]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 };
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 };
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in *key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel so warn for now if this happens.
674 *
675 * We are not calling into get_futex_key_refs() in file-backed
676 * cases, therefore a successful atomic_inc return below will
677 * guarantee that get_futex_key() will still imply smp_mb(); (B).
678 */
679 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680 rcu_read_unlock();
681 put_page(page);
682
683 goto again;
684 }
685
686 /* Should be impossible but lets be paranoid for now */
687 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688 err = -EFAULT;
689 rcu_read_unlock();
690 iput(inode);
691
692 goto out;
693 }
694
695 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696 key->shared.inode = inode;
697 key->shared.pgoff = basepage_index(tail);
698 rcu_read_unlock();
699 }
700
701 out:
702 put_page(page);
703 return err;
704 }
705
706 static inline void put_futex_key(union futex_key *key)
707 {
708 drop_futex_key_refs(key);
709 }
710
711 /**
712 * fault_in_user_writeable() - Fault in user address and verify RW access
713 * @uaddr: pointer to faulting user space address
714 *
715 * Slow path to fixup the fault we just took in the atomic write
716 * access to @uaddr.
717 *
718 * We have no generic implementation of a non-destructive write to the
719 * user address. We know that we faulted in the atomic pagefault
720 * disabled section so we can as well avoid the #PF overhead by
721 * calling get_user_pages() right away.
722 */
723 static int fault_in_user_writeable(u32 __user *uaddr)
724 {
725 struct mm_struct *mm = current->mm;
726 int ret;
727
728 down_read(&mm->mmap_sem);
729 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730 FAULT_FLAG_WRITE, NULL);
731 up_read(&mm->mmap_sem);
732
733 return ret < 0 ? ret : 0;
734 }
735
736 /**
737 * futex_top_waiter() - Return the highest priority waiter on a futex
738 * @hb: the hash bucket the futex_q's reside in
739 * @key: the futex key (to distinguish it from other futex futex_q's)
740 *
741 * Must be called with the hb lock held.
742 */
743 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744 union futex_key *key)
745 {
746 struct futex_q *this;
747
748 plist_for_each_entry(this, &hb->chain, list) {
749 if (match_futex(&this->key, key))
750 return this;
751 }
752 return NULL;
753 }
754
755 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756 u32 uval, u32 newval)
757 {
758 int ret;
759
760 pagefault_disable();
761 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
762 pagefault_enable();
763
764 return ret;
765 }
766
767 static int get_futex_value_locked(u32 *dest, u32 __user *from)
768 {
769 int ret;
770
771 pagefault_disable();
772 ret = __get_user(*dest, from);
773 pagefault_enable();
774
775 return ret ? -EFAULT : 0;
776 }
777
778
779 /*
780 * PI code:
781 */
782 static int refill_pi_state_cache(void)
783 {
784 struct futex_pi_state *pi_state;
785
786 if (likely(current->pi_state_cache))
787 return 0;
788
789 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790
791 if (!pi_state)
792 return -ENOMEM;
793
794 INIT_LIST_HEAD(&pi_state->list);
795 /* pi_mutex gets initialized later */
796 pi_state->owner = NULL;
797 atomic_set(&pi_state->refcount, 1);
798 pi_state->key = FUTEX_KEY_INIT;
799
800 current->pi_state_cache = pi_state;
801
802 return 0;
803 }
804
805 static struct futex_pi_state * alloc_pi_state(void)
806 {
807 struct futex_pi_state *pi_state = current->pi_state_cache;
808
809 WARN_ON(!pi_state);
810 current->pi_state_cache = NULL;
811
812 return pi_state;
813 }
814
815 /*
816 * Drops a reference to the pi_state object and frees or caches it
817 * when the last reference is gone.
818 *
819 * Must be called with the hb lock held.
820 */
821 static void put_pi_state(struct futex_pi_state *pi_state)
822 {
823 if (!pi_state)
824 return;
825
826 if (!atomic_dec_and_test(&pi_state->refcount))
827 return;
828
829 /*
830 * If pi_state->owner is NULL, the owner is most probably dying
831 * and has cleaned up the pi_state already
832 */
833 if (pi_state->owner) {
834 raw_spin_lock_irq(&pi_state->owner->pi_lock);
835 list_del_init(&pi_state->list);
836 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
837
838 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
839 }
840
841 if (current->pi_state_cache)
842 kfree(pi_state);
843 else {
844 /*
845 * pi_state->list is already empty.
846 * clear pi_state->owner.
847 * refcount is at 0 - put it back to 1.
848 */
849 pi_state->owner = NULL;
850 atomic_set(&pi_state->refcount, 1);
851 current->pi_state_cache = pi_state;
852 }
853 }
854
855 /*
856 * Look up the task based on what TID userspace gave us.
857 * We dont trust it.
858 */
859 static struct task_struct * futex_find_get_task(pid_t pid)
860 {
861 struct task_struct *p;
862
863 rcu_read_lock();
864 p = find_task_by_vpid(pid);
865 if (p)
866 get_task_struct(p);
867
868 rcu_read_unlock();
869
870 return p;
871 }
872
873 /*
874 * This task is holding PI mutexes at exit time => bad.
875 * Kernel cleans up PI-state, but userspace is likely hosed.
876 * (Robust-futex cleanup is separate and might save the day for userspace.)
877 */
878 void exit_pi_state_list(struct task_struct *curr)
879 {
880 struct list_head *next, *head = &curr->pi_state_list;
881 struct futex_pi_state *pi_state;
882 struct futex_hash_bucket *hb;
883 union futex_key key = FUTEX_KEY_INIT;
884
885 if (!futex_cmpxchg_enabled)
886 return;
887 /*
888 * We are a ZOMBIE and nobody can enqueue itself on
889 * pi_state_list anymore, but we have to be careful
890 * versus waiters unqueueing themselves:
891 */
892 raw_spin_lock_irq(&curr->pi_lock);
893 while (!list_empty(head)) {
894
895 next = head->next;
896 pi_state = list_entry(next, struct futex_pi_state, list);
897 key = pi_state->key;
898 hb = hash_futex(&key);
899 raw_spin_unlock_irq(&curr->pi_lock);
900
901 spin_lock(&hb->lock);
902
903 raw_spin_lock_irq(&curr->pi_lock);
904 /*
905 * We dropped the pi-lock, so re-check whether this
906 * task still owns the PI-state:
907 */
908 if (head->next != next) {
909 spin_unlock(&hb->lock);
910 continue;
911 }
912
913 WARN_ON(pi_state->owner != curr);
914 WARN_ON(list_empty(&pi_state->list));
915 list_del_init(&pi_state->list);
916 pi_state->owner = NULL;
917 raw_spin_unlock_irq(&curr->pi_lock);
918
919 rt_mutex_unlock(&pi_state->pi_mutex);
920
921 spin_unlock(&hb->lock);
922
923 raw_spin_lock_irq(&curr->pi_lock);
924 }
925 raw_spin_unlock_irq(&curr->pi_lock);
926 }
927
928 /*
929 * We need to check the following states:
930 *
931 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
932 *
933 * [1] NULL | --- | --- | 0 | 0/1 | Valid
934 * [2] NULL | --- | --- | >0 | 0/1 | Valid
935 *
936 * [3] Found | NULL | -- | Any | 0/1 | Invalid
937 *
938 * [4] Found | Found | NULL | 0 | 1 | Valid
939 * [5] Found | Found | NULL | >0 | 1 | Invalid
940 *
941 * [6] Found | Found | task | 0 | 1 | Valid
942 *
943 * [7] Found | Found | NULL | Any | 0 | Invalid
944 *
945 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
946 * [9] Found | Found | task | 0 | 0 | Invalid
947 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
948 *
949 * [1] Indicates that the kernel can acquire the futex atomically. We
950 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
951 *
952 * [2] Valid, if TID does not belong to a kernel thread. If no matching
953 * thread is found then it indicates that the owner TID has died.
954 *
955 * [3] Invalid. The waiter is queued on a non PI futex
956 *
957 * [4] Valid state after exit_robust_list(), which sets the user space
958 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
959 *
960 * [5] The user space value got manipulated between exit_robust_list()
961 * and exit_pi_state_list()
962 *
963 * [6] Valid state after exit_pi_state_list() which sets the new owner in
964 * the pi_state but cannot access the user space value.
965 *
966 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
967 *
968 * [8] Owner and user space value match
969 *
970 * [9] There is no transient state which sets the user space TID to 0
971 * except exit_robust_list(), but this is indicated by the
972 * FUTEX_OWNER_DIED bit. See [4]
973 *
974 * [10] There is no transient state which leaves owner and user space
975 * TID out of sync.
976 */
977
978 /*
979 * Validate that the existing waiter has a pi_state and sanity check
980 * the pi_state against the user space value. If correct, attach to
981 * it.
982 */
983 static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
984 struct futex_pi_state **ps)
985 {
986 pid_t pid = uval & FUTEX_TID_MASK;
987
988 /*
989 * Userspace might have messed up non-PI and PI futexes [3]
990 */
991 if (unlikely(!pi_state))
992 return -EINVAL;
993
994 WARN_ON(!atomic_read(&pi_state->refcount));
995
996 /*
997 * Handle the owner died case:
998 */
999 if (uval & FUTEX_OWNER_DIED) {
1000 /*
1001 * exit_pi_state_list sets owner to NULL and wakes the
1002 * topmost waiter. The task which acquires the
1003 * pi_state->rt_mutex will fixup owner.
1004 */
1005 if (!pi_state->owner) {
1006 /*
1007 * No pi state owner, but the user space TID
1008 * is not 0. Inconsistent state. [5]
1009 */
1010 if (pid)
1011 return -EINVAL;
1012 /*
1013 * Take a ref on the state and return success. [4]
1014 */
1015 goto out_state;
1016 }
1017
1018 /*
1019 * If TID is 0, then either the dying owner has not
1020 * yet executed exit_pi_state_list() or some waiter
1021 * acquired the rtmutex in the pi state, but did not
1022 * yet fixup the TID in user space.
