]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/futex.c
UBUNTU: Ubuntu-5.11.0-22.23
[mirror_ubuntu-hirsute-kernel.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
33 */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/hugetlb.h>
39 #include <linux/freezer.h>
40 #include <linux/memblock.h>
41 #include <linux/fault-inject.h>
42 #include <linux/time_namespace.h>
43
44 #include <asm/futex.h>
45
46 #include "locking/rtmutex_common.h"
47
48 /*
49 * READ this before attempting to hack on futexes!
50 *
51 * Basic futex operation and ordering guarantees
52 * =============================================
53 *
54 * The waiter reads the futex value in user space and calls
55 * futex_wait(). This function computes the hash bucket and acquires
56 * the hash bucket lock. After that it reads the futex user space value
57 * again and verifies that the data has not changed. If it has not changed
58 * it enqueues itself into the hash bucket, releases the hash bucket lock
59 * and schedules.
60 *
61 * The waker side modifies the user space value of the futex and calls
62 * futex_wake(). This function computes the hash bucket and acquires the
63 * hash bucket lock. Then it looks for waiters on that futex in the hash
64 * bucket and wakes them.
65 *
66 * In futex wake up scenarios where no tasks are blocked on a futex, taking
67 * the hb spinlock can be avoided and simply return. In order for this
68 * optimization to work, ordering guarantees must exist so that the waiter
69 * being added to the list is acknowledged when the list is concurrently being
70 * checked by the waker, avoiding scenarios like the following:
71 *
72 * CPU 0 CPU 1
73 * val = *futex;
74 * sys_futex(WAIT, futex, val);
75 * futex_wait(futex, val);
76 * uval = *futex;
77 * *futex = newval;
78 * sys_futex(WAKE, futex);
79 * futex_wake(futex);
80 * if (queue_empty())
81 * return;
82 * if (uval == val)
83 * lock(hash_bucket(futex));
84 * queue();
85 * unlock(hash_bucket(futex));
86 * schedule();
87 *
88 * This would cause the waiter on CPU 0 to wait forever because it
89 * missed the transition of the user space value from val to newval
90 * and the waker did not find the waiter in the hash bucket queue.
91 *
92 * The correct serialization ensures that a waiter either observes
93 * the changed user space value before blocking or is woken by a
94 * concurrent waker:
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 *
101 * waiters++; (a)
102 * smp_mb(); (A) <-- paired with -.
103 * |
104 * lock(hash_bucket(futex)); |
105 * |
106 * uval = *futex; |
107 * | *futex = newval;
108 * | sys_futex(WAKE, futex);
109 * | futex_wake(futex);
110 * |
111 * `--------> smp_mb(); (B)
112 * if (uval == val)
113 * queue();
114 * unlock(hash_bucket(futex));
115 * schedule(); if (waiters)
116 * lock(hash_bucket(futex));
117 * else wake_waiters(futex);
118 * waiters--; (b) unlock(hash_bucket(futex));
119 *
120 * Where (A) orders the waiters increment and the futex value read through
121 * atomic operations (see hb_waiters_inc) and where (B) orders the write
122 * to futex and the waiters read (see hb_waiters_pending()).
123 *
124 * This yields the following case (where X:=waiters, Y:=futex):
125 *
126 * X = Y = 0
127 *
128 * w[X]=1 w[Y]=1
129 * MB MB
130 * r[Y]=y r[X]=x
131 *
132 * Which guarantees that x==0 && y==0 is impossible; which translates back into
133 * the guarantee that we cannot both miss the futex variable change and the
134 * enqueue.
135 *
136 * Note that a new waiter is accounted for in (a) even when it is possible that
137 * the wait call can return error, in which case we backtrack from it in (b).
138 * Refer to the comment in queue_lock().
139 *
140 * Similarly, in order to account for waiters being requeued on another
141 * address we always increment the waiters for the destination bucket before
142 * acquiring the lock. It then decrements them again after releasing it -
143 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
144 * will do the additional required waiter count housekeeping. This is done for
145 * double_lock_hb() and double_unlock_hb(), respectively.
