]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
blk-flush: don't run queue for requests bypassing flush
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
700 }
701
702 out:
703 put_page(page);
704 return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709 drop_futex_key_refs(key);
710 }
711
712 /**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
733
734 return ret < 0 ? ret : 0;
735 }
736
737 /**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
741 *
742 * Must be called with the hb lock held.
743 */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746 {
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
758 {
759 int ret;
760
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
764
765 return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 int ret;
771
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
775
776 return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781 * PI code:
782 */
783 static int refill_pi_state_cache(void)
784 {
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792 if (!pi_state)
793 return -ENOMEM;
794
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 *
825 * Must be called with the hb lock held.
826 */
827 static void put_pi_state(struct futex_pi_state *pi_state)
828 {
829 if (!pi_state)
830 return;
831
832 if (!atomic_dec_and_test(&pi_state->refcount))
833 return;
834
835 /*
836 * If pi_state->owner is NULL, the owner is most probably dying
837 * and has cleaned up the pi_state already
838 */
839 if (pi_state->owner) {
840 raw_spin_lock_irq(&pi_state->owner->pi_lock);
841 list_del_init(&pi_state->list);
842 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
843
844 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
845 }
846
847 if (current->pi_state_cache)
848 kfree(pi_state);
849 else {
850 /*
851 * pi_state->list is already empty.
852 * clear pi_state->owner.
853 * refcount is at 0 - put it back to 1.
854 */
855 pi_state->owner = NULL;
856 atomic_set(&pi_state->refcount, 1);
857 current->pi_state_cache = pi_state;
858 }
859 }
860
861 /*
862 * Look up the task based on what TID userspace gave us.
863 * We dont trust it.
864 */
865 static struct task_struct *futex_find_get_task(pid_t pid)
866 {
867 struct task_struct *p;
868
869 rcu_read_lock();
870 p = find_task_by_vpid(pid);
871 if (p)
872 get_task_struct(p);
873
874 rcu_read_unlock();
875
876 return p;
877 }
878
879 #ifdef CONFIG_FUTEX_PI
880
881 /*
882 * This task is holding PI mutexes at exit time => bad.
883 * Kernel cleans up PI-state, but userspace is likely hosed.
884 * (Robust-futex cleanup is separate and might save the day for userspace.)
885 */
886 void exit_pi_state_list(struct task_struct *curr)
887 {
888 struct list_head *next, *head = &curr->pi_state_list;
889 struct futex_pi_state *pi_state;
890 struct futex_hash_bucket *hb;
891 union futex_key key = FUTEX_KEY_INIT;
892
893 if (!futex_cmpxchg_enabled)
894 return;
895 /*
896 * We are a ZOMBIE and nobody can enqueue itself on
897 * pi_state_list anymore, but we have to be careful
898 * versus waiters unqueueing themselves:
899 */
900 raw_spin_lock_irq(&curr->pi_lock);
901 while (!list_empty(head)) {
902
903 next = head->next;
904 pi_state = list_entry(next, struct futex_pi_state, list);
905 key = pi_state->key;
906 hb = hash_futex(&key);
907 raw_spin_unlock_irq(&curr->pi_lock);
908
909 spin_lock(&hb->lock);
910
911 raw_spin_lock_irq(&curr->pi_lock);
912 /*
913 * We dropped the pi-lock, so re-check whether this
914 * task still owns the PI-state:
915 */
916 if (head->next != next) {
917 spin_unlock(&hb->lock);
918 continue;
919 }
920
921 WARN_ON(pi_state->owner != curr);
922 WARN_ON(list_empty(&pi_state->list));
923 list_del_init(&pi_state->list);
924 pi_state->owner = NULL;
925 raw_spin_unlock_irq(&curr->pi_lock);
926
927 get_pi_state(pi_state);
928 spin_unlock(&hb->lock);
929
930 rt_mutex_futex_unlock(&pi_state->pi_mutex);
931 put_pi_state(pi_state);
932
933 raw_spin_lock_irq(&curr->pi_lock);
934 }
935 raw_spin_unlock_irq(&curr->pi_lock);
936 }
937
938 #endif
939
940 /*
941 * We need to check the following states:
942 *
943 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
944 *
945 * [1] NULL | --- | --- | 0 | 0/1 | Valid
946 * [2] NULL | --- | --- | >0 | 0/1 | Valid
947 *
948 * [3] Found | NULL | -- | Any | 0/1 | Invalid
949 *
950 * [4] Found | Found | NULL | 0 | 1 | Valid
951 * [5] Found | Found | NULL | >0 | 1 | Invalid
952 *
953 * [6] Found | Found | task | 0 | 1 | Valid
954 *
955 * [7] Found | Found | NULL | Any | 0 | Invalid
956 *
957 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
958 * [9] Found | Found | task | 0 | 0 | Invalid
959 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
960 *
961 * [1] Indicates that the kernel can acquire the futex atomically. We
962 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
963 *
964 * [2] Valid, if TID does not belong to a kernel thread. If no matching
965 * thread is found then it indicates that the owner TID has died.
966 *
967 * [3] Invalid. The waiter is queued on a non PI futex
968 *
969 * [4] Valid state after exit_robust_list(), which sets the user space
970 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
971 *
972 * [5] The user space value got manipulated between exit_robust_list()
973 * and exit_pi_state_list()
974 *
975 * [6] Valid state after exit_pi_state_list() which sets the new owner in
976 * the pi_state but cannot access the user space value.
977 *
978 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
979 *
980 * [8] Owner and user space value match
981 *
982 * [9] There is no transient state which sets the user space TID to 0
983 * except exit_robust_list(), but this is indicated by the
984 * FUTEX_OWNER_DIED bit. See [4]
985 *
986 * [10] There is no transient state which leaves owner and user space
987 * TID out of sync.
988 *
989 *
990 * Serialization and lifetime rules:
991 *
992 * hb->lock:
993 *
994 * hb -> futex_q, relation
995 * futex_q -> pi_state, relation
996 *
997 * (cannot be raw because hb can contain arbitrary amount
998 * of futex_q's)
999 *
1000 * pi_mutex->wait_lock:
1001 *
1002 * {uval, pi_state}
1003 *
1004 * (and pi_mutex 'obviously')
1005 *
1006 * p->pi_lock:
1007 *
1008 * p->pi_state_list -> pi_state->list, relation
1009 *
1010 * pi_state->refcount:
1011 *
1012 * pi_state lifetime
1013 *
1014 *
1015 * Lock order:
1016 *
1017 * hb->lock
1018 * pi_mutex->wait_lock
1019 * p->pi_lock
1020 *
1021 */
1022
1023 /*
1024 * Validate that the existing waiter has a pi_state and sanity check
1025 * the pi_state against the user space value. If correct, attach to
1026 * it.
1027 */
1028 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1029 struct futex_pi_state *pi_state,
1030 struct futex_pi_state **ps)
1031 {
1032 pid_t pid = uval & FUTEX_TID_MASK;
1033 u32 uval2;
1034 int ret;
1035
1036 /*
1037 * Userspace might have messed up non-PI and PI futexes [3]
1038 */
1039 if (unlikely(!pi_state))
1040 return -EINVAL;
1041
1042 /*
1043 * We get here with hb->lock held, and having found a
1044 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1045 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1046 * which in turn means that futex_lock_pi() still has a reference on
1047 * our pi_state.
1048 *
1049 * The waiter holding a reference on @pi_state also protects against
1050 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1051 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1052 * free pi_state before we can take a reference ourselves.
1053 */
1054 WARN_ON(!atomic_read(&pi_state->refcount));
1055
1056 /*
1057 * Now that we have a pi_state, we can acquire wait_lock
1058 * and do the state validation.
1059 */
1060 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1061
1062 /*
1063 * Since {uval, pi_state} is serialized by wait_lock, and our current
1064 * uval was read without holding it, it can have changed. Verify it
1065 * still is what we expect it to be, otherwise retry the entire
1066 * operation.
1067 */
1068 if (get_futex_value_locked(&uval2, uaddr))
1069 goto out_efault;
1070
1071 if (uval != uval2)
1072 goto out_eagain;
1073
1074 /*
1075 * Handle the owner died case:
1076 */
1077 if (uval & FUTEX_OWNER_DIED) {
1078 /*
1079 * exit_pi_state_list sets owner to NULL and wakes the
1080 * topmost waiter. The task which acquires the
1081 * pi_state->rt_mutex will fixup owner.
1082 */
1083 if (!pi_state->owner) {
1084 /*
1085 * No pi state owner, but the user space TID
1086 * is not 0. Inconsistent state. [5]
1087 */
1088 if (pid)
1089 goto out_einval;
1090 /*
1091 * Take a ref on the state and return success. [4]
1092 */
1093 goto out_attach;
1094 }
1095
1096 /*
1097 * If TID is 0, then either the dying owner has not
1098 * yet executed exit_pi_state_list() or some waiter
1099 * acquired the rtmutex in the pi state, but did not
1100 * yet fixup the TID in user space.
1101 *
1102 * Take a ref on the state and return success. [6]
1103 */
1104 if (!pid)
1105 goto out_attach;
1106 } else {
1107 /*
1108 * If the owner died bit is not set, then the pi_state
1109 * must have an owner. [7]
1110 */
1111 if (!pi_state->owner)
1112 goto out_einval;
1113 }
1114
1115 /*
1116 * Bail out if user space manipulated the futex value. If pi
1117 * state exists then the owner TID must be the same as the
1118 * user space TID. [9/10]
1119 */
1120 if (pid != task_pid_vnr(pi_state->owner))
1121 goto out_einval;
1122
1123 out_attach:
1124 get_pi_state(pi_state);
1125 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1126 *ps = pi_state;
1127 return 0;
1128
1129 out_einval:
1130 ret = -EINVAL;
1131 goto out_error;
1132
1133 out_eagain:
1134 ret = -EAGAIN;
1135 goto out_error;
1136
1137 out_efault:
1138 ret = -EFAULT;
1139 goto out_error;
1140
1141 out_error:
1142 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1143 return ret;
1144 }
1145
1146 /*
1147 * Lookup the task for the TID provided from user space and attach to
1148 * it after doing proper sanity checks.
