]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/futex.c
aio: prevent potential eventfd recursion on poll
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
33 */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65 * READ this before attempting to hack on futexes!
66 *
67 * Basic futex operation and ordering guarantees
68 * =============================================
69 *
70 * The waiter reads the futex value in user space and calls
71 * futex_wait(). This function computes the hash bucket and acquires
72 * the hash bucket lock. After that it reads the futex user space value
73 * again and verifies that the data has not changed. If it has not changed
74 * it enqueues itself into the hash bucket, releases the hash bucket lock
75 * and schedules.
76 *
77 * The waker side modifies the user space value of the futex and calls
78 * futex_wake(). This function computes the hash bucket and acquires the
79 * hash bucket lock. Then it looks for waiters on that futex in the hash
80 * bucket and wakes them.
81 *
82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
83 * the hb spinlock can be avoided and simply return. In order for this
84 * optimization to work, ordering guarantees must exist so that the waiter
85 * being added to the list is acknowledged when the list is concurrently being
86 * checked by the waker, avoiding scenarios like the following:
87 *
88 * CPU 0 CPU 1
89 * val = *futex;
90 * sys_futex(WAIT, futex, val);
91 * futex_wait(futex, val);
92 * uval = *futex;
93 * *futex = newval;
94 * sys_futex(WAKE, futex);
95 * futex_wake(futex);
96 * if (queue_empty())
97 * return;
98 * if (uval == val)
99 * lock(hash_bucket(futex));
100 * queue();
101 * unlock(hash_bucket(futex));
102 * schedule();
103 *
104 * This would cause the waiter on CPU 0 to wait forever because it
105 * missed the transition of the user space value from val to newval
106 * and the waker did not find the waiter in the hash bucket queue.
107 *
108 * The correct serialization ensures that a waiter either observes
109 * the changed user space value before blocking or is woken by a
110 * concurrent waker:
111 *
112 * CPU 0 CPU 1
113 * val = *futex;
114 * sys_futex(WAIT, futex, val);
115 * futex_wait(futex, val);
116 *
117 * waiters++; (a)
118 * smp_mb(); (A) <-- paired with -.
119 * |
120 * lock(hash_bucket(futex)); |
121 * |
122 * uval = *futex; |
123 * | *futex = newval;
124 * | sys_futex(WAKE, futex);
125 * | futex_wake(futex);
126 * |
127 * `--------> smp_mb(); (B)
128 * if (uval == val)
129 * queue();
130 * unlock(hash_bucket(futex));
131 * schedule(); if (waiters)
132 * lock(hash_bucket(futex));
133 * else wake_waiters(futex);
134 * waiters--; (b) unlock(hash_bucket(futex));
135 *
136 * Where (A) orders the waiters increment and the futex value read through
137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
138 * to futex and the waiters read -- this is done by the barriers for both
139 * shared and private futexes in get_futex_key_refs().
140 *
141 * This yields the following case (where X:=waiters, Y:=futex):
142 *
143 * X = Y = 0
144 *
145 * w[X]=1 w[Y]=1
146 * MB MB
147 * r[Y]=y r[X]=x
148 *
149 * Which guarantees that x==0 && y==0 is impossible; which translates back into
150 * the guarantee that we cannot both miss the futex variable change and the
151 * enqueue.
152 *
153 * Note that a new waiter is accounted for in (a) even when it is possible that
154 * the wait call can return error, in which case we backtrack from it in (b).
155 * Refer to the comment in queue_lock().
156 *
157 * Similarly, in order to account for waiters being requeued on another
158 * address we always increment the waiters for the destination bucket before
159 * acquiring the lock. It then decrements them again after releasing it -
160 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
161 * will do the additional required waiter count housekeeping. This is done for
162 * double_lock_hb() and double_unlock_hb(), respectively.
163 */
164
165 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
166 #define futex_cmpxchg_enabled 1
167 #else
168 static int __read_mostly futex_cmpxchg_enabled;
169 #endif
170
171 /*
172 * Futex flags used to encode options to functions and preserve them across
173 * restarts.
174 */
175 #ifdef CONFIG_MMU
176 # define FLAGS_SHARED 0x01
177 #else
178 /*
179 * NOMMU does not have per process address space. Let the compiler optimize
180 * code away.
181 */
182 # define FLAGS_SHARED 0x00
183 #endif
184 #define FLAGS_CLOCKRT 0x02
185 #define FLAGS_HAS_TIMEOUT 0x04
186
187 /*
188 * Priority Inheritance state:
189 */
190 struct futex_pi_state {
191 /*
192 * list of 'owned' pi_state instances - these have to be
193 * cleaned up in do_exit() if the task exits prematurely:
194 */
195 struct list_head list;
196
197 /*
198 * The PI object:
199 */
200 struct rt_mutex pi_mutex;
201
202 struct task_struct *owner;
203 refcount_t refcount;
204
205 union futex_key key;
206 } __randomize_layout;
207
208 /**
209 * struct futex_q - The hashed futex queue entry, one per waiting task
210 * @list: priority-sorted list of tasks waiting on this futex
211 * @task: the task waiting on the futex
212 * @lock_ptr: the hash bucket lock
213 * @key: the key the futex is hashed on
214 * @pi_state: optional priority inheritance state
215 * @rt_waiter: rt_waiter storage for use with requeue_pi
216 * @requeue_pi_key: the requeue_pi target futex key
217 * @bitset: bitset for the optional bitmasked wakeup
218 *
219 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
220 * we can wake only the relevant ones (hashed queues may be shared).
221 *
222 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
223 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
224 * The order of wakeup is always to make the first condition true, then
225 * the second.
226 *
227 * PI futexes are typically woken before they are removed from the hash list via
228 * the rt_mutex code. See unqueue_me_pi().
229 */
230 struct futex_q {
231 struct plist_node list;
232
233 struct task_struct *task;
234 spinlock_t *lock_ptr;
235 union futex_key key;
236 struct futex_pi_state *pi_state;
237 struct rt_mutex_waiter *rt_waiter;
238 union futex_key *requeue_pi_key;
239 u32 bitset;
240 } __randomize_layout;
241
242 static const struct futex_q futex_q_init = {
243 /* list gets initialized in queue_me()*/
244 .key = FUTEX_KEY_INIT,
245 .bitset = FUTEX_BITSET_MATCH_ANY
246 };
247
248 /*
249 * Hash buckets are shared by all the futex_keys that hash to the same
250 * location. Each key may have multiple futex_q structures, one for each task
251 * waiting on a futex.
252 */
253 struct futex_hash_bucket {
254 atomic_t waiters;
255 spinlock_t lock;
256 struct plist_head chain;
257 } ____cacheline_aligned_in_smp;
258
259 /*
260 * The base of the bucket array and its size are always used together
261 * (after initialization only in hash_futex()), so ensure that they
262 * reside in the same cacheline.
263 */
264 static struct {
265 struct futex_hash_bucket *queues;
266 unsigned long hashsize;
267 } __futex_data __read_mostly __aligned(2*sizeof(long));
268 #define futex_queues (__futex_data.queues)
269 #define futex_hashsize (__futex_data.hashsize)
270
271
272 /*
273 * Fault injections for futexes.
274 */
275 #ifdef CONFIG_FAIL_FUTEX
276
277 static struct {
278 struct fault_attr attr;
279
280 bool ignore_private;
281 } fail_futex = {
282 .attr = FAULT_ATTR_INITIALIZER,
283 .ignore_private = false,
284 };
285
286 static int __init setup_fail_futex(char *str)
287 {
288 return setup_fault_attr(&fail_futex.attr, str);
289 }
290 __setup("fail_futex=", setup_fail_futex);
291
292 static bool should_fail_futex(bool fshared)
293 {
294 if (fail_futex.ignore_private && !fshared)
295 return false;
296
297 return should_fail(&fail_futex.attr, 1);
298 }
299
300 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301
302 static int __init fail_futex_debugfs(void)
303 {
304 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
305 struct dentry *dir;
306
307 dir = fault_create_debugfs_attr("fail_futex", NULL,
308 &fail_futex.attr);
309 if (IS_ERR(dir))
310 return PTR_ERR(dir);
311
312 debugfs_create_bool("ignore-private", mode, dir,
313 &fail_futex.ignore_private);
314 return 0;
315 }
316
317 late_initcall(fail_futex_debugfs);
318
319 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320
321 #else
322 static inline bool should_fail_futex(bool fshared)
323 {
324 return false;
325 }
326 #endif /* CONFIG_FAIL_FUTEX */
327
328 #ifdef CONFIG_COMPAT
329 static void compat_exit_robust_list(struct task_struct *curr);
330 #else
331 static inline void compat_exit_robust_list(struct task_struct *curr) { }
332 #endif
333
334 static inline void futex_get_mm(union futex_key *key)
335 {
336 mmgrab(key->private.mm);
337 /*
338 * Ensure futex_get_mm() implies a full barrier such that
339 * get_futex_key() implies a full barrier. This is relied upon
340 * as smp_mb(); (B), see the ordering comment above.
341 */
342 smp_mb__after_atomic();
343 }
344
345 /*
346 * Reflects a new waiter being added to the waitqueue.
347 */
348 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
349 {
350 #ifdef CONFIG_SMP
351 atomic_inc(&hb->waiters);
352 /*
353 * Full barrier (A), see the ordering comment above.
354 */
355 smp_mb__after_atomic();
356 #endif
357 }
358
359 /*
360 * Reflects a waiter being removed from the waitqueue by wakeup
361 * paths.
362 */
363 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
364 {
365 #ifdef CONFIG_SMP
366 atomic_dec(&hb->waiters);
367 #endif
368 }
369
370 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 return atomic_read(&hb->waiters);
374 #else
375 return 1;
376 #endif
377 }
378
379 /**
380 * hash_futex - Return the hash bucket in the global hash
381 * @key: Pointer to the futex key for which the hash is calculated
382 *
383 * We hash on the keys returned from get_futex_key (see below) and return the
384 * corresponding hash bucket in the global hash.
385 */
386 static struct futex_hash_bucket *hash_futex(union futex_key *key)
387 {
388 u32 hash = jhash2((u32*)&key->both.word,
389 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
390 key->both.offset);
391 return &futex_queues[hash & (futex_hashsize - 1)];
392 }
393
394
395 /**
396 * match_futex - Check whether two futex keys are equal
397 * @key1: Pointer to key1
398 * @key2: Pointer to key2
399 *
400 * Return 1 if two futex_keys are equal, 0 otherwise.
401 */
402 static inline int match_futex(union futex_key *key1, union futex_key *key2)
403 {
404 return (key1 && key2
405 && key1->both.word == key2->both.word
406 && key1->both.ptr == key2->both.ptr
407 && key1->both.offset == key2->both.offset);
408 }
409
410 /*
411 * Take a reference to the resource addressed by a key.
412 * Can be called while holding spinlocks.
413 *
414 */
415 static void get_futex_key_refs(union futex_key *key)
416 {
417 if (!key->both.ptr)
418 return;
419
420 /*
421 * On MMU less systems futexes are always "private" as there is no per
422 * process address space. We need the smp wmb nevertheless - yes,
423 * arch/blackfin has MMU less SMP ...
424 */
425 if (!IS_ENABLED(CONFIG_MMU)) {
426 smp_mb(); /* explicit smp_mb(); (B) */
427 return;
428 }
429
430 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
431 case FUT_OFF_INODE:
432 ihold(key->shared.inode); /* implies smp_mb(); (B) */
433 break;
434 case FUT_OFF_MMSHARED:
435 futex_get_mm(key); /* implies smp_mb(); (B) */
436 break;
437 default:
438 /*
439 * Private futexes do not hold reference on an inode or
440 * mm, therefore the only purpose of calling get_futex_key_refs
441 * is because we need the barrier for the lockless waiter check.
442 */
443 smp_mb(); /* explicit smp_mb(); (B) */
444 }
445 }
446
447 /*
448 * Drop a reference to the resource addressed by a key.
449 * The hash bucket spinlock must not be held. This is
450 * a no-op for private futexes, see comment in the get
451 * counterpart.
452 */
453 static void drop_futex_key_refs(union futex_key *key)
454 {
455 if (!key->both.ptr) {
456 /* If we're here then we tried to put a key we failed to get */
457 WARN_ON_ONCE(1);
458 return;
459 }
460
461 if (!IS_ENABLED(CONFIG_MMU))
462 return;
463
464 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
465 case FUT_OFF_INODE:
466 iput(key->shared.inode);
467 break;
468 case FUT_OFF_MMSHARED:
469 mmdrop(key->private.mm);
470 break;
471 }
472 }
473
474 enum futex_access {
475 FUTEX_READ,
476 FUTEX_WRITE
477 };
478
479 /**
480 * futex_setup_timer - set up the sleeping hrtimer.
481 * @time: ptr to the given timeout value
482 * @timeout: the hrtimer_sleeper structure to be set up
483 * @flags: futex flags
484 * @range_ns: optional range in ns
485 *
486 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
487 * value given
488 */
489 static inline struct hrtimer_sleeper *
490 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
491 int flags, u64 range_ns)
492 {
493 if (!time)
494 return NULL;
495
496 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
497 CLOCK_REALTIME : CLOCK_MONOTONIC,
498 HRTIMER_MODE_ABS);
499 /*
500 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
501 * effectively the same as calling hrtimer_set_expires().
502 */
503 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
504
505 return timeout;
506 }
507
508 /**
509 * get_futex_key() - Get parameters which are the keys for a futex
510 * @uaddr: virtual address of the futex
511 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
512 * @key: address where result is stored.
513 * @rw: mapping needs to be read/write (values: FUTEX_READ,
514 * FUTEX_WRITE)
515 *
516 * Return: a negative error code or 0
517 *
518 * The key words are stored in @key on success.
519 *
520 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
521 * offset_within_page). For private mappings, it's (uaddr, current->mm).
522 * We can usually work out the index without swapping in the page.
523 *
524 * lock_page() might sleep, the caller should not hold a spinlock.
525 */
526 static int
527 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
528 {
529 unsigned long address = (unsigned long)uaddr;
530 struct mm_struct *mm = current->mm;
531 struct page *page, *tail;
532 struct address_space *mapping;
533 int err, ro = 0;
534
535 /*
536 * The futex address must be "naturally" aligned.
537 */
538 key->both.offset = address % PAGE_SIZE;
539 if (unlikely((address % sizeof(u32)) != 0))
540 return -EINVAL;
541 address -= key->both.offset;
542
543 if (unlikely(!access_ok(uaddr, sizeof(u32))))
544 return -EFAULT;
545
546 if (unlikely(should_fail_futex(fshared)))
547 return -EFAULT;
548
549 /*
550 * PROCESS_PRIVATE futexes are fast.
551 * As the mm cannot disappear under us and the 'key' only needs
552 * virtual address, we dont even have to find the underlying vma.
553 * Note : We do have to check 'uaddr' is a valid user address,
554 * but access_ok() should be faster than find_vma()
555 */
556 if (!fshared) {
557 key->private.mm = mm;
558 key->private.address = address;
559 get_futex_key_refs(key); /* implies smp_mb(); (B) */
560 return 0;
561 }
562
563 again:
564 /* Ignore any VERIFY_READ mapping (futex common case) */
565 if (unlikely(should_fail_futex(fshared)))
566 return -EFAULT;
567
568 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
569 /*
570 * If write access is not required (eg. FUTEX_WAIT), try
571 * and get read-only access.