146 */
147
148 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
149 #define futex_cmpxchg_enabled 1
150 #else
151 static int __read_mostly futex_cmpxchg_enabled;
152 #endif
153
154 /*
155 * Futex flags used to encode options to functions and preserve them across
156 * restarts.
157 */
158 #ifdef CONFIG_MMU
159 # define FLAGS_SHARED 0x01
160 #else
161 /*
162 * NOMMU does not have per process address space. Let the compiler optimize
163 * code away.
164 */
165 # define FLAGS_SHARED 0x00
166 #endif
167 #define FLAGS_CLOCKRT 0x02
168 #define FLAGS_HAS_TIMEOUT 0x04
169
170 /*
171 * Priority Inheritance state:
172 */
173 struct futex_pi_state {
174 /*
175 * list of 'owned' pi_state instances - these have to be
176 * cleaned up in do_exit() if the task exits prematurely:
177 */
178 struct list_head list;
179
180 /*
181 * The PI object:
182 */
183 struct rt_mutex pi_mutex;
184
185 struct task_struct *owner;
186 refcount_t refcount;
187
188 union futex_key key;
189 } __randomize_layout;
190
191 /**
192 * struct futex_q - The hashed futex queue entry, one per waiting task
193 * @list: priority-sorted list of tasks waiting on this futex
194 * @task: the task waiting on the futex
195 * @lock_ptr: the hash bucket lock
196 * @key: the key the futex is hashed on
197 * @pi_state: optional priority inheritance state
198 * @rt_waiter: rt_waiter storage for use with requeue_pi
199 * @requeue_pi_key: the requeue_pi target futex key
200 * @bitset: bitset for the optional bitmasked wakeup
201 *
202 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
203 * we can wake only the relevant ones (hashed queues may be shared).
204 *
205 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
206 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
207 * The order of wakeup is always to make the first condition true, then
208 * the second.
209 *
210 * PI futexes are typically woken before they are removed from the hash list via
211 * the rt_mutex code. See unqueue_me_pi().
212 */
213 struct futex_q {
214 struct plist_node list;
215
216 struct task_struct *task;
217 spinlock_t *lock_ptr;
218 union futex_key key;
219 struct futex_pi_state *pi_state;
220 struct rt_mutex_waiter *rt_waiter;
221 union futex_key *requeue_pi_key;
222 u32 bitset;
223 } __randomize_layout;
224
225 static const struct futex_q futex_q_init = {
226 /* list gets initialized in queue_me()*/
227 .key = FUTEX_KEY_INIT,
228 .bitset = FUTEX_BITSET_MATCH_ANY
229 };
230
231 /*
232 * Hash buckets are shared by all the futex_keys that hash to the same
233 * location. Each key may have multiple futex_q structures, one for each task
234 * waiting on a futex.
235 */
236 struct futex_hash_bucket {
237 atomic_t waiters;
238 spinlock_t lock;
239 struct plist_head chain;
240 } ____cacheline_aligned_in_smp;
241
242 /*
243 * The base of the bucket array and its size are always used together
244 * (after initialization only in hash_futex()), so ensure that they
245 * reside in the same cacheline.
246 */
247 static struct {
248 struct futex_hash_bucket *queues;
249 unsigned long hashsize;
250 } __futex_data __read_mostly __aligned(2*sizeof(long));
251 #define futex_queues (__futex_data.queues)
252 #define futex_hashsize (__futex_data.hashsize)
253
254
255 /*
256 * Fault injections for futexes.