1149 */
1150 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1151 struct futex_pi_state **ps)
1152 {
1153 pid_t pid = uval & FUTEX_TID_MASK;
1154 struct futex_pi_state *pi_state;
1155 struct task_struct *p;
1156
1157 /*
1158 * We are the first waiter - try to look up the real owner and attach
1159 * the new pi_state to it, but bail out when TID = 0 [1]
1160 */
1161 if (!pid)
1162 return -ESRCH;
1163 p = futex_find_get_task(pid);
1164 if (!p)
1165 return -ESRCH;
1166
1167 if (unlikely(p->flags & PF_KTHREAD)) {
1168 put_task_struct(p);
1169 return -EPERM;
1170 }
1171
1172 /*
1173 * We need to look at the task state flags to figure out,
1174 * whether the task is exiting. To protect against the do_exit
1175 * change of the task flags, we do this protected by
1176 * p->pi_lock:
1177 */
1178 raw_spin_lock_irq(&p->pi_lock);
1179 if (unlikely(p->flags & PF_EXITING)) {
1180 /*
1181 * The task is on the way out. When PF_EXITPIDONE is
1182 * set, we know that the task has finished the
1183 * cleanup:
1184 */
1185 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1186
1187 raw_spin_unlock_irq(&p->pi_lock);
1188 put_task_struct(p);
1189 return ret;
1190 }
1191
1192 /*
1193 * No existing pi state. First waiter. [2]
1194 *
1195 * This creates pi_state, we have hb->lock held, this means nothing can
1196 * observe this state, wait_lock is irrelevant.
1197 */
1198 pi_state = alloc_pi_state();
1199
1200 /*
1201 * Initialize the pi_mutex in locked state and make @p
1202 * the owner of it:
1203 */
1204 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1205
1206 /* Store the key for possible exit cleanups: */
1207 pi_state->key = *key;
1208
1209 WARN_ON(!list_empty(&pi_state->list));
1210 list_add(&pi_state->list, &p->pi_state_list);
1211 pi_state->owner = p;
1212 raw_spin_unlock_irq(&p->pi_lock);
1213
1214 put_task_struct(p);
1215
1216 *ps = pi_state;
1217
1218 return 0;
1219 }
1220
1221 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1222 struct futex_hash_bucket *hb,
1223 union futex_key *key, struct futex_pi_state **ps)
1224 {
1225 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1226
1227 /*
1228 * If there is a waiter on that futex, validate it and
1229 * attach to the pi_state when the validation succeeds.
1230 */
1231 if (top_waiter)
1232 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1233
1234 /*
1235 * We are the first waiter - try to look up the owner based on
1236 * @uval and attach to it.
1237 */
1238 return attach_to_pi_owner(uval, key, ps);
1239 }
1240
1241 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1242 {
1243 u32 uninitialized_var(curval);
1244
1245 if (unlikely(should_fail_futex(true)))
1246 return -EFAULT;
1247
1248 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1249 return -EFAULT;
1250
1251 /* If user space value changed, let the caller retry */
1252 return curval != uval ? -EAGAIN : 0;
1253 }
1254
1255 /**
1256 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1257 * @uaddr: the pi futex user address
1258 * @hb: the pi futex hash bucket
1259 * @key: the futex key associated with uaddr and hb
1260 * @ps: the pi_state pointer where we store the result of the
1261 * lookup
1262 * @task: the task to perform the atomic lock work for. This will
1263 * be "current" except in the case of requeue pi.
1264 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1265 *
1266 * Return:
1267 * - 0 - ready to wait;
1268 * - 1 - acquired the lock;
1269 * - <0 - error
1270 *
1271 * The hb->lock and futex_key refs shall be held by the caller.
1272 */
1273 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1274 union futex_key *key,
1275 struct futex_pi_state **ps,
1276 struct task_struct *task, int set_waiters)
1277 {
1278 u32 uval, newval, vpid = task_pid_vnr(task);
1279 struct futex_q *top_waiter;
1280 int ret;
1281
1282 /*
1283 * Read the user space value first so we can validate a few
1284 * things before proceeding further.
1285 */
1286 if (get_futex_value_locked(&uval, uaddr))
1287 return -EFAULT;
1288
1289 if (unlikely(should_fail_futex(true)))
1290 return -EFAULT;
1291
1292 /*
1293 * Detect deadlocks.
1294 */
1295 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1296 return -EDEADLK;
1297
1298 if ((unlikely(should_fail_futex(true))))
1299 return -EDEADLK;
1300
1301 /*
1302 * Lookup existing state first. If it exists, try to attach to
1303 * its pi_state.
1304 */
1305 top_waiter = futex_top_waiter(hb, key);
1306 if (top_waiter)
1307 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1308
1309 /*
1310 * No waiter and user TID is 0. We are here because the
1311 * waiters or the owner died bit is set or called from
1312 * requeue_cmp_pi or for whatever reason something took the
1313 * syscall.
1314 */
1315 if (!(uval & FUTEX_TID_MASK)) {
1316 /*
1317 * We take over the futex. No other waiters and the user space
1318 * TID is 0. We preserve the owner died bit.
1319 */
1320 newval = uval & FUTEX_OWNER_DIED;
1321 newval |= vpid;
1322
1323 /* The futex requeue_pi code can enforce the waiters bit */
1324 if (set_waiters)
1325 newval |= FUTEX_WAITERS;
1326
1327 ret = lock_pi_update_atomic(uaddr, uval, newval);
1328 /* If the take over worked, return 1 */
1329 return ret < 0 ? ret : 1;
1330 }
1331
1332 /*
1333 * First waiter. Set the waiters bit before attaching ourself to
1334 * the owner. If owner tries to unlock, it will be forced into
1335 * the kernel and blocked on hb->lock.
1336 */
1337 newval = uval | FUTEX_WAITERS;
1338 ret = lock_pi_update_atomic(uaddr, uval, newval);
1339 if (ret)
1340 return ret;
1341 /*
1342 * If the update of the user space value succeeded, we try to
1343 * attach to the owner. If that fails, no harm done, we only
1344 * set the FUTEX_WAITERS bit in the user space variable.
1345 */
1346 return attach_to_pi_owner(uval, key, ps);
1347 }
1348
1349 /**
1350 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1351 * @q: The futex_q to unqueue
1352 *
1353 * The q->lock_ptr must not be NULL and must be held by the caller.
1354 */
1355 static void __unqueue_futex(struct futex_q *q)
1356 {
1357 struct futex_hash_bucket *hb;
1358
1359 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1360 || WARN_ON(plist_node_empty(&q->list)))
1361 return;
1362
1363 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1364 plist_del(&q->list, &hb->chain);
1365 hb_waiters_dec(hb);
1366 }
1367
1368 /*
1369 * The hash bucket lock must be held when this is called.
1370 * Afterwards, the futex_q must not be accessed. Callers
1371 * must ensure to later call wake_up_q() for the actual
1372 * wakeups to occur.
1373 */
1374 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1375 {
1376 struct task_struct *p = q->task;
1377
1378 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1379 return;
1380
1381 /*
1382 * Queue the task for later wakeup for after we've released
1383 * the hb->lock. wake_q_add() grabs reference to p.
1384 */
1385 wake_q_add(wake_q, p);
1386 __unqueue_futex(q);
1387 /*
1388 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1389 * is written, without taking any locks. This is possible in the event
1390 * of a spurious wakeup, for example. A memory barrier is required here
1391 * to prevent the following store to lock_ptr from getting ahead of the
1392 * plist_del in __unqueue_futex().
1393 */
1394 smp_store_release(&q->lock_ptr, NULL);
1395 }
1396
1397 /*
1398 * Caller must hold a reference on @pi_state.
1399 */
1400 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1401 {
1402 u32 uninitialized_var(curval), newval;
1403 struct task_struct *new_owner;
1404 bool postunlock = false;
1405 DEFINE_WAKE_Q(wake_q);
1406 int ret = 0;
1407
1408 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1409 if (WARN_ON_ONCE(!new_owner)) {
1410 /*
1411 * As per the comment in futex_unlock_pi() this should not happen.
1412 *
1413 * When this happens, give up our locks and try again, giving
1414 * the futex_lock_pi() instance time to complete, either by
1415 * waiting on the rtmutex or removing itself from the futex
1416 * queue.
1417 */
1418 ret = -EAGAIN;
1419 goto out_unlock;
1420 }
1421
1422 /*
1423 * We pass it to the next owner. The WAITERS bit is always kept
1424 * enabled while there is PI state around. We cleanup the owner
1425 * died bit, because we are the owner.
1426 */
1427 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1428
1429 if (unlikely(should_fail_futex(true)))
1430 ret = -EFAULT;
1431
1432 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1433 ret = -EFAULT;
1434
1435 } else if (curval != uval) {
1436 /*
1437 * If a unconditional UNLOCK_PI operation (user space did not
1438 * try the TID->0 transition) raced with a waiter setting the
1439 * FUTEX_WAITERS flag between get_user() and locking the hash
1440 * bucket lock, retry the operation.
1441 */
1442 if ((FUTEX_TID_MASK & curval) == uval)
1443 ret = -EAGAIN;
1444 else
1445 ret = -EINVAL;
1446 }
1447
1448 if (ret)
1449 goto out_unlock;
1450
1451 /*
1452 * This is a point of no return; once we modify the uval there is no
1453 * going back and subsequent operations must not fail.
1454 */
1455
1456 raw_spin_lock(&pi_state->owner->pi_lock);
1457 WARN_ON(list_empty(&pi_state->list));
1458 list_del_init(&pi_state->list);
1459 raw_spin_unlock(&pi_state->owner->pi_lock);
1460
1461 raw_spin_lock(&new_owner->pi_lock);
1462 WARN_ON(!list_empty(&pi_state->list));
1463 list_add(&pi_state->list, &new_owner->pi_state_list);
1464 pi_state->owner = new_owner;
1465 raw_spin_unlock(&new_owner->pi_lock);
1466
1467 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1468
1469 out_unlock:
1470 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1471
1472 if (postunlock)
1473 rt_mutex_postunlock(&wake_q);
1474
1475 return ret;
1476 }
1477
1478 /*
1479 * Express the locking dependencies for lockdep:
1480 */
1481 static inline void
1482 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1483 {
1484 if (hb1 <= hb2) {
1485 spin_lock(&hb1->lock);
1486 if (hb1 < hb2)
1487 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1488 } else { /* hb1 > hb2 */
1489 spin_lock(&hb2->lock);
1490 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1491 }
1492 }
1493
1494 static inline void
1495 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1496 {
1497 spin_unlock(&hb1->lock);
1498 if (hb1 != hb2)
1499 spin_unlock(&hb2->lock);
1500 }
1501
1502 /*
1503 * Wake up waiters matching bitset queued on this futex (uaddr).