572 */
573 if (err == -EFAULT && rw == FUTEX_READ) {
574 err = get_user_pages_fast(address, 1, 0, &page);
575 ro = 1;
576 }
577 if (err < 0)
578 return err;
579 else
580 err = 0;
581
582 /*
583 * The treatment of mapping from this point on is critical. The page
584 * lock protects many things but in this context the page lock
585 * stabilizes mapping, prevents inode freeing in the shared
586 * file-backed region case and guards against movement to swap cache.
587 *
588 * Strictly speaking the page lock is not needed in all cases being
589 * considered here and page lock forces unnecessarily serialization
590 * From this point on, mapping will be re-verified if necessary and
591 * page lock will be acquired only if it is unavoidable
592 *
593 * Mapping checks require the head page for any compound page so the
594 * head page and mapping is looked up now. For anonymous pages, it
595 * does not matter if the page splits in the future as the key is
596 * based on the address. For filesystem-backed pages, the tail is
597 * required as the index of the page determines the key. For
598 * base pages, there is no tail page and tail == page.
599 */
600 tail = page;
601 page = compound_head(page);
602 mapping = READ_ONCE(page->mapping);
603
604 /*
605 * If page->mapping is NULL, then it cannot be a PageAnon
606 * page; but it might be the ZERO_PAGE or in the gate area or
607 * in a special mapping (all cases which we are happy to fail);
608 * or it may have been a good file page when get_user_pages_fast
609 * found it, but truncated or holepunched or subjected to
610 * invalidate_complete_page2 before we got the page lock (also
611 * cases which we are happy to fail). And we hold a reference,
612 * so refcount care in invalidate_complete_page's remove_mapping
613 * prevents drop_caches from setting mapping to NULL beneath us.
614 *
615 * The case we do have to guard against is when memory pressure made
616 * shmem_writepage move it from filecache to swapcache beneath us:
617 * an unlikely race, but we do need to retry for page->mapping.
618 */
619 if (unlikely(!mapping)) {
620 int shmem_swizzled;
621
622 /*
623 * Page lock is required to identify which special case above
624 * applies. If this is really a shmem page then the page lock
625 * will prevent unexpected transitions.
626 */
627 lock_page(page);
628 shmem_swizzled = PageSwapCache(page) || page->mapping;
629 unlock_page(page);
630 put_page(page);
631
632 if (shmem_swizzled)
633 goto again;
634
635 return -EFAULT;
636 }
637
638 /*
639 * Private mappings are handled in a simple way.
640 *
641 * If the futex key is stored on an anonymous page, then the associated
642 * object is the mm which is implicitly pinned by the calling process.
643 *
644 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
645 * it's a read-only handle, it's expected that futexes attach to
646 * the object not the particular process.
647 */
648 if (PageAnon(page)) {
649 /*
650 * A RO anonymous page will never change and thus doesn't make
651 * sense for futex operations.
652 */
653 if (unlikely(should_fail_futex(fshared)) || ro) {
654 err = -EFAULT;
655 goto out;
656 }
657
658 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
659 key->private.mm = mm;
660 key->private.address = address;
661
662 get_futex_key_refs(key); /* implies smp_mb(); (B) */
663
664 } else {
665 struct inode *inode;
666
667 /*
668 * The associated futex object in this case is the inode and
669 * the page->mapping must be traversed. Ordinarily this should
670 * be stabilised under page lock but it's not strictly
671 * necessary in this case as we just want to pin the inode, not
672 * update the radix tree or anything like that.
673 *
674 * The RCU read lock is taken as the inode is finally freed
675 * under RCU. If the mapping still matches expectations then the
676 * mapping->host can be safely accessed as being a valid inode.
677 */
678 rcu_read_lock();
679
680 if (READ_ONCE(page->mapping) != mapping) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 inode = READ_ONCE(mapping->host);
688 if (!inode) {
689 rcu_read_unlock();
690 put_page(page);
691
692 goto again;
693 }
694
695 /*
696 * Take a reference unless it is about to be freed. Previously
697 * this reference was taken by ihold under the page lock
698 * pinning the inode in place so i_lock was unnecessary. The
699 * only way for this check to fail is if the inode was
700 * truncated in parallel which is almost certainly an
701 * application bug. In such a case, just retry.
702 *
703 * We are not calling into get_futex_key_refs() in file-backed
704 * cases, therefore a successful atomic_inc return below will
705 * guarantee that get_futex_key() will still imply smp_mb(); (B).
706 */
707 if (!atomic_inc_not_zero(&inode->i_count)) {
708 rcu_read_unlock();
709 put_page(page);
710
711 goto again;
712 }
713
714 /* Should be impossible but lets be paranoid for now */
715 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
716 err = -EFAULT;
717 rcu_read_unlock();
718 iput(inode);
719
720 goto out;
721 }
722
723 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
724 key->shared.inode = inode;
725 key->shared.pgoff = basepage_index(tail);
726 rcu_read_unlock();
727 }
728
729 out:
730 put_page(page);
731 return err;
732 }
733
734 static inline void put_futex_key(union futex_key *key)
735 {
736 drop_futex_key_refs(key);
737 }
738
739 /**
740 * fault_in_user_writeable() - Fault in user address and verify RW access
741 * @uaddr: pointer to faulting user space address
742 *
743 * Slow path to fixup the fault we just took in the atomic write
744 * access to @uaddr.
745 *
746 * We have no generic implementation of a non-destructive write to the
747 * user address. We know that we faulted in the atomic pagefault
748 * disabled section so we can as well avoid the #PF overhead by
749 * calling get_user_pages() right away.
750 */
751 static int fault_in_user_writeable(u32 __user *uaddr)
752 {
753 struct mm_struct *mm = current->mm;
754 int ret;
755
756 down_read(&mm->mmap_sem);
757 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
758 FAULT_FLAG_WRITE, NULL);
759 up_read(&mm->mmap_sem);
760
761 return ret < 0 ? ret : 0;
762 }
763
764 /**
765 * futex_top_waiter() - Return the highest priority waiter on a futex
766 * @hb: the hash bucket the futex_q's reside in
767 * @key: the futex key (to distinguish it from other futex futex_q's)
768 *
769 * Must be called with the hb lock held.
770 */
771 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
772 union futex_key *key)
773 {
774 struct futex_q *this;
775
776 plist_for_each_entry(this, &hb->chain, list) {
777 if (match_futex(&this->key, key))
778 return this;
779 }
780 return NULL;
781 }
782
783 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
784 u32 uval, u32 newval)
785 {
786 int ret;
787
788 pagefault_disable();
789 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
790 pagefault_enable();
791
792 return ret;
793 }
794
795 static int get_futex_value_locked(u32 *dest, u32 __user *from)
796 {
797 int ret;
798
799 pagefault_disable();
800 ret = __get_user(*dest, from);
801 pagefault_enable();
802
803 return ret ? -EFAULT : 0;
804 }
805
806
807 /*
808 * PI code:
809 */
810 static int refill_pi_state_cache(void)
811 {
812 struct futex_pi_state *pi_state;
813
814 if (likely(current->pi_state_cache))
815 return 0;
816
817 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
818
819 if (!pi_state)
820 return -ENOMEM;
821
822 INIT_LIST_HEAD(&pi_state->list);
823 /* pi_mutex gets initialized later */
824 pi_state->owner = NULL;
825 refcount_set(&pi_state->refcount, 1);
826 pi_state->key = FUTEX_KEY_INIT;
827
828 current->pi_state_cache = pi_state;
829
830 return 0;
831 }
832
833 static struct futex_pi_state *alloc_pi_state(void)
834 {
835 struct futex_pi_state *pi_state = current->pi_state_cache;
836
837 WARN_ON(!pi_state);
838 current->pi_state_cache = NULL;
839
840 return pi_state;
841 }
842
843 static void get_pi_state(struct futex_pi_state *pi_state)
844 {
845 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
846 }
847
848 /*
849 * Drops a reference to the pi_state object and frees or caches it
850 * when the last reference is gone.
851 */
852 static void put_pi_state(struct futex_pi_state *pi_state)
853 {
854 if (!pi_state)
855 return;
856
857 if (!refcount_dec_and_test(&pi_state->refcount))
858 return;
859
860 /*
861 * If pi_state->owner is NULL, the owner is most probably dying
862 * and has cleaned up the pi_state already
863 */
864 if (pi_state->owner) {
865 struct task_struct *owner;
866
867 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
868 owner = pi_state->owner;
869 if (owner) {
870 raw_spin_lock(&owner->pi_lock);
871 list_del_init(&pi_state->list);
872 raw_spin_unlock(&owner->pi_lock);
873 }
874 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
875 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
876 }
877
878 if (current->pi_state_cache) {
879 kfree(pi_state);
880 } else {
881 /*
882 * pi_state->list is already empty.
883 * clear pi_state->owner.
884 * refcount is at 0 - put it back to 1.
885 */
886 pi_state->owner = NULL;
887 refcount_set(&pi_state->refcount, 1);
888 current->pi_state_cache = pi_state;
889 }
890 }
891
892 #ifdef CONFIG_FUTEX_PI
893
894 /*
895 * This task is holding PI mutexes at exit time => bad.
896 * Kernel cleans up PI-state, but userspace is likely hosed.
897 * (Robust-futex cleanup is separate and might save the day for userspace.)
898 */
899 static void exit_pi_state_list(struct task_struct *curr)
900 {
901 struct list_head *next, *head = &curr->pi_state_list;
902 struct futex_pi_state *pi_state;
903 struct futex_hash_bucket *hb;
904 union futex_key key = FUTEX_KEY_INIT;
905
906 if (!futex_cmpxchg_enabled)
907 return;
908 /*
909 * We are a ZOMBIE and nobody can enqueue itself on
910 * pi_state_list anymore, but we have to be careful
911 * versus waiters unqueueing themselves:
912 */
913 raw_spin_lock_irq(&curr->pi_lock);
914 while (!list_empty(head)) {
915 next = head->next;
916 pi_state = list_entry(next, struct futex_pi_state, list);
917 key = pi_state->key;
918 hb = hash_futex(&key);
919
920 /*
921 * We can race against put_pi_state() removing itself from the
922 * list (a waiter going away). put_pi_state() will first
923 * decrement the reference count and then modify the list, so
924 * its possible to see the list entry but fail this reference
925 * acquire.
926 *
927 * In that case; drop the locks to let put_pi_state() make
928 * progress and retry the loop.
929 */
930 if (!refcount_inc_not_zero(&pi_state->refcount)) {
931 raw_spin_unlock_irq(&curr->pi_lock);
932 cpu_relax();
933 raw_spin_lock_irq(&curr->pi_lock);
934 continue;
935 }
936 raw_spin_unlock_irq(&curr->pi_lock);
937
938 spin_lock(&hb->lock);
939 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
940 raw_spin_lock(&curr->pi_lock);
941 /*
942 * We dropped the pi-lock, so re-check whether this
943 * task still owns the PI-state:
944 */
945 if (head->next != next) {
946 /* retain curr->pi_lock for the loop invariant */
947 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
948 spin_unlock(&hb->lock);
949 put_pi_state(pi_state);
950 continue;
951 }
952
953 WARN_ON(pi_state->owner != curr);
954 WARN_ON(list_empty(&pi_state->list));
955 list_del_init(&pi_state->list);
956 pi_state->owner = NULL;
957
958 raw_spin_unlock(&curr->pi_lock);
959 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
960 spin_unlock(&hb->lock);
961
962 rt_mutex_futex_unlock(&pi_state->pi_mutex);
963 put_pi_state(pi_state);
964
965 raw_spin_lock_irq(&curr->pi_lock);
966 }
967 raw_spin_unlock_irq(&curr->pi_lock);
968 }
969 #else
970 static inline void exit_pi_state_list(struct task_struct *curr) { }
971 #endif
972
973 /*
974 * We need to check the following states:
975 *
976 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
977 *
978 * [1] NULL | --- | --- | 0 | 0/1 | Valid
979 * [2] NULL | --- | --- | >0 | 0/1 | Valid
980 *
981 * [3] Found | NULL | -- | Any | 0/1 | Invalid
982 *
983 * [4] Found | Found | NULL | 0 | 1 | Valid
984 * [5] Found | Found | NULL | >0 | 1 | Invalid
985 *
986 * [6] Found | Found | task | 0 | 1 | Valid
987 *
988 * [7] Found | Found | NULL | Any | 0 | Invalid
989 *
990 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
991 * [9] Found | Found | task | 0 | 0 | Invalid
992 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
993 *
994 * [1] Indicates that the kernel can acquire the futex atomically. We
995 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
996 *
997 * [2] Valid, if TID does not belong to a kernel thread. If no matching
998 * thread is found then it indicates that the owner TID has died.
999 *
1000 * [3] Invalid. The waiter is queued on a non PI futex
1001 *
1002 * [4] Valid state after exit_robust_list(), which sets the user space
1003 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004 *
1005 * [5] The user space value got manipulated between exit_robust_list()
1006 * and exit_pi_state_list()
1007 *
1008 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1009 * the pi_state but cannot access the user space value.
1010 *
1011 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012 *
1013 * [8] Owner and user space value match
1014 *
1015 * [9] There is no transient state which sets the user space TID to 0
1016 * except exit_robust_list(), but this is indicated by the
1017 * FUTEX_OWNER_DIED bit. See [4]
1018 *
1019 * [10] There is no transient state which leaves owner and user space
1020 * TID out of sync.
1021 *
1022 *
1023 * Serialization and lifetime rules:
1024 *
1025 * hb->lock:
1026 *
1027 * hb -> futex_q, relation
1028 * futex_q -> pi_state, relation
1029 *
1030 * (cannot be raw because hb can contain arbitrary amount
1031 * of futex_q's)
1032 *
1033 * pi_mutex->wait_lock:
1034 *
1035 * {uval, pi_state}
1036 *
1037 * (and pi_mutex 'obviously')
1038 *
1039 * p->pi_lock:
1040 *
1041 * p->pi_state_list -> pi_state->list, relation
1042 *
1043 * pi_state->refcount:
1044 *
1045 * pi_state lifetime
1046 *
1047 *
1048 * Lock order:
1049 *
1050 * hb->lock
1051 * pi_mutex->wait_lock
1052 * p->pi_lock
1053 *
1054 */
1055
1056 /*
1057 * Validate that the existing waiter has a pi_state and sanity check
1058 * the pi_state against the user space value. If correct, attach to
1059 * it.
1060 */
1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062 struct futex_pi_state *pi_state,
1063 struct futex_pi_state **ps)
1064 {
1065 pid_t pid = uval & FUTEX_TID_MASK;
1066 u32 uval2;
1067 int ret;
1068
1069 /*
1070 * Userspace might have messed up non-PI and PI futexes [3]
1071 */
1072 if (unlikely(!pi_state))
1073 return -EINVAL;
1074
1075 /*
1076 * We get here with hb->lock held, and having found a
1077 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079 * which in turn means that futex_lock_pi() still has a reference on
1080 * our pi_state.
1081 *
1082 * The waiter holding a reference on @pi_state also protects against
1083 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085 * free pi_state before we can take a reference ourselves.
1086 */
1087 WARN_ON(!refcount_read(&pi_state->refcount));
1088
1089 /*
1090 * Now that we have a pi_state, we can acquire wait_lock
1091 * and do the state validation.
1092 */
1093 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095 /*
1096 * Since {uval, pi_state} is serialized by wait_lock, and our current
1097 * uval was read without holding it, it can have changed. Verify it
1098 * still is what we expect it to be, otherwise retry the entire
1099 * operation.