257 */
258 #ifdef CONFIG_FAIL_FUTEX
259
260 static struct {
261 struct fault_attr attr;
262
263 bool ignore_private;
264 } fail_futex = {
265 .attr = FAULT_ATTR_INITIALIZER,
266 .ignore_private = false,
267 };
268
269 static int __init setup_fail_futex(char *str)
270 {
271 return setup_fault_attr(&fail_futex.attr, str);
272 }
273 __setup("fail_futex=", setup_fail_futex);
274
275 static bool should_fail_futex(bool fshared)
276 {
277 if (fail_futex.ignore_private && !fshared)
278 return false;
279
280 return should_fail(&fail_futex.attr, 1);
281 }
282
283 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
284
285 static int __init fail_futex_debugfs(void)
286 {
287 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
288 struct dentry *dir;
289
290 dir = fault_create_debugfs_attr("fail_futex", NULL,
291 &fail_futex.attr);
292 if (IS_ERR(dir))
293 return PTR_ERR(dir);
294
295 debugfs_create_bool("ignore-private", mode, dir,
296 &fail_futex.ignore_private);
297 return 0;
298 }
299
300 late_initcall(fail_futex_debugfs);
301
302 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
303
304 #else
305 static inline bool should_fail_futex(bool fshared)
306 {
307 return false;
308 }
309 #endif /* CONFIG_FAIL_FUTEX */
310
311 #ifdef CONFIG_COMPAT
312 static void compat_exit_robust_list(struct task_struct *curr);
313 #endif
314
315 /*
316 * Reflects a new waiter being added to the waitqueue.
317 */
318 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
319 {
320 #ifdef CONFIG_SMP
321 atomic_inc(&hb->waiters);
322 /*
323 * Full barrier (A), see the ordering comment above.
324 */
325 smp_mb__after_atomic();
326 #endif
327 }
328
329 /*
330 * Reflects a waiter being removed from the waitqueue by wakeup
331 * paths.
332 */
333 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
334 {
335 #ifdef CONFIG_SMP
336 atomic_dec(&hb->waiters);
337 #endif
338 }
339
340 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
341 {
342 #ifdef CONFIG_SMP
343 /*
344 * Full barrier (B), see the ordering comment above.
345 */
346 smp_mb();
347 return atomic_read(&hb->waiters);
348 #else
349 return 1;
350 #endif
351 }
352
353 /**
354 * hash_futex - Return the hash bucket in the global hash
355 * @key: Pointer to the futex key for which the hash is calculated
356 *
357 * We hash on the keys returned from get_futex_key (see below) and return the
358 * corresponding hash bucket in the global hash.
359 */
360 static struct futex_hash_bucket *hash_futex(union futex_key *key)
361 {
362 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
363 key->both.offset);
364
365 return &futex_queues[hash & (futex_hashsize - 1)];
366 }
367
368
369 /**
370 * match_futex - Check whether two futex keys are equal
371 * @key1: Pointer to key1
372 * @key2: Pointer to key2
373 *
374 * Return 1 if two futex_keys are equal, 0 otherwise.
375 */
376 static inline int match_futex(union futex_key *key1, union futex_key *key2)
377 {
378 return (key1 && key2
379 && key1->both.word == key2->both.word
380 && key1->both.ptr == key2->both.ptr
381 && key1->both.offset == key2->both.offset);
382 }
383
384 enum futex_access {
385 FUTEX_READ,
386 FUTEX_WRITE
387 };
388
389 /**
390 * futex_setup_timer - set up the sleeping hrtimer.
391 * @time: ptr to the given timeout value
392 * @timeout: the hrtimer_sleeper structure to be set up
393 * @flags: futex flags
394 * @range_ns: optional range in ns
395 *
396 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
397 * value given
398 */
399 static inline struct hrtimer_sleeper *
400 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
401 int flags, u64 range_ns)
402 {
403 if (!time)
404 return NULL;
405
406 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
407 CLOCK_REALTIME : CLOCK_MONOTONIC,
408 HRTIMER_MODE_ABS);
409 /*
410 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
411 * effectively the same as calling hrtimer_set_expires().
412 */
413 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
414
415 return timeout;
416 }
417
418 /*
419 * Generate a machine wide unique identifier for this inode.
420 *
421 * This relies on u64 not wrapping in the life-time of the machine; which with
422 * 1ns resolution means almost 585 years.