1504 */
1505 static int
1506 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1507 {
1508 struct futex_hash_bucket *hb;
1509 struct futex_q *this, *next;
1510 union futex_key key = FUTEX_KEY_INIT;
1511 int ret;
1512 DEFINE_WAKE_Q(wake_q);
1513
1514 if (!bitset)
1515 return -EINVAL;
1516
1517 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1518 if (unlikely(ret != 0))
1519 goto out;
1520
1521 hb = hash_futex(&key);
1522
1523 /* Make sure we really have tasks to wakeup */
1524 if (!hb_waiters_pending(hb))
1525 goto out_put_key;
1526
1527 spin_lock(&hb->lock);
1528
1529 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1530 if (match_futex (&this->key, &key)) {
1531 if (this->pi_state || this->rt_waiter) {
1532 ret = -EINVAL;
1533 break;
1534 }
1535
1536 /* Check if one of the bits is set in both bitsets */
1537 if (!(this->bitset & bitset))
1538 continue;
1539
1540 mark_wake_futex(&wake_q, this);
1541 if (++ret >= nr_wake)
1542 break;
1543 }
1544 }
1545
1546 spin_unlock(&hb->lock);
1547 wake_up_q(&wake_q);
1548 out_put_key:
1549 put_futex_key(&key);
1550 out:
1551 return ret;
1552 }
1553
1554 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1555 {
1556 unsigned int op = (encoded_op & 0x70000000) >> 28;
1557 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1558 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1559 int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1560 int oldval, ret;
1561
1562 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1563 if (oparg < 0 || oparg > 31)
1564 return -EINVAL;
1565 oparg = 1 << oparg;
1566 }
1567
1568 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1569 return -EFAULT;
1570
1571 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1572 if (ret)
1573 return ret;
1574
1575 switch (cmp) {
1576 case FUTEX_OP_CMP_EQ:
1577 return oldval == cmparg;
1578 case FUTEX_OP_CMP_NE:
1579 return oldval != cmparg;
1580 case FUTEX_OP_CMP_LT:
1581 return oldval < cmparg;
1582 case FUTEX_OP_CMP_GE:
1583 return oldval >= cmparg;
1584 case FUTEX_OP_CMP_LE:
1585 return oldval <= cmparg;
1586 case FUTEX_OP_CMP_GT:
1587 return oldval > cmparg;
1588 default:
1589 return -ENOSYS;
1590 }
1591 }
1592
1593 /*
1594 * Wake up all waiters hashed on the physical page that is mapped
1595 * to this virtual address:
1596 */
1597 static int
1598 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1599 int nr_wake, int nr_wake2, int op)
1600 {
1601 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1602 struct futex_hash_bucket *hb1, *hb2;
1603 struct futex_q *this, *next;
1604 int ret, op_ret;
1605 DEFINE_WAKE_Q(wake_q);
1606
1607 retry:
1608 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1609 if (unlikely(ret != 0))
1610 goto out;
1611 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1612 if (unlikely(ret != 0))
1613 goto out_put_key1;
1614
1615 hb1 = hash_futex(&key1);
1616 hb2 = hash_futex(&key2);
1617
1618 retry_private:
1619 double_lock_hb(hb1, hb2);
1620 op_ret = futex_atomic_op_inuser(op, uaddr2);
1621 if (unlikely(op_ret < 0)) {
1622
1623 double_unlock_hb(hb1, hb2);
1624
1625 #ifndef CONFIG_MMU
1626 /*
1627 * we don't get EFAULT from MMU faults if we don't have an MMU,
1628 * but we might get them from range checking
1629 */
1630 ret = op_ret;
1631 goto out_put_keys;
1632 #endif
1633
1634 if (unlikely(op_ret != -EFAULT)) {
1635 ret = op_ret;
1636 goto out_put_keys;
1637 }
1638
1639 ret = fault_in_user_writeable(uaddr2);
1640 if (ret)
1641 goto out_put_keys;
1642
1643 if (!(flags & FLAGS_SHARED))
1644 goto retry_private;
1645
1646 put_futex_key(&key2);
1647 put_futex_key(&key1);
1648 goto retry;
1649 }
1650
1651 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1652 if (match_futex (&this->key, &key1)) {
1653 if (this->pi_state || this->rt_waiter) {
1654 ret = -EINVAL;
1655 goto out_unlock;
1656 }
1657 mark_wake_futex(&wake_q, this);
1658 if (++ret >= nr_wake)
1659 break;
1660 }
1661 }
1662
1663 if (op_ret > 0) {
1664 op_ret = 0;
1665 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1666 if (match_futex (&this->key, &key2)) {
1667 if (this->pi_state || this->rt_waiter) {
1668 ret = -EINVAL;
1669 goto out_unlock;
1670 }
1671 mark_wake_futex(&wake_q, this);
1672 if (++op_ret >= nr_wake2)
1673 break;
1674 }
1675 }
1676 ret += op_ret;
1677 }
1678
1679 out_unlock:
1680 double_unlock_hb(hb1, hb2);
1681 wake_up_q(&wake_q);
1682 out_put_keys:
1683 put_futex_key(&key2);
1684 out_put_key1:
1685 put_futex_key(&key1);
1686 out:
1687 return ret;
1688 }
1689
1690 /**
1691 * requeue_futex() - Requeue a futex_q from one hb to another
1692 * @q: the futex_q to requeue
1693 * @hb1: the source hash_bucket
1694 * @hb2: the target hash_bucket
1695 * @key2: the new key for the requeued futex_q
1696 */
1697 static inline
1698 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1699 struct futex_hash_bucket *hb2, union futex_key *key2)
1700 {
1701
1702 /*
1703 * If key1 and key2 hash to the same bucket, no need to
1704 * requeue.
1705 */
1706 if (likely(&hb1->chain != &hb2->chain)) {
1707 plist_del(&q->list, &hb1->chain);
1708 hb_waiters_dec(hb1);
1709 hb_waiters_inc(hb2);
1710 plist_add(&q->list, &hb2->chain);
1711 q->lock_ptr = &hb2->lock;
1712 }
1713 get_futex_key_refs(key2);
1714 q->key = *key2;
1715 }
1716
1717 /**
1718 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1719 * @q: the futex_q
1720 * @key: the key of the requeue target futex
1721 * @hb: the hash_bucket of the requeue target futex
1722 *
1723 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1724 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1725 * to the requeue target futex so the waiter can detect the wakeup on the right
1726 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1727 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1728 * to protect access to the pi_state to fixup the owner later. Must be called
1729 * with both q->lock_ptr and hb->lock held.
1730 */
1731 static inline
1732 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1733 struct futex_hash_bucket *hb)
1734 {
1735 get_futex_key_refs(key);
1736 q->key = *key;
1737
1738 __unqueue_futex(q);
1739
1740 WARN_ON(!q->rt_waiter);
1741 q->rt_waiter = NULL;
1742
1743 q->lock_ptr = &hb->lock;
1744
1745 wake_up_state(q->task, TASK_NORMAL);
1746 }
1747
1748 /**
1749 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1750 * @pifutex: the user address of the to futex
1751 * @hb1: the from futex hash bucket, must be locked by the caller
1752 * @hb2: the to futex hash bucket, must be locked by the caller
1753 * @key1: the from futex key
1754 * @key2: the to futex key
1755 * @ps: address to store the pi_state pointer
1756 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1757 *
1758 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1759 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1760 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1761 * hb1 and hb2 must be held by the caller.
1762 *
1763 * Return:
1764 * - 0 - failed to acquire the lock atomically;
1765 * - >0 - acquired the lock, return value is vpid of the top_waiter
1766 * - <0 - error
1767 */
1768 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1769 struct futex_hash_bucket *hb1,
1770 struct futex_hash_bucket *hb2,
1771 union futex_key *key1, union futex_key *key2,
1772 struct futex_pi_state **ps, int set_waiters)
1773 {
1774 struct futex_q *top_waiter = NULL;
1775 u32 curval;
1776 int ret, vpid;
1777
1778 if (get_futex_value_locked(&curval, pifutex))
1779 return -EFAULT;
1780
1781 if (unlikely(should_fail_futex(true)))
1782 return -EFAULT;
1783
1784 /*
1785 * Find the top_waiter and determine if there are additional waiters.
1786 * If the caller intends to requeue more than 1 waiter to pifutex,
1787 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1788 * as we have means to handle the possible fault. If not, don't set
1789 * the bit unecessarily as it will force the subsequent unlock to enter
1790 * the kernel.
1791 */
1792 top_waiter = futex_top_waiter(hb1, key1);
1793
1794 /* There are no waiters, nothing for us to do. */
1795 if (!top_waiter)
1796 return 0;
1797
1798 /* Ensure we requeue to the expected futex. */
1799 if (!match_futex(top_waiter->requeue_pi_key, key2))
1800 return -EINVAL;
1801
1802 /*
1803 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1804 * the contended case or if set_waiters is 1. The pi_state is returned
1805 * in ps in contended cases.
1806 */
1807 vpid = task_pid_vnr(top_waiter->task);
1808 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1809 set_waiters);
1810 if (ret == 1) {
1811 requeue_pi_wake_futex(top_waiter, key2, hb2);
1812 return vpid;
1813 }
1814 return ret;
1815 }
1816
1817 /**
1818 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1819 * @uaddr1: source futex user address
1820 * @flags: futex flags (FLAGS_SHARED, etc.)
1821 * @uaddr2: target futex user address
1822 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1823 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1824 * @cmpval: @uaddr1 expected value (or %NULL)
1825 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1826 * pi futex (pi to pi requeue is not supported)
1827 *
1828 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1829 * uaddr2 atomically on behalf of the top waiter.
1830 *
1831 * Return:
1832 * - >=0 - on success, the number of tasks requeued or woken;
1833 * - <0 - on error
1834 */
1835 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1836 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1837 u32 *cmpval, int requeue_pi)
1838 {
1839 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1840 int drop_count = 0, task_count = 0, ret;
1841 struct futex_pi_state *pi_state = NULL;
1842 struct futex_hash_bucket *hb1, *hb2;
1843 struct futex_q *this, *next;
1844 DEFINE_WAKE_Q(wake_q);
1845
1846 /*
1847 * When PI not supported: return -ENOSYS if requeue_pi is true,
1848 * consequently the compiler knows requeue_pi is always false past
1849 * this point which will optimize away all the conditional code
1850 * further down.