1100 */
1101 if (get_futex_value_locked(&uval2, uaddr))
1102 goto out_efault;
1103
1104 if (uval != uval2)
1105 goto out_eagain;
1106
1107 /*
1108 * Handle the owner died case:
1109 */
1110 if (uval & FUTEX_OWNER_DIED) {
1111 /*
1112 * exit_pi_state_list sets owner to NULL and wakes the
1113 * topmost waiter. The task which acquires the
1114 * pi_state->rt_mutex will fixup owner.
1115 */
1116 if (!pi_state->owner) {
1117 /*
1118 * No pi state owner, but the user space TID
1119 * is not 0. Inconsistent state. [5]
1120 */
1121 if (pid)
1122 goto out_einval;
1123 /*
1124 * Take a ref on the state and return success. [4]
1125 */
1126 goto out_attach;
1127 }
1128
1129 /*
1130 * If TID is 0, then either the dying owner has not
1131 * yet executed exit_pi_state_list() or some waiter
1132 * acquired the rtmutex in the pi state, but did not
1133 * yet fixup the TID in user space.
1134 *
1135 * Take a ref on the state and return success. [6]
1136 */
1137 if (!pid)
1138 goto out_attach;
1139 } else {
1140 /*
1141 * If the owner died bit is not set, then the pi_state
1142 * must have an owner. [7]
1143 */
1144 if (!pi_state->owner)
1145 goto out_einval;
1146 }
1147
1148 /*
1149 * Bail out if user space manipulated the futex value. If pi
1150 * state exists then the owner TID must be the same as the
1151 * user space TID. [9/10]
1152 */
1153 if (pid != task_pid_vnr(pi_state->owner))
1154 goto out_einval;
1155
1156 out_attach:
1157 get_pi_state(pi_state);
1158 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159 *ps = pi_state;
1160 return 0;
1161
1162 out_einval:
1163 ret = -EINVAL;
1164 goto out_error;
1165
1166 out_eagain:
1167 ret = -EAGAIN;
1168 goto out_error;
1169
1170 out_efault:
1171 ret = -EFAULT;
1172 goto out_error;
1173
1174 out_error:
1175 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176 return ret;
1177 }
1178
1179 /**
1180 * wait_for_owner_exiting - Block until the owner has exited
1181 * @ret: owner's current futex lock status
1182 * @exiting: Pointer to the exiting task
1183 *
1184 * Caller must hold a refcount on @exiting.
1185 */
1186 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1187 {
1188 if (ret != -EBUSY) {
1189 WARN_ON_ONCE(exiting);
1190 return;
1191 }
1192
1193 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1194 return;
1195
1196 mutex_lock(&exiting->futex_exit_mutex);
1197 /*
1198 * No point in doing state checking here. If the waiter got here
1199 * while the task was in exec()->exec_futex_release() then it can
1200 * have any FUTEX_STATE_* value when the waiter has acquired the
1201 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1202 * already. Highly unlikely and not a problem. Just one more round
1203 * through the futex maze.
1204 */
1205 mutex_unlock(&exiting->futex_exit_mutex);
1206
1207 put_task_struct(exiting);
1208 }
1209
1210 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1211 struct task_struct *tsk)
1212 {
1213 u32 uval2;
1214
1215 /*
1216 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1217 * caller that the alleged owner is busy.
1218 */
1219 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1220 return -EBUSY;
1221
1222 /*
1223 * Reread the user space value to handle the following situation:
1224 *
1225 * CPU0 CPU1
1226 *
1227 * sys_exit() sys_futex()
1228 * do_exit() futex_lock_pi()
1229 * futex_lock_pi_atomic()
1230 * exit_signals(tsk) No waiters:
1231 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1232 * mm_release(tsk) Set waiter bit
1233 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1234 * Set owner died attach_to_pi_owner() {
1235 * *uaddr = 0xC0000000; tsk = get_task(PID);
1236 * } if (!tsk->flags & PF_EXITING) {
1237 * ... attach();
1238 * tsk->futex_state = } else {
1239 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1240 * FUTEX_STATE_DEAD)
1241 * return -EAGAIN;
1242 * return -ESRCH; <--- FAIL
1243 * }
1244 *
1245 * Returning ESRCH unconditionally is wrong here because the
1246 * user space value has been changed by the exiting task.
1247 *
1248 * The same logic applies to the case where the exiting task is
1249 * already gone.
1250 */
1251 if (get_futex_value_locked(&uval2, uaddr))
1252 return -EFAULT;
1253
1254 /* If the user space value has changed, try again. */
1255 if (uval2 != uval)
1256 return -EAGAIN;
1257
1258 /*
1259 * The exiting task did not have a robust list, the robust list was
1260 * corrupted or the user space value in *uaddr is simply bogus.
1261 * Give up and tell user space.
1262 */
1263 return -ESRCH;
1264 }
1265
1266 /*
1267 * Lookup the task for the TID provided from user space and attach to
1268 * it after doing proper sanity checks.
1269 */
1270 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1271 struct futex_pi_state **ps,
1272 struct task_struct **exiting)
1273 {
1274 pid_t pid = uval & FUTEX_TID_MASK;
1275 struct futex_pi_state *pi_state;
1276 struct task_struct *p;
1277
1278 /*
1279 * We are the first waiter - try to look up the real owner and attach
1280 * the new pi_state to it, but bail out when TID = 0 [1]
1281 *
1282 * The !pid check is paranoid. None of the call sites should end up
1283 * with pid == 0, but better safe than sorry. Let the caller retry
1284 */
1285 if (!pid)
1286 return -EAGAIN;
1287 p = find_get_task_by_vpid(pid);
1288 if (!p)
1289 return handle_exit_race(uaddr, uval, NULL);
1290
1291 if (unlikely(p->flags & PF_KTHREAD)) {
1292 put_task_struct(p);
1293 return -EPERM;
1294 }
1295
1296 /*
1297 * We need to look at the task state to figure out, whether the
1298 * task is exiting. To protect against the change of the task state
1299 * in futex_exit_release(), we do this protected by p->pi_lock:
1300 */
1301 raw_spin_lock_irq(&p->pi_lock);
1302 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1303 /*
1304 * The task is on the way out. When the futex state is
1305 * FUTEX_STATE_DEAD, we know that the task has finished
1306 * the cleanup:
1307 */
1308 int ret = handle_exit_race(uaddr, uval, p);
1309
1310 raw_spin_unlock_irq(&p->pi_lock);
1311 /*
1312 * If the owner task is between FUTEX_STATE_EXITING and
1313 * FUTEX_STATE_DEAD then store the task pointer and keep
1314 * the reference on the task struct. The calling code will
1315 * drop all locks, wait for the task to reach
1316 * FUTEX_STATE_DEAD and then drop the refcount. This is
1317 * required to prevent a live lock when the current task
1318 * preempted the exiting task between the two states.
1319 */
1320 if (ret == -EBUSY)
1321 *exiting = p;
1322 else
1323 put_task_struct(p);
1324 return ret;
1325 }
1326
1327 /*
1328 * No existing pi state. First waiter. [2]
1329 *
1330 * This creates pi_state, we have hb->lock held, this means nothing can
1331 * observe this state, wait_lock is irrelevant.
1332 */
1333 pi_state = alloc_pi_state();
1334
1335 /*
1336 * Initialize the pi_mutex in locked state and make @p
1337 * the owner of it:
1338 */
1339 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1340
1341 /* Store the key for possible exit cleanups: */
1342 pi_state->key = *key;
1343
1344 WARN_ON(!list_empty(&pi_state->list));
1345 list_add(&pi_state->list, &p->pi_state_list);
1346 /*
1347 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1348 * because there is no concurrency as the object is not published yet.
1349 */
1350 pi_state->owner = p;
1351 raw_spin_unlock_irq(&p->pi_lock);
1352
1353 put_task_struct(p);
1354
1355 *ps = pi_state;
1356
1357 return 0;
1358 }
1359
1360 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1361 struct futex_hash_bucket *hb,
1362 union futex_key *key, struct futex_pi_state **ps,
1363 struct task_struct **exiting)
1364 {
1365 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1366
1367 /*
1368 * If there is a waiter on that futex, validate it and
1369 * attach to the pi_state when the validation succeeds.
1370 */
1371 if (top_waiter)
1372 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1373
1374 /*
1375 * We are the first waiter - try to look up the owner based on
1376 * @uval and attach to it.
1377 */
1378 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1379 }
1380
1381 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1382 {
1383 int err;
1384 u32 uninitialized_var(curval);
1385
1386 if (unlikely(should_fail_futex(true)))
1387 return -EFAULT;
1388
1389 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1390 if (unlikely(err))
1391 return err;
1392
1393 /* If user space value changed, let the caller retry */
1394 return curval != uval ? -EAGAIN : 0;
1395 }
1396
1397 /**
1398 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1399 * @uaddr: the pi futex user address
1400 * @hb: the pi futex hash bucket
1401 * @key: the futex key associated with uaddr and hb
1402 * @ps: the pi_state pointer where we store the result of the
1403 * lookup
1404 * @task: the task to perform the atomic lock work for. This will
1405 * be "current" except in the case of requeue pi.
1406 * @exiting: Pointer to store the task pointer of the owner task
1407 * which is in the middle of exiting
1408 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1409 *
1410 * Return:
1411 * - 0 - ready to wait;
1412 * - 1 - acquired the lock;
1413 * - <0 - error
1414 *
1415 * The hb->lock and futex_key refs shall be held by the caller.
1416 *
1417 * @exiting is only set when the return value is -EBUSY. If so, this holds
1418 * a refcount on the exiting task on return and the caller needs to drop it
1419 * after waiting for the exit to complete.
1420 */
1421 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1422 union futex_key *key,
1423 struct futex_pi_state **ps,
1424 struct task_struct *task,
1425 struct task_struct **exiting,
1426 int set_waiters)
1427 {
1428 u32 uval, newval, vpid = task_pid_vnr(task);
1429 struct futex_q *top_waiter;
1430 int ret;
1431
1432 /*
1433 * Read the user space value first so we can validate a few
1434 * things before proceeding further.
1435 */
1436 if (get_futex_value_locked(&uval, uaddr))
1437 return -EFAULT;
1438
1439 if (unlikely(should_fail_futex(true)))
1440 return -EFAULT;
1441
1442 /*
1443 * Detect deadlocks.
1444 */
1445 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1446 return -EDEADLK;
1447
1448 if ((unlikely(should_fail_futex(true))))
1449 return -EDEADLK;
1450
1451 /*
1452 * Lookup existing state first. If it exists, try to attach to
1453 * its pi_state.
1454 */
1455 top_waiter = futex_top_waiter(hb, key);
1456 if (top_waiter)
1457 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1458
1459 /*
1460 * No waiter and user TID is 0. We are here because the
1461 * waiters or the owner died bit is set or called from
1462 * requeue_cmp_pi or for whatever reason something took the
1463 * syscall.
1464 */
1465 if (!(uval & FUTEX_TID_MASK)) {
1466 /*
1467 * We take over the futex. No other waiters and the user space
1468 * TID is 0. We preserve the owner died bit.
1469 */
1470 newval = uval & FUTEX_OWNER_DIED;
1471 newval |= vpid;
1472
1473 /* The futex requeue_pi code can enforce the waiters bit */
1474 if (set_waiters)
1475 newval |= FUTEX_WAITERS;
1476
1477 ret = lock_pi_update_atomic(uaddr, uval, newval);
1478 /* If the take over worked, return 1 */
1479 return ret < 0 ? ret : 1;
1480 }
1481
1482 /*
1483 * First waiter. Set the waiters bit before attaching ourself to
1484 * the owner. If owner tries to unlock, it will be forced into
1485 * the kernel and blocked on hb->lock.
1486 */
1487 newval = uval | FUTEX_WAITERS;
1488 ret = lock_pi_update_atomic(uaddr, uval, newval);
1489 if (ret)
1490 return ret;
1491 /*
1492 * If the update of the user space value succeeded, we try to
1493 * attach to the owner. If that fails, no harm done, we only
1494 * set the FUTEX_WAITERS bit in the user space variable.
1495 */
1496 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1497 }
1498
1499 /**
1500 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1501 * @q: The futex_q to unqueue
1502 *
1503 * The q->lock_ptr must not be NULL and must be held by the caller.
1504 */
1505 static void __unqueue_futex(struct futex_q *q)
1506 {
1507 struct futex_hash_bucket *hb;
1508
1509 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1510 return;
1511 lockdep_assert_held(q->lock_ptr);
1512
1513 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1514 plist_del(&q->list, &hb->chain);
1515 hb_waiters_dec(hb);
1516 }
1517
1518 /*
1519 * The hash bucket lock must be held when this is called.
1520 * Afterwards, the futex_q must not be accessed. Callers
1521 * must ensure to later call wake_up_q() for the actual
1522 * wakeups to occur.
1523 */
1524 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1525 {
1526 struct task_struct *p = q->task;
1527
1528 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1529 return;
1530
1531 get_task_struct(p);
1532 __unqueue_futex(q);
1533 /*
1534 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1535 * is written, without taking any locks. This is possible in the event
1536 * of a spurious wakeup, for example. A memory barrier is required here
1537 * to prevent the following store to lock_ptr from getting ahead of the
1538 * plist_del in __unqueue_futex().
1539 */
1540 smp_store_release(&q->lock_ptr, NULL);
1541
1542 /*
1543 * Queue the task for later wakeup for after we've released
1544 * the hb->lock.
1545 */
1546 wake_q_add_safe(wake_q, p);
1547 }
1548
1549 /*
1550 * Caller must hold a reference on @pi_state.
1551 */
1552 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1553 {
1554 u32 uninitialized_var(curval), newval;
1555 struct task_struct *new_owner;
1556 bool postunlock = false;
1557 DEFINE_WAKE_Q(wake_q);
1558 int ret = 0;
1559
1560 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1561 if (WARN_ON_ONCE(!new_owner)) {
1562 /*
1563 * As per the comment in futex_unlock_pi() this should not happen.
1564 *
1565 * When this happens, give up our locks and try again, giving
1566 * the futex_lock_pi() instance time to complete, either by
1567 * waiting on the rtmutex or removing itself from the futex
1568 * queue.
1569 */
1570 ret = -EAGAIN;
1571 goto out_unlock;
1572 }
1573
1574 /*
1575 * We pass it to the next owner. The WAITERS bit is always kept
1576 * enabled while there is PI state around. We cleanup the owner
1577 * died bit, because we are the owner.
1578 */
1579 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1580
1581 if (unlikely(should_fail_futex(true)))
1582 ret = -EFAULT;
1583
1584 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1585 if (!ret && (curval != uval)) {
1586 /*
1587 * If a unconditional UNLOCK_PI operation (user space did not
1588 * try the TID->0 transition) raced with a waiter setting the
1589 * FUTEX_WAITERS flag between get_user() and locking the hash
1590 * bucket lock, retry the operation.
1591 */
1592 if ((FUTEX_TID_MASK & curval) == uval)
1593 ret = -EAGAIN;
1594 else
1595 ret = -EINVAL;
1596 }
1597
1598 if (ret)
1599 goto out_unlock;
1600
1601 /*
1602 * This is a point of no return; once we modify the uval there is no
1603 * going back and subsequent operations must not fail.