1023 *
1024 * Take a ref on the state and return success. [6]
1025 */
1026 if (!pid)
1027 goto out_state;
1028 } else {
1029 /*
1030 * If the owner died bit is not set, then the pi_state
1031 * must have an owner. [7]
1032 */
1033 if (!pi_state->owner)
1034 return -EINVAL;
1035 }
1036
1037 /*
1038 * Bail out if user space manipulated the futex value. If pi
1039 * state exists then the owner TID must be the same as the
1040 * user space TID. [9/10]
1041 */
1042 if (pid != task_pid_vnr(pi_state->owner))
1043 return -EINVAL;
1044 out_state:
1045 atomic_inc(&pi_state->refcount);
1046 *ps = pi_state;
1047 return 0;
1048 }
1049
1050 /*
1051 * Lookup the task for the TID provided from user space and attach to
1052 * it after doing proper sanity checks.
1053 */
1054 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1055 struct futex_pi_state **ps)
1056 {
1057 pid_t pid = uval & FUTEX_TID_MASK;
1058 struct futex_pi_state *pi_state;
1059 struct task_struct *p;
1060
1061 /*
1062 * We are the first waiter - try to look up the real owner and attach
1063 * the new pi_state to it, but bail out when TID = 0 [1]
1064 */
1065 if (!pid)
1066 return -ESRCH;
1067 p = futex_find_get_task(pid);
1068 if (!p)
1069 return -ESRCH;
1070
1071 if (unlikely(p->flags & PF_KTHREAD)) {
1072 put_task_struct(p);
1073 return -EPERM;
1074 }
1075
1076 /*
1077 * We need to look at the task state flags to figure out,
1078 * whether the task is exiting. To protect against the do_exit
1079 * change of the task flags, we do this protected by
1080 * p->pi_lock:
1081 */
1082 raw_spin_lock_irq(&p->pi_lock);
1083 if (unlikely(p->flags & PF_EXITING)) {
1084 /*
1085 * The task is on the way out. When PF_EXITPIDONE is
1086 * set, we know that the task has finished the
1087 * cleanup:
1088 */
1089 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1090
1091 raw_spin_unlock_irq(&p->pi_lock);
1092 put_task_struct(p);
1093 return ret;
1094 }
1095
1096 /*
1097 * No existing pi state. First waiter. [2]
1098 */
1099 pi_state = alloc_pi_state();
1100
1101 /*
1102 * Initialize the pi_mutex in locked state and make @p
1103 * the owner of it:
1104 */
1105 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1106
1107 /* Store the key for possible exit cleanups: */
1108 pi_state->key = *key;
1109
1110 WARN_ON(!list_empty(&pi_state->list));
1111 list_add(&pi_state->list, &p->pi_state_list);
1112 pi_state->owner = p;
1113 raw_spin_unlock_irq(&p->pi_lock);
1114
1115 put_task_struct(p);
1116
1117 *ps = pi_state;
1118
1119 return 0;
1120 }
1121
1122 static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1123 union futex_key *key, struct futex_pi_state **ps)
1124 {
1125 struct futex_q *match = futex_top_waiter(hb, key);
1126
1127 /*
1128 * If there is a waiter on that futex, validate it and
1129 * attach to the pi_state when the validation succeeds.
1130 */
1131 if (match)
1132 return attach_to_pi_state(uval, match->pi_state, ps);
1133
1134 /*
1135 * We are the first waiter - try to look up the owner based on
1136 * @uval and attach to it.
1137 */
1138 return attach_to_pi_owner(uval, key, ps);
1139 }
1140
1141 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1142 {
1143 u32 uninitialized_var(curval);
1144
1145 if (unlikely(should_fail_futex(true)))
1146 return -EFAULT;
1147
1148 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1149 return -EFAULT;
1150
1151 /*If user space value changed, let the caller retry */
1152 return curval != uval ? -EAGAIN : 0;
1153 }
1154
1155 /**
1156 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1157 * @uaddr: the pi futex user address
1158 * @hb: the pi futex hash bucket
1159 * @key: the futex key associated with uaddr and hb
1160 * @ps: the pi_state pointer where we store the result of the
1161 * lookup
1162 * @task: the task to perform the atomic lock work for. This will
1163 * be "current" except in the case of requeue pi.
1164 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1165 *
1166 * Return:
1167 * 0 - ready to wait;
1168 * 1 - acquired the lock;
1169 * <0 - error
1170 *
1171 * The hb->lock and futex_key refs shall be held by the caller.
1172 */
1173 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1174 union futex_key *key,
1175 struct futex_pi_state **ps,
1176 struct task_struct *task, int set_waiters)
1177 {
1178 u32 uval, newval, vpid = task_pid_vnr(task);
1179 struct futex_q *match;
1180 int ret;
1181
1182 /*
1183 * Read the user space value first so we can validate a few
1184 * things before proceeding further.
1185 */
1186 if (get_futex_value_locked(&uval, uaddr))
1187 return -EFAULT;
1188
1189 if (unlikely(should_fail_futex(true)))
1190 return -EFAULT;
1191
1192 /*
1193 * Detect deadlocks.
1194 */
1195 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1196 return -EDEADLK;
1197
1198 if ((unlikely(should_fail_futex(true))))
1199 return -EDEADLK;
1200
1201 /*
1202 * Lookup existing state first. If it exists, try to attach to
1203 * its pi_state.
1204 */
1205 match = futex_top_waiter(hb, key);
1206 if (match)
1207 return attach_to_pi_state(uval, match->pi_state, ps);
1208
1209 /*
1210 * No waiter and user TID is 0. We are here because the
1211 * waiters or the owner died bit is set or called from
1212 * requeue_cmp_pi or for whatever reason something took the
1213 * syscall.
1214 */
1215 if (!(uval & FUTEX_TID_MASK)) {
1216 /*
1217 * We take over the futex. No other waiters and the user space
1218 * TID is 0. We preserve the owner died bit.
1219 */
1220 newval = uval & FUTEX_OWNER_DIED;
1221 newval |= vpid;
1222
1223 /* The futex requeue_pi code can enforce the waiters bit */
1224 if (set_waiters)
1225 newval |= FUTEX_WAITERS;
1226
1227 ret = lock_pi_update_atomic(uaddr, uval, newval);
1228 /* If the take over worked, return 1 */
1229 return ret < 0 ? ret : 1;
1230 }
1231
1232 /*
1233 * First waiter. Set the waiters bit before attaching ourself to
1234 * the owner. If owner tries to unlock, it will be forced into
1235 * the kernel and blocked on hb->lock.
1236 */
1237 newval = uval | FUTEX_WAITERS;
1238 ret = lock_pi_update_atomic(uaddr, uval, newval);
1239 if (ret)
1240 return ret;
1241 /*
1242 * If the update of the user space value succeeded, we try to
1243 * attach to the owner. If that fails, no harm done, we only
1244 * set the FUTEX_WAITERS bit in the user space variable.
1245 */
1246 return attach_to_pi_owner(uval, key, ps);
1247 }
1248
1249 /**
1250 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1251 * @q: The futex_q to unqueue
1252 *
1253 * The q->lock_ptr must not be NULL and must be held by the caller.
1254 */
1255 static void __unqueue_futex(struct futex_q *q)
1256 {
1257 struct futex_hash_bucket *hb;
1258
1259 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1260 || WARN_ON(plist_node_empty(&q->list)))
1261 return;
1262
1263 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1264 plist_del(&q->list, &hb->chain);
1265 hb_waiters_dec(hb);
1266 }
1267
1268 /*
1269 * The hash bucket lock must be held when this is called.
1270 * Afterwards, the futex_q must not be accessed. Callers
1271 * must ensure to later call wake_up_q() for the actual
1272 * wakeups to occur.
1273 */
1274 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1275 {
1276 struct task_struct *p = q->task;
1277
1278 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1279 return;
1280
1281 /*
1282 * Queue the task for later wakeup for after we've released
1283 * the hb->lock. wake_q_add() grabs reference to p.
1284 */
1285 wake_q_add(wake_q, p);
1286 __unqueue_futex(q);
1287 /*
1288 * The waiting task can free the futex_q as soon as
1289 * q->lock_ptr = NULL is written, without taking any locks. A
1290 * memory barrier is required here to prevent the following
1291 * store to lock_ptr from getting ahead of the plist_del.
1292 */
1293 smp_wmb();
1294 q->lock_ptr = NULL;
1295 }
1296
1297 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1298 struct futex_hash_bucket *hb)
1299 {
1300 struct task_struct *new_owner;
1301 struct futex_pi_state *pi_state = this->pi_state;
1302 u32 uninitialized_var(curval), newval;
1303 DEFINE_WAKE_Q(wake_q);
1304 bool deboost;
1305 int ret = 0;
1306
1307 if (!pi_state)
1308 return -EINVAL;
1309
1310 /*
1311 * If current does not own the pi_state then the futex is
1312 * inconsistent and user space fiddled with the futex value.
1313 */
1314 if (pi_state->owner != current)
1315 return -EINVAL;
1316
1317 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1318 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1319
1320 /*
1321 * It is possible that the next waiter (the one that brought
1322 * this owner to the kernel) timed out and is no longer
1323 * waiting on the lock.
1324 */
1325 if (!new_owner)
1326 new_owner = this->task;
1327
1328 /*
1329 * We pass it to the next owner. The WAITERS bit is always
1330 * kept enabled while there is PI state around. We cleanup the
1331 * owner died bit, because we are the owner.
1332 */
1333 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1334
1335 if (unlikely(should_fail_futex(true)))
1336 ret = -EFAULT;
1337
1338 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1339 ret = -EFAULT;
1340 } else if (curval != uval) {
1341 /*
1342 * If a unconditional UNLOCK_PI operation (user space did not
1343 * try the TID->0 transition) raced with a waiter setting the
1344 * FUTEX_WAITERS flag between get_user() and locking the hash
1345 * bucket lock, retry the operation.