423 *
424 * This further relies on the fact that a well formed program will not unmap
425 * the file while it has a (shared) futex waiting on it. This mapping will have
426 * a file reference which pins the mount and inode.
427 *
428 * If for some reason an inode gets evicted and read back in again, it will get
429 * a new sequence number and will _NOT_ match, even though it is the exact same
430 * file.
431 *
432 * It is important that match_futex() will never have a false-positive, esp.
433 * for PI futexes that can mess up the state. The above argues that false-negatives
434 * are only possible for malformed programs.
435 */
436 static u64 get_inode_sequence_number(struct inode *inode)
437 {
438 static atomic64_t i_seq;
439 u64 old;
440
441 /* Does the inode already have a sequence number? */
442 old = atomic64_read(&inode->i_sequence);
443 if (likely(old))
444 return old;
445
446 for (;;) {
447 u64 new = atomic64_add_return(1, &i_seq);
448 if (WARN_ON_ONCE(!new))
449 continue;
450
451 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
452 if (old)
453 return old;
454 return new;
455 }
456 }
457
458 /**
459 * get_futex_key() - Get parameters which are the keys for a futex
460 * @uaddr: virtual address of the futex
461 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
462 * @key: address where result is stored.
463 * @rw: mapping needs to be read/write (values: FUTEX_READ,
464 * FUTEX_WRITE)
465 *
466 * Return: a negative error code or 0
467 *
468 * The key words are stored in @key on success.
469 *
470 * For shared mappings (when @fshared), the key is:
471 *
472 * ( inode->i_sequence, page->index, offset_within_page )
473 *
474 * [ also see get_inode_sequence_number() ]
475 *
476 * For private mappings (or when !@fshared), the key is:
477 *
478 * ( current->mm, address, 0 )
479 *
480 * This allows (cross process, where applicable) identification of the futex
481 * without keeping the page pinned for the duration of the FUTEX_WAIT.
482 *
483 * lock_page() might sleep, the caller should not hold a spinlock.
484 */
485 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
486 enum futex_access rw)
487 {
488 unsigned long address = (unsigned long)uaddr;
489 struct mm_struct *mm = current->mm;
490 struct page *page, *tail;
491 struct address_space *mapping;
492 int err, ro = 0;
493
494 /*
495 * The futex address must be "naturally" aligned.
496 */
497 key->both.offset = address % PAGE_SIZE;
498 if (unlikely((address % sizeof(u32)) != 0))
499 return -EINVAL;
500 address -= key->both.offset;
501
502 if (unlikely(!access_ok(uaddr, sizeof(u32))))
503 return -EFAULT;
504
505 if (unlikely(should_fail_futex(fshared)))
506 return -EFAULT;
507
508 /*
509 * PROCESS_PRIVATE futexes are fast.
510 * As the mm cannot disappear under us and the 'key' only needs
511 * virtual address, we dont even have to find the underlying vma.
512 * Note : We do have to check 'uaddr' is a valid user address,
513 * but access_ok() should be faster than find_vma()
514 */
515 if (!fshared) {
516 key->private.mm = mm;
517 key->private.address = address;
518 return 0;
519 }
520
521 again:
522 /* Ignore any VERIFY_READ mapping (futex common case) */
523 if (unlikely(should_fail_futex(true)))
524 return -EFAULT;
525
526 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
527 /*
528 * If write access is not required (eg. FUTEX_WAIT), try
529 * and get read-only access.
530 */
531 if (err == -EFAULT && rw == FUTEX_READ) {
532 err = get_user_pages_fast(address, 1, 0, &page);
533 ro = 1;
534 }
535 if (err < 0)
536 return err;
537 else
538 err = 0;
539
540 /*
541 * The treatment of mapping from this point on is critical. The page
542 * lock protects many things but in this context the page lock
543 * stabilizes mapping, prevents inode freeing in the shared
544 * file-backed region case and guards against movement to swap cache.