1851 */
1852 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1853 return -ENOSYS;
1854
1855 if (requeue_pi) {
1856 /*
1857 * Requeue PI only works on two distinct uaddrs. This
1858 * check is only valid for private futexes. See below.
1859 */
1860 if (uaddr1 == uaddr2)
1861 return -EINVAL;
1862
1863 /*
1864 * requeue_pi requires a pi_state, try to allocate it now
1865 * without any locks in case it fails.
1866 */
1867 if (refill_pi_state_cache())
1868 return -ENOMEM;
1869 /*
1870 * requeue_pi must wake as many tasks as it can, up to nr_wake
1871 * + nr_requeue, since it acquires the rt_mutex prior to
1872 * returning to userspace, so as to not leave the rt_mutex with
1873 * waiters and no owner. However, second and third wake-ups
1874 * cannot be predicted as they involve race conditions with the
1875 * first wake and a fault while looking up the pi_state. Both
1876 * pthread_cond_signal() and pthread_cond_broadcast() should
1877 * use nr_wake=1.
1878 */
1879 if (nr_wake != 1)
1880 return -EINVAL;
1881 }
1882
1883 retry:
1884 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1885 if (unlikely(ret != 0))
1886 goto out;
1887 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1888 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1889 if (unlikely(ret != 0))
1890 goto out_put_key1;
1891
1892 /*
1893 * The check above which compares uaddrs is not sufficient for
1894 * shared futexes. We need to compare the keys:
1895 */
1896 if (requeue_pi && match_futex(&key1, &key2)) {
1897 ret = -EINVAL;
1898 goto out_put_keys;
1899 }
1900
1901 hb1 = hash_futex(&key1);
1902 hb2 = hash_futex(&key2);
1903
1904 retry_private:
1905 hb_waiters_inc(hb2);
1906 double_lock_hb(hb1, hb2);
1907
1908 if (likely(cmpval != NULL)) {
1909 u32 curval;
1910
1911 ret = get_futex_value_locked(&curval, uaddr1);
1912
1913 if (unlikely(ret)) {
1914 double_unlock_hb(hb1, hb2);
1915 hb_waiters_dec(hb2);
1916
1917 ret = get_user(curval, uaddr1);
1918 if (ret)
1919 goto out_put_keys;
1920
1921 if (!(flags & FLAGS_SHARED))
1922 goto retry_private;
1923
1924 put_futex_key(&key2);
1925 put_futex_key(&key1);
1926 goto retry;
1927 }
1928 if (curval != *cmpval) {
1929 ret = -EAGAIN;
1930 goto out_unlock;
1931 }
1932 }
1933
1934 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1935 /*
1936 * Attempt to acquire uaddr2 and wake the top waiter. If we
1937 * intend to requeue waiters, force setting the FUTEX_WAITERS
1938 * bit. We force this here where we are able to easily handle
1939 * faults rather in the requeue loop below.
1940 */
1941 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1942 &key2, &pi_state, nr_requeue);
1943
1944 /*
1945 * At this point the top_waiter has either taken uaddr2 or is
1946 * waiting on it. If the former, then the pi_state will not
1947 * exist yet, look it up one more time to ensure we have a
1948 * reference to it. If the lock was taken, ret contains the
1949 * vpid of the top waiter task.
1950 * If the lock was not taken, we have pi_state and an initial
1951 * refcount on it. In case of an error we have nothing.
1952 */
1953 if (ret > 0) {
1954 WARN_ON(pi_state);
1955 drop_count++;
1956 task_count++;
1957 /*
1958 * If we acquired the lock, then the user space value
1959 * of uaddr2 should be vpid. It cannot be changed by
1960 * the top waiter as it is blocked on hb2 lock if it
1961 * tries to do so. If something fiddled with it behind
1962 * our back the pi state lookup might unearth it. So
1963 * we rather use the known value than rereading and
1964 * handing potential crap to lookup_pi_state.
1965 *
1966 * If that call succeeds then we have pi_state and an
1967 * initial refcount on it.
1968 */
1969 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1970 }
1971
1972 switch (ret) {
1973 case 0:
1974 /* We hold a reference on the pi state. */
1975 break;
1976
1977 /* If the above failed, then pi_state is NULL */
1978 case -EFAULT:
1979 double_unlock_hb(hb1, hb2);
1980 hb_waiters_dec(hb2);
1981 put_futex_key(&key2);
1982 put_futex_key(&key1);
1983 ret = fault_in_user_writeable(uaddr2);
1984 if (!ret)
1985 goto retry;
1986 goto out;
1987 case -EAGAIN:
1988 /*
1989 * Two reasons for this:
1990 * - Owner is exiting and we just wait for the
1991 * exit to complete.
1992 * - The user space value changed.
1993 */
1994 double_unlock_hb(hb1, hb2);
1995 hb_waiters_dec(hb2);
1996 put_futex_key(&key2);
1997 put_futex_key(&key1);
1998 cond_resched();
1999 goto retry;
2000 default:
2001 goto out_unlock;
2002 }
2003 }
2004
2005 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2006 if (task_count - nr_wake >= nr_requeue)
2007 break;
2008
2009 if (!match_futex(&this->key, &key1))
2010 continue;
2011
2012 /*
2013 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2014 * be paired with each other and no other futex ops.
2015 *
2016 * We should never be requeueing a futex_q with a pi_state,
2017 * which is awaiting a futex_unlock_pi().
2018 */
2019 if ((requeue_pi && !this->rt_waiter) ||
2020 (!requeue_pi && this->rt_waiter) ||
2021 this->pi_state) {
2022 ret = -EINVAL;
2023 break;
2024 }
2025
2026 /*
2027 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2028 * lock, we already woke the top_waiter. If not, it will be
2029 * woken by futex_unlock_pi().
2030 */
2031 if (++task_count <= nr_wake && !requeue_pi) {
2032 mark_wake_futex(&wake_q, this);
2033 continue;
2034 }
2035
2036 /* Ensure we requeue to the expected futex for requeue_pi. */
2037 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2038 ret = -EINVAL;
2039 break;
2040 }
2041
2042 /*
2043 * Requeue nr_requeue waiters and possibly one more in the case
2044 * of requeue_pi if we couldn't acquire the lock atomically.
2045 */
2046 if (requeue_pi) {
2047 /*
2048 * Prepare the waiter to take the rt_mutex. Take a
2049 * refcount on the pi_state and store the pointer in
2050 * the futex_q object of the waiter.
2051 */
2052 get_pi_state(pi_state);
2053 this->pi_state = pi_state;
2054 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2055 this->rt_waiter,
2056 this->task);
2057 if (ret == 1) {
2058 /*
2059 * We got the lock. We do neither drop the
2060 * refcount on pi_state nor clear
2061 * this->pi_state because the waiter needs the
2062 * pi_state for cleaning up the user space
2063 * value. It will drop the refcount after
2064 * doing so.
2065 */
2066 requeue_pi_wake_futex(this, &key2, hb2);
2067 drop_count++;
2068 continue;
2069 } else if (ret) {
2070 /*
2071 * rt_mutex_start_proxy_lock() detected a
2072 * potential deadlock when we tried to queue
2073 * that waiter. Drop the pi_state reference
2074 * which we took above and remove the pointer
2075 * to the state from the waiters futex_q
2076 * object.
2077 */
2078 this->pi_state = NULL;
2079 put_pi_state(pi_state);
2080 /*
2081 * We stop queueing more waiters and let user
2082 * space deal with the mess.
2083 */
2084 break;
2085 }
2086 }
2087 requeue_futex(this, hb1, hb2, &key2);
2088 drop_count++;
2089 }
2090
2091 /*
2092 * We took an extra initial reference to the pi_state either
2093 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2094 * need to drop it here again.
2095 */
2096 put_pi_state(pi_state);
2097
2098 out_unlock:
2099 double_unlock_hb(hb1, hb2);
2100 wake_up_q(&wake_q);
2101 hb_waiters_dec(hb2);
2102
2103 /*
2104 * drop_futex_key_refs() must be called outside the spinlocks. During
2105 * the requeue we moved futex_q's from the hash bucket at key1 to the
2106 * one at key2 and updated their key pointer. We no longer need to
2107 * hold the references to key1.
2108 */
2109 while (--drop_count >= 0)
2110 drop_futex_key_refs(&key1);
2111
2112 out_put_keys:
2113 put_futex_key(&key2);
2114 out_put_key1:
2115 put_futex_key(&key1);
2116 out:
2117 return ret ? ret : task_count;
2118 }
2119
2120 /* The key must be already stored in q->key. */
2121 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2122 __acquires(&hb->lock)
2123 {
2124 struct futex_hash_bucket *hb;
2125
2126 hb = hash_futex(&q->key);
2127
2128 /*
2129 * Increment the counter before taking the lock so that
2130 * a potential waker won't miss a to-be-slept task that is
2131 * waiting for the spinlock. This is safe as all queue_lock()
2132 * users end up calling queue_me(). Similarly, for housekeeping,
2133 * decrement the counter at queue_unlock() when some error has
2134 * occurred and we don't end up adding the task to the list.
2135 */
2136 hb_waiters_inc(hb);
2137
2138 q->lock_ptr = &hb->lock;
2139
2140 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2141 return hb;
2142 }
2143
2144 static inline void
2145 queue_unlock(struct futex_hash_bucket *hb)
2146 __releases(&hb->lock)
2147 {
2148 spin_unlock(&hb->lock);
2149 hb_waiters_dec(hb);
2150 }
2151
2152 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2153 {
2154 int prio;
2155
2156 /*
2157 * The priority used to register this element is
2158 * - either the real thread-priority for the real-time threads
2159 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2160 * - or MAX_RT_PRIO for non-RT threads.
2161 * Thus, all RT-threads are woken first in priority order, and
2162 * the others are woken last, in FIFO order.
2163 */
2164 prio = min(current->normal_prio, MAX_RT_PRIO);
2165
2166 plist_node_init(&q->list, prio);
2167 plist_add(&q->list, &hb->chain);
2168 q->task = current;
2169 }
2170
2171 /**
2172 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2173 * @q: The futex_q to enqueue
2174 * @hb: The destination hash bucket
2175 *
2176 * The hb->lock must be held by the caller, and is released here. A call to
2177 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2178 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2179 * or nothing if the unqueue is done as part of the wake process and the unqueue
2180 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2181 * an example).
2182 */
2183 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2184 __releases(&hb->lock)
2185 {
2186 __queue_me(q, hb);
2187 spin_unlock(&hb->lock);
2188 }
2189
2190 /**
2191 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2192 * @q: The futex_q to unqueue
2193 *
2194 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2195 * be paired with exactly one earlier call to queue_me().