1346 */
1347 if ((FUTEX_TID_MASK & curval) == uval)
1348 ret = -EAGAIN;
1349 else
1350 ret = -EINVAL;
1351 }
1352 if (ret) {
1353 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1354 return ret;
1355 }
1356
1357 raw_spin_lock(&pi_state->owner->pi_lock);
1358 WARN_ON(list_empty(&pi_state->list));
1359 list_del_init(&pi_state->list);
1360 raw_spin_unlock(&pi_state->owner->pi_lock);
1361
1362 raw_spin_lock(&new_owner->pi_lock);
1363 WARN_ON(!list_empty(&pi_state->list));
1364 list_add(&pi_state->list, &new_owner->pi_state_list);
1365 pi_state->owner = new_owner;
1366 raw_spin_unlock(&new_owner->pi_lock);
1367
1368 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1369
1370 deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1371
1372 /*
1373 * First unlock HB so the waiter does not spin on it once he got woken
1374 * up. Second wake up the waiter before the priority is adjusted. If we
1375 * deboost first (and lose our higher priority), then the task might get
1376 * scheduled away before the wake up can take place.
1377 */
1378 spin_unlock(&hb->lock);
1379 wake_up_q(&wake_q);
1380 if (deboost)
1381 rt_mutex_adjust_prio(current);
1382
1383 return 0;
1384 }
1385
1386 /*
1387 * Express the locking dependencies for lockdep:
1388 */
1389 static inline void
1390 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1391 {
1392 if (hb1 <= hb2) {
1393 spin_lock(&hb1->lock);
1394 if (hb1 < hb2)
1395 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1396 } else { /* hb1 > hb2 */
1397 spin_lock(&hb2->lock);
1398 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1399 }
1400 }
1401
1402 static inline void
1403 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1404 {
1405 spin_unlock(&hb1->lock);
1406 if (hb1 != hb2)
1407 spin_unlock(&hb2->lock);
1408 }
1409
1410 /*
1411 * Wake up waiters matching bitset queued on this futex (uaddr).
1412 */
1413 static int
1414 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1415 {
1416 struct futex_hash_bucket *hb;
1417 struct futex_q *this, *next;
1418 union futex_key key = FUTEX_KEY_INIT;
1419 int ret;
1420 DEFINE_WAKE_Q(wake_q);
1421
1422 if (!bitset)
1423 return -EINVAL;
1424
1425 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1426 if (unlikely(ret != 0))
1427 goto out;
1428
1429 hb = hash_futex(&key);
1430
1431 /* Make sure we really have tasks to wakeup */
1432 if (!hb_waiters_pending(hb))
1433 goto out_put_key;
1434
1435 spin_lock(&hb->lock);
1436
1437 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1438 if (match_futex (&this->key, &key)) {
1439 if (this->pi_state || this->rt_waiter) {
1440 ret = -EINVAL;
1441 break;
1442 }
1443
1444 /* Check if one of the bits is set in both bitsets */
1445 if (!(this->bitset & bitset))
1446 continue;
1447
1448 mark_wake_futex(&wake_q, this);
1449 if (++ret >= nr_wake)
1450 break;
1451 }
1452 }
1453
1454 spin_unlock(&hb->lock);
1455 wake_up_q(&wake_q);
1456 out_put_key:
1457 put_futex_key(&key);
1458 out:
1459 return ret;
1460 }
1461
1462 /*
1463 * Wake up all waiters hashed on the physical page that is mapped
1464 * to this virtual address:
1465 */
1466 static int
1467 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1468 int nr_wake, int nr_wake2, int op)
1469 {
1470 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1471 struct futex_hash_bucket *hb1, *hb2;
1472 struct futex_q *this, *next;
1473 int ret, op_ret;
1474 DEFINE_WAKE_Q(wake_q);
1475
1476 retry:
1477 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1478 if (unlikely(ret != 0))
1479 goto out;
1480 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1481 if (unlikely(ret != 0))
1482 goto out_put_key1;
1483
1484 hb1 = hash_futex(&key1);
1485 hb2 = hash_futex(&key2);
1486
1487 retry_private:
1488 double_lock_hb(hb1, hb2);
1489 op_ret = futex_atomic_op_inuser(op, uaddr2);
1490 if (unlikely(op_ret < 0)) {
1491
1492 double_unlock_hb(hb1, hb2);
1493
1494 #ifndef CONFIG_MMU
1495 /*
1496 * we don't get EFAULT from MMU faults if we don't have an MMU,
1497 * but we might get them from range checking
1498 */
1499 ret = op_ret;
1500 goto out_put_keys;
1501 #endif
1502
1503 if (unlikely(op_ret != -EFAULT)) {
1504 ret = op_ret;
1505 goto out_put_keys;
1506 }
1507
1508 ret = fault_in_user_writeable(uaddr2);
1509 if (ret)
1510 goto out_put_keys;
1511
1512 if (!(flags & FLAGS_SHARED))
1513 goto retry_private;
1514
1515 put_futex_key(&key2);
1516 put_futex_key(&key1);
1517 goto retry;
1518 }
1519
1520 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1521 if (match_futex (&this->key, &key1)) {
1522 if (this->pi_state || this->rt_waiter) {
1523 ret = -EINVAL;
1524 goto out_unlock;
1525 }
1526 mark_wake_futex(&wake_q, this);
1527 if (++ret >= nr_wake)
1528 break;
1529 }
1530 }
1531
1532 if (op_ret > 0) {
1533 op_ret = 0;
1534 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1535 if (match_futex (&this->key, &key2)) {
1536 if (this->pi_state || this->rt_waiter) {
1537 ret = -EINVAL;
1538 goto out_unlock;
1539 }
1540 mark_wake_futex(&wake_q, this);
1541 if (++op_ret >= nr_wake2)
1542 break;
1543 }
1544 }
1545 ret += op_ret;
1546 }
1547
1548 out_unlock:
1549 double_unlock_hb(hb1, hb2);
1550 wake_up_q(&wake_q);
1551 out_put_keys:
1552 put_futex_key(&key2);
1553 out_put_key1:
1554 put_futex_key(&key1);
1555 out:
1556 return ret;
1557 }
1558
1559 /**
1560 * requeue_futex() - Requeue a futex_q from one hb to another
1561 * @q: the futex_q to requeue
1562 * @hb1: the source hash_bucket
1563 * @hb2: the target hash_bucket
1564 * @key2: the new key for the requeued futex_q
1565 */
1566 static inline
1567 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1568 struct futex_hash_bucket *hb2, union futex_key *key2)
1569 {
1570
1571 /*
1572 * If key1 and key2 hash to the same bucket, no need to
1573 * requeue.
1574 */
1575 if (likely(&hb1->chain != &hb2->chain)) {
1576 plist_del(&q->list, &hb1->chain);
1577 hb_waiters_dec(hb1);
1578 hb_waiters_inc(hb2);
1579 plist_add(&q->list, &hb2->chain);
1580 q->lock_ptr = &hb2->lock;
1581 }
1582 get_futex_key_refs(key2);
1583 q->key = *key2;
1584 }
1585
1586 /**
1587 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1588 * @q: the futex_q
1589 * @key: the key of the requeue target futex
1590 * @hb: the hash_bucket of the requeue target futex
1591 *
1592 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1593 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1594 * to the requeue target futex so the waiter can detect the wakeup on the right
1595 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1596 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1597 * to protect access to the pi_state to fixup the owner later. Must be called
1598 * with both q->lock_ptr and hb->lock held.
1599 */
1600 static inline
1601 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1602 struct futex_hash_bucket *hb)
1603 {
1604 get_futex_key_refs(key);
1605 q->key = *key;
1606
1607 __unqueue_futex(q);
1608
1609 WARN_ON(!q->rt_waiter);
1610 q->rt_waiter = NULL;
1611
1612 q->lock_ptr = &hb->lock;
1613
1614 wake_up_state(q->task, TASK_NORMAL);
1615 }
1616
1617 /**
1618 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1619 * @pifutex: the user address of the to futex
1620 * @hb1: the from futex hash bucket, must be locked by the caller
1621 * @hb2: the to futex hash bucket, must be locked by the caller
1622 * @key1: the from futex key
1623 * @key2: the to futex key
1624 * @ps: address to store the pi_state pointer
1625 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1626 *
1627 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1628 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1629 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1630 * hb1 and hb2 must be held by the caller.
1631 *
1632 * Return:
1633 * 0 - failed to acquire the lock atomically;
1634 * >0 - acquired the lock, return value is vpid of the top_waiter
1635 * <0 - error
1636 */
1637 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1638 struct futex_hash_bucket *hb1,
1639 struct futex_hash_bucket *hb2,
1640 union futex_key *key1, union futex_key *key2,
1641 struct futex_pi_state **ps, int set_waiters)
1642 {
1643 struct futex_q *top_waiter = NULL;
1644 u32 curval;
1645 int ret, vpid;
1646
1647 if (get_futex_value_locked(&curval, pifutex))
1648 return -EFAULT;
1649
1650 if (unlikely(should_fail_futex(true)))
1651 return -EFAULT;
1652
1653 /*
1654 * Find the top_waiter and determine if there are additional waiters.
1655 * If the caller intends to requeue more than 1 waiter to pifutex,
1656 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1657 * as we have means to handle the possible fault. If not, don't set
1658 * the bit unecessarily as it will force the subsequent unlock to enter
1659 * the kernel.
1660 */
1661 top_waiter = futex_top_waiter(hb1, key1);
1662
1663 /* There are no waiters, nothing for us to do. */
1664 if (!top_waiter)
1665 return 0;
1666
1667 /* Ensure we requeue to the expected futex. */
1668 if (!match_futex(top_waiter->requeue_pi_key, key2))
1669 return -EINVAL;
1670
1671 /*
1672 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1673 * the contended case or if set_waiters is 1. The pi_state is returned
1674 * in ps in contended cases.
1675 */
1676 vpid = task_pid_vnr(top_waiter->task);
1677 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1678 set_waiters);
1679 if (ret == 1) {
1680 requeue_pi_wake_futex(top_waiter, key2, hb2);
1681 return vpid;
1682 }
1683 return ret;
1684 }
1685
1686 /**
1687 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1688 * @uaddr1: source futex user address
1689 * @flags: futex flags (FLAGS_SHARED, etc.)
1690 * @uaddr2: target futex user address
1691 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1692 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1693 * @cmpval: @uaddr1 expected value (or %NULL)
1694 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1695 * pi futex (pi to pi requeue is not supported)
1696 *
1697 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1698 * uaddr2 atomically on behalf of the top waiter.