545 *
546 * Strictly speaking the page lock is not needed in all cases being
547 * considered here and page lock forces unnecessarily serialization
548 * From this point on, mapping will be re-verified if necessary and
549 * page lock will be acquired only if it is unavoidable
550 *
551 * Mapping checks require the head page for any compound page so the
552 * head page and mapping is looked up now. For anonymous pages, it
553 * does not matter if the page splits in the future as the key is
554 * based on the address. For filesystem-backed pages, the tail is
555 * required as the index of the page determines the key. For
556 * base pages, there is no tail page and tail == page.
557 */
558 tail = page;
559 page = compound_head(page);
560 mapping = READ_ONCE(page->mapping);
561
562 /*
563 * If page->mapping is NULL, then it cannot be a PageAnon
564 * page; but it might be the ZERO_PAGE or in the gate area or
565 * in a special mapping (all cases which we are happy to fail);
566 * or it may have been a good file page when get_user_pages_fast
567 * found it, but truncated or holepunched or subjected to
568 * invalidate_complete_page2 before we got the page lock (also
569 * cases which we are happy to fail). And we hold a reference,
570 * so refcount care in invalidate_complete_page's remove_mapping
571 * prevents drop_caches from setting mapping to NULL beneath us.
572 *
573 * The case we do have to guard against is when memory pressure made
574 * shmem_writepage move it from filecache to swapcache beneath us:
575 * an unlikely race, but we do need to retry for page->mapping.
576 */
577 if (unlikely(!mapping)) {
578 int shmem_swizzled;
579
580 /*
581 * Page lock is required to identify which special case above
582 * applies. If this is really a shmem page then the page lock
583 * will prevent unexpected transitions.
584 */
585 lock_page(page);
586 shmem_swizzled = PageSwapCache(page) || page->mapping;
587 unlock_page(page);
588 put_page(page);
589
590 if (shmem_swizzled)
591 goto again;
592
593 return -EFAULT;
594 }
595
596 /*
597 * Private mappings are handled in a simple way.
598 *
599 * If the futex key is stored on an anonymous page, then the associated
600 * object is the mm which is implicitly pinned by the calling process.
601 *
602 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
603 * it's a read-only handle, it's expected that futexes attach to
604 * the object not the particular process.
605 */
606 if (PageAnon(page)) {
607 /*
608 * A RO anonymous page will never change and thus doesn't make
609 * sense for futex operations.
610 */
611 if (unlikely(should_fail_futex(true)) || ro) {
612 err = -EFAULT;
613 goto out;
614 }
615
616 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
617 key->private.mm = mm;
618 key->private.address = address;
619
620 } else {
621 struct inode *inode;
622
623 /*
624 * The associated futex object in this case is the inode and
625 * the page->mapping must be traversed. Ordinarily this should
626 * be stabilised under page lock but it's not strictly
627 * necessary in this case as we just want to pin the inode, not
628 * update the radix tree or anything like that.
629 *
630 * The RCU read lock is taken as the inode is finally freed
631 * under RCU. If the mapping still matches expectations then the
632 * mapping->host can be safely accessed as being a valid inode.
633 */
634 rcu_read_lock();
635
636 if (READ_ONCE(page->mapping) != mapping) {
637 rcu_read_unlock();
638 put_page(page);
639
640 goto again;
641 }
642
643 inode = READ_ONCE(mapping->host);
644 if (!inode) {
645 rcu_read_unlock();
646 put_page(page);
647
648 goto again;
649 }
650
651 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
652 key->shared.i_seq = get_inode_sequence_number(inode);
653 key->shared.pgoff = basepage_index(tail);
654 rcu_read_unlock();
655 }
656
657 out:
658 put_page(page);
659 return err;
660 }
661
662 /**
663 * fault_in_user_writeable() - Fault in user address and verify RW access
664 * @uaddr: pointer to faulting user space address
665 *
666 * Slow path to fixup the fault we just took in the atomic write
667 * access to @uaddr.