2196 *
2197 * Return:
2198 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2199 * - 0 - if the futex_q was already removed by the waking thread
2200 */
2201 static int unqueue_me(struct futex_q *q)
2202 {
2203 spinlock_t *lock_ptr;
2204 int ret = 0;
2205
2206 /* In the common case we don't take the spinlock, which is nice. */
2207 retry:
2208 /*
2209 * q->lock_ptr can change between this read and the following spin_lock.
2210 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2211 * optimizing lock_ptr out of the logic below.
2212 */
2213 lock_ptr = READ_ONCE(q->lock_ptr);
2214 if (lock_ptr != NULL) {
2215 spin_lock(lock_ptr);
2216 /*
2217 * q->lock_ptr can change between reading it and
2218 * spin_lock(), causing us to take the wrong lock. This
2219 * corrects the race condition.
2220 *
2221 * Reasoning goes like this: if we have the wrong lock,
2222 * q->lock_ptr must have changed (maybe several times)
2223 * between reading it and the spin_lock(). It can
2224 * change again after the spin_lock() but only if it was
2225 * already changed before the spin_lock(). It cannot,
2226 * however, change back to the original value. Therefore
2227 * we can detect whether we acquired the correct lock.
2228 */
2229 if (unlikely(lock_ptr != q->lock_ptr)) {
2230 spin_unlock(lock_ptr);
2231 goto retry;
2232 }
2233 __unqueue_futex(q);
2234
2235 BUG_ON(q->pi_state);
2236
2237 spin_unlock(lock_ptr);
2238 ret = 1;
2239 }
2240
2241 drop_futex_key_refs(&q->key);
2242 return ret;
2243 }
2244
2245 /*
2246 * PI futexes can not be requeued and must remove themself from the
2247 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2248 * and dropped here.
2249 */
2250 static void unqueue_me_pi(struct futex_q *q)
2251 __releases(q->lock_ptr)
2252 {
2253 __unqueue_futex(q);
2254
2255 BUG_ON(!q->pi_state);
2256 put_pi_state(q->pi_state);
2257 q->pi_state = NULL;
2258
2259 spin_unlock(q->lock_ptr);
2260 }
2261
2262 /*
2263 * Fixup the pi_state owner with the new owner.
2264 *
2265 * Must be called with hash bucket lock held and mm->sem held for non
2266 * private futexes.
2267 */
2268 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2269 struct task_struct *newowner)
2270 {
2271 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2272 struct futex_pi_state *pi_state = q->pi_state;
2273 u32 uval, uninitialized_var(curval), newval;
2274 struct task_struct *oldowner;
2275 int ret;
2276
2277 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2278
2279 oldowner = pi_state->owner;
2280 /* Owner died? */
2281 if (!pi_state->owner)
2282 newtid |= FUTEX_OWNER_DIED;
2283
2284 /*
2285 * We are here either because we stole the rtmutex from the
2286 * previous highest priority waiter or we are the highest priority
2287 * waiter but have failed to get the rtmutex the first time.
2288 *
2289 * We have to replace the newowner TID in the user space variable.
2290 * This must be atomic as we have to preserve the owner died bit here.
2291 *
2292 * Note: We write the user space value _before_ changing the pi_state
2293 * because we can fault here. Imagine swapped out pages or a fork
2294 * that marked all the anonymous memory readonly for cow.
2295 *
2296 * Modifying pi_state _before_ the user space value would leave the
2297 * pi_state in an inconsistent state when we fault here, because we
2298 * need to drop the locks to handle the fault. This might be observed
2299 * in the PID check in lookup_pi_state.
2300 */
2301 retry:
2302 if (get_futex_value_locked(&uval, uaddr))
2303 goto handle_fault;
2304
2305 for (;;) {
2306 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2307
2308 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2309 goto handle_fault;
2310 if (curval == uval)
2311 break;
2312 uval = curval;
2313 }
2314
2315 /*
2316 * We fixed up user space. Now we need to fix the pi_state
2317 * itself.
2318 */
2319 if (pi_state->owner != NULL) {
2320 raw_spin_lock(&pi_state->owner->pi_lock);
2321 WARN_ON(list_empty(&pi_state->list));
2322 list_del_init(&pi_state->list);
2323 raw_spin_unlock(&pi_state->owner->pi_lock);
2324 }
2325
2326 pi_state->owner = newowner;
2327
2328 raw_spin_lock(&newowner->pi_lock);
2329 WARN_ON(!list_empty(&pi_state->list));
2330 list_add(&pi_state->list, &newowner->pi_state_list);
2331 raw_spin_unlock(&newowner->pi_lock);
2332 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2333
2334 return 0;
2335
2336 /*
2337 * To handle the page fault we need to drop the locks here. That gives
2338 * the other task (either the highest priority waiter itself or the
2339 * task which stole the rtmutex) the chance to try the fixup of the
2340 * pi_state. So once we are back from handling the fault we need to
2341 * check the pi_state after reacquiring the locks and before trying to
2342 * do another fixup. When the fixup has been done already we simply
2343 * return.
2344 *
2345 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2346 * drop hb->lock since the caller owns the hb -> futex_q relation.
2347 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2348 */
2349 handle_fault:
2350 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2351 spin_unlock(q->lock_ptr);
2352
2353 ret = fault_in_user_writeable(uaddr);
2354
2355 spin_lock(q->lock_ptr);
2356 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2357
2358 /*
2359 * Check if someone else fixed it for us:
2360 */
2361 if (pi_state->owner != oldowner) {
2362 ret = 0;
2363 goto out_unlock;
2364 }
2365
2366 if (ret)
2367 goto out_unlock;
2368
2369 goto retry;
2370
2371 out_unlock:
2372 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2373 return ret;
2374 }
2375
2376 static long futex_wait_restart(struct restart_block *restart);
2377
2378 /**
2379 * fixup_owner() - Post lock pi_state and corner case management
2380 * @uaddr: user address of the futex
2381 * @q: futex_q (contains pi_state and access to the rt_mutex)
2382 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2383 *
2384 * After attempting to lock an rt_mutex, this function is called to cleanup
2385 * the pi_state owner as well as handle race conditions that may allow us to
2386 * acquire the lock. Must be called with the hb lock held.
2387 *
2388 * Return:
2389 * - 1 - success, lock taken;
2390 * - 0 - success, lock not taken;
2391 * - <0 - on error (-EFAULT)
2392 */
2393 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2394 {
2395 int ret = 0;
2396
2397 if (locked) {
2398 /*
2399 * Got the lock. We might not be the anticipated owner if we
2400 * did a lock-steal - fix up the PI-state in that case:
2401 *
2402 * We can safely read pi_state->owner without holding wait_lock
2403 * because we now own the rt_mutex, only the owner will attempt
2404 * to change it.
2405 */
2406 if (q->pi_state->owner != current)
2407 ret = fixup_pi_state_owner(uaddr, q, current);
2408 goto out;
2409 }
2410
2411 /*
2412 * Paranoia check. If we did not take the lock, then we should not be
2413 * the owner of the rt_mutex.
2414 */
2415 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2416 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2417 "pi-state %p\n", ret,
2418 q->pi_state->pi_mutex.owner,
2419 q->pi_state->owner);
2420 }
2421
2422 out:
2423 return ret ? ret : locked;
2424 }
2425
2426 /**
2427 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2428 * @hb: the futex hash bucket, must be locked by the caller
2429 * @q: the futex_q to queue up on
2430 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2431 */
2432 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2433 struct hrtimer_sleeper *timeout)
2434 {
2435 /*
2436 * The task state is guaranteed to be set before another task can
2437 * wake it. set_current_state() is implemented using smp_store_mb() and
2438 * queue_me() calls spin_unlock() upon completion, both serializing
2439 * access to the hash list and forcing another memory barrier.
2440 */
2441 set_current_state(TASK_INTERRUPTIBLE);
2442 queue_me(q, hb);
2443
2444 /* Arm the timer */
2445 if (timeout)
2446 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2447
2448 /*
2449 * If we have been removed from the hash list, then another task
2450 * has tried to wake us, and we can skip the call to schedule().
2451 */
2452 if (likely(!plist_node_empty(&q->list))) {
2453 /*
2454 * If the timer has already expired, current will already be
2455 * flagged for rescheduling. Only call schedule if there
2456 * is no timeout, or if it has yet to expire.
2457 */
2458 if (!timeout || timeout->task)
2459 freezable_schedule();
2460 }
2461 __set_current_state(TASK_RUNNING);
2462 }
2463
2464 /**
2465 * futex_wait_setup() - Prepare to wait on a futex
2466 * @uaddr: the futex userspace address
2467 * @val: the expected value
2468 * @flags: futex flags (FLAGS_SHARED, etc.)
2469 * @q: the associated futex_q
2470 * @hb: storage for hash_bucket pointer to be returned to caller
2471 *
2472 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2473 * compare it with the expected value. Handle atomic faults internally.
2474 * Return with the hb lock held and a q.key reference on success, and unlocked
2475 * with no q.key reference on failure.
2476 *
2477 * Return:
2478 * - 0 - uaddr contains val and hb has been locked;
2479 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2480 */
2481 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2482 struct futex_q *q, struct futex_hash_bucket **hb)
2483 {
2484 u32 uval;
2485 int ret;
2486
2487 /*
2488 * Access the page AFTER the hash-bucket is locked.
2489 * Order is important:
2490 *
2491 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2492 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2493 *
2494 * The basic logical guarantee of a futex is that it blocks ONLY
2495 * if cond(var) is known to be true at the time of blocking, for
2496 * any cond. If we locked the hash-bucket after testing *uaddr, that
2497 * would open a race condition where we could block indefinitely with
2498 * cond(var) false, which would violate the guarantee.
2499 *
2500 * On the other hand, we insert q and release the hash-bucket only
2501 * after testing *uaddr. This guarantees that futex_wait() will NOT
2502 * absorb a wakeup if *uaddr does not match the desired values
2503 * while the syscall executes.