1604 */
1605
1606 raw_spin_lock(&pi_state->owner->pi_lock);
1607 WARN_ON(list_empty(&pi_state->list));
1608 list_del_init(&pi_state->list);
1609 raw_spin_unlock(&pi_state->owner->pi_lock);
1610
1611 raw_spin_lock(&new_owner->pi_lock);
1612 WARN_ON(!list_empty(&pi_state->list));
1613 list_add(&pi_state->list, &new_owner->pi_state_list);
1614 pi_state->owner = new_owner;
1615 raw_spin_unlock(&new_owner->pi_lock);
1616
1617 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1618
1619 out_unlock:
1620 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1621
1622 if (postunlock)
1623 rt_mutex_postunlock(&wake_q);
1624
1625 return ret;
1626 }
1627
1628 /*
1629 * Express the locking dependencies for lockdep:
1630 */
1631 static inline void
1632 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1633 {
1634 if (hb1 <= hb2) {
1635 spin_lock(&hb1->lock);
1636 if (hb1 < hb2)
1637 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1638 } else { /* hb1 > hb2 */
1639 spin_lock(&hb2->lock);
1640 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1641 }
1642 }
1643
1644 static inline void
1645 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1646 {
1647 spin_unlock(&hb1->lock);
1648 if (hb1 != hb2)
1649 spin_unlock(&hb2->lock);
1650 }
1651
1652 /*
1653 * Wake up waiters matching bitset queued on this futex (uaddr).
1654 */
1655 static int
1656 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1657 {
1658 struct futex_hash_bucket *hb;
1659 struct futex_q *this, *next;
1660 union futex_key key = FUTEX_KEY_INIT;
1661 int ret;
1662 DEFINE_WAKE_Q(wake_q);
1663
1664 if (!bitset)
1665 return -EINVAL;
1666
1667 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1668 if (unlikely(ret != 0))
1669 goto out;
1670
1671 hb = hash_futex(&key);
1672
1673 /* Make sure we really have tasks to wakeup */
1674 if (!hb_waiters_pending(hb))
1675 goto out_put_key;
1676
1677 spin_lock(&hb->lock);
1678
1679 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1680 if (match_futex (&this->key, &key)) {
1681 if (this->pi_state || this->rt_waiter) {
1682 ret = -EINVAL;
1683 break;
1684 }
1685
1686 /* Check if one of the bits is set in both bitsets */
1687 if (!(this->bitset & bitset))
1688 continue;
1689
1690 mark_wake_futex(&wake_q, this);
1691 if (++ret >= nr_wake)
1692 break;
1693 }
1694 }
1695
1696 spin_unlock(&hb->lock);
1697 wake_up_q(&wake_q);
1698 out_put_key:
1699 put_futex_key(&key);
1700 out:
1701 return ret;
1702 }
1703
1704 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1705 {
1706 unsigned int op = (encoded_op & 0x70000000) >> 28;
1707 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1708 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1709 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1710 int oldval, ret;
1711
1712 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1713 if (oparg < 0 || oparg > 31) {
1714 char comm[sizeof(current->comm)];
1715 /*
1716 * kill this print and return -EINVAL when userspace
1717 * is sane again
1718 */
1719 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1720 get_task_comm(comm, current), oparg);
1721 oparg &= 31;
1722 }
1723 oparg = 1 << oparg;
1724 }
1725
1726 if (!access_ok(uaddr, sizeof(u32)))
1727 return -EFAULT;
1728
1729 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1730 if (ret)
1731 return ret;
1732
1733 switch (cmp) {
1734 case FUTEX_OP_CMP_EQ:
1735 return oldval == cmparg;
1736 case FUTEX_OP_CMP_NE:
1737 return oldval != cmparg;
1738 case FUTEX_OP_CMP_LT:
1739 return oldval < cmparg;
1740 case FUTEX_OP_CMP_GE:
1741 return oldval >= cmparg;
1742 case FUTEX_OP_CMP_LE:
1743 return oldval <= cmparg;
1744 case FUTEX_OP_CMP_GT:
1745 return oldval > cmparg;
1746 default:
1747 return -ENOSYS;
1748 }
1749 }
1750
1751 /*
1752 * Wake up all waiters hashed on the physical page that is mapped
1753 * to this virtual address:
1754 */
1755 static int
1756 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1757 int nr_wake, int nr_wake2, int op)
1758 {
1759 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1760 struct futex_hash_bucket *hb1, *hb2;
1761 struct futex_q *this, *next;
1762 int ret, op_ret;
1763 DEFINE_WAKE_Q(wake_q);
1764
1765 retry:
1766 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1767 if (unlikely(ret != 0))
1768 goto out;
1769 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1770 if (unlikely(ret != 0))
1771 goto out_put_key1;
1772
1773 hb1 = hash_futex(&key1);
1774 hb2 = hash_futex(&key2);
1775
1776 retry_private:
1777 double_lock_hb(hb1, hb2);
1778 op_ret = futex_atomic_op_inuser(op, uaddr2);
1779 if (unlikely(op_ret < 0)) {
1780 double_unlock_hb(hb1, hb2);
1781
1782 if (!IS_ENABLED(CONFIG_MMU) ||
1783 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1784 /*
1785 * we don't get EFAULT from MMU faults if we don't have
1786 * an MMU, but we might get them from range checking
1787 */
1788 ret = op_ret;
1789 goto out_put_keys;
1790 }
1791
1792 if (op_ret == -EFAULT) {
1793 ret = fault_in_user_writeable(uaddr2);
1794 if (ret)
1795 goto out_put_keys;
1796 }
1797
1798 if (!(flags & FLAGS_SHARED)) {
1799 cond_resched();
1800 goto retry_private;
1801 }
1802
1803 put_futex_key(&key2);
1804 put_futex_key(&key1);
1805 cond_resched();
1806 goto retry;
1807 }
1808
1809 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1810 if (match_futex (&this->key, &key1)) {
1811 if (this->pi_state || this->rt_waiter) {
1812 ret = -EINVAL;
1813 goto out_unlock;
1814 }
1815 mark_wake_futex(&wake_q, this);
1816 if (++ret >= nr_wake)
1817 break;
1818 }
1819 }
1820
1821 if (op_ret > 0) {
1822 op_ret = 0;
1823 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1824 if (match_futex (&this->key, &key2)) {
1825 if (this->pi_state || this->rt_waiter) {
1826 ret = -EINVAL;
1827 goto out_unlock;
1828 }
1829 mark_wake_futex(&wake_q, this);
1830 if (++op_ret >= nr_wake2)
1831 break;
1832 }
1833 }
1834 ret += op_ret;
1835 }
1836
1837 out_unlock:
1838 double_unlock_hb(hb1, hb2);
1839 wake_up_q(&wake_q);
1840 out_put_keys:
1841 put_futex_key(&key2);
1842 out_put_key1:
1843 put_futex_key(&key1);
1844 out:
1845 return ret;
1846 }
1847
1848 /**
1849 * requeue_futex() - Requeue a futex_q from one hb to another
1850 * @q: the futex_q to requeue
1851 * @hb1: the source hash_bucket
1852 * @hb2: the target hash_bucket
1853 * @key2: the new key for the requeued futex_q
1854 */
1855 static inline
1856 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1857 struct futex_hash_bucket *hb2, union futex_key *key2)
1858 {
1859
1860 /*
1861 * If key1 and key2 hash to the same bucket, no need to
1862 * requeue.
1863 */
1864 if (likely(&hb1->chain != &hb2->chain)) {
1865 plist_del(&q->list, &hb1->chain);
1866 hb_waiters_dec(hb1);
1867 hb_waiters_inc(hb2);
1868 plist_add(&q->list, &hb2->chain);
1869 q->lock_ptr = &hb2->lock;
1870 }
1871 get_futex_key_refs(key2);
1872 q->key = *key2;
1873 }
1874
1875 /**
1876 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1877 * @q: the futex_q
1878 * @key: the key of the requeue target futex
1879 * @hb: the hash_bucket of the requeue target futex
1880 *
1881 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1882 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1883 * to the requeue target futex so the waiter can detect the wakeup on the right
1884 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1885 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1886 * to protect access to the pi_state to fixup the owner later. Must be called
1887 * with both q->lock_ptr and hb->lock held.
1888 */
1889 static inline
1890 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1891 struct futex_hash_bucket *hb)
1892 {
1893 get_futex_key_refs(key);
1894 q->key = *key;
1895
1896 __unqueue_futex(q);
1897
1898 WARN_ON(!q->rt_waiter);
1899 q->rt_waiter = NULL;
1900
1901 q->lock_ptr = &hb->lock;
1902
1903 wake_up_state(q->task, TASK_NORMAL);
1904 }
1905
1906 /**
1907 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1908 * @pifutex: the user address of the to futex
1909 * @hb1: the from futex hash bucket, must be locked by the caller
1910 * @hb2: the to futex hash bucket, must be locked by the caller
1911 * @key1: the from futex key
1912 * @key2: the to futex key
1913 * @ps: address to store the pi_state pointer
1914 * @exiting: Pointer to store the task pointer of the owner task
1915 * which is in the middle of exiting
1916 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1917 *
1918 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1919 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1920 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1921 * hb1 and hb2 must be held by the caller.
1922 *
1923 * @exiting is only set when the return value is -EBUSY. If so, this holds
1924 * a refcount on the exiting task on return and the caller needs to drop it
1925 * after waiting for the exit to complete.
1926 *
1927 * Return:
1928 * - 0 - failed to acquire the lock atomically;
1929 * - >0 - acquired the lock, return value is vpid of the top_waiter
1930 * - <0 - error
1931 */
1932 static int
1933 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1934 struct futex_hash_bucket *hb2, union futex_key *key1,
1935 union futex_key *key2, struct futex_pi_state **ps,
1936 struct task_struct **exiting, int set_waiters)
1937 {
1938 struct futex_q *top_waiter = NULL;
1939 u32 curval;
1940 int ret, vpid;
1941
1942 if (get_futex_value_locked(&curval, pifutex))
1943 return -EFAULT;
1944
1945 if (unlikely(should_fail_futex(true)))
1946 return -EFAULT;
1947
1948 /*
1949 * Find the top_waiter and determine if there are additional waiters.
1950 * If the caller intends to requeue more than 1 waiter to pifutex,
1951 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1952 * as we have means to handle the possible fault. If not, don't set
1953 * the bit unecessarily as it will force the subsequent unlock to enter
1954 * the kernel.
1955 */
1956 top_waiter = futex_top_waiter(hb1, key1);
1957
1958 /* There are no waiters, nothing for us to do. */
1959 if (!top_waiter)
1960 return 0;
1961
1962 /* Ensure we requeue to the expected futex. */
1963 if (!match_futex(top_waiter->requeue_pi_key, key2))
1964 return -EINVAL;
1965
1966 /*
1967 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1968 * the contended case or if set_waiters is 1. The pi_state is returned
1969 * in ps in contended cases.
1970 */
1971 vpid = task_pid_vnr(top_waiter->task);
1972 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1973 exiting, set_waiters);
1974 if (ret == 1) {
1975 requeue_pi_wake_futex(top_waiter, key2, hb2);
1976 return vpid;
1977 }
1978 return ret;
1979 }
1980
1981 /**
1982 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1983 * @uaddr1: source futex user address
1984 * @flags: futex flags (FLAGS_SHARED, etc.)
1985 * @uaddr2: target futex user address
1986 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1987 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1988 * @cmpval: @uaddr1 expected value (or %NULL)
1989 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1990 * pi futex (pi to pi requeue is not supported)
1991 *
1992 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1993 * uaddr2 atomically on behalf of the top waiter.
1994 *
1995 * Return:
1996 * - >=0 - on success, the number of tasks requeued or woken;
1997 * - <0 - on error
1998 */
1999 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2000 u32 __user *uaddr2, int nr_wake, int nr_requeue,
2001 u32 *cmpval, int requeue_pi)
2002 {
2003 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2004 int drop_count = 0, task_count = 0, ret;
2005 struct futex_pi_state *pi_state = NULL;
2006 struct futex_hash_bucket *hb1, *hb2;
2007 struct futex_q *this, *next;
2008 DEFINE_WAKE_Q(wake_q);
2009
2010 if (nr_wake < 0 || nr_requeue < 0)
2011 return -EINVAL;
2012
2013 /*
2014 * When PI not supported: return -ENOSYS if requeue_pi is true,
2015 * consequently the compiler knows requeue_pi is always false past
2016 * this point which will optimize away all the conditional code
2017 * further down.
2018 */
2019 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2020 return -ENOSYS;
2021
2022 if (requeue_pi) {
2023 /*
2024 * Requeue PI only works on two distinct uaddrs. This
2025 * check is only valid for private futexes. See below.
2026 */
2027 if (uaddr1 == uaddr2)
2028 return -EINVAL;
2029
2030 /*
2031 * requeue_pi requires a pi_state, try to allocate it now
2032 * without any locks in case it fails.
2033 */
2034 if (refill_pi_state_cache())
2035 return -ENOMEM;
2036 /*
2037 * requeue_pi must wake as many tasks as it can, up to nr_wake
2038 * + nr_requeue, since it acquires the rt_mutex prior to
2039 * returning to userspace, so as to not leave the rt_mutex with
2040 * waiters and no owner. However, second and third wake-ups
2041 * cannot be predicted as they involve race conditions with the
2042 * first wake and a fault while looking up the pi_state. Both
2043 * pthread_cond_signal() and pthread_cond_broadcast() should
2044 * use nr_wake=1.
2045 */
2046 if (nr_wake != 1)
2047 return -EINVAL;
2048 }
2049
2050 retry:
2051 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2052 if (unlikely(ret != 0))
2053 goto out;
2054 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2055 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2056 if (unlikely(ret != 0))
2057 goto out_put_key1;
2058
2059 /*
2060 * The check above which compares uaddrs is not sufficient for
2061 * shared futexes. We need to compare the keys:
2062 */
2063 if (requeue_pi && match_futex(&key1, &key2)) {
2064 ret = -EINVAL;
2065 goto out_put_keys;
2066 }
2067
2068 hb1 = hash_futex(&key1);
2069 hb2 = hash_futex(&key2);
2070
2071 retry_private:
2072 hb_waiters_inc(hb2);
2073 double_lock_hb(hb1, hb2);
2074
2075 if (likely(cmpval != NULL)) {
2076 u32 curval;
2077
2078 ret = get_futex_value_locked(&curval, uaddr1);
2079
2080 if (unlikely(ret)) {
2081 double_unlock_hb(hb1, hb2);
2082 hb_waiters_dec(hb2);
2083
2084 ret = get_user(curval, uaddr1);
2085 if (ret)
2086 goto out_put_keys;
2087
2088 if (!(flags & FLAGS_SHARED))
2089 goto retry_private;
2090
2091 put_futex_key(&key2);
2092 put_futex_key(&key1);
2093 goto retry;
2094 }
2095 if (curval != *cmpval) {
2096 ret = -EAGAIN;
2097 goto out_unlock;
2098 }
2099 }
2100
2101 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2102 struct task_struct *exiting = NULL;
2103
2104 /*
2105 * Attempt to acquire uaddr2 and wake the top waiter. If we
2106 * intend to requeue waiters, force setting the FUTEX_WAITERS
2107 * bit. We force this here where we are able to easily handle
2108 * faults rather in the requeue loop below.
2109 */
2110 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2111 &key2, &pi_state,
2112 &exiting, nr_requeue);
2113
2114 /*
2115 * At this point the top_waiter has either taken uaddr2 or is
2116 * waiting on it. If the former, then the pi_state will not
2117 * exist yet, look it up one more time to ensure we have a
2118 * reference to it. If the lock was taken, ret contains the
2119 * vpid of the top waiter task.
2120 * If the lock was not taken, we have pi_state and an initial
2121 * refcount on it. In case of an error we have nothing.