1699 *
1700 * Return:
1701 * >=0 - on success, the number of tasks requeued or woken;
1702 * <0 - on error
1703 */
1704 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1705 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1706 u32 *cmpval, int requeue_pi)
1707 {
1708 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1709 int drop_count = 0, task_count = 0, ret;
1710 struct futex_pi_state *pi_state = NULL;
1711 struct futex_hash_bucket *hb1, *hb2;
1712 struct futex_q *this, *next;
1713 DEFINE_WAKE_Q(wake_q);
1714
1715 if (requeue_pi) {
1716 /*
1717 * Requeue PI only works on two distinct uaddrs. This
1718 * check is only valid for private futexes. See below.
1719 */
1720 if (uaddr1 == uaddr2)
1721 return -EINVAL;
1722
1723 /*
1724 * requeue_pi requires a pi_state, try to allocate it now
1725 * without any locks in case it fails.
1726 */
1727 if (refill_pi_state_cache())
1728 return -ENOMEM;
1729 /*
1730 * requeue_pi must wake as many tasks as it can, up to nr_wake
1731 * + nr_requeue, since it acquires the rt_mutex prior to
1732 * returning to userspace, so as to not leave the rt_mutex with
1733 * waiters and no owner. However, second and third wake-ups
1734 * cannot be predicted as they involve race conditions with the
1735 * first wake and a fault while looking up the pi_state. Both
1736 * pthread_cond_signal() and pthread_cond_broadcast() should
1737 * use nr_wake=1.
1738 */
1739 if (nr_wake != 1)
1740 return -EINVAL;
1741 }
1742
1743 retry:
1744 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1745 if (unlikely(ret != 0))
1746 goto out;
1747 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1748 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1749 if (unlikely(ret != 0))
1750 goto out_put_key1;
1751
1752 /*
1753 * The check above which compares uaddrs is not sufficient for
1754 * shared futexes. We need to compare the keys:
1755 */
1756 if (requeue_pi && match_futex(&key1, &key2)) {
1757 ret = -EINVAL;
1758 goto out_put_keys;
1759 }
1760
1761 hb1 = hash_futex(&key1);
1762 hb2 = hash_futex(&key2);
1763
1764 retry_private:
1765 hb_waiters_inc(hb2);
1766 double_lock_hb(hb1, hb2);
1767
1768 if (likely(cmpval != NULL)) {
1769 u32 curval;
1770
1771 ret = get_futex_value_locked(&curval, uaddr1);
1772
1773 if (unlikely(ret)) {
1774 double_unlock_hb(hb1, hb2);
1775 hb_waiters_dec(hb2);
1776
1777 ret = get_user(curval, uaddr1);
1778 if (ret)
1779 goto out_put_keys;
1780
1781 if (!(flags & FLAGS_SHARED))
1782 goto retry_private;
1783
1784 put_futex_key(&key2);
1785 put_futex_key(&key1);
1786 goto retry;
1787 }
1788 if (curval != *cmpval) {
1789 ret = -EAGAIN;
1790 goto out_unlock;
1791 }
1792 }
1793
1794 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1795 /*
1796 * Attempt to acquire uaddr2 and wake the top waiter. If we
1797 * intend to requeue waiters, force setting the FUTEX_WAITERS
1798 * bit. We force this here where we are able to easily handle
1799 * faults rather in the requeue loop below.
1800 */
1801 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1802 &key2, &pi_state, nr_requeue);
1803
1804 /*
1805 * At this point the top_waiter has either taken uaddr2 or is
1806 * waiting on it. If the former, then the pi_state will not
1807 * exist yet, look it up one more time to ensure we have a
1808 * reference to it. If the lock was taken, ret contains the
1809 * vpid of the top waiter task.
1810 * If the lock was not taken, we have pi_state and an initial
1811 * refcount on it. In case of an error we have nothing.
1812 */
1813 if (ret > 0) {
1814 WARN_ON(pi_state);
1815 drop_count++;
1816 task_count++;
1817 /*
1818 * If we acquired the lock, then the user space value
1819 * of uaddr2 should be vpid. It cannot be changed by
1820 * the top waiter as it is blocked on hb2 lock if it
1821 * tries to do so. If something fiddled with it behind
1822 * our back the pi state lookup might unearth it. So
1823 * we rather use the known value than rereading and
1824 * handing potential crap to lookup_pi_state.
1825 *
1826 * If that call succeeds then we have pi_state and an
1827 * initial refcount on it.
1828 */
1829 ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1830 }
1831
1832 switch (ret) {
1833 case 0:
1834 /* We hold a reference on the pi state. */
1835 break;
1836
1837 /* If the above failed, then pi_state is NULL */
1838 case -EFAULT:
1839 double_unlock_hb(hb1, hb2);
1840 hb_waiters_dec(hb2);
1841 put_futex_key(&key2);
1842 put_futex_key(&key1);
1843 ret = fault_in_user_writeable(uaddr2);
1844 if (!ret)
1845 goto retry;
1846 goto out;
1847 case -EAGAIN:
1848 /*
1849 * Two reasons for this:
1850 * - Owner is exiting and we just wait for the
1851 * exit to complete.
1852 * - The user space value changed.
1853 */
1854 double_unlock_hb(hb1, hb2);
1855 hb_waiters_dec(hb2);
1856 put_futex_key(&key2);
1857 put_futex_key(&key1);
1858 cond_resched();
1859 goto retry;
1860 default:
1861 goto out_unlock;
1862 }
1863 }
1864
1865 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1866 if (task_count - nr_wake >= nr_requeue)
1867 break;
1868
1869 if (!match_futex(&this->key, &key1))
1870 continue;
1871
1872 /*
1873 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1874 * be paired with each other and no other futex ops.
1875 *
1876 * We should never be requeueing a futex_q with a pi_state,
1877 * which is awaiting a futex_unlock_pi().
1878 */
1879 if ((requeue_pi && !this->rt_waiter) ||
1880 (!requeue_pi && this->rt_waiter) ||
1881 this->pi_state) {
1882 ret = -EINVAL;
1883 break;
1884 }
1885
1886 /*
1887 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1888 * lock, we already woke the top_waiter. If not, it will be
1889 * woken by futex_unlock_pi().
1890 */
1891 if (++task_count <= nr_wake && !requeue_pi) {
1892 mark_wake_futex(&wake_q, this);
1893 continue;
1894 }
1895
1896 /* Ensure we requeue to the expected futex for requeue_pi. */
1897 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1898 ret = -EINVAL;
1899 break;
1900 }
1901
1902 /*
1903 * Requeue nr_requeue waiters and possibly one more in the case
1904 * of requeue_pi if we couldn't acquire the lock atomically.
1905 */
1906 if (requeue_pi) {
1907 /*
1908 * Prepare the waiter to take the rt_mutex. Take a
1909 * refcount on the pi_state and store the pointer in
1910 * the futex_q object of the waiter.
1911 */
1912 atomic_inc(&pi_state->refcount);
1913 this->pi_state = pi_state;
1914 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1915 this->rt_waiter,
1916 this->task);
1917 if (ret == 1) {
1918 /*
1919 * We got the lock. We do neither drop the
1920 * refcount on pi_state nor clear
1921 * this->pi_state because the waiter needs the
1922 * pi_state for cleaning up the user space
1923 * value. It will drop the refcount after
1924 * doing so.
1925 */
1926 requeue_pi_wake_futex(this, &key2, hb2);
1927 drop_count++;
1928 continue;
1929 } else if (ret) {
1930 /*
1931 * rt_mutex_start_proxy_lock() detected a
1932 * potential deadlock when we tried to queue
1933 * that waiter. Drop the pi_state reference
1934 * which we took above and remove the pointer
1935 * to the state from the waiters futex_q
1936 * object.
1937 */
1938 this->pi_state = NULL;
1939 put_pi_state(pi_state);
1940 /*
1941 * We stop queueing more waiters and let user
1942 * space deal with the mess.
1943 */
1944 break;
1945 }
1946 }
1947 requeue_futex(this, hb1, hb2, &key2);
1948 drop_count++;
1949 }
1950
1951 /*
1952 * We took an extra initial reference to the pi_state either
1953 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1954 * need to drop it here again.
1955 */
1956 put_pi_state(pi_state);
1957
1958 out_unlock:
1959 double_unlock_hb(hb1, hb2);
1960 wake_up_q(&wake_q);
1961 hb_waiters_dec(hb2);
1962
1963 /*
1964 * drop_futex_key_refs() must be called outside the spinlocks. During
1965 * the requeue we moved futex_q's from the hash bucket at key1 to the
1966 * one at key2 and updated their key pointer. We no longer need to
1967 * hold the references to key1.
1968 */
1969 while (--drop_count >= 0)
1970 drop_futex_key_refs(&key1);
1971
1972 out_put_keys:
1973 put_futex_key(&key2);
1974 out_put_key1:
1975 put_futex_key(&key1);
1976 out:
1977 return ret ? ret : task_count;
1978 }
1979
1980 /* The key must be already stored in q->key. */
1981 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1982 __acquires(&hb->lock)
1983 {
1984 struct futex_hash_bucket *hb;
1985
1986 hb = hash_futex(&q->key);
1987
1988 /*
1989 * Increment the counter before taking the lock so that
1990 * a potential waker won't miss a to-be-slept task that is
1991 * waiting for the spinlock. This is safe as all queue_lock()
1992 * users end up calling queue_me(). Similarly, for housekeeping,
1993 * decrement the counter at queue_unlock() when some error has
1994 * occurred and we don't end up adding the task to the list.
1995 */
1996 hb_waiters_inc(hb);
1997
1998 q->lock_ptr = &hb->lock;
1999
2000 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2001 return hb;
2002 }
2003
2004 static inline void
2005 queue_unlock(struct futex_hash_bucket *hb)
2006 __releases(&hb->lock)
2007 {
2008 spin_unlock(&hb->lock);
2009 hb_waiters_dec(hb);
2010 }
2011
2012 /**
2013 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2014 * @q: The futex_q to enqueue
2015 * @hb: The destination hash bucket
2016 *
2017 * The hb->lock must be held by the caller, and is released here. A call to
2018 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2019 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2020 * or nothing if the unqueue is done as part of the wake process and the unqueue
2021 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2022 * an example).