2504 */
2505 retry:
2506 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2507 if (unlikely(ret != 0))
2508 return ret;
2509
2510 retry_private:
2511 *hb = queue_lock(q);
2512
2513 ret = get_futex_value_locked(&uval, uaddr);
2514
2515 if (ret) {
2516 queue_unlock(*hb);
2517
2518 ret = get_user(uval, uaddr);
2519 if (ret)
2520 goto out;
2521
2522 if (!(flags & FLAGS_SHARED))
2523 goto retry_private;
2524
2525 put_futex_key(&q->key);
2526 goto retry;
2527 }
2528
2529 if (uval != val) {
2530 queue_unlock(*hb);
2531 ret = -EWOULDBLOCK;
2532 }
2533
2534 out:
2535 if (ret)
2536 put_futex_key(&q->key);
2537 return ret;
2538 }
2539
2540 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2541 ktime_t *abs_time, u32 bitset)
2542 {
2543 struct hrtimer_sleeper timeout, *to = NULL;
2544 struct restart_block *restart;
2545 struct futex_hash_bucket *hb;
2546 struct futex_q q = futex_q_init;
2547 int ret;
2548
2549 if (!bitset)
2550 return -EINVAL;
2551 q.bitset = bitset;
2552
2553 if (abs_time) {
2554 to = &timeout;
2555
2556 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2557 CLOCK_REALTIME : CLOCK_MONOTONIC,
2558 HRTIMER_MODE_ABS);
2559 hrtimer_init_sleeper(to, current);
2560 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2561 current->timer_slack_ns);
2562 }
2563
2564 retry:
2565 /*
2566 * Prepare to wait on uaddr. On success, holds hb lock and increments
2567 * q.key refs.
2568 */
2569 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2570 if (ret)
2571 goto out;
2572
2573 /* queue_me and wait for wakeup, timeout, or a signal. */
2574 futex_wait_queue_me(hb, &q, to);
2575
2576 /* If we were woken (and unqueued), we succeeded, whatever. */
2577 ret = 0;
2578 /* unqueue_me() drops q.key ref */
2579 if (!unqueue_me(&q))
2580 goto out;
2581 ret = -ETIMEDOUT;
2582 if (to && !to->task)
2583 goto out;
2584
2585 /*
2586 * We expect signal_pending(current), but we might be the
2587 * victim of a spurious wakeup as well.
2588 */
2589 if (!signal_pending(current))
2590 goto retry;
2591
2592 ret = -ERESTARTSYS;
2593 if (!abs_time)
2594 goto out;
2595
2596 restart = &current->restart_block;
2597 restart->fn = futex_wait_restart;
2598 restart->futex.uaddr = uaddr;
2599 restart->futex.val = val;
2600 restart->futex.time = *abs_time;
2601 restart->futex.bitset = bitset;
2602 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2603
2604 ret = -ERESTART_RESTARTBLOCK;
2605
2606 out:
2607 if (to) {
2608 hrtimer_cancel(&to->timer);
2609 destroy_hrtimer_on_stack(&to->timer);
2610 }
2611 return ret;
2612 }
2613
2614
2615 static long futex_wait_restart(struct restart_block *restart)
2616 {
2617 u32 __user *uaddr = restart->futex.uaddr;
2618 ktime_t t, *tp = NULL;
2619
2620 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2621 t = restart->futex.time;
2622 tp = &t;
2623 }
2624 restart->fn = do_no_restart_syscall;
2625
2626 return (long)futex_wait(uaddr, restart->futex.flags,
2627 restart->futex.val, tp, restart->futex.bitset);
2628 }
2629
2630
2631 /*
2632 * Userspace tried a 0 -> TID atomic transition of the futex value
2633 * and failed. The kernel side here does the whole locking operation:
2634 * if there are waiters then it will block as a consequence of relying
2635 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2636 * a 0 value of the futex too.).
2637 *
2638 * Also serves as futex trylock_pi()'ing, and due semantics.
2639 */
2640 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2641 ktime_t *time, int trylock)
2642 {
2643 struct hrtimer_sleeper timeout, *to = NULL;
2644 struct futex_pi_state *pi_state = NULL;
2645 struct rt_mutex_waiter rt_waiter;
2646 struct futex_hash_bucket *hb;
2647 struct futex_q q = futex_q_init;
2648 int res, ret;
2649
2650 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2651 return -ENOSYS;
2652
2653 if (refill_pi_state_cache())
2654 return -ENOMEM;
2655
2656 if (time) {
2657 to = &timeout;
2658 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2659 HRTIMER_MODE_ABS);
2660 hrtimer_init_sleeper(to, current);
2661 hrtimer_set_expires(&to->timer, *time);
2662 }
2663
2664 retry:
2665 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2666 if (unlikely(ret != 0))
2667 goto out;
2668
2669 retry_private:
2670 hb = queue_lock(&q);
2671
2672 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2673 if (unlikely(ret)) {
2674 /*
2675 * Atomic work succeeded and we got the lock,
2676 * or failed. Either way, we do _not_ block.
2677 */
2678 switch (ret) {
2679 case 1:
2680 /* We got the lock. */
2681 ret = 0;
2682 goto out_unlock_put_key;
2683 case -EFAULT:
2684 goto uaddr_faulted;
2685 case -EAGAIN:
2686 /*
2687 * Two reasons for this:
2688 * - Task is exiting and we just wait for the
2689 * exit to complete.
2690 * - The user space value changed.
2691 */
2692 queue_unlock(hb);
2693 put_futex_key(&q.key);
2694 cond_resched();
2695 goto retry;
2696 default:
2697 goto out_unlock_put_key;
2698 }
2699 }
2700
2701 WARN_ON(!q.pi_state);
2702
2703 /*
2704 * Only actually queue now that the atomic ops are done:
2705 */
2706 __queue_me(&q, hb);
2707
2708 if (trylock) {
2709 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2710 /* Fixup the trylock return value: */
2711 ret = ret ? 0 : -EWOULDBLOCK;
2712 goto no_block;
2713 }
2714
2715 rt_mutex_init_waiter(&rt_waiter);
2716
2717 /*
2718 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2719 * hold it while doing rt_mutex_start_proxy(), because then it will
2720 * include hb->lock in the blocking chain, even through we'll not in
2721 * fact hold it while blocking. This will lead it to report -EDEADLK
2722 * and BUG when futex_unlock_pi() interleaves with this.
2723 *
2724 * Therefore acquire wait_lock while holding hb->lock, but drop the
2725 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2726 * serializes against futex_unlock_pi() as that does the exact same
2727 * lock handoff sequence.
2728 */
2729 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2730 spin_unlock(q.lock_ptr);
2731 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2732 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2733
2734 if (ret) {
2735 if (ret == 1)
2736 ret = 0;
2737
2738 spin_lock(q.lock_ptr);
2739 goto no_block;
2740 }
2741
2742
2743 if (unlikely(to))
2744 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2745
2746 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2747
2748 spin_lock(q.lock_ptr);
2749 /*
2750 * If we failed to acquire the lock (signal/timeout), we must
2751 * first acquire the hb->lock before removing the lock from the
2752 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2753 * wait lists consistent.
2754 *
2755 * In particular; it is important that futex_unlock_pi() can not
2756 * observe this inconsistency.
2757 */
2758 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2759 ret = 0;
2760
2761 no_block:
2762 /*
2763 * Fixup the pi_state owner and possibly acquire the lock if we
2764 * haven't already.
2765 */
2766 res = fixup_owner(uaddr, &q, !ret);
2767 /*
2768 * If fixup_owner() returned an error, proprogate that. If it acquired
2769 * the lock, clear our -ETIMEDOUT or -EINTR.
2770 */
2771 if (res)
2772 ret = (res < 0) ? res : 0;
2773
2774 /*
2775 * If fixup_owner() faulted and was unable to handle the fault, unlock
2776 * it and return the fault to userspace.
2777 */
2778 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2779 pi_state = q.pi_state;
2780 get_pi_state(pi_state);
2781 }
2782
2783 /* Unqueue and drop the lock */
2784 unqueue_me_pi(&q);
2785
2786 if (pi_state) {
2787 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2788 put_pi_state(pi_state);
2789 }
2790
2791 goto out_put_key;
2792
2793 out_unlock_put_key:
2794 queue_unlock(hb);
2795
2796 out_put_key:
2797 put_futex_key(&q.key);
2798 out:
2799 if (to) {
2800 hrtimer_cancel(&to->timer);
2801 destroy_hrtimer_on_stack(&to->timer);
2802 }
2803 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2804
2805 uaddr_faulted:
2806 queue_unlock(hb);
2807
2808 ret = fault_in_user_writeable(uaddr);
2809 if (ret)
2810 goto out_put_key;
2811
2812 if (!(flags & FLAGS_SHARED))
2813 goto retry_private;
2814
2815 put_futex_key(&q.key);
2816 goto retry;
2817 }
2818
2819 /*
2820 * Userspace attempted a TID -> 0 atomic transition, and failed.
2821 * This is the in-kernel slowpath: we look up the PI state (if any),
2822 * and do the rt-mutex unlock.
2823 */
2824 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2825 {
2826 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2827 union futex_key key = FUTEX_KEY_INIT;
2828 struct futex_hash_bucket *hb;
2829 struct futex_q *top_waiter;
2830 int ret;
2831
2832 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2833 return -ENOSYS;
2834
2835 retry:
2836 if (get_user(uval, uaddr))
2837 return -EFAULT;
2838 /*
2839 * We release only a lock we actually own:
2840 */
2841 if ((uval & FUTEX_TID_MASK) != vpid)
2842 return -EPERM;
2843
2844 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2845 if (ret)
2846 return ret;
2847
2848 hb = hash_futex(&key);
2849 spin_lock(&hb->lock);
2850
2851 /*
2852 * Check waiters first. We do not trust user space values at
2853 * all and we at least want to know if user space fiddled
2854 * with the futex value instead of blindly unlocking.
2855 */
2856 top_waiter = futex_top_waiter(hb, &key);
2857 if (top_waiter) {
2858 struct futex_pi_state *pi_state = top_waiter->pi_state;
2859
2860 ret = -EINVAL;
2861 if (!pi_state)
2862 goto out_unlock;
2863
2864 /*
2865 * If current does not own the pi_state then the futex is
2866 * inconsistent and user space fiddled with the futex value.
2867 */
2868 if (pi_state->owner != current)
2869 goto out_unlock;
2870
2871 get_pi_state(pi_state);
2872 /*
2873 * By taking wait_lock while still holding hb->lock, we ensure
2874 * there is no point where we hold neither; and therefore
2875 * wake_futex_pi() must observe a state consistent with what we
2876 * observed.
2877 */
2878 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2879 spin_unlock(&hb->lock);
2880
2881 ret = wake_futex_pi(uaddr, uval, pi_state);
2882
2883 put_pi_state(pi_state);
2884
2885 /*
2886 * Success, we're done! No tricky corner cases.