668 *
669 * We have no generic implementation of a non-destructive write to the
670 * user address. We know that we faulted in the atomic pagefault
671 * disabled section so we can as well avoid the #PF overhead by
672 * calling get_user_pages() right away.
673 */
674 static int fault_in_user_writeable(u32 __user *uaddr)
675 {
676 struct mm_struct *mm = current->mm;
677 int ret;
678
679 mmap_read_lock(mm);
680 ret = fixup_user_fault(mm, (unsigned long)uaddr,
681 FAULT_FLAG_WRITE, NULL);
682 mmap_read_unlock(mm);
683
684 return ret < 0 ? ret : 0;
685 }
686
687 /**
688 * futex_top_waiter() - Return the highest priority waiter on a futex
689 * @hb: the hash bucket the futex_q's reside in
690 * @key: the futex key (to distinguish it from other futex futex_q's)
691 *
692 * Must be called with the hb lock held.
693 */
694 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
695 union futex_key *key)
696 {
697 struct futex_q *this;
698
699 plist_for_each_entry(this, &hb->chain, list) {
700 if (match_futex(&this->key, key))
701 return this;
702 }
703 return NULL;
704 }
705
706 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
707 u32 uval, u32 newval)
708 {
709 int ret;
710
711 pagefault_disable();
712 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
713 pagefault_enable();
714
715 return ret;
716 }
717
718 static int get_futex_value_locked(u32 *dest, u32 __user *from)
719 {
720 int ret;
721
722 pagefault_disable();
723 ret = __get_user(*dest, from);
724 pagefault_enable();
725
726 return ret ? -EFAULT : 0;
727 }
728
729
730 /*
731 * PI code:
732 */
733 static int refill_pi_state_cache(void)
734 {
735 struct futex_pi_state *pi_state;
736
737 if (likely(current->pi_state_cache))
738 return 0;
739
740 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
741
742 if (!pi_state)
743 return -ENOMEM;
744
745 INIT_LIST_HEAD(&pi_state->list);
746 /* pi_mutex gets initialized later */
747 pi_state->owner = NULL;
748 refcount_set(&pi_state->refcount, 1);
749 pi_state->key = FUTEX_KEY_INIT;
750
751 current->pi_state_cache = pi_state;
752
753 return 0;
754 }
755
756 static struct futex_pi_state *alloc_pi_state(void)
757 {
758 struct futex_pi_state *pi_state = current->pi_state_cache;
759
760 WARN_ON(!pi_state);
761 current->pi_state_cache = NULL;
762
763 return pi_state;
764 }
765
766 static void pi_state_update_owner(struct futex_pi_state *pi_state,
767 struct task_struct *new_owner)
768 {
769 struct task_struct *old_owner = pi_state->owner;
770
771 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
772
773 if (old_owner) {
774 raw_spin_lock(&old_owner->pi_lock);
775 WARN_ON(list_empty(&pi_state->list));
776 list_del_init(&pi_state->list);
777 raw_spin_unlock(&old_owner->pi_lock);
778 }
779
780 if (new_owner) {
781 raw_spin_lock(&new_owner->pi_lock);
782 WARN_ON(!list_empty(&pi_state->list));
783 list_add(&pi_state->list, &new_owner->pi_state_list);
784 pi_state->owner = new_owner;
785 raw_spin_unlock(&new_owner->pi_lock);
786 }
787 }
788
789 static void get_pi_state(struct futex_pi_state *pi_state)
790 {
791 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
792 }
793
794 /*
795 * Drops a reference to the pi_state object and frees or caches it
796 * when the last reference is gone.
797 */
798 static void put_pi_state(struct futex_pi_state *pi_state)
799 {
800 if (!pi_state)
801 return;
802
803 if (!refcount_dec_and_test(&pi_state->refcount))
804 return;
805
806 /*
807 * If pi_state->owner is NULL, the owner is most probably dying
808 * and has cleaned up the pi_state already
809 */
810 if (pi_state->owner) {
811 unsigned long flags;
812
813 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
814 pi_state_update_owner(pi_state, NULL);
815 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
816 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
817 }
818
819 if (current->pi_state_cache) {
820 kfree(pi_state);
821 } else {
822 /*
823 * pi_state->list is already empty.