2023 */
2024 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2025 __releases(&hb->lock)
2026 {
2027 int prio;
2028
2029 /*
2030 * The priority used to register this element is
2031 * - either the real thread-priority for the real-time threads
2032 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2033 * - or MAX_RT_PRIO for non-RT threads.
2034 * Thus, all RT-threads are woken first in priority order, and
2035 * the others are woken last, in FIFO order.
2036 */
2037 prio = min(current->normal_prio, MAX_RT_PRIO);
2038
2039 plist_node_init(&q->list, prio);
2040 plist_add(&q->list, &hb->chain);
2041 q->task = current;
2042 spin_unlock(&hb->lock);
2043 }
2044
2045 /**
2046 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2047 * @q: The futex_q to unqueue
2048 *
2049 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2050 * be paired with exactly one earlier call to queue_me().
2051 *
2052 * Return:
2053 * 1 - if the futex_q was still queued (and we removed unqueued it);
2054 * 0 - if the futex_q was already removed by the waking thread
2055 */
2056 static int unqueue_me(struct futex_q *q)
2057 {
2058 spinlock_t *lock_ptr;
2059 int ret = 0;
2060
2061 /* In the common case we don't take the spinlock, which is nice. */
2062 retry:
2063 /*
2064 * q->lock_ptr can change between this read and the following spin_lock.
2065 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2066 * optimizing lock_ptr out of the logic below.
2067 */
2068 lock_ptr = READ_ONCE(q->lock_ptr);
2069 if (lock_ptr != NULL) {
2070 spin_lock(lock_ptr);
2071 /*
2072 * q->lock_ptr can change between reading it and
2073 * spin_lock(), causing us to take the wrong lock. This
2074 * corrects the race condition.
2075 *
2076 * Reasoning goes like this: if we have the wrong lock,
2077 * q->lock_ptr must have changed (maybe several times)
2078 * between reading it and the spin_lock(). It can
2079 * change again after the spin_lock() but only if it was
2080 * already changed before the spin_lock(). It cannot,
2081 * however, change back to the original value. Therefore
2082 * we can detect whether we acquired the correct lock.
2083 */
2084 if (unlikely(lock_ptr != q->lock_ptr)) {
2085 spin_unlock(lock_ptr);
2086 goto retry;
2087 }
2088 __unqueue_futex(q);
2089
2090 BUG_ON(q->pi_state);
2091
2092 spin_unlock(lock_ptr);
2093 ret = 1;
2094 }
2095
2096 drop_futex_key_refs(&q->key);
2097 return ret;
2098 }
2099
2100 /*
2101 * PI futexes can not be requeued and must remove themself from the
2102 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2103 * and dropped here.
2104 */
2105 static void unqueue_me_pi(struct futex_q *q)
2106 __releases(q->lock_ptr)
2107 {
2108 __unqueue_futex(q);
2109
2110 BUG_ON(!q->pi_state);
2111 put_pi_state(q->pi_state);
2112 q->pi_state = NULL;
2113
2114 spin_unlock(q->lock_ptr);
2115 }
2116
2117 /*
2118 * Fixup the pi_state owner with the new owner.
2119 *
2120 * Must be called with hash bucket lock held and mm->sem held for non
2121 * private futexes.
2122 */
2123 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2124 struct task_struct *newowner)
2125 {
2126 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2127 struct futex_pi_state *pi_state = q->pi_state;
2128 struct task_struct *oldowner = pi_state->owner;
2129 u32 uval, uninitialized_var(curval), newval;
2130 int ret;
2131
2132 /* Owner died? */
2133 if (!pi_state->owner)
2134 newtid |= FUTEX_OWNER_DIED;
2135
2136 /*
2137 * We are here either because we stole the rtmutex from the
2138 * previous highest priority waiter or we are the highest priority
2139 * waiter but failed to get the rtmutex the first time.
2140 * We have to replace the newowner TID in the user space variable.
2141 * This must be atomic as we have to preserve the owner died bit here.
2142 *
2143 * Note: We write the user space value _before_ changing the pi_state
2144 * because we can fault here. Imagine swapped out pages or a fork
2145 * that marked all the anonymous memory readonly for cow.
2146 *
2147 * Modifying pi_state _before_ the user space value would
2148 * leave the pi_state in an inconsistent state when we fault
2149 * here, because we need to drop the hash bucket lock to
2150 * handle the fault. This might be observed in the PID check
2151 * in lookup_pi_state.
2152 */
2153 retry:
2154 if (get_futex_value_locked(&uval, uaddr))
2155 goto handle_fault;
2156
2157 while (1) {
2158 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2159
2160 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2161 goto handle_fault;
2162 if (curval == uval)
2163 break;
2164 uval = curval;
2165 }
2166
2167 /*
2168 * We fixed up user space. Now we need to fix the pi_state
2169 * itself.
2170 */
2171 if (pi_state->owner != NULL) {
2172 raw_spin_lock_irq(&pi_state->owner->pi_lock);
2173 WARN_ON(list_empty(&pi_state->list));
2174 list_del_init(&pi_state->list);
2175 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2176 }
2177
2178 pi_state->owner = newowner;
2179
2180 raw_spin_lock_irq(&newowner->pi_lock);
2181 WARN_ON(!list_empty(&pi_state->list));
2182 list_add(&pi_state->list, &newowner->pi_state_list);
2183 raw_spin_unlock_irq(&newowner->pi_lock);
2184 return 0;
2185
2186 /*
2187 * To handle the page fault we need to drop the hash bucket
2188 * lock here. That gives the other task (either the highest priority
2189 * waiter itself or the task which stole the rtmutex) the
2190 * chance to try the fixup of the pi_state. So once we are
2191 * back from handling the fault we need to check the pi_state
2192 * after reacquiring the hash bucket lock and before trying to
2193 * do another fixup. When the fixup has been done already we
2194 * simply return.
2195 */
2196 handle_fault:
2197 spin_unlock(q->lock_ptr);
2198
2199 ret = fault_in_user_writeable(uaddr);
2200
2201 spin_lock(q->lock_ptr);
2202
2203 /*
2204 * Check if someone else fixed it for us:
2205 */
2206 if (pi_state->owner != oldowner)
2207 return 0;
2208
2209 if (ret)
2210 return ret;
2211
2212 goto retry;
2213 }
2214
2215 static long futex_wait_restart(struct restart_block *restart);
2216
2217 /**
2218 * fixup_owner() - Post lock pi_state and corner case management
2219 * @uaddr: user address of the futex
2220 * @q: futex_q (contains pi_state and access to the rt_mutex)
2221 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2222 *
2223 * After attempting to lock an rt_mutex, this function is called to cleanup
2224 * the pi_state owner as well as handle race conditions that may allow us to
2225 * acquire the lock. Must be called with the hb lock held.
2226 *
2227 * Return:
2228 * 1 - success, lock taken;
2229 * 0 - success, lock not taken;
2230 * <0 - on error (-EFAULT)
2231 */
2232 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2233 {
2234 struct task_struct *owner;
2235 int ret = 0;
2236
2237 if (locked) {
2238 /*
2239 * Got the lock. We might not be the anticipated owner if we
2240 * did a lock-steal - fix up the PI-state in that case:
2241 */
2242 if (q->pi_state->owner != current)
2243 ret = fixup_pi_state_owner(uaddr, q, current);
2244 goto out;
2245 }
2246
2247 /*
2248 * Catch the rare case, where the lock was released when we were on the
2249 * way back before we locked the hash bucket.
2250 */
2251 if (q->pi_state->owner == current) {
2252 /*
2253 * Try to get the rt_mutex now. This might fail as some other
2254 * task acquired the rt_mutex after we removed ourself from the
2255 * rt_mutex waiters list.
2256 */
2257 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2258 locked = 1;
2259 goto out;
2260 }
2261
2262 /*
2263 * pi_state is incorrect, some other task did a lock steal and
2264 * we returned due to timeout or signal without taking the
2265 * rt_mutex. Too late.
2266 */
2267 raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2268 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2269 if (!owner)
2270 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2271 raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2272 ret = fixup_pi_state_owner(uaddr, q, owner);
2273 goto out;
2274 }
2275
2276 /*
2277 * Paranoia check. If we did not take the lock, then we should not be
2278 * the owner of the rt_mutex.
2279 */
2280 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2281 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2282 "pi-state %p\n", ret,
2283 q->pi_state->pi_mutex.owner,
2284 q->pi_state->owner);
2285
2286 out:
2287 return ret ? ret : locked;
2288 }
2289
2290 /**
2291 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2292 * @hb: the futex hash bucket, must be locked by the caller
2293 * @q: the futex_q to queue up on
2294 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2295 */
2296 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2297 struct hrtimer_sleeper *timeout)
2298 {
2299 /*
2300 * The task state is guaranteed to be set before another task can
2301 * wake it. set_current_state() is implemented using smp_store_mb() and
2302 * queue_me() calls spin_unlock() upon completion, both serializing
2303 * access to the hash list and forcing another memory barrier.
2304 */
2305 set_current_state(TASK_INTERRUPTIBLE);
2306 queue_me(q, hb);
2307
2308 /* Arm the timer */
2309 if (timeout)
2310 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2311
2312 /*
2313 * If we have been removed from the hash list, then another task
2314 * has tried to wake us, and we can skip the call to schedule().
2315 */
2316 if (likely(!plist_node_empty(&q->list))) {
2317 /*
2318 * If the timer has already expired, current will already be
2319 * flagged for rescheduling. Only call schedule if there
2320 * is no timeout, or if it has yet to expire.
2321 */
2322 if (!timeout || timeout->task)
2323 freezable_schedule();
2324 }
2325 __set_current_state(TASK_RUNNING);
2326 }
2327
2328 /**
2329 * futex_wait_setup() - Prepare to wait on a futex
2330 * @uaddr: the futex userspace address
2331 * @val: the expected value
2332 * @flags: futex flags (FLAGS_SHARED, etc.)