2887 */
2888 if (!ret)
2889 goto out_putkey;
2890 /*
2891 * The atomic access to the futex value generated a
2892 * pagefault, so retry the user-access and the wakeup:
2893 */
2894 if (ret == -EFAULT)
2895 goto pi_faulted;
2896 /*
2897 * A unconditional UNLOCK_PI op raced against a waiter
2898 * setting the FUTEX_WAITERS bit. Try again.
2899 */
2900 if (ret == -EAGAIN) {
2901 put_futex_key(&key);
2902 goto retry;
2903 }
2904 /*
2905 * wake_futex_pi has detected invalid state. Tell user
2906 * space.
2907 */
2908 goto out_putkey;
2909 }
2910
2911 /*
2912 * We have no kernel internal state, i.e. no waiters in the
2913 * kernel. Waiters which are about to queue themselves are stuck
2914 * on hb->lock. So we can safely ignore them. We do neither
2915 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2916 * owner.
2917 */
2918 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2919 spin_unlock(&hb->lock);
2920 goto pi_faulted;
2921 }
2922
2923 /*
2924 * If uval has changed, let user space handle it.
2925 */
2926 ret = (curval == uval) ? 0 : -EAGAIN;
2927
2928 out_unlock:
2929 spin_unlock(&hb->lock);
2930 out_putkey:
2931 put_futex_key(&key);
2932 return ret;
2933
2934 pi_faulted:
2935 put_futex_key(&key);
2936
2937 ret = fault_in_user_writeable(uaddr);
2938 if (!ret)
2939 goto retry;
2940
2941 return ret;
2942 }
2943
2944 /**
2945 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2946 * @hb: the hash_bucket futex_q was original enqueued on
2947 * @q: the futex_q woken while waiting to be requeued
2948 * @key2: the futex_key of the requeue target futex
2949 * @timeout: the timeout associated with the wait (NULL if none)
2950 *
2951 * Detect if the task was woken on the initial futex as opposed to the requeue
2952 * target futex. If so, determine if it was a timeout or a signal that caused
2953 * the wakeup and return the appropriate error code to the caller. Must be
2954 * called with the hb lock held.
2955 *
2956 * Return:
2957 * - 0 = no early wakeup detected;
2958 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2959 */
2960 static inline
2961 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2962 struct futex_q *q, union futex_key *key2,
2963 struct hrtimer_sleeper *timeout)
2964 {
2965 int ret = 0;
2966
2967 /*
2968 * With the hb lock held, we avoid races while we process the wakeup.
2969 * We only need to hold hb (and not hb2) to ensure atomicity as the
2970 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2971 * It can't be requeued from uaddr2 to something else since we don't
2972 * support a PI aware source futex for requeue.
2973 */
2974 if (!match_futex(&q->key, key2)) {
2975 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2976 /*
2977 * We were woken prior to requeue by a timeout or a signal.
2978 * Unqueue the futex_q and determine which it was.
2979 */
2980 plist_del(&q->list, &hb->chain);
2981 hb_waiters_dec(hb);
2982
2983 /* Handle spurious wakeups gracefully */
2984 ret = -EWOULDBLOCK;
2985 if (timeout && !timeout->task)
2986 ret = -ETIMEDOUT;
2987 else if (signal_pending(current))
2988 ret = -ERESTARTNOINTR;
2989 }
2990 return ret;
2991 }
2992
2993 /**
2994 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2995 * @uaddr: the futex we initially wait on (non-pi)
2996 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2997 * the same type, no requeueing from private to shared, etc.
2998 * @val: the expected value of uaddr
2999 * @abs_time: absolute timeout
3000 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3001 * @uaddr2: the pi futex we will take prior to returning to user-space
3002 *
3003 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3004 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3005 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3006 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3007 * without one, the pi logic would not know which task to boost/deboost, if
3008 * there was a need to.
3009 *
3010 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3011 * via the following--
3012 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3013 * 2) wakeup on uaddr2 after a requeue
3014 * 3) signal
3015 * 4) timeout
3016 *
3017 * If 3, cleanup and return -ERESTARTNOINTR.
3018 *
3019 * If 2, we may then block on trying to take the rt_mutex and return via:
3020 * 5) successful lock
3021 * 6) signal
3022 * 7) timeout
3023 * 8) other lock acquisition failure
3024 *
3025 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3026 *
3027 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3028 *
3029 * Return:
3030 * - 0 - On success;
3031 * - <0 - On error
3032 */
3033 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3034 u32 val, ktime_t *abs_time, u32 bitset,
3035 u32 __user *uaddr2)
3036 {
3037 struct hrtimer_sleeper timeout, *to = NULL;
3038 struct futex_pi_state *pi_state = NULL;
3039 struct rt_mutex_waiter rt_waiter;
3040 struct futex_hash_bucket *hb;
3041 union futex_key key2 = FUTEX_KEY_INIT;
3042 struct futex_q q = futex_q_init;
3043 int res, ret;
3044
3045 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3046 return -ENOSYS;
3047
3048 if (uaddr == uaddr2)
3049 return -EINVAL;
3050
3051 if (!bitset)
3052 return -EINVAL;
3053
3054 if (abs_time) {
3055 to = &timeout;
3056 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3057 CLOCK_REALTIME : CLOCK_MONOTONIC,
3058 HRTIMER_MODE_ABS);
3059 hrtimer_init_sleeper(to, current);
3060 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3061 current->timer_slack_ns);
3062 }
3063
3064 /*
3065 * The waiter is allocated on our stack, manipulated by the requeue
3066 * code while we sleep on uaddr.
3067 */
3068 rt_mutex_init_waiter(&rt_waiter);
3069
3070 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3071 if (unlikely(ret != 0))
3072 goto out;
3073
3074 q.bitset = bitset;
3075 q.rt_waiter = &rt_waiter;
3076 q.requeue_pi_key = &key2;
3077
3078 /*
3079 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3080 * count.
3081 */
3082 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3083 if (ret)
3084 goto out_key2;
3085
3086 /*
3087 * The check above which compares uaddrs is not sufficient for
3088 * shared futexes. We need to compare the keys:
3089 */
3090 if (match_futex(&q.key, &key2)) {
3091 queue_unlock(hb);
3092 ret = -EINVAL;
3093 goto out_put_keys;
3094 }
3095
3096 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3097 futex_wait_queue_me(hb, &q, to);
3098
3099 spin_lock(&hb->lock);
3100 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3101 spin_unlock(&hb->lock);
3102 if (ret)
3103 goto out_put_keys;
3104
3105 /*
3106 * In order for us to be here, we know our q.key == key2, and since
3107 * we took the hb->lock above, we also know that futex_requeue() has
3108 * completed and we no longer have to concern ourselves with a wakeup
3109 * race with the atomic proxy lock acquisition by the requeue code. The
3110 * futex_requeue dropped our key1 reference and incremented our key2
3111 * reference count.
3112 */
3113
3114 /* Check if the requeue code acquired the second futex for us. */
3115 if (!q.rt_waiter) {
3116 /*
3117 * Got the lock. We might not be the anticipated owner if we
3118 * did a lock-steal - fix up the PI-state in that case.
3119 */
3120 if (q.pi_state && (q.pi_state->owner != current)) {
3121 spin_lock(q.lock_ptr);
3122 ret = fixup_pi_state_owner(uaddr2, &q, current);
3123 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3124 pi_state = q.pi_state;
3125 get_pi_state(pi_state);
3126 }
3127 /*
3128 * Drop the reference to the pi state which
3129 * the requeue_pi() code acquired for us.
3130 */
3131 put_pi_state(q.pi_state);
3132 spin_unlock(q.lock_ptr);
3133 }
3134 } else {
3135 struct rt_mutex *pi_mutex;
3136
3137 /*
3138 * We have been woken up by futex_unlock_pi(), a timeout, or a
3139 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3140 * the pi_state.
3141 */
3142 WARN_ON(!q.pi_state);
3143 pi_mutex = &q.pi_state->pi_mutex;
3144 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3145
3146 spin_lock(q.lock_ptr);
3147 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3148 ret = 0;
3149
3150 debug_rt_mutex_free_waiter(&rt_waiter);
3151 /*
3152 * Fixup the pi_state owner and possibly acquire the lock if we
3153 * haven't already.
3154 */
3155 res = fixup_owner(uaddr2, &q, !ret);
3156 /*
3157 * If fixup_owner() returned an error, proprogate that. If it
3158 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3159 */
3160 if (res)
3161 ret = (res < 0) ? res : 0;
3162
3163 /*
3164 * If fixup_pi_state_owner() faulted and was unable to handle
3165 * the fault, unlock the rt_mutex and return the fault to
3166 * userspace.
3167 */
3168 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3169 pi_state = q.pi_state;
3170 get_pi_state(pi_state);
3171 }
3172
3173 /* Unqueue and drop the lock. */
3174 unqueue_me_pi(&q);
3175 }
3176
3177 if (pi_state) {
3178 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3179 put_pi_state(pi_state);
3180 }
3181
3182 if (ret == -EINTR) {
3183 /*
3184 * We've already been requeued, but cannot restart by calling
3185 * futex_lock_pi() directly. We could restart this syscall, but
3186 * it would detect that the user space "val" changed and return
3187 * -EWOULDBLOCK. Save the overhead of the restart and return
3188 * -EWOULDBLOCK directly.
3189 */
3190 ret = -EWOULDBLOCK;
3191 }
3192
3193 out_put_keys:
3194 put_futex_key(&q.key);
3195 out_key2:
3196 put_futex_key(&key2);
3197
3198 out:
3199 if (to) {
3200 hrtimer_cancel(&to->timer);
3201 destroy_hrtimer_on_stack(&to->timer);
3202 }
3203 return ret;
3204 }
3205
3206 /*
3207 * Support for robust futexes: the kernel cleans up held futexes at
3208 * thread exit time.
3209 *
3210 * Implementation: user-space maintains a per-thread list of locks it
3211 * is holding. Upon do_exit(), the kernel carefully walks this list,
3212 * and marks all locks that are owned by this thread with the
3213 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3214 * always manipulated with the lock held, so the list is private and
3215 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3216 * field, to allow the kernel to clean up if the thread dies after
3217 * acquiring the lock, but just before it could have added itself to
3218 * the list. There can only be one such pending lock.
