)
3497 {
3498 struct timespec ts;
3499 ktime_t t, *tp = NULL;
3500 u32 val2 = 0;
3501 int cmd = op & FUTEX_CMD_MASK;
3502
3503 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3504 cmd == FUTEX_WAIT_BITSET ||
3505 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3506 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3507 return -EFAULT;
3508 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3509 return -EFAULT;
3510 if (!timespec_valid(&ts))
3511 return -EINVAL;
3512
3513 t = timespec_to_ktime(ts);
3514 if (cmd == FUTEX_WAIT)
3515 t = ktime_add_safe(ktime_get(), t);
3516 tp = &t;
3517 }
3518 /*
3519 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3520 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3521 */
3522 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3523 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3524 val2 = (u32) (unsigned long) utime;
3525
3526 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3527 }
3528
3529 static void __init futex_detect_cmpxchg(void)
3530 {
3531 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3532 u32 curval;
3533
3534 /*
3535 * This will fail and we want it. Some arch implementations do
3536 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3537 * functionality. We want to know that before we call in any
3538 * of the complex code paths. Also we want to prevent
3539 * registration of robust lists in that case. NULL is
3540 * guaranteed to fault and we get -EFAULT on functional
3541 * implementation, the non-functional ones will return
3542 * -ENOSYS.
3543 */
3544 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3545 futex_cmpxchg_enabled = 1;
3546 #endif
3547 }
3548
3549 static int __init futex_init(void)
3550 {
3551 unsigned int futex_shift;
3552 unsigned long i;
3553
3554 #if CONFIG_BASE_SMALL
3555 futex_hashsize = 16;
3556 #else
3557 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3558 #endif
3559
3560 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3561 futex_hashsize, 0,
3562 futex_hashsize < 256 ? HASH_SMALL : 0,
3563 &futex_shift, NULL,
3564 futex_hashsize, futex_hashsize);
3565 futex_hashsize = 1UL << futex_shift;
3566
3567 futex_detect_cmpxchg();
3568
3569 for (i = 0; i < futex_hashsize; i++) {
3570 atomic_set(&futex_queues[i].waiters, 0);
3571 plist_head_init(&futex_queues[i].chain);
3572 spin_lock_init(&futex_queues[i].lock);
3573 }
3574
3575 return 0;
3576 }
3577 core_initcall(futex_init);