2122 */
2123 if (ret > 0) {
2124 WARN_ON(pi_state);
2125 drop_count++;
2126 task_count++;
2127 /*
2128 * If we acquired the lock, then the user space value
2129 * of uaddr2 should be vpid. It cannot be changed by
2130 * the top waiter as it is blocked on hb2 lock if it
2131 * tries to do so. If something fiddled with it behind
2132 * our back the pi state lookup might unearth it. So
2133 * we rather use the known value than rereading and
2134 * handing potential crap to lookup_pi_state.
2135 *
2136 * If that call succeeds then we have pi_state and an
2137 * initial refcount on it.
2138 */
2139 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2140 &pi_state, &exiting);
2141 }
2142
2143 switch (ret) {
2144 case 0:
2145 /* We hold a reference on the pi state. */
2146 break;
2147
2148 /* If the above failed, then pi_state is NULL */
2149 case -EFAULT:
2150 double_unlock_hb(hb1, hb2);
2151 hb_waiters_dec(hb2);
2152 put_futex_key(&key2);
2153 put_futex_key(&key1);
2154 ret = fault_in_user_writeable(uaddr2);
2155 if (!ret)
2156 goto retry;
2157 goto out;
2158 case -EBUSY:
2159 case -EAGAIN:
2160 /*
2161 * Two reasons for this:
2162 * - EBUSY: Owner is exiting and we just wait for the
2163 * exit to complete.
2164 * - EAGAIN: The user space value changed.
2165 */
2166 double_unlock_hb(hb1, hb2);
2167 hb_waiters_dec(hb2);
2168 put_futex_key(&key2);
2169 put_futex_key(&key1);
2170 /*
2171 * Handle the case where the owner is in the middle of
2172 * exiting. Wait for the exit to complete otherwise
2173 * this task might loop forever, aka. live lock.
2174 */
2175 wait_for_owner_exiting(ret, exiting);
2176 cond_resched();
2177 goto retry;
2178 default:
2179 goto out_unlock;
2180 }
2181 }
2182
2183 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2184 if (task_count - nr_wake >= nr_requeue)
2185 break;
2186
2187 if (!match_futex(&this->key, &key1))
2188 continue;
2189
2190 /*
2191 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2192 * be paired with each other and no other futex ops.
2193 *
2194 * We should never be requeueing a futex_q with a pi_state,
2195 * which is awaiting a futex_unlock_pi().
2196 */
2197 if ((requeue_pi && !this->rt_waiter) ||
2198 (!requeue_pi && this->rt_waiter) ||
2199 this->pi_state) {
2200 ret = -EINVAL;
2201 break;
2202 }
2203
2204 /*
2205 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2206 * lock, we already woke the top_waiter. If not, it will be
2207 * woken by futex_unlock_pi().
2208 */
2209 if (++task_count <= nr_wake && !requeue_pi) {
2210 mark_wake_futex(&wake_q, this);
2211 continue;
2212 }
2213
2214 /* Ensure we requeue to the expected futex for requeue_pi. */
2215 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2216 ret = -EINVAL;
2217 break;
2218 }
2219
2220 /*
2221 * Requeue nr_requeue waiters and possibly one more in the case
2222 * of requeue_pi if we couldn't acquire the lock atomically.
2223 */
2224 if (requeue_pi) {
2225 /*
2226 * Prepare the waiter to take the rt_mutex. Take a
2227 * refcount on the pi_state and store the pointer in
2228 * the futex_q object of the waiter.
2229 */
2230 get_pi_state(pi_state);
2231 this->pi_state = pi_state;
2232 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2233 this->rt_waiter,
2234 this->task);
2235 if (ret == 1) {
2236 /*
2237 * We got the lock. We do neither drop the
2238 * refcount on pi_state nor clear
2239 * this->pi_state because the waiter needs the
2240 * pi_state for cleaning up the user space
2241 * value. It will drop the refcount after
2242 * doing so.
2243 */
2244 requeue_pi_wake_futex(this, &key2, hb2);
2245 drop_count++;
2246 continue;
2247 } else if (ret) {
2248 /*
2249 * rt_mutex_start_proxy_lock() detected a
2250 * potential deadlock when we tried to queue
2251 * that waiter. Drop the pi_state reference
2252 * which we took above and remove the pointer
2253 * to the state from the waiters futex_q
2254 * object.
2255 */
2256 this->pi_state = NULL;
2257 put_pi_state(pi_state);
2258 /*
2259 * We stop queueing more waiters and let user
2260 * space deal with the mess.
2261 */
2262 break;
2263 }
2264 }
2265 requeue_futex(this, hb1, hb2, &key2);
2266 drop_count++;
2267 }
2268
2269 /*
2270 * We took an extra initial reference to the pi_state either
2271 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2272 * need to drop it here again.
2273 */
2274 put_pi_state(pi_state);
2275
2276 out_unlock:
2277 double_unlock_hb(hb1, hb2);
2278 wake_up_q(&wake_q);
2279 hb_waiters_dec(hb2);
2280
2281 /*
2282 * drop_futex_key_refs() must be called outside the spinlocks. During
2283 * the requeue we moved futex_q's from the hash bucket at key1 to the
2284 * one at key2 and updated their key pointer. We no longer need to
2285 * hold the references to key1.
2286 */
2287 while (--drop_count >= 0)
2288 drop_futex_key_refs(&key1);
2289
2290 out_put_keys:
2291 put_futex_key(&key2);
2292 out_put_key1:
2293 put_futex_key(&key1);
2294 out:
2295 return ret ? ret : task_count;
2296 }
2297
2298 /* The key must be already stored in q->key. */
2299 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2300 __acquires(&hb->lock)
2301 {
2302 struct futex_hash_bucket *hb;
2303
2304 hb = hash_futex(&q->key);
2305
2306 /*
2307 * Increment the counter before taking the lock so that
2308 * a potential waker won't miss a to-be-slept task that is
2309 * waiting for the spinlock. This is safe as all queue_lock()
2310 * users end up calling queue_me(). Similarly, for housekeeping,
2311 * decrement the counter at queue_unlock() when some error has
2312 * occurred and we don't end up adding the task to the list.
2313 */
2314 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2315
2316 q->lock_ptr = &hb->lock;
2317
2318 spin_lock(&hb->lock);
2319 return hb;
2320 }
2321
2322 static inline void
2323 queue_unlock(struct futex_hash_bucket *hb)
2324 __releases(&hb->lock)
2325 {
2326 spin_unlock(&hb->lock);
2327 hb_waiters_dec(hb);
2328 }
2329
2330 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2331 {
2332 int prio;
2333
2334 /*
2335 * The priority used to register this element is
2336 * - either the real thread-priority for the real-time threads
2337 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2338 * - or MAX_RT_PRIO for non-RT threads.
2339 * Thus, all RT-threads are woken first in priority order, and
2340 * the others are woken last, in FIFO order.
2341 */
2342 prio = min(current->normal_prio, MAX_RT_PRIO);
2343
2344 plist_node_init(&q->list, prio);
2345 plist_add(&q->list, &hb->chain);
2346 q->task = current;
2347 }
2348
2349 /**
2350 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2351 * @q: The futex_q to enqueue
2352 * @hb: The destination hash bucket
2353 *
2354 * The hb->lock must be held by the caller, and is released here. A call to
2355 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2356 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2357 * or nothing if the unqueue is done as part of the wake process and the unqueue
2358 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2359 * an example).
2360 */
2361 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2362 __releases(&hb->lock)
2363 {
2364 __queue_me(q, hb);
2365 spin_unlock(&hb->lock);
2366 }
2367
2368 /**
2369 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2370 * @q: The futex_q to unqueue
2371 *
2372 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2373 * be paired with exactly one earlier call to queue_me().
2374 *
2375 * Return:
2376 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2377 * - 0 - if the futex_q was already removed by the waking thread
2378 */
2379 static int unqueue_me(struct futex_q *q)
2380 {
2381 spinlock_t *lock_ptr;
2382 int ret = 0;
2383
2384 /* In the common case we don't take the spinlock, which is nice. */
2385 retry:
2386 /*
2387 * q->lock_ptr can change between this read and the following spin_lock.
2388 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2389 * optimizing lock_ptr out of the logic below.
2390 */
2391 lock_ptr = READ_ONCE(q->lock_ptr);
2392 if (lock_ptr != NULL) {
2393 spin_lock(lock_ptr);
2394 /*
2395 * q->lock_ptr can change between reading it and
2396 * spin_lock(), causing us to take the wrong lock. This
2397 * corrects the race condition.
2398 *
2399 * Reasoning goes like this: if we have the wrong lock,
2400 * q->lock_ptr must have changed (maybe several times)
2401 * between reading it and the spin_lock(). It can
2402 * change again after the spin_lock() but only if it was
2403 * already changed before the spin_lock(). It cannot,
2404 * however, change back to the original value. Therefore
2405 * we can detect whether we acquired the correct lock.
2406 */
2407 if (unlikely(lock_ptr != q->lock_ptr)) {
2408 spin_unlock(lock_ptr);
2409 goto retry;
2410 }
2411 __unqueue_futex(q);
2412
2413 BUG_ON(q->pi_state);
2414
2415 spin_unlock(lock_ptr);
2416 ret = 1;
2417 }
2418
2419 drop_futex_key_refs(&q->key);
2420 return ret;
2421 }
2422
2423 /*
2424 * PI futexes can not be requeued and must remove themself from the
2425 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2426 * and dropped here.
2427 */
2428 static void unqueue_me_pi(struct futex_q *q)
2429 __releases(q->lock_ptr)
2430 {
2431 __unqueue_futex(q);
2432
2433 BUG_ON(!q->pi_state);
2434 put_pi_state(q->pi_state);
2435 q->pi_state = NULL;
2436
2437 spin_unlock(q->lock_ptr);
2438 }
2439
2440 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2441 struct task_struct *argowner)
2442 {
2443 struct futex_pi_state *pi_state = q->pi_state;
2444 u32 uval, uninitialized_var(curval), newval;
2445 struct task_struct *oldowner, *newowner;
2446 u32 newtid;
2447 int ret, err = 0;
2448
2449 lockdep_assert_held(q->lock_ptr);
2450
2451 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2452
2453 oldowner = pi_state->owner;
2454
2455 /*
2456 * We are here because either:
2457 *
2458 * - we stole the lock and pi_state->owner needs updating to reflect
2459 * that (@argowner == current),
2460 *
2461 * or:
2462 *
2463 * - someone stole our lock and we need to fix things to point to the
2464 * new owner (@argowner == NULL).
2465 *
2466 * Either way, we have to replace the TID in the user space variable.
2467 * This must be atomic as we have to preserve the owner died bit here.
2468 *
2469 * Note: We write the user space value _before_ changing the pi_state
2470 * because we can fault here. Imagine swapped out pages or a fork
2471 * that marked all the anonymous memory readonly for cow.
2472 *
2473 * Modifying pi_state _before_ the user space value would leave the
2474 * pi_state in an inconsistent state when we fault here, because we
2475 * need to drop the locks to handle the fault. This might be observed
2476 * in the PID check in lookup_pi_state.
2477 */
2478 retry:
2479 if (!argowner) {
2480 if (oldowner != current) {
2481 /*
2482 * We raced against a concurrent self; things are
2483 * already fixed up. Nothing to do.
2484 */
2485 ret = 0;
2486 goto out_unlock;
2487 }
2488
2489 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2490 /* We got the lock after all, nothing to fix. */
2491 ret = 0;
2492 goto out_unlock;
2493 }
2494
2495 /*
2496 * Since we just failed the trylock; there must be an owner.
2497 */
2498 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2499 BUG_ON(!newowner);
2500 } else {
2501 WARN_ON_ONCE(argowner != current);
2502 if (oldowner == current) {
2503 /*
2504 * We raced against a concurrent self; things are
2505 * already fixed up. Nothing to do.
2506 */
2507 ret = 0;
2508 goto out_unlock;
2509 }
2510 newowner = argowner;
2511 }
2512
2513 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2514 /* Owner died? */
2515 if (!pi_state->owner)
2516 newtid |= FUTEX_OWNER_DIED;
2517
2518 err = get_futex_value_locked(&uval, uaddr);
2519 if (err)
2520 goto handle_err;
2521
2522 for (;;) {
2523 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2524
2525 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2526 if (err)
2527 goto handle_err;
2528
2529 if (curval == uval)
2530 break;
2531 uval = curval;
2532 }
2533
2534 /*
2535 * We fixed up user space. Now we need to fix the pi_state
2536 * itself.
2537 */
2538 if (pi_state->owner != NULL) {
2539 raw_spin_lock(&pi_state->owner->pi_lock);
2540 WARN_ON(list_empty(&pi_state->list));
2541 list_del_init(&pi_state->list);
2542 raw_spin_unlock(&pi_state->owner->pi_lock);
2543 }
2544
2545 pi_state->owner = newowner;
2546
2547 raw_spin_lock(&newowner->pi_lock);
2548 WARN_ON(!list_empty(&pi_state->list));
2549 list_add(&pi_state->list, &newowner->pi_state_list);
2550 raw_spin_unlock(&newowner->pi_lock);
2551 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2552
2553 return 0;
2554
2555 /*
2556 * In order to reschedule or handle a page fault, we need to drop the
2557 * locks here. In the case of a fault, this gives the other task
2558 * (either the highest priority waiter itself or the task which stole
2559 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2560 * are back from handling the fault we need to check the pi_state after
2561 * reacquiring the locks and before trying to do another fixup. When
2562 * the fixup has been done already we simply return.
2563 *
2564 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2565 * drop hb->lock since the caller owns the hb -> futex_q relation.
2566 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2567 */
2568 handle_err:
2569 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2570 spin_unlock(q->lock_ptr);
2571
2572 switch (err) {
2573 case -EFAULT:
2574 ret = fault_in_user_writeable(uaddr);
2575 break;
2576
2577 case -EAGAIN:
2578 cond_resched();
2579 ret = 0;
2580 break;
2581
2582 default:
2583 WARN_ON_ONCE(1);
2584 ret = err;
2585 break;
2586 }
2587
2588 spin_lock(q->lock_ptr);
2589 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2590
2591 /*
2592 * Check if someone else fixed it for us:
2593 */
2594 if (pi_state->owner != oldowner) {
2595 ret = 0;
2596 goto out_unlock;
2597 }
2598
2599 if (ret)
2600 goto out_unlock;
2601
2602 goto retry;
2603
2604 out_unlock:
2605 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2606 return ret;
2607 }
2608
2609 static long futex_wait_restart(struct restart_block *restart);
2610
2611 /**
2612 * fixup_owner() - Post lock pi_state and corner case management
2613 * @uaddr: user address of the futex
2614 * @q: futex_q (contains pi_state and access to the rt_mutex)
2615 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2616 *
2617 * After attempting to lock an rt_mutex, this function is called to cleanup
2618 * the pi_state owner as well as handle race conditions that may allow us to
2619 * acquire the lock. Must be called with the hb lock held.
2620 *
2621 * Return:
2622 * - 1 - success, lock taken;
2623 * - 0 - success, lock not taken;
2624 * - <0 - on error (-EFAULT)
2625 */
2626 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2627 {
2628 int ret = 0;
2629
2630 if (locked) {
2631 /*
2632 * Got the lock. We might not be the anticipated owner if we
2633 * did a lock-steal - fix up the PI-state in that case:
2634 *
2635 * Speculative pi_state->owner read (we don't hold wait_lock);
2636 * since we own the lock pi_state->owner == current is the
2637 * stable state, anything else needs more attention.
2638 */
2639 if (q->pi_state->owner != current)
2640 ret = fixup_pi_state_owner(uaddr, q, current);
2641 goto out;
2642 }
2643
2644 /*
2645 * If we didn't get the lock; check if anybody stole it from us. In
2646 * that case, we need to fix up the uval to point to them instead of
2647 * us, otherwise bad things happen. [10]
2648 *
2649 * Another speculative read; pi_state->owner == current is unstable
2650 * but needs our attention.