824 * clear pi_state->owner.
825 * refcount is at 0 - put it back to 1.
826 */
827 pi_state->owner = NULL;
828 refcount_set(&pi_state->refcount, 1);
829 current->pi_state_cache = pi_state;
830 }
831 }
832
833 #ifdef CONFIG_FUTEX_PI
834
835 /*
836 * This task is holding PI mutexes at exit time => bad.
837 * Kernel cleans up PI-state, but userspace is likely hosed.
838 * (Robust-futex cleanup is separate and might save the day for userspace.)
839 */
840 static void exit_pi_state_list(struct task_struct *curr)
841 {
842 struct list_head *next, *head = &curr->pi_state_list;
843 struct futex_pi_state *pi_state;
844 struct futex_hash_bucket *hb;
845 union futex_key key = FUTEX_KEY_INIT;
846
847 if (!futex_cmpxchg_enabled)
848 return;
849 /*
850 * We are a ZOMBIE and nobody can enqueue itself on
851 * pi_state_list anymore, but we have to be careful
852 * versus waiters unqueueing themselves:
853 */
854 raw_spin_lock_irq(&curr->pi_lock);
855 while (!list_empty(head)) {
856 next = head->next;
857 pi_state = list_entry(next, struct futex_pi_state, list);
858 key = pi_state->key;
859 hb = hash_futex(&key);
860
861 /*
862 * We can race against put_pi_state() removing itself from the
863 * list (a waiter going away). put_pi_state() will first
864 * decrement the reference count and then modify the list, so
865 * its possible to see the list entry but fail this reference
866 * acquire.
867 *
868 * In that case; drop the locks to let put_pi_state() make
869 * progress and retry the loop.
870 */
871 if (!refcount_inc_not_zero(&pi_state->refcount)) {
872 raw_spin_unlock_irq(&curr->pi_lock);
873 cpu_relax();
874 raw_spin_lock_irq(&curr->pi_lock);
875 continue;
876 }
877 raw_spin_unlock_irq(&curr->pi_lock);
878
879 spin_lock(&hb->lock);
880 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
881 raw_spin_lock(&curr->pi_lock);
882 /*
883 * We dropped the pi-lock, so re-check whether this
884 * task still owns the PI-state:
885 */
886 if (head->next != next) {
887 /* retain curr->pi_lock for the loop invariant */
888 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
889 spin_unlock(&hb->lock);
890 put_pi_state(pi_state);
891 continue;
892 }
893
894 WARN_ON(pi_state->owner != curr);
895 WARN_ON(list_empty(&pi_state->list));
896 list_del_init(&pi_state->list);
897 pi_state->owner = NULL;
898
899 raw_spin_unlock(&curr->pi_lock);
900 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
901 spin_unlock(&hb->lock);
902
903 rt_mutex_futex_unlock(&pi_state->pi_mutex);
904 put_pi_state(pi_state);
905
906 raw_spin_lock_irq(&curr->pi_lock);
907 }
908 raw_spin_unlock_irq(&curr->pi_lock);
909 }
910 #else
911 static inline void exit_pi_state_list(struct task_struct *curr) { }
912 #endif
913
914 /*
915 * We need to check the following states:
916 *
917 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
918 *
919 * [1] NULL | --- | --- | 0 | 0/1 | Valid
920 * [2] NULL | --- | --- | >0 | 0/1 | Valid
921 *
922 * [3] Found | NULL | -- | Any | 0/1 | Invalid
923 *
924 * [4] Found | Found | NULL | 0 | 1 | Valid
925 * [5] Found | Found | NULL | >0 | 1 | Invalid
926 *
927 * [6] Found | Found | task | 0 | 1 | Valid
928 *
929 * [7] Found | Found | NULL | Any | 0 | Invalid
930 *
931 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
932 * [9] Found | Found | task | 0 | 0 | Invalid
933 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
934 *
935 * [1] Indicates that the kernel can acquire the futex atomically. We
936 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
937 *
938 * [2] Valid, if TID does not belong to a kernel thread. If no matching
939 * thread is found then it indicates that the owner TID has died.