2333 * @q: the associated futex_q
2334 * @hb: storage for hash_bucket pointer to be returned to caller
2335 *
2336 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2337 * compare it with the expected value. Handle atomic faults internally.
2338 * Return with the hb lock held and a q.key reference on success, and unlocked
2339 * with no q.key reference on failure.
2340 *
2341 * Return:
2342 * 0 - uaddr contains val and hb has been locked;
2343 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2344 */
2345 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2346 struct futex_q *q, struct futex_hash_bucket **hb)
2347 {
2348 u32 uval;
2349 int ret;
2350
2351 /*
2352 * Access the page AFTER the hash-bucket is locked.
2353 * Order is important:
2354 *
2355 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2356 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2357 *
2358 * The basic logical guarantee of a futex is that it blocks ONLY
2359 * if cond(var) is known to be true at the time of blocking, for
2360 * any cond. If we locked the hash-bucket after testing *uaddr, that
2361 * would open a race condition where we could block indefinitely with
2362 * cond(var) false, which would violate the guarantee.
2363 *
2364 * On the other hand, we insert q and release the hash-bucket only
2365 * after testing *uaddr. This guarantees that futex_wait() will NOT
2366 * absorb a wakeup if *uaddr does not match the desired values
2367 * while the syscall executes.
2368 */
2369 retry:
2370 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2371 if (unlikely(ret != 0))
2372 return ret;
2373
2374 retry_private:
2375 *hb = queue_lock(q);
2376
2377 ret = get_futex_value_locked(&uval, uaddr);
2378
2379 if (ret) {
2380 queue_unlock(*hb);
2381
2382 ret = get_user(uval, uaddr);
2383 if (ret)
2384 goto out;
2385
2386 if (!(flags & FLAGS_SHARED))
2387 goto retry_private;
2388
2389 put_futex_key(&q->key);
2390 goto retry;
2391 }
2392
2393 if (uval != val) {
2394 queue_unlock(*hb);
2395 ret = -EWOULDBLOCK;
2396 }
2397
2398 out:
2399 if (ret)
2400 put_futex_key(&q->key);
2401 return ret;
2402 }
2403
2404 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2405 ktime_t *abs_time, u32 bitset)
2406 {
2407 struct hrtimer_sleeper timeout, *to = NULL;
2408 struct restart_block *restart;
2409 struct futex_hash_bucket *hb;
2410 struct futex_q q = futex_q_init;
2411 int ret;
2412
2413 if (!bitset)
2414 return -EINVAL;
2415 q.bitset = bitset;
2416
2417 if (abs_time) {
2418 to = &timeout;
2419
2420 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2421 CLOCK_REALTIME : CLOCK_MONOTONIC,
2422 HRTIMER_MODE_ABS);
2423 hrtimer_init_sleeper(to, current);
2424 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2425 current->timer_slack_ns);
2426 }
2427
2428 retry:
2429 /*
2430 * Prepare to wait on uaddr. On success, holds hb lock and increments
2431 * q.key refs.
2432 */
2433 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2434 if (ret)
2435 goto out;
2436
2437 /* queue_me and wait for wakeup, timeout, or a signal. */
2438 futex_wait_queue_me(hb, &q, to);
2439
2440 /* If we were woken (and unqueued), we succeeded, whatever. */
2441 ret = 0;
2442 /* unqueue_me() drops q.key ref */
2443 if (!unqueue_me(&q))
2444 goto out;
2445 ret = -ETIMEDOUT;
2446 if (to && !to->task)
2447 goto out;
2448
2449 /*
2450 * We expect signal_pending(current), but we might be the
2451 * victim of a spurious wakeup as well.
2452 */
2453 if (!signal_pending(current))
2454 goto retry;
2455
2456 ret = -ERESTARTSYS;
2457 if (!abs_time)
2458 goto out;
2459
2460 restart = &current->restart_block;
2461 restart->fn = futex_wait_restart;
2462 restart->futex.uaddr = uaddr;
2463 restart->futex.val = val;
2464 restart->futex.time = *abs_time;
2465 restart->futex.bitset = bitset;
2466 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2467
2468 ret = -ERESTART_RESTARTBLOCK;
2469
2470 out:
2471 if (to) {
2472 hrtimer_cancel(&to->timer);
2473 destroy_hrtimer_on_stack(&to->timer);
2474 }
2475 return ret;
2476 }
2477
2478
2479 static long futex_wait_restart(struct restart_block *restart)
2480 {
2481 u32 __user *uaddr = restart->futex.uaddr;
2482 ktime_t t, *tp = NULL;
2483
2484 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2485 t = restart->futex.time;
2486 tp = &t;
2487 }
2488 restart->fn = do_no_restart_syscall;
2489
2490 return (long)futex_wait(uaddr, restart->futex.flags,
2491 restart->futex.val, tp, restart->futex.bitset);
2492 }
2493
2494
2495 /*
2496 * Userspace tried a 0 -> TID atomic transition of the futex value
2497 * and failed. The kernel side here does the whole locking operation:
2498 * if there are waiters then it will block as a consequence of relying
2499 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2500 * a 0 value of the futex too.).
2501 *
2502 * Also serves as futex trylock_pi()'ing, and due semantics.
2503 */
2504 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2505 ktime_t *time, int trylock)
2506 {
2507 struct hrtimer_sleeper timeout, *to = NULL;
2508 struct futex_hash_bucket *hb;
2509 struct futex_q q = futex_q_init;
2510 int res, ret;
2511
2512 if (refill_pi_state_cache())
2513 return -ENOMEM;
2514
2515 if (time) {
2516 to = &timeout;
2517 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2518 HRTIMER_MODE_ABS);
2519 hrtimer_init_sleeper(to, current);
2520 hrtimer_set_expires(&to->timer, *time);
2521 }
2522
2523 retry:
2524 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2525 if (unlikely(ret != 0))
2526 goto out;
2527
2528 retry_private:
2529 hb = queue_lock(&q);
2530
2531 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2532 if (unlikely(ret)) {
2533 /*
2534 * Atomic work succeeded and we got the lock,
2535 * or failed. Either way, we do _not_ block.
2536 */
2537 switch (ret) {
2538 case 1:
2539 /* We got the lock. */
2540 ret = 0;
2541 goto out_unlock_put_key;
2542 case -EFAULT:
2543 goto uaddr_faulted;
2544 case -EAGAIN:
2545 /*
2546 * Two reasons for this:
2547 * - Task is exiting and we just wait for the
2548 * exit to complete.
2549 * - The user space value changed.
2550 */
2551 queue_unlock(hb);
2552 put_futex_key(&q.key);
2553 cond_resched();
2554 goto retry;
2555 default:
2556 goto out_unlock_put_key;
2557 }
2558 }
2559
2560 /*
2561 * Only actually queue now that the atomic ops are done:
2562 */
2563 queue_me(&q, hb);
2564
2565 WARN_ON(!q.pi_state);
2566 /*
2567 * Block on the PI mutex:
2568 */
2569 if (!trylock) {
2570 ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2571 } else {
2572 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2573 /* Fixup the trylock return value: */
2574 ret = ret ? 0 : -EWOULDBLOCK;
2575 }
2576
2577 spin_lock(q.lock_ptr);
2578 /*
2579 * Fixup the pi_state owner and possibly acquire the lock if we
2580 * haven't already.
2581 */
2582 res = fixup_owner(uaddr, &q, !ret);
2583 /*
2584 * If fixup_owner() returned an error, proprogate that. If it acquired
2585 * the lock, clear our -ETIMEDOUT or -EINTR.
2586 */
2587 if (res)
2588 ret = (res < 0) ? res : 0;
2589
2590 /*
2591 * If fixup_owner() faulted and was unable to handle the fault, unlock
2592 * it and return the fault to userspace.
2593 */
2594 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2595 rt_mutex_unlock(&q.pi_state->pi_mutex);
2596
2597 /* Unqueue and drop the lock */
2598 unqueue_me_pi(&q);
2599
2600 goto out_put_key;
2601
2602 out_unlock_put_key:
2603 queue_unlock(hb);
2604
2605 out_put_key:
2606 put_futex_key(&q.key);
2607 out:
2608 if (to)
2609 destroy_hrtimer_on_stack(&to->timer);
2610 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2611
2612 uaddr_faulted:
2613 queue_unlock(hb);
2614
2615 ret = fault_in_user_writeable(uaddr);
2616 if (ret)
2617 goto out_put_key;
2618
2619 if (!(flags & FLAGS_SHARED))
2620 goto retry_private;
2621
2622 put_futex_key(&q.key);
2623 goto retry;
2624 }
2625
2626 /*
2627 * Userspace attempted a TID -> 0 atomic transition, and failed.
2628 * This is the in-kernel slowpath: we look up the PI state (if any),
2629 * and do the rt-mutex unlock.
2630 */
2631 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2632 {
2633 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2634 union futex_key key = FUTEX_KEY_INIT;
2635 struct futex_hash_bucket *hb;
2636 struct futex_q *match;
2637 int ret;
2638
2639 retry:
2640 if (get_user(uval, uaddr))
2641 return -EFAULT;
2642 /*
2643 * We release only a lock we actually own:
2644 */
2645 if ((uval & FUTEX_TID_MASK) != vpid)
2646 return -EPERM;
2647
2648 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2649 if (ret)
2650 return ret;
2651
2652 hb = hash_futex(&key);
2653 spin_lock(&hb->lock);
2654
2655 /*
2656 * Check waiters first. We do not trust user space values at
2657 * all and we at least want to know if user space fiddled
2658 * with the futex value instead of blindly unlocking.
2659 */
2660 match = futex_top_waiter(hb, &key);
2661 if (match) {
2662 ret = wake_futex_pi(uaddr, uval, match, hb);
2663 /*
2664 * In case of success wake_futex_pi dropped the hash
2665 * bucket lock.
2666 */
2667 if (!ret)
2668 goto out_putkey;
2669 /*
2670 * The atomic access to the futex value generated a
2671 * pagefault, so retry the user-access and the wakeup:
2672 */
2673 if (ret == -EFAULT)
2674 goto pi_faulted;
2675 /*
2676 * A unconditional UNLOCK_PI op raced against a waiter
2677 * setting the FUTEX_WAITERS bit. Try again.