2651 */
2652 if (q->pi_state->owner == current) {
2653 ret = fixup_pi_state_owner(uaddr, q, NULL);
2654 goto out;
2655 }
2656
2657 /*
2658 * Paranoia check. If we did not take the lock, then we should not be
2659 * the owner of the rt_mutex.
2660 */
2661 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2662 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2663 "pi-state %p\n", ret,
2664 q->pi_state->pi_mutex.owner,
2665 q->pi_state->owner);
2666 }
2667
2668 out:
2669 return ret ? ret : locked;
2670 }
2671
2672 /**
2673 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2674 * @hb: the futex hash bucket, must be locked by the caller
2675 * @q: the futex_q to queue up on
2676 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2677 */
2678 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2679 struct hrtimer_sleeper *timeout)
2680 {
2681 /*
2682 * The task state is guaranteed to be set before another task can
2683 * wake it. set_current_state() is implemented using smp_store_mb() and
2684 * queue_me() calls spin_unlock() upon completion, both serializing
2685 * access to the hash list and forcing another memory barrier.
2686 */
2687 set_current_state(TASK_INTERRUPTIBLE);
2688 queue_me(q, hb);
2689
2690 /* Arm the timer */
2691 if (timeout)
2692 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2693
2694 /*
2695 * If we have been removed from the hash list, then another task
2696 * has tried to wake us, and we can skip the call to schedule().
2697 */
2698 if (likely(!plist_node_empty(&q->list))) {
2699 /*
2700 * If the timer has already expired, current will already be
2701 * flagged for rescheduling. Only call schedule if there
2702 * is no timeout, or if it has yet to expire.
2703 */
2704 if (!timeout || timeout->task)
2705 freezable_schedule();
2706 }
2707 __set_current_state(TASK_RUNNING);
2708 }
2709
2710 /**
2711 * futex_wait_setup() - Prepare to wait on a futex
2712 * @uaddr: the futex userspace address
2713 * @val: the expected value
2714 * @flags: futex flags (FLAGS_SHARED, etc.)
2715 * @q: the associated futex_q
2716 * @hb: storage for hash_bucket pointer to be returned to caller
2717 *
2718 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2719 * compare it with the expected value. Handle atomic faults internally.
2720 * Return with the hb lock held and a q.key reference on success, and unlocked
2721 * with no q.key reference on failure.
2722 *
2723 * Return:
2724 * - 0 - uaddr contains val and hb has been locked;
2725 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2726 */
2727 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2728 struct futex_q *q, struct futex_hash_bucket **hb)
2729 {
2730 u32 uval;
2731 int ret;
2732
2733 /*
2734 * Access the page AFTER the hash-bucket is locked.
2735 * Order is important:
2736 *
2737 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2738 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2739 *
2740 * The basic logical guarantee of a futex is that it blocks ONLY
2741 * if cond(var) is known to be true at the time of blocking, for
2742 * any cond. If we locked the hash-bucket after testing *uaddr, that
2743 * would open a race condition where we could block indefinitely with
2744 * cond(var) false, which would violate the guarantee.
2745 *
2746 * On the other hand, we insert q and release the hash-bucket only
2747 * after testing *uaddr. This guarantees that futex_wait() will NOT
2748 * absorb a wakeup if *uaddr does not match the desired values
2749 * while the syscall executes.
2750 */
2751 retry:
2752 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2753 if (unlikely(ret != 0))
2754 return ret;
2755
2756 retry_private:
2757 *hb = queue_lock(q);
2758
2759 ret = get_futex_value_locked(&uval, uaddr);
2760
2761 if (ret) {
2762 queue_unlock(*hb);
2763
2764 ret = get_user(uval, uaddr);
2765 if (ret)
2766 goto out;
2767
2768 if (!(flags & FLAGS_SHARED))
2769 goto retry_private;
2770
2771 put_futex_key(&q->key);
2772 goto retry;
2773 }
2774
2775 if (uval != val) {
2776 queue_unlock(*hb);
2777 ret = -EWOULDBLOCK;
2778 }
2779
2780 out:
2781 if (ret)
2782 put_futex_key(&q->key);
2783 return ret;
2784 }
2785
2786 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2787 ktime_t *abs_time, u32 bitset)
2788 {
2789 struct hrtimer_sleeper timeout, *to;
2790 struct restart_block *restart;
2791 struct futex_hash_bucket *hb;
2792 struct futex_q q = futex_q_init;
2793 int ret;
2794
2795 if (!bitset)
2796 return -EINVAL;
2797 q.bitset = bitset;
2798
2799 to = futex_setup_timer(abs_time, &timeout, flags,
2800 current->timer_slack_ns);
2801 retry:
2802 /*
2803 * Prepare to wait on uaddr. On success, holds hb lock and increments
2804 * q.key refs.
2805 */
2806 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2807 if (ret)
2808 goto out;
2809
2810 /* queue_me and wait for wakeup, timeout, or a signal. */
2811 futex_wait_queue_me(hb, &q, to);
2812
2813 /* If we were woken (and unqueued), we succeeded, whatever. */
2814 ret = 0;
2815 /* unqueue_me() drops q.key ref */
2816 if (!unqueue_me(&q))
2817 goto out;
2818 ret = -ETIMEDOUT;
2819 if (to && !to->task)
2820 goto out;
2821
2822 /*
2823 * We expect signal_pending(current), but we might be the
2824 * victim of a spurious wakeup as well.
2825 */
2826 if (!signal_pending(current))
2827 goto retry;
2828
2829 ret = -ERESTARTSYS;
2830 if (!abs_time)
2831 goto out;
2832
2833 restart = &current->restart_block;
2834 restart->fn = futex_wait_restart;
2835 restart->futex.uaddr = uaddr;
2836 restart->futex.val = val;
2837 restart->futex.time = *abs_time;
2838 restart->futex.bitset = bitset;
2839 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2840
2841 ret = -ERESTART_RESTARTBLOCK;
2842
2843 out:
2844 if (to) {
2845 hrtimer_cancel(&to->timer);
2846 destroy_hrtimer_on_stack(&to->timer);
2847 }
2848 return ret;
2849 }
2850
2851
2852 static long futex_wait_restart(struct restart_block *restart)
2853 {
2854 u32 __user *uaddr = restart->futex.uaddr;
2855 ktime_t t, *tp = NULL;
2856
2857 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2858 t = restart->futex.time;
2859 tp = &t;
2860 }
2861 restart->fn = do_no_restart_syscall;
2862
2863 return (long)futex_wait(uaddr, restart->futex.flags,
2864 restart->futex.val, tp, restart->futex.bitset);
2865 }
2866
2867
2868 /*
2869 * Userspace tried a 0 -> TID atomic transition of the futex value
2870 * and failed. The kernel side here does the whole locking operation:
2871 * if there are waiters then it will block as a consequence of relying
2872 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2873 * a 0 value of the futex too.).
2874 *
2875 * Also serves as futex trylock_pi()'ing, and due semantics.
2876 */
2877 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2878 ktime_t *time, int trylock)
2879 {
2880 struct hrtimer_sleeper timeout, *to;
2881 struct futex_pi_state *pi_state = NULL;
2882 struct task_struct *exiting = NULL;
2883 struct rt_mutex_waiter rt_waiter;
2884 struct futex_hash_bucket *hb;
2885 struct futex_q q = futex_q_init;
2886 int res, ret;
2887
2888 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2889 return -ENOSYS;
2890
2891 if (refill_pi_state_cache())
2892 return -ENOMEM;
2893
2894 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2895
2896 retry:
2897 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2898 if (unlikely(ret != 0))
2899 goto out;
2900
2901 retry_private:
2902 hb = queue_lock(&q);
2903
2904 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2905 &exiting, 0);
2906 if (unlikely(ret)) {
2907 /*
2908 * Atomic work succeeded and we got the lock,
2909 * or failed. Either way, we do _not_ block.
2910 */
2911 switch (ret) {
2912 case 1:
2913 /* We got the lock. */
2914 ret = 0;
2915 goto out_unlock_put_key;
2916 case -EFAULT:
2917 goto uaddr_faulted;
2918 case -EBUSY:
2919 case -EAGAIN:
2920 /*
2921 * Two reasons for this:
2922 * - EBUSY: Task is exiting and we just wait for the
2923 * exit to complete.
2924 * - EAGAIN: The user space value changed.
2925 */
2926 queue_unlock(hb);
2927 put_futex_key(&q.key);
2928 /*
2929 * Handle the case where the owner is in the middle of
2930 * exiting. Wait for the exit to complete otherwise
2931 * this task might loop forever, aka. live lock.
2932 */
2933 wait_for_owner_exiting(ret, exiting);
2934 cond_resched();
2935 goto retry;
2936 default:
2937 goto out_unlock_put_key;
2938 }
2939 }
2940
2941 WARN_ON(!q.pi_state);
2942
2943 /*
2944 * Only actually queue now that the atomic ops are done:
2945 */
2946 __queue_me(&q, hb);
2947
2948 if (trylock) {
2949 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2950 /* Fixup the trylock return value: */
2951 ret = ret ? 0 : -EWOULDBLOCK;
2952 goto no_block;
2953 }
2954
2955 rt_mutex_init_waiter(&rt_waiter);
2956
2957 /*
2958 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2959 * hold it while doing rt_mutex_start_proxy(), because then it will
2960 * include hb->lock in the blocking chain, even through we'll not in
2961 * fact hold it while blocking. This will lead it to report -EDEADLK
2962 * and BUG when futex_unlock_pi() interleaves with this.
2963 *
2964 * Therefore acquire wait_lock while holding hb->lock, but drop the
2965 * latter before calling __rt_mutex_start_proxy_lock(). This
2966 * interleaves with futex_unlock_pi() -- which does a similar lock
2967 * handoff -- such that the latter can observe the futex_q::pi_state
2968 * before __rt_mutex_start_proxy_lock() is done.
2969 */
2970 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2971 spin_unlock(q.lock_ptr);
2972 /*
2973 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2974 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2975 * it sees the futex_q::pi_state.
2976 */
2977 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2978 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2979
2980 if (ret) {
2981 if (ret == 1)
2982 ret = 0;
2983 goto cleanup;
2984 }
2985
2986 if (unlikely(to))
2987 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2988
2989 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2990
2991 cleanup:
2992 spin_lock(q.lock_ptr);
2993 /*
2994 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2995 * first acquire the hb->lock before removing the lock from the
2996 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2997 * lists consistent.
2998 *
2999 * In particular; it is important that futex_unlock_pi() can not
3000 * observe this inconsistency.
3001 */
3002 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3003 ret = 0;
3004
3005 no_block:
3006 /*
3007 * Fixup the pi_state owner and possibly acquire the lock if we
3008 * haven't already.
3009 */
3010 res = fixup_owner(uaddr, &q, !ret);
3011 /*
3012 * If fixup_owner() returned an error, proprogate that. If it acquired
3013 * the lock, clear our -ETIMEDOUT or -EINTR.
3014 */
3015 if (res)
3016 ret = (res < 0) ? res : 0;
3017
3018 /*
3019 * If fixup_owner() faulted and was unable to handle the fault, unlock
3020 * it and return the fault to userspace.
3021 */
3022 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
3023 pi_state = q.pi_state;
3024 get_pi_state(pi_state);
3025 }
3026
3027 /* Unqueue and drop the lock */
3028 unqueue_me_pi(&q);
3029
3030 if (pi_state) {
3031 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3032 put_pi_state(pi_state);
3033 }
3034
3035 goto out_put_key;
3036
3037 out_unlock_put_key:
3038 queue_unlock(hb);
3039
3040 out_put_key:
3041 put_futex_key(&q.key);
3042 out:
3043 if (to) {
3044 hrtimer_cancel(&to->timer);
3045 destroy_hrtimer_on_stack(&to->timer);
3046 }
3047 return ret != -EINTR ? ret : -ERESTARTNOINTR;
3048
3049 uaddr_faulted:
3050 queue_unlock(hb);
3051
3052 ret = fault_in_user_writeable(uaddr);
3053 if (ret)
3054 goto out_put_key;
3055
3056 if (!(flags & FLAGS_SHARED))
3057 goto retry_private;
3058
3059 put_futex_key(&q.key);
3060 goto retry;
3061 }
3062
3063 /*
3064 * Userspace attempted a TID -> 0 atomic transition, and failed.
3065 * This is the in-kernel slowpath: we look up the PI state (if any),
3066 * and do the rt-mutex unlock.
3067 */
3068 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3069 {
3070 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3071 union futex_key key = FUTEX_KEY_INIT;
3072 struct futex_hash_bucket *hb;
3073 struct futex_q *top_waiter;
3074 int ret;
3075
3076 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3077 return -ENOSYS;
3078
3079 retry:
3080 if (get_user(uval, uaddr))
3081 return -EFAULT;
3082 /*
3083 * We release only a lock we actually own:
3084 */
3085 if ((uval & FUTEX_TID_MASK) != vpid)
3086 return -EPERM;
3087
3088 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3089 if (ret)
3090 return ret;
3091
3092 hb = hash_futex(&key);
3093 spin_lock(&hb->lock);
3094
3095 /*
3096 * Check waiters first. We do not trust user space values at
3097 * all and we at least want to know if user space fiddled
3098 * with the futex value instead of blindly unlocking.
3099 */
3100 top_waiter = futex_top_waiter(hb, &key);
3101 if (top_waiter) {
3102 struct futex_pi_state *pi_state = top_waiter->pi_state;
3103
3104 ret = -EINVAL;
3105 if (!pi_state)
3106 goto out_unlock;
3107
3108 /*
3109 * If current does not own the pi_state then the futex is
3110 * inconsistent and user space fiddled with the futex value.
3111 */
3112 if (pi_state->owner != current)
3113 goto out_unlock;
3114
3115 get_pi_state(pi_state);
3116 /*
3117 * By taking wait_lock while still holding hb->lock, we ensure
3118 * there is no point where we hold neither; and therefore
3119 * wake_futex_pi() must observe a state consistent with what we
3120 * observed.
3121 *
3122 * In particular; this forces __rt_mutex_start_proxy() to
3123 * complete such that we're guaranteed to observe the
3124 * rt_waiter. Also see the WARN in wake_futex_pi().
3125 */
3126 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3127 spin_unlock(&hb->lock);
3128
3129 /* drops pi_state->pi_mutex.wait_lock */
3130 ret = wake_futex_pi(uaddr, uval, pi_state);
3131
3132 put_pi_state(pi_state);
3133
3134 /*
3135 * Success, we're done! No tricky corner cases.
3136 */
3137 if (!ret)
3138 goto out_putkey;
3139 /*
3140 * The atomic access to the futex value generated a
3141 * pagefault, so retry the user-access and the wakeup:
3142 */
3143 if (ret == -EFAULT)
3144 goto pi_faulted;
3145 /*
3146 * A unconditional UNLOCK_PI op raced against a waiter
3147 * setting the FUTEX_WAITERS bit. Try again.
3148 */
3149 if (ret == -EAGAIN)
3150 goto pi_retry;
3151 /*
3152 * wake_futex_pi has detected invalid state. Tell user
3153 * space.
3154 */
3155 goto out_putkey;
3156 }
3157
3158 /*
3159 * We have no kernel internal state, i.e. no waiters in the
3160 * kernel. Waiters which are about to queue themselves are stuck
3161 * on hb->lock. So we can safely ignore them. We do neither
3162 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3163 * owner.