3219 */
3220
3221 /**
3222 * sys_set_robust_list() - Set the robust-futex list head of a task
3223 * @head: pointer to the list-head
3224 * @len: length of the list-head, as userspace expects
3225 */
3226 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3227 size_t, len)
3228 {
3229 if (!futex_cmpxchg_enabled)
3230 return -ENOSYS;
3231 /*
3232 * The kernel knows only one size for now:
3233 */
3234 if (unlikely(len != sizeof(*head)))
3235 return -EINVAL;
3236
3237 current->robust_list = head;
3238
3239 return 0;
3240 }
3241
3242 /**
3243 * sys_get_robust_list() - Get the robust-futex list head of a task
3244 * @pid: pid of the process [zero for current task]
3245 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3246 * @len_ptr: pointer to a length field, the kernel fills in the header size
3247 */
3248 SYSCALL_DEFINE3(get_robust_list, int, pid,
3249 struct robust_list_head __user * __user *, head_ptr,
3250 size_t __user *, len_ptr)
3251 {
3252 struct robust_list_head __user *head;
3253 unsigned long ret;
3254 struct task_struct *p;
3255
3256 if (!futex_cmpxchg_enabled)
3257 return -ENOSYS;
3258
3259 rcu_read_lock();
3260
3261 ret = -ESRCH;
3262 if (!pid)
3263 p = current;
3264 else {
3265 p = find_task_by_vpid(pid);
3266 if (!p)
3267 goto err_unlock;
3268 }
3269
3270 ret = -EPERM;
3271 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3272 goto err_unlock;
3273
3274 head = p->robust_list;
3275 rcu_read_unlock();
3276
3277 if (put_user(sizeof(*head), len_ptr))
3278 return -EFAULT;
3279 return put_user(head, head_ptr);
3280
3281 err_unlock:
3282 rcu_read_unlock();
3283
3284 return ret;
3285 }
3286
3287 /*
3288 * Process a futex-list entry, check whether it's owned by the
3289 * dying task, and do notification if so:
3290 */
3291 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3292 {
3293 u32 uval, uninitialized_var(nval), mval;
3294
3295 retry:
3296 if (get_user(uval, uaddr))
3297 return -1;
3298
3299 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3300 /*
3301 * Ok, this dying thread is truly holding a futex
3302 * of interest. Set the OWNER_DIED bit atomically
3303 * via cmpxchg, and if the value had FUTEX_WAITERS
3304 * set, wake up a waiter (if any). (We have to do a
3305 * futex_wake() even if OWNER_DIED is already set -
3306 * to handle the rare but possible case of recursive
3307 * thread-death.) The rest of the cleanup is done in
3308 * userspace.
3309 */
3310 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3311 /*
3312 * We are not holding a lock here, but we want to have
3313 * the pagefault_disable/enable() protection because
3314 * we want to handle the fault gracefully. If the
3315 * access fails we try to fault in the futex with R/W
3316 * verification via get_user_pages. get_user() above
3317 * does not guarantee R/W access. If that fails we
3318 * give up and leave the futex locked.
3319 */
3320 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3321 if (fault_in_user_writeable(uaddr))
3322 return -1;
3323 goto retry;
3324 }
3325 if (nval != uval)
3326 goto retry;
3327
3328 /*
3329 * Wake robust non-PI futexes here. The wakeup of
3330 * PI futexes happens in exit_pi_state():
3331 */
3332 if (!pi && (uval & FUTEX_WAITERS))
3333 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3334 }
3335 return 0;
3336 }
3337
3338 /*
3339 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3340 */
3341 static inline int fetch_robust_entry(struct robust_list __user **entry,
3342 struct robust_list __user * __user *head,
3343 unsigned int *pi)
3344 {
3345 unsigned long uentry;
3346
3347 if (get_user(uentry, (unsigned long __user *)head))
3348 return -EFAULT;
3349
3350 *entry = (void __user *)(uentry & ~1UL);
3351 *pi = uentry & 1;
3352
3353 return 0;
3354 }
3355
3356 /*
3357 * Walk curr->robust_list (very carefully, it's a userspace list!)
3358 * and mark any locks found there dead, and notify any waiters.
3359 *
3360 * We silently return on any sign of list-walking problem.
3361 */
3362 void exit_robust_list(struct task_struct *curr)
3363 {
3364 struct robust_list_head __user *head = curr->robust_list;
3365 struct robust_list __user *entry, *next_entry, *pending;
3366 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3367 unsigned int uninitialized_var(next_pi);
3368 unsigned long futex_offset;
3369 int rc;
3370
3371 if (!futex_cmpxchg_enabled)
3372 return;
3373
3374 /*
3375 * Fetch the list head (which was registered earlier, via
3376 * sys_set_robust_list()):
3377 */
3378 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3379 return;
3380 /*
3381 * Fetch the relative futex offset:
3382 */
3383 if (get_user(futex_offset, &head->futex_offset))
3384 return;
3385 /*
3386 * Fetch any possibly pending lock-add first, and handle it
3387 * if it exists:
3388 */
3389 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3390 return;
3391
3392 next_entry = NULL; /* avoid warning with gcc */
3393 while (entry != &head->list) {
3394 /*
3395 * Fetch the next entry in the list before calling
3396 * handle_futex_death:
3397 */
3398 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3399 /*
3400 * A pending lock might already be on the list, so
3401 * don't process it twice:
3402 */
3403 if (entry != pending)
3404 if (handle_futex_death((void __user *)entry + futex_offset,
3405 curr, pi))
3406 return;
3407 if (rc)
3408 return;
3409 entry = next_entry;
3410 pi = next_pi;
3411 /*
3412 * Avoid excessively long or circular lists:
3413 */
3414 if (!--limit)
3415 break;
3416
3417 cond_resched();
3418 }
3419
3420 if (pending)
3421 handle_futex_death((void __user *)pending + futex_offset,
3422 curr, pip);
3423 }
3424
3425 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3426 u32 __user *uaddr2, u32 val2, u32 val3)
3427 {
3428 int cmd = op & FUTEX_CMD_MASK;
3429 unsigned int flags = 0;
3430
3431 if (!(op & FUTEX_PRIVATE_FLAG))
3432 flags |= FLAGS_SHARED;
3433
3434 if (op & FUTEX_CLOCK_REALTIME) {
3435 flags |= FLAGS_CLOCKRT;
3436 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3437 cmd != FUTEX_WAIT_REQUEUE_PI)
3438 return -ENOSYS;
3439 }
3440
3441 switch (cmd) {
3442 case FUTEX_LOCK_PI:
3443 case FUTEX_UNLOCK_PI:
3444 case FUTEX_TRYLOCK_PI:
3445 case FUTEX_WAIT_REQUEUE_PI:
3446 case FUTEX_CMP_REQUEUE_PI:
3447 if (!futex_cmpxchg_enabled)
3448 return -ENOSYS;
3449 }
3450
3451 switch (cmd) {
3452 case FUTEX_WAIT:
3453 val3 = FUTEX_BITSET_MATCH_ANY;
3454 case FUTEX_WAIT_BITSET:
3455 return futex_wait(uaddr, flags, val, timeout, val3);
3456 case FUTEX_WAKE:
3457 val3 = FUTEX_BITSET_MATCH_ANY;
3458 case FUTEX_WAKE_BITSET:
3459 return futex_wake(uaddr, flags, val, val3);
3460 case FUTEX_REQUEUE:
3461 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3462 case FUTEX_CMP_REQUEUE:
3463 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3464 case FUTEX_WAKE_OP:
3465 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3466 case FUTEX_LOCK_PI:
3467 return futex_lock_pi(uaddr, flags, timeout, 0);
3468 case FUTEX_UNLOCK_PI:
3469 return futex_unlock_pi(uaddr, flags);
3470 case FUTEX_TRYLOCK_PI:
3471 return futex_lock_pi(uaddr, flags, NULL, 1);
3472 case FUTEX_WAIT_REQUEUE_PI:
3473 val3 = FUTEX_BITSET_MATCH_ANY;
3474 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3475 uaddr2);
3476 case FUTEX_CMP_REQUEUE_PI:
3477 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3478 }
3479 return -ENOSYS;
3480 }
3481
3482
3483 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3484 struct timespec __user *, utime, u32 __user *, uaddr2,
3485 u32, val3)
3486 {
3487 struct timespec ts;
3488 ktime_t t, *tp = NULL;
3489 u32 val2 = 0;
3490 int cmd = op & FUTEX_CMD_MASK;
3491
3492 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3493 cmd == FUTEX_WAIT_BITSET ||
3494 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3495 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3496 return -EFAULT;
3497 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3498 return -EFAULT;
3499 if (!timespec_valid(&ts))
3500 return -EINVAL;
3501
3502 t = timespec_to_ktime(ts);
3503 if (cmd == FUTEX_WAIT)
3504 t = ktime_add_safe(ktime_get(), t);
3505 tp = &t;
3506 }
3507 /*
3508 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3509 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3510 */
3511 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3512 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3513 val2 = (u32) (unsigned long) utime;
3514
3515 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3516 }
3517
3518 static void __init futex_detect_cmpxchg(void)
3519 {
3520 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3521 u32 curval;
3522
3523 /*
3524 * This will fail and we want it. Some arch implementations do
3525 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3526 * functionality. We want to know that before we call in any
3527 * of the complex code paths. Also we want to prevent
3528 * registration of robust lists in that case. NULL is
3529 * guaranteed to fault and we get -EFAULT on functional
3530 * implementation, the non-functional ones will return
3531 * -ENOSYS.
3532 */
3533 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3534 futex_cmpxchg_enabled = 1;
3535 #endif
3536 }
3537
3538 static int __init futex_init(void)
3539 {
3540 unsigned int futex_shift;
3541 unsigned long i;
3542
3543 #if CONFIG_BASE_SMALL
3544 futex_hashsize = 16;
3545 #else
3546 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3547 #endif
3548
3549 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3550 futex_hashsize, 0,
3551 futex_hashsize < 256 ? HASH_SMALL : 0,
3552 &futex_shift, NULL,
3553 futex_hashsize, futex_hashsize);
3554 futex_hashsize = 1UL << futex_shift;
3555
3556 futex_detect_cmpxchg();
3557
3558 for (i = 0; i < futex_hashsize; i++) {
3559 atomic_set(&futex_queues[i].waiters, 0);
3560 plist_head_init(&futex_queues[i].chain);
3561 spin_lock_init(&futex_queues[i].lock);
3562 }
3563
3564 return 0;
3565 }
3566 core_initcall(futex_init);