2678 */
2679 if (ret == -EAGAIN) {
2680 spin_unlock(&hb->lock);
2681 put_futex_key(&key);
2682 goto retry;
2683 }
2684 /*
2685 * wake_futex_pi has detected invalid state. Tell user
2686 * space.
2687 */
2688 goto out_unlock;
2689 }
2690
2691 /*
2692 * We have no kernel internal state, i.e. no waiters in the
2693 * kernel. Waiters which are about to queue themselves are stuck
2694 * on hb->lock. So we can safely ignore them. We do neither
2695 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2696 * owner.
2697 */
2698 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
2699 goto pi_faulted;
2700
2701 /*
2702 * If uval has changed, let user space handle it.
2703 */
2704 ret = (curval == uval) ? 0 : -EAGAIN;
2705
2706 out_unlock:
2707 spin_unlock(&hb->lock);
2708 out_putkey:
2709 put_futex_key(&key);
2710 return ret;
2711
2712 pi_faulted:
2713 spin_unlock(&hb->lock);
2714 put_futex_key(&key);
2715
2716 ret = fault_in_user_writeable(uaddr);
2717 if (!ret)
2718 goto retry;
2719
2720 return ret;
2721 }
2722
2723 /**
2724 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2725 * @hb: the hash_bucket futex_q was original enqueued on
2726 * @q: the futex_q woken while waiting to be requeued
2727 * @key2: the futex_key of the requeue target futex
2728 * @timeout: the timeout associated with the wait (NULL if none)
2729 *
2730 * Detect if the task was woken on the initial futex as opposed to the requeue
2731 * target futex. If so, determine if it was a timeout or a signal that caused
2732 * the wakeup and return the appropriate error code to the caller. Must be
2733 * called with the hb lock held.
2734 *
2735 * Return:
2736 * 0 = no early wakeup detected;
2737 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2738 */
2739 static inline
2740 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2741 struct futex_q *q, union futex_key *key2,
2742 struct hrtimer_sleeper *timeout)
2743 {
2744 int ret = 0;
2745
2746 /*
2747 * With the hb lock held, we avoid races while we process the wakeup.
2748 * We only need to hold hb (and not hb2) to ensure atomicity as the
2749 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2750 * It can't be requeued from uaddr2 to something else since we don't
2751 * support a PI aware source futex for requeue.
2752 */
2753 if (!match_futex(&q->key, key2)) {
2754 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2755 /*
2756 * We were woken prior to requeue by a timeout or a signal.
2757 * Unqueue the futex_q and determine which it was.
2758 */
2759 plist_del(&q->list, &hb->chain);
2760 hb_waiters_dec(hb);
2761
2762 /* Handle spurious wakeups gracefully */
2763 ret = -EWOULDBLOCK;
2764 if (timeout && !timeout->task)
2765 ret = -ETIMEDOUT;
2766 else if (signal_pending(current))
2767 ret = -ERESTARTNOINTR;
2768 }
2769 return ret;
2770 }
2771
2772 /**
2773 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2774 * @uaddr: the futex we initially wait on (non-pi)
2775 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2776 * the same type, no requeueing from private to shared, etc.
2777 * @val: the expected value of uaddr
2778 * @abs_time: absolute timeout
2779 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2780 * @uaddr2: the pi futex we will take prior to returning to user-space
2781 *
2782 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2783 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2784 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2785 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2786 * without one, the pi logic would not know which task to boost/deboost, if
2787 * there was a need to.
2788 *
2789 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2790 * via the following--
2791 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2792 * 2) wakeup on uaddr2 after a requeue
2793 * 3) signal
2794 * 4) timeout
2795 *
2796 * If 3, cleanup and return -ERESTARTNOINTR.
2797 *
2798 * If 2, we may then block on trying to take the rt_mutex and return via:
2799 * 5) successful lock
2800 * 6) signal
2801 * 7) timeout
2802 * 8) other lock acquisition failure
2803 *
2804 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2805 *
2806 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2807 *
2808 * Return:
2809 * 0 - On success;
2810 * <0 - On error
2811 */
2812 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2813 u32 val, ktime_t *abs_time, u32 bitset,
2814 u32 __user *uaddr2)
2815 {
2816 struct hrtimer_sleeper timeout, *to = NULL;
2817 struct rt_mutex_waiter rt_waiter;
2818 struct rt_mutex *pi_mutex = NULL;
2819 struct futex_hash_bucket *hb;
2820 union futex_key key2 = FUTEX_KEY_INIT;
2821 struct futex_q q = futex_q_init;
2822 int res, ret;
2823
2824 if (uaddr == uaddr2)
2825 return -EINVAL;
2826
2827 if (!bitset)
2828 return -EINVAL;
2829
2830 if (abs_time) {
2831 to = &timeout;
2832 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2833 CLOCK_REALTIME : CLOCK_MONOTONIC,
2834 HRTIMER_MODE_ABS);
2835 hrtimer_init_sleeper(to, current);
2836 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2837 current->timer_slack_ns);
2838 }
2839
2840 /*
2841 * The waiter is allocated on our stack, manipulated by the requeue
2842 * code while we sleep on uaddr.
2843 */
2844 debug_rt_mutex_init_waiter(&rt_waiter);
2845 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2846 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2847 rt_waiter.task = NULL;
2848
2849 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2850 if (unlikely(ret != 0))
2851 goto out;
2852
2853 q.bitset = bitset;
2854 q.rt_waiter = &rt_waiter;
2855 q.requeue_pi_key = &key2;
2856
2857 /*
2858 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2859 * count.
2860 */
2861 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2862 if (ret)
2863 goto out_key2;
2864
2865 /*
2866 * The check above which compares uaddrs is not sufficient for
2867 * shared futexes. We need to compare the keys:
2868 */
2869 if (match_futex(&q.key, &key2)) {
2870 queue_unlock(hb);
2871 ret = -EINVAL;
2872 goto out_put_keys;
2873 }
2874
2875 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2876 futex_wait_queue_me(hb, &q, to);
2877
2878 spin_lock(&hb->lock);
2879 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2880 spin_unlock(&hb->lock);
2881 if (ret)
2882 goto out_put_keys;
2883
2884 /*
2885 * In order for us to be here, we know our q.key == key2, and since
2886 * we took the hb->lock above, we also know that futex_requeue() has
2887 * completed and we no longer have to concern ourselves with a wakeup
2888 * race with the atomic proxy lock acquisition by the requeue code. The
2889 * futex_requeue dropped our key1 reference and incremented our key2
2890 * reference count.
2891 */
2892
2893 /* Check if the requeue code acquired the second futex for us. */
2894 if (!q.rt_waiter) {
2895 /*
2896 * Got the lock. We might not be the anticipated owner if we
2897 * did a lock-steal - fix up the PI-state in that case.
2898 */
2899 if (q.pi_state && (q.pi_state->owner != current)) {
2900 spin_lock(q.lock_ptr);
2901 ret = fixup_pi_state_owner(uaddr2, &q, current);
2902 /*
2903 * Drop the reference to the pi state which
2904 * the requeue_pi() code acquired for us.
2905 */
2906 put_pi_state(q.pi_state);
2907 spin_unlock(q.lock_ptr);
2908 }
2909 } else {
2910 /*
2911 * We have been woken up by futex_unlock_pi(), a timeout, or a
2912 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2913 * the pi_state.
2914 */
2915 WARN_ON(!q.pi_state);
2916 pi_mutex = &q.pi_state->pi_mutex;
2917 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2918 debug_rt_mutex_free_waiter(&rt_waiter);
2919
2920 spin_lock(q.lock_ptr);
2921 /*
2922 * Fixup the pi_state owner and possibly acquire the lock if we
2923 * haven't already.
2924 */
2925 res = fixup_owner(uaddr2, &q, !ret);
2926 /*
2927 * If fixup_owner() returned an error, proprogate that. If it
2928 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2929 */
2930 if (res)
2931 ret = (res < 0) ? res : 0;
2932
2933 /* Unqueue and drop the lock. */
2934 unqueue_me_pi(&q);
2935 }
2936
2937 /*
2938 * If fixup_pi_state_owner() faulted and was unable to handle the
2939 * fault, unlock the rt_mutex and return the fault to userspace.
2940 */
2941 if (ret == -EFAULT) {
2942 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2943 rt_mutex_unlock(pi_mutex);
2944 } else if (ret == -EINTR) {
2945 /*
2946 * We've already been requeued, but cannot restart by calling
2947 * futex_lock_pi() directly. We could restart this syscall, but
2948 * it would detect that the user space "val" changed and return
2949 * -EWOULDBLOCK. Save the overhead of the restart and return
2950 * -EWOULDBLOCK directly.
2951 */
2952 ret = -EWOULDBLOCK;
2953 }
2954
2955 out_put_keys:
2956 put_futex_key(&q.key);
2957 out_key2:
2958 put_futex_key(&key2);
2959
2960 out:
2961 if (to) {
2962 hrtimer_cancel(&to->timer);
2963 destroy_hrtimer_on_stack(&to->timer);
2964 }
2965 return ret;
2966 }
2967
2968 /*
2969 * Support for robust futexes: the kernel cleans up held futexes at
2970 * thread exit time.
2971 *
2972 * Implementation: user-space maintains a per-thread list of locks it
2973 * is holding. Upon do_exit(), the kernel carefully walks this list,
2974 * and marks all locks that are owned by this thread with the
2975 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2976 * always manipulated with the lock held, so the list is private and
2977 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2978 * field, to allow the kernel to clean up if the thread dies after
2979 * acquiring the lock, but just before it could have added itself to
2980 * the list. There can only be one such pending lock.