3164 */
3165 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3166 spin_unlock(&hb->lock);
3167 switch (ret) {
3168 case -EFAULT:
3169 goto pi_faulted;
3170
3171 case -EAGAIN:
3172 goto pi_retry;
3173
3174 default:
3175 WARN_ON_ONCE(1);
3176 goto out_putkey;
3177 }
3178 }
3179
3180 /*
3181 * If uval has changed, let user space handle it.
3182 */
3183 ret = (curval == uval) ? 0 : -EAGAIN;
3184
3185 out_unlock:
3186 spin_unlock(&hb->lock);
3187 out_putkey:
3188 put_futex_key(&key);
3189 return ret;
3190
3191 pi_retry:
3192 put_futex_key(&key);
3193 cond_resched();
3194 goto retry;
3195
3196 pi_faulted:
3197 put_futex_key(&key);
3198
3199 ret = fault_in_user_writeable(uaddr);
3200 if (!ret)
3201 goto retry;
3202
3203 return ret;
3204 }
3205
3206 /**
3207 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3208 * @hb: the hash_bucket futex_q was original enqueued on
3209 * @q: the futex_q woken while waiting to be requeued
3210 * @key2: the futex_key of the requeue target futex
3211 * @timeout: the timeout associated with the wait (NULL if none)
3212 *
3213 * Detect if the task was woken on the initial futex as opposed to the requeue
3214 * target futex. If so, determine if it was a timeout or a signal that caused
3215 * the wakeup and return the appropriate error code to the caller. Must be
3216 * called with the hb lock held.
3217 *
3218 * Return:
3219 * - 0 = no early wakeup detected;
3220 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3221 */
3222 static inline
3223 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3224 struct futex_q *q, union futex_key *key2,
3225 struct hrtimer_sleeper *timeout)
3226 {
3227 int ret = 0;
3228
3229 /*
3230 * With the hb lock held, we avoid races while we process the wakeup.
3231 * We only need to hold hb (and not hb2) to ensure atomicity as the
3232 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3233 * It can't be requeued from uaddr2 to something else since we don't
3234 * support a PI aware source futex for requeue.
3235 */
3236 if (!match_futex(&q->key, key2)) {
3237 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3238 /*
3239 * We were woken prior to requeue by a timeout or a signal.
3240 * Unqueue the futex_q and determine which it was.
3241 */
3242 plist_del(&q->list, &hb->chain);
3243 hb_waiters_dec(hb);
3244
3245 /* Handle spurious wakeups gracefully */
3246 ret = -EWOULDBLOCK;
3247 if (timeout && !timeout->task)
3248 ret = -ETIMEDOUT;
3249 else if (signal_pending(current))
3250 ret = -ERESTARTNOINTR;
3251 }
3252 return ret;
3253 }
3254
3255 /**
3256 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3257 * @uaddr: the futex we initially wait on (non-pi)
3258 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3259 * the same type, no requeueing from private to shared, etc.
3260 * @val: the expected value of uaddr
3261 * @abs_time: absolute timeout
3262 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3263 * @uaddr2: the pi futex we will take prior to returning to user-space
3264 *
3265 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3266 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3267 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3268 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3269 * without one, the pi logic would not know which task to boost/deboost, if
3270 * there was a need to.
3271 *
3272 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3273 * via the following--
3274 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3275 * 2) wakeup on uaddr2 after a requeue
3276 * 3) signal
3277 * 4) timeout
3278 *
3279 * If 3, cleanup and return -ERESTARTNOINTR.
3280 *
3281 * If 2, we may then block on trying to take the rt_mutex and return via:
3282 * 5) successful lock
3283 * 6) signal
3284 * 7) timeout
3285 * 8) other lock acquisition failure
3286 *
3287 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3288 *
3289 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3290 *
3291 * Return:
3292 * - 0 - On success;
3293 * - <0 - On error
3294 */
3295 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3296 u32 val, ktime_t *abs_time, u32 bitset,
3297 u32 __user *uaddr2)
3298 {
3299 struct hrtimer_sleeper timeout, *to;
3300 struct futex_pi_state *pi_state = NULL;
3301 struct rt_mutex_waiter rt_waiter;
3302 struct futex_hash_bucket *hb;
3303 union futex_key key2 = FUTEX_KEY_INIT;
3304 struct futex_q q = futex_q_init;
3305 int res, ret;
3306
3307 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3308 return -ENOSYS;
3309
3310 if (uaddr == uaddr2)
3311 return -EINVAL;
3312
3313 if (!bitset)
3314 return -EINVAL;
3315
3316 to = futex_setup_timer(abs_time, &timeout, flags,
3317 current->timer_slack_ns);
3318
3319 /*
3320 * The waiter is allocated on our stack, manipulated by the requeue
3321 * code while we sleep on uaddr.
3322 */
3323 rt_mutex_init_waiter(&rt_waiter);
3324
3325 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3326 if (unlikely(ret != 0))
3327 goto out;
3328
3329 q.bitset = bitset;
3330 q.rt_waiter = &rt_waiter;
3331 q.requeue_pi_key = &key2;
3332
3333 /*
3334 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3335 * count.
3336 */
3337 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3338 if (ret)
3339 goto out_key2;
3340
3341 /*
3342 * The check above which compares uaddrs is not sufficient for
3343 * shared futexes. We need to compare the keys:
3344 */
3345 if (match_futex(&q.key, &key2)) {
3346 queue_unlock(hb);
3347 ret = -EINVAL;
3348 goto out_put_keys;
3349 }
3350
3351 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3352 futex_wait_queue_me(hb, &q, to);
3353
3354 spin_lock(&hb->lock);
3355 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3356 spin_unlock(&hb->lock);
3357 if (ret)
3358 goto out_put_keys;
3359
3360 /*
3361 * In order for us to be here, we know our q.key == key2, and since
3362 * we took the hb->lock above, we also know that futex_requeue() has
3363 * completed and we no longer have to concern ourselves with a wakeup
3364 * race with the atomic proxy lock acquisition by the requeue code. The
3365 * futex_requeue dropped our key1 reference and incremented our key2
3366 * reference count.
3367 */
3368
3369 /* Check if the requeue code acquired the second futex for us. */
3370 if (!q.rt_waiter) {
3371 /*
3372 * Got the lock. We might not be the anticipated owner if we
3373 * did a lock-steal - fix up the PI-state in that case.
3374 */
3375 if (q.pi_state && (q.pi_state->owner != current)) {
3376 spin_lock(q.lock_ptr);
3377 ret = fixup_pi_state_owner(uaddr2, &q, current);
3378 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3379 pi_state = q.pi_state;
3380 get_pi_state(pi_state);
3381 }
3382 /*
3383 * Drop the reference to the pi state which
3384 * the requeue_pi() code acquired for us.
3385 */
3386 put_pi_state(q.pi_state);
3387 spin_unlock(q.lock_ptr);
3388 }
3389 } else {
3390 struct rt_mutex *pi_mutex;
3391
3392 /*
3393 * We have been woken up by futex_unlock_pi(), a timeout, or a
3394 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3395 * the pi_state.
3396 */
3397 WARN_ON(!q.pi_state);
3398 pi_mutex = &q.pi_state->pi_mutex;
3399 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3400
3401 spin_lock(q.lock_ptr);
3402 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3403 ret = 0;
3404
3405 debug_rt_mutex_free_waiter(&rt_waiter);
3406 /*
3407 * Fixup the pi_state owner and possibly acquire the lock if we
3408 * haven't already.
3409 */
3410 res = fixup_owner(uaddr2, &q, !ret);
3411 /*
3412 * If fixup_owner() returned an error, proprogate that. If it
3413 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3414 */
3415 if (res)
3416 ret = (res < 0) ? res : 0;
3417
3418 /*
3419 * If fixup_pi_state_owner() faulted and was unable to handle
3420 * the fault, unlock the rt_mutex and return the fault to
3421 * userspace.
3422 */
3423 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3424 pi_state = q.pi_state;
3425 get_pi_state(pi_state);
3426 }
3427
3428 /* Unqueue and drop the lock. */
3429 unqueue_me_pi(&q);
3430 }
3431
3432 if (pi_state) {
3433 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3434 put_pi_state(pi_state);
3435 }
3436
3437 if (ret == -EINTR) {
3438 /*
3439 * We've already been requeued, but cannot restart by calling
3440 * futex_lock_pi() directly. We could restart this syscall, but
3441 * it would detect that the user space "val" changed and return
3442 * -EWOULDBLOCK. Save the overhead of the restart and return
3443 * -EWOULDBLOCK directly.
3444 */
3445 ret = -EWOULDBLOCK;
3446 }
3447
3448 out_put_keys:
3449 put_futex_key(&q.key);
3450 out_key2:
3451 put_futex_key(&key2);
3452
3453 out:
3454 if (to) {
3455 hrtimer_cancel(&to->timer);
3456 destroy_hrtimer_on_stack(&to->timer);
3457 }
3458 return ret;
3459 }
3460
3461 /*
3462 * Support for robust futexes: the kernel cleans up held futexes at
3463 * thread exit time.
3464 *
3465 * Implementation: user-space maintains a per-thread list of locks it
3466 * is holding. Upon do_exit(), the kernel carefully walks this list,
3467 * and marks all locks that are owned by this thread with the
3468 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3469 * always manipulated with the lock held, so the list is private and
3470 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3471 * field, to allow the kernel to clean up if the thread dies after
3472 * acquiring the lock, but just before it could have added itself to
3473 * the list. There can only be one such pending lock.
3474 */
3475
3476 /**
3477 * sys_set_robust_list() - Set the robust-futex list head of a task
3478 * @head: pointer to the list-head
3479 * @len: length of the list-head, as userspace expects
3480 */
3481 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3482 size_t, len)
3483 {
3484 if (!futex_cmpxchg_enabled)
3485 return -ENOSYS;
3486 /*
3487 * The kernel knows only one size for now:
3488 */
3489 if (unlikely(len != sizeof(*head)))
3490 return -EINVAL;
3491
3492 current->robust_list = head;
3493
3494 return 0;
3495 }
3496
3497 /**
3498 * sys_get_robust_list() - Get the robust-futex list head of a task
3499 * @pid: pid of the process [zero for current task]
3500 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3501 * @len_ptr: pointer to a length field, the kernel fills in the header size
3502 */
3503 SYSCALL_DEFINE3(get_robust_list, int, pid,
3504 struct robust_list_head __user * __user *, head_ptr,
3505 size_t __user *, len_ptr)
3506 {
3507 struct robust_list_head __user *head;
3508 unsigned long ret;
3509 struct task_struct *p;
3510
3511 if (!futex_cmpxchg_enabled)
3512 return -ENOSYS;
3513
3514 rcu_read_lock();
3515
3516 ret = -ESRCH;
3517 if (!pid)
3518 p = current;
3519 else {
3520 p = find_task_by_vpid(pid);
3521 if (!p)
3522 goto err_unlock;
3523 }
3524
3525 ret = -EPERM;
3526 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3527 goto err_unlock;
3528
3529 head = p->robust_list;
3530 rcu_read_unlock();
3531
3532 if (put_user(sizeof(*head), len_ptr))
3533 return -EFAULT;
3534 return put_user(head, head_ptr);
3535
3536 err_unlock:
3537 rcu_read_unlock();
3538
3539 return ret;
3540 }
3541
3542 /* Constants for the pending_op argument of handle_futex_death */
3543 #define HANDLE_DEATH_PENDING true
3544 #define HANDLE_DEATH_LIST false
3545
3546 /*
3547 * Process a futex-list entry, check whether it's owned by the
3548 * dying task, and do notification if so:
3549 */
3550 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3551 bool pi, bool pending_op)
3552 {
3553 u32 uval, uninitialized_var(nval), mval;
3554 int err;
3555
3556 /* Futex address must be 32bit aligned */
3557 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3558 return -1;
3559
3560 retry:
3561 if (get_user(uval, uaddr))
3562 return -1;
3563
3564 /*
3565 * Special case for regular (non PI) futexes. The unlock path in
3566 * user space has two race scenarios:
3567 *
3568 * 1. The unlock path releases the user space futex value and
3569 * before it can execute the futex() syscall to wake up
3570 * waiters it is killed.
3571 *
3572 * 2. A woken up waiter is killed before it can acquire the
3573 * futex in user space.
3574 *
3575 * In both cases the TID validation below prevents a wakeup of
3576 * potential waiters which can cause these waiters to block
3577 * forever.
3578 *
3579 * In both cases the following conditions are met:
3580 *
3581 * 1) task->robust_list->list_op_pending != NULL
3582 * @pending_op == true
3583 * 2) User space futex value == 0
3584 * 3) Regular futex: @pi == false
3585 *
3586 * If these conditions are met, it is safe to attempt waking up a
3587 * potential waiter without touching the user space futex value and
3588 * trying to set the OWNER_DIED bit. The user space futex value is
3589 * uncontended and the rest of the user space mutex state is
3590 * consistent, so a woken waiter will just take over the
3591 * uncontended futex. Setting the OWNER_DIED bit would create
3592 * inconsistent state and malfunction of the user space owner died
3593 * handling.
3594 */
3595 if (pending_op && !pi && !uval) {
3596 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3597 return 0;
3598 }
3599
3600 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3601 return 0;
3602
3603 /*
3604 * Ok, this dying thread is truly holding a futex
3605 * of interest. Set the OWNER_DIED bit atomically
3606 * via cmpxchg, and if the value had FUTEX_WAITERS
3607 * set, wake up a waiter (if any). (We have to do a
3608 * futex_wake() even if OWNER_DIED is already set -
3609 * to handle the rare but possible case of recursive
3610 * thread-death.) The rest of the cleanup is done in
3611 * userspace.
3612 */
3613 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3614
3615 /*
3616 * We are not holding a lock here, but we want to have
3617 * the pagefault_disable/enable() protection because
3618 * we want to handle the fault gracefully. If the
3619 * access fails we try to fault in the futex with R/W
3620 * verification via get_user_pages. get_user() above
3621 * does not guarantee R/W access. If that fails we
3622 * give up and leave the futex locked.
3623 */
3624 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3625 switch (err) {
3626 case -EFAULT:
3627 if (fault_in_user_writeable(uaddr))
3628 return -1;
3629 goto retry;
3630
3631 case -EAGAIN:
3632 cond_resched();
3633 goto retry;
3634
3635 default:
3636 WARN_ON_ONCE(1);
3637 return err;
3638 }
3639 }
3640
3641 if (nval != uval)
3642 goto retry;
3643
3644 /*
3645 * Wake robust non-PI futexes here. The wakeup of
3646 * PI futexes happens in exit_pi_state():
3647 */
3648 if (!pi && (uval & FUTEX_WAITERS))
3649 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3650
3651 return 0;
3652 }
3653
3654 /*
3655 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3656 */
3657 static inline int fetch_robust_entry(struct robust_list __user **entry,
3658 struct robust_list __user * __user *head,
3659 unsigned int *pi)
3660 {
3661 unsigned long uentry;
3662
3663 if (get_user(uentry, (unsigned long __user *)head))
3664 return -EFAULT;
3665
3666 *entry = (void __user *)(uentry & ~1UL);
3667 *pi = uentry & 1;
3668
3669 return 0;
3670 }
3671
3672 /*
3673 * Walk curr->robust_list (very carefully, it's a userspace list!)
3674 * and mark any locks found there dead, and notify any waiters.
3675 *
3676 * We silently return on any sign of list-walking problem.
3677 */
3678 static void exit_robust_list(struct task_struct *curr)
3679 {
3680 struct robust_list_head __user *head = curr->robust_list;
3681 struct robust_list __user *entry, *next_entry, *pending;
3682 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3683 unsigned int uninitialized_var(next_pi);
3684 unsigned long futex_offset;
3685 int rc;
3686
3687 if (!futex_cmpxchg_enabled)
3688 return;
3689
3690 /*
3691 * Fetch the list head (which was registered earlier, via
3692 * sys_set_robust_list()):
3693 */
3694 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3695 return;
3696 /*
3697 * Fetch the relative futex offset:
3698 */
3699 if (get_user(futex_offset, &head->futex_offset))
3700 return;
3701 /*
3702 * Fetch any possibly pending lock-add first, and handle it
3703 * if it exists:
3704 */
3705 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3706 return;
3707
3708 next_entry = NULL; /* avoid warning with gcc */
3709 while (entry != &head->list) {
3710 /*
3711 * Fetch the next entry in the list before calling
3712 * handle_futex_death:
3713 */
3714 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3715 /*
3716 * A pending lock might already be on the list, so
3717 * don't process it twice:
3718 */
3719 if (entry != pending) {
3720 if (handle_futex_death((void __user *)entry + futex_offset,
3721 curr, pi, HANDLE_DEATH_LIST))
3722 return;
3723 }
3724 if (rc)
3725 return;
3726 entry = next_entry;
3727 pi = next_pi;
3728 /*
3729 * Avoid excessively long or circular lists:
3730 */
3731 if (!--limit)
3732 break;
3733
3734 cond_resched();
3735 }
3736
3737 if (pending) {
3738 handle_futex_death((void __user *)pending + futex_offset,
3739 curr, pip, HANDLE_DEATH_PENDING);
3740 }
3741 }
3742
3743 static void futex_cleanup(struct task_struct *tsk)
3744 {
3745 if (unlikely(tsk->robust_list)) {
3746 exit_robust_list(tsk);
3747 tsk->robust_list = NULL;
3748 }
3749
3750 #ifdef CONFIG_COMPAT
3751 if (unlikely(tsk->compat_robust_list)) {
3752 compat_exit_robust_list(tsk);
3753 tsk->compat_robust_list = NULL;
3754 }
3755 #endif
3756
3757 if (unlikely(!list_empty(&tsk->pi_state_list)))
3758 exit_pi_state_list(tsk);
3759 }
3760
3761 /**
3762 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3763 * @tsk: task to set the state on
3764 *
3765 * Set the futex exit state of the task lockless. The futex waiter code
3766 * observes that state when a task is exiting and loops until the task has
3767 * actually finished the futex cleanup. The worst case for this is that the
3768 * waiter runs through the wait loop until the state becomes visible.
3769 *
3770 * This is called from the recursive fault handling path in do_exit().
3771 *
3772 * This is best effort. Either the futex exit code has run already or
3773 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3774 * take it over. If not, the problem is pushed back to user space. If the
3775 * futex exit code did not run yet, then an already queued waiter might
3776 * block forever, but there is nothing which can be done about that.
3777 */
3778 void futex_exit_recursive(struct task_struct *tsk)
3779 {
3780 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3781 if (tsk->futex_state == FUTEX_STATE_EXITING)
3782 mutex_unlock(&tsk->futex_exit_mutex);
3783 tsk->futex_state = FUTEX_STATE_DEAD;
3784 }
3785
3786 static void futex_cleanup_begin(struct task_struct *tsk)
3787 {
3788 /*
3789 * Prevent various race issues against a concurrent incoming waiter
3790 * including live locks by forcing the waiter to block on
3791 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3792 * attach_to_pi_owner().
3793 */
3794 mutex_lock(&tsk->futex_exit_mutex);
3795
3796 /*
3797 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3798 *
3799 * This ensures that all subsequent checks of tsk->futex_state in
3800 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3801 * tsk->pi_lock held.
3802 *
3803 * It guarantees also that a pi_state which was queued right before
3804 * the state change under tsk->pi_lock by a concurrent waiter must
3805 * be observed in exit_pi_state_list().
3806 */
3807 raw_spin_lock_irq(&tsk->pi_lock);
3808 tsk->futex_state = FUTEX_STATE_EXITING;
3809 raw_spin_unlock_irq(&tsk->pi_lock);
3810 }
3811
3812 static void futex_cleanup_end(struct task_struct *tsk, int state)
3813 {
3814 /*
3815 * Lockless store. The only side effect is that an observer might
3816 * take another loop until it becomes visible.
3817 */
3818 tsk->futex_state = state;
3819 /*
3820 * Drop the exit protection. This unblocks waiters which observed
3821 * FUTEX_STATE_EXITING to reevaluate the state.
3822 */
3823 mutex_unlock(&tsk->futex_exit_mutex);
3824 }
3825
3826 void futex_exec_release(struct task_struct *tsk)
3827 {
3828 /*
3829 * The state handling is done for consistency, but in the case of
3830 * exec() there is no way to prevent futher damage as the PID stays
3831 * the same. But for the unlikely and arguably buggy case that a
3832 * futex is held on exec(), this provides at least as much state
3833 * consistency protection which is possible.
3834 */
3835 futex_cleanup_begin(tsk);
3836 futex_cleanup(tsk);
3837 /*
3838 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3839 * exec a new binary.
3840 */
3841 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3842 }
3843
3844 void futex_exit_release(struct task_struct *tsk)
3845 {
3846 futex_cleanup_begin(tsk);
3847 futex_cleanup(tsk);
3848 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3849 }
3850
3851 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3852 u32 __user *uaddr2, u32 val2, u32 val3)
3853 {
3854 int cmd = op & FUTEX_CMD_MASK;
3855 unsigned int flags = 0;
3856
3857 if (!(op & FUTEX_PRIVATE_FLAG))
3858 flags |= FLAGS_SHARED;
3859
3860 if (op & FUTEX_CLOCK_REALTIME) {
3861 flags |= FLAGS_CLOCKRT;
3862 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3863 cmd != FUTEX_WAIT_REQUEUE_PI)
3864 return -ENOSYS;
3865 }
3866
3867 switch (cmd) {
3868 case FUTEX_LOCK_PI:
3869 case FUTEX_UNLOCK_PI:
3870 case FUTEX_TRYLOCK_PI:
3871 case FUTEX_WAIT_REQUEUE_PI:
3872 case FUTEX_CMP_REQUEUE_PI:
3873 if (!futex_cmpxchg_enabled)
3874 return -ENOSYS;
3875 }
3876
3877 switch (cmd) {
3878 case FUTEX_WAIT:
3879 val3 = FUTEX_BITSET_MATCH_ANY;
3880 /* fall through */
3881 case FUTEX_WAIT_BITSET:
3882 return futex_wait(uaddr, flags, val, timeout, val3);
3883 case FUTEX_WAKE:
3884 val3 = FUTEX_BITSET_MATCH_ANY;
3885 /* fall through */
3886 case FUTEX_WAKE_BITSET:
3887 return futex_wake(uaddr, flags, val, val3);
3888 case FUTEX_REQUEUE:
3889 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3890 case FUTEX_CMP_REQUEUE:
3891 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3892 case FUTEX_WAKE_OP:
3893 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3894 case FUTEX_LOCK_PI:
3895 return futex_lock_pi(uaddr, flags, timeout, 0);
3896 case FUTEX_UNLOCK_PI:
3897 return futex_unlock_pi(uaddr, flags);
3898 case FUTEX_TRYLOCK_PI:
3899 return futex_lock_pi(uaddr, flags, NULL, 1);
3900 case FUTEX_WAIT_REQUEUE_PI:
3901 val3 = FUTEX_BITSET_MATCH_ANY;
3902 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3903 uaddr2);
3904 case FUTEX_CMP_REQUEUE_PI:
3905 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3906 }
3907 return -ENOSYS;
3908 }
3909
3910
3911 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3912 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3913 u32, val3)
3914 {
3915 struct timespec64 ts;
3916 ktime_t t, *tp = NULL;
3917 u32 val2 = 0;
3918 int cmd = op & FUTEX_CMD_MASK;
3919
3920 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3921 cmd == FUTEX_WAIT_BITSET ||
3922 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3923 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3924 return -EFAULT;
3925 if (get_timespec64(&ts, utime))
3926 return -EFAULT;
3927 if (!timespec64_valid(&ts))
3928 return -EINVAL;
3929
3930 t = timespec64_to_ktime(ts);
3931 if (cmd == FUTEX_WAIT)
3932 t = ktime_add_safe(ktime_get(), t);
3933 tp = &t;
3934 }
3935 /*
3936 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3937 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3938 */
3939 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3940 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3941 val2 = (u32) (unsigned long) utime;
3942
3943 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3944 }
3945
3946 #ifdef CONFIG_COMPAT
3947 /*
3948 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3949 */
3950 static inline int
3951 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3952 compat_uptr_t __user *head, unsigned int *pi)
3953 {
3954 if (get_user(*uentry, head))
3955 return -EFAULT;
3956
3957 *entry = compat_ptr((*uentry) & ~1);
3958 *pi = (unsigned int)(*uentry) & 1;
3959
3960 return 0;
3961 }
3962
3963 static void __user *futex_uaddr(struct robust_list __user *entry,
3964 compat_long_t futex_offset)
3965 {
3966 compat_uptr_t base = ptr_to_compat(entry);
3967 void __user *uaddr = compat_ptr(base + futex_offset);
3968
3969 return uaddr;
3970 }
3971
3972 /*
3973 * Walk curr->robust_list (very carefully, it's a userspace list!)
3974 * and mark any locks found there dead, and notify any waiters.
3975 *
3976 * We silently return on any sign of list-walking problem.
3977 */
3978 static void compat_exit_robust_list(struct task_struct *curr)
3979 {
3980 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3981 struct robust_list __user *entry, *next_entry, *pending;
3982 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3983 unsigned int uninitialized_var(next_pi);
3984 compat_uptr_t uentry, next_uentry, upending;
3985 compat_long_t futex_offset;
3986 int rc;
3987
3988 if (!futex_cmpxchg_enabled)
3989 return;
3990
3991 /*
3992 * Fetch the list head (which was registered earlier, via
3993 * sys_set_robust_list()):
3994 */
3995 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3996 return;
3997 /*
3998 * Fetch the relative futex offset:
3999 */
4000 if (get_user(futex_offset, &head->futex_offset))
4001 return;
4002 /*
4003 * Fetch any possibly pending lock-add first, and handle it
4004 * if it exists:
4005 */
4006 if (compat_fetch_robust_entry(&upending, &pending,
4007 &head->list_op_pending, &pip))
4008 return;
4009
4010 next_entry = NULL; /* avoid warning with gcc */
4011 while (entry != (struct robust_list __user *) &head->list) {
4012 /*
4013 * Fetch the next entry in the list before calling
4014 * handle_futex_death:
4015 */
4016 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4017 (compat_uptr_t __user *)&entry->next, &next_pi);
4018 /*
4019 * A pending lock might already be on the list, so
4020 * dont process it twice:
4021 */
4022 if (entry != pending) {
4023 void __user *uaddr = futex_uaddr(entry, futex_offset);
4024
4025 if (handle_futex_death(uaddr, curr, pi,
4026 HANDLE_DEATH_LIST))
4027 return;
4028 }
4029 if (rc)
4030 return;
4031 uentry = next_uentry;
4032 entry = next_entry;
4033 pi = next_pi;
4034 /*
4035 * Avoid excessively long or circular lists:
4036 */
4037 if (!--limit)
4038 break;
4039
4040 cond_resched();
4041 }
4042 if (pending) {
4043 void __user *uaddr = futex_uaddr(pending, futex_offset);
4044
4045 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4046 }
4047 }
4048
4049 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4050 struct compat_robust_list_head __user *, head,
4051 compat_size_t, len)
4052 {
4053 if (!futex_cmpxchg_enabled)
4054 return -ENOSYS;
4055
4056 if (unlikely(len != sizeof(*head)))
4057 return -EINVAL;
4058
4059 current->compat_robust_list = head;
4060
4061 return 0;
4062 }
4063
4064 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4065 compat_uptr_t __user *, head_ptr,
4066 compat_size_t __user *, len_ptr)
4067 {
4068 struct compat_robust_list_head __user *head;
4069 unsigned long ret;
4070 struct task_struct *p;
4071
4072 if (!futex_cmpxchg_enabled)
4073 return -ENOSYS;
4074
4075 rcu_read_lock();
4076
4077 ret = -ESRCH;
4078 if (!pid)
4079 p = current;
4080 else {
4081 p = find_task_by_vpid(pid);
4082 if (!p)
4083 goto err_unlock;
4084 }
4085
4086 ret = -EPERM;
4087 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4088 goto err_unlock;
4089
4090 head = p->compat_robust_list;
4091 rcu_read_unlock();
4092
4093 if (put_user(sizeof(*head), len_ptr))
4094 return -EFAULT;
4095 return put_user(ptr_to_compat(head), head_ptr);
4096
4097 err_unlock:
4098 rcu_read_unlock();
4099
4100 return ret;
4101 }
4102 #endif /* CONFIG_COMPAT */
4103
4104 #ifdef CONFIG_COMPAT_32BIT_TIME
4105 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4106 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4107 u32, val3)
4108 {
4109 struct timespec64 ts;
4110 ktime_t t, *tp = NULL;
4111 int val2 = 0;
4112 int cmd = op & FUTEX_CMD_MASK;
4113
4114 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4115 cmd == FUTEX_WAIT_BITSET ||
4116 cmd == FUTEX_WAIT_REQUEUE_PI)) {
4117 if (get_old_timespec32(&ts, utime))
4118 return -EFAULT;
4119 if (!timespec64_valid(&ts))
4120 return -EINVAL;
4121
4122 t = timespec64_to_ktime(ts);
4123 if (cmd == FUTEX_WAIT)
4124 t = ktime_add_safe(ktime_get(), t);
4125 tp = &t;
4126 }
4127 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4128 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4129 val2 = (int) (unsigned long) utime;
4130
4131 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4132 }
4133 #endif /* CONFIG_COMPAT_32BIT_TIME */
4134
4135 static void __init futex_detect_cmpxchg(void)
4136 {
4137 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4138 u32 curval;
4139
4140 /*
4141 * This will fail and we want it. Some arch implementations do
4142 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4143 * functionality. We want to know that before we call in any
4144 * of the complex code paths. Also we want to prevent
4145 * registration of robust lists in that case. NULL is
4146 * guaranteed to fault and we get -EFAULT on functional
4147 * implementation, the non-functional ones will return
4148 * -ENOSYS.
4149 */
4150 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4151 futex_cmpxchg_enabled = 1;
4152 #endif
4153 }
4154
4155 static int __init futex_init(void)
4156 {
4157 unsigned int futex_shift;
4158 unsigned long i;
4159
4160 #if CONFIG_BASE_SMALL
4161 futex_hashsize = 16;
4162 #else
4163 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4164 #endif
4165
4166 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4167 futex_hashsize, 0,
4168 futex_hashsize < 256 ? HASH_SMALL : 0,
4169 &futex_shift, NULL,
4170 futex_hashsize, futex_hashsize);
4171 futex_hashsize = 1UL << futex_shift;
4172
4173 futex_detect_cmpxchg();
4174
4175 for (i = 0; i < futex_hashsize; i++) {
4176 atomic_set(&futex_queues[i].waiters, 0);
4177 plist_head_init(&futex_queues[i].chain);
4178 spin_lock_init(&futex_queues[i].lock);
4179 }
4180
4181 return 0;
4182 }
4183 core_initcall(futex_init);