2981 */
2982
2983 /**
2984 * sys_set_robust_list() - Set the robust-futex list head of a task
2985 * @head: pointer to the list-head
2986 * @len: length of the list-head, as userspace expects
2987 */
2988 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2989 size_t, len)
2990 {
2991 if (!futex_cmpxchg_enabled)
2992 return -ENOSYS;
2993 /*
2994 * The kernel knows only one size for now:
2995 */
2996 if (unlikely(len != sizeof(*head)))
2997 return -EINVAL;
2998
2999 current->robust_list = head;
3000
3001 return 0;
3002 }
3003
3004 /**
3005 * sys_get_robust_list() - Get the robust-futex list head of a task
3006 * @pid: pid of the process [zero for current task]
3007 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3008 * @len_ptr: pointer to a length field, the kernel fills in the header size
3009 */
3010 SYSCALL_DEFINE3(get_robust_list, int, pid,
3011 struct robust_list_head __user * __user *, head_ptr,
3012 size_t __user *, len_ptr)
3013 {
3014 struct robust_list_head __user *head;
3015 unsigned long ret;
3016 struct task_struct *p;
3017
3018 if (!futex_cmpxchg_enabled)
3019 return -ENOSYS;
3020
3021 rcu_read_lock();
3022
3023 ret = -ESRCH;
3024 if (!pid)
3025 p = current;
3026 else {
3027 p = find_task_by_vpid(pid);
3028 if (!p)
3029 goto err_unlock;
3030 }
3031
3032 ret = -EPERM;
3033 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3034 goto err_unlock;
3035
3036 head = p->robust_list;
3037 rcu_read_unlock();
3038
3039 if (put_user(sizeof(*head), len_ptr))
3040 return -EFAULT;
3041 return put_user(head, head_ptr);
3042
3043 err_unlock:
3044 rcu_read_unlock();
3045
3046 return ret;
3047 }
3048
3049 /*
3050 * Process a futex-list entry, check whether it's owned by the
3051 * dying task, and do notification if so:
3052 */
3053 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3054 {
3055 u32 uval, uninitialized_var(nval), mval;
3056
3057 retry:
3058 if (get_user(uval, uaddr))
3059 return -1;
3060
3061 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3062 /*
3063 * Ok, this dying thread is truly holding a futex
3064 * of interest. Set the OWNER_DIED bit atomically
3065 * via cmpxchg, and if the value had FUTEX_WAITERS
3066 * set, wake up a waiter (if any). (We have to do a
3067 * futex_wake() even if OWNER_DIED is already set -
3068 * to handle the rare but possible case of recursive
3069 * thread-death.) The rest of the cleanup is done in
3070 * userspace.
3071 */
3072 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3073 /*
3074 * We are not holding a lock here, but we want to have
3075 * the pagefault_disable/enable() protection because
3076 * we want to handle the fault gracefully. If the
3077 * access fails we try to fault in the futex with R/W
3078 * verification via get_user_pages. get_user() above
3079 * does not guarantee R/W access. If that fails we
3080 * give up and leave the futex locked.
3081 */
3082 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3083 if (fault_in_user_writeable(uaddr))
3084 return -1;
3085 goto retry;
3086 }
3087 if (nval != uval)
3088 goto retry;
3089
3090 /*
3091 * Wake robust non-PI futexes here. The wakeup of
3092 * PI futexes happens in exit_pi_state():
3093 */
3094 if (!pi && (uval & FUTEX_WAITERS))
3095 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3096 }
3097 return 0;
3098 }
3099
3100 /*
3101 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3102 */
3103 static inline int fetch_robust_entry(struct robust_list __user **entry,
3104 struct robust_list __user * __user *head,
3105 unsigned int *pi)
3106 {
3107 unsigned long uentry;
3108
3109 if (get_user(uentry, (unsigned long __user *)head))
3110 return -EFAULT;
3111
3112 *entry = (void __user *)(uentry & ~1UL);
3113 *pi = uentry & 1;
3114
3115 return 0;
3116 }
3117
3118 /*
3119 * Walk curr->robust_list (very carefully, it's a userspace list!)
3120 * and mark any locks found there dead, and notify any waiters.
3121 *
3122 * We silently return on any sign of list-walking problem.
3123 */
3124 void exit_robust_list(struct task_struct *curr)
3125 {
3126 struct robust_list_head __user *head = curr->robust_list;
3127 struct robust_list __user *entry, *next_entry, *pending;
3128 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3129 unsigned int uninitialized_var(next_pi);
3130 unsigned long futex_offset;
3131 int rc;
3132
3133 if (!futex_cmpxchg_enabled)
3134 return;
3135
3136 /*
3137 * Fetch the list head (which was registered earlier, via
3138 * sys_set_robust_list()):
3139 */
3140 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3141 return;
3142 /*
3143 * Fetch the relative futex offset:
3144 */
3145 if (get_user(futex_offset, &head->futex_offset))
3146 return;
3147 /*
3148 * Fetch any possibly pending lock-add first, and handle it
3149 * if it exists:
3150 */
3151 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3152 return;
3153
3154 next_entry = NULL; /* avoid warning with gcc */
3155 while (entry != &head->list) {
3156 /*
3157 * Fetch the next entry in the list before calling
3158 * handle_futex_death:
3159 */
3160 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3161 /*
3162 * A pending lock might already be on the list, so
3163 * don't process it twice:
3164 */
3165 if (entry != pending)
3166 if (handle_futex_death((void __user *)entry + futex_offset,
3167 curr, pi))
3168 return;
3169 if (rc)
3170 return;
3171 entry = next_entry;
3172 pi = next_pi;
3173 /*
3174 * Avoid excessively long or circular lists:
3175 */
3176 if (!--limit)
3177 break;
3178
3179 cond_resched();
3180 }
3181
3182 if (pending)
3183 handle_futex_death((void __user *)pending + futex_offset,
3184 curr, pip);
3185 }
3186
3187 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3188 u32 __user *uaddr2, u32 val2, u32 val3)
3189 {
3190 int cmd = op & FUTEX_CMD_MASK;
3191 unsigned int flags = 0;
3192
3193 if (!(op & FUTEX_PRIVATE_FLAG))
3194 flags |= FLAGS_SHARED;
3195
3196 if (op & FUTEX_CLOCK_REALTIME) {
3197 flags |= FLAGS_CLOCKRT;
3198 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3199 cmd != FUTEX_WAIT_REQUEUE_PI)
3200 return -ENOSYS;
3201 }
3202
3203 switch (cmd) {
3204 case FUTEX_LOCK_PI:
3205 case FUTEX_UNLOCK_PI:
3206 case FUTEX_TRYLOCK_PI:
3207 case FUTEX_WAIT_REQUEUE_PI:
3208 case FUTEX_CMP_REQUEUE_PI:
3209 if (!futex_cmpxchg_enabled)
3210 return -ENOSYS;
3211 }
3212
3213 switch (cmd) {
3214 case FUTEX_WAIT:
3215 val3 = FUTEX_BITSET_MATCH_ANY;
3216 case FUTEX_WAIT_BITSET:
3217 return futex_wait(uaddr, flags, val, timeout, val3);
3218 case FUTEX_WAKE:
3219 val3 = FUTEX_BITSET_MATCH_ANY;
3220 case FUTEX_WAKE_BITSET:
3221 return futex_wake(uaddr, flags, val, val3);
3222 case FUTEX_REQUEUE:
3223 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3224 case FUTEX_CMP_REQUEUE:
3225 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3226 case FUTEX_WAKE_OP:
3227 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3228 case FUTEX_LOCK_PI:
3229 return futex_lock_pi(uaddr, flags, timeout, 0);
3230 case FUTEX_UNLOCK_PI:
3231 return futex_unlock_pi(uaddr, flags);
3232 case FUTEX_TRYLOCK_PI:
3233 return futex_lock_pi(uaddr, flags, NULL, 1);
3234 case FUTEX_WAIT_REQUEUE_PI:
3235 val3 = FUTEX_BITSET_MATCH_ANY;
3236 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3237 uaddr2);
3238 case FUTEX_CMP_REQUEUE_PI:
3239 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3240 }
3241 return -ENOSYS;
3242 }
3243
3244
3245 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3246 struct timespec __user *, utime, u32 __user *, uaddr2,
3247 u32, val3)
3248 {
3249 struct timespec ts;
3250 ktime_t t, *tp = NULL;
3251 u32 val2 = 0;
3252 int cmd = op & FUTEX_CMD_MASK;
3253
3254 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3255 cmd == FUTEX_WAIT_BITSET ||
3256 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3257 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3258 return -EFAULT;
3259 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3260 return -EFAULT;
3261 if (!timespec_valid(&ts))
3262 return -EINVAL;
3263
3264 t = timespec_to_ktime(ts);
3265 if (cmd == FUTEX_WAIT)
3266 t = ktime_add_safe(ktime_get(), t);
3267 tp = &t;
3268 }
3269 /*
3270 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3271 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3272 */
3273 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3274 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3275 val2 = (u32) (unsigned long) utime;
3276
3277 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3278 }
3279
3280 static void __init futex_detect_cmpxchg(void)
3281 {
3282 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3283 u32 curval;
3284
3285 /*
3286 * This will fail and we want it. Some arch implementations do
3287 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3288 * functionality. We want to know that before we call in any
3289 * of the complex code paths. Also we want to prevent
3290 * registration of robust lists in that case. NULL is
3291 * guaranteed to fault and we get -EFAULT on functional
3292 * implementation, the non-functional ones will return
3293 * -ENOSYS.
3294 */
3295 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3296 futex_cmpxchg_enabled = 1;
3297 #endif
3298 }
3299
3300 static int __init futex_init(void)
3301 {
3302 unsigned int futex_shift;
3303 unsigned long i;
3304
3305 #if CONFIG_BASE_SMALL
3306 futex_hashsize = 16;
3307 #else
3308 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3309 #endif
3310
3311 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3312 futex_hashsize, 0,
3313 futex_hashsize < 256 ? HASH_SMALL : 0,
3314 &futex_shift, NULL,
3315 futex_hashsize, futex_hashsize);
3316 futex_hashsize = 1UL << futex_shift;
3317
3318 futex_detect_cmpxchg();
3319
3320 for (i = 0; i < futex_hashsize; i++) {
3321 atomic_set(&futex_queues[i].waiters, 0);
3322 plist_head_init(&futex_queues[i].chain);
3323 spin_lock_init(&futex_queues[i].lock);
3324 }
3325
3326 return 0;
3327 }
3328 core_initcall(futex_init);