940 *
941 * [3] Invalid. The waiter is queued on a non PI futex
942 *
943 * [4] Valid state after exit_robust_list(), which sets the user space
944 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
945 *
946 * [5] The user space value got manipulated between exit_robust_list()
947 * and exit_pi_state_list()
948 *
949 * [6] Valid state after exit_pi_state_list() which sets the new owner in
950 * the pi_state but cannot access the user space value.
951 *
952 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
953 *
954 * [8] Owner and user space value match
955 *
956 * [9] There is no transient state which sets the user space TID to 0
957 * except exit_robust_list(), but this is indicated by the
958 * FUTEX_OWNER_DIED bit. See [4]
959 *
960 * [10] There is no transient state which leaves owner and user space
961 * TID out of sync. Except one error case where the kernel is denied
962 * write access to the user address, see fixup_pi_state_owner().
963 *
964 *
965 * Serialization and lifetime rules:
966 *
967 * hb->lock:
968 *
969 * hb -> futex_q, relation
970 * futex_q -> pi_state, relation
971 *
972 * (cannot be raw because hb can contain arbitrary amount
973 * of futex_q's)
974 *
975 * pi_mutex->wait_lock:
976 *
977 * {uval, pi_state}
978 *
979 * (and pi_mutex 'obviously')
980 *
981 * p->pi_lock:
982 *
983 * p->pi_state_list -> pi_state->list, relation
984 *
985 * pi_state->refcount:
986 *
987 * pi_state lifetime
988 *
989 *
990 * Lock order:
991 *
992 * hb->lock
993 * pi_mutex->wait_lock
994 * p->pi_lock
995 *
996 */
997
998 /*
999 * Validate that the existing waiter has a pi_state and sanity check
1000 * the pi_state against the user space value. If correct, attach to
1001 * it.
1002 */
1003 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004 struct futex_pi_state *pi_state,
1005 struct futex_pi_state **ps)
1006 {
1007 pid_t pid = uval & FUTEX_TID_MASK;
1008 u32 uval2;
1009 int ret;
1010
1011 /*
1012 * Userspace might have messed up non-PI and PI futexes [3]
1013 */
1014 if (unlikely(!pi_state))
1015 return -EINVAL;
1016
1017 /*
1018 * We get here with hb->lock held, and having found a
1019 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021 * which in turn means that futex_lock_pi() still has a reference on
1022 * our pi_state.
1023 *
1024 * The waiter holding a reference on @pi_state also protects against
1025 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027 * free pi_state before we can take a reference ourselves.
1028 */
1029 WARN_ON(!refcount_read(&pi_state->refcount));
1030
1031 /*
1032 * Now that we have a pi_state, we can acquire wait_lock
1033 * and do the state validation.
1034 */
1035 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037 /*
1038 * Since {uval, pi_state} is serialized by wait_lock, and our current
1039 * uval was read without holding it, it can have changed. Verify it
1040 * still is what we expect it to be, otherwise retry the entire
1041 * operation.
1042 */
1043 if (get_futex_value_locked(&uval2, uaddr))
1044 goto out_efault;
1045
1046 if (uval != uval2)
1047 goto out_eagain;
1048
1049 /*
1050 * Handle the owner died case:
1051 */
1052 if (uval & FUTEX_OWNER_DIED) {
1053 /*
1054 * exit_pi_state_list sets owner to NULL and wakes the
1055 * topmost waiter. The task which acquires the
1056 * pi_state->rt_mutex will fixup owner.
1057 */
1058 if (!pi_state->owner) {
1059 /*
1060 * No pi state owner, but the user space TID
1061 * is not 0. Inconsistent state. [5]
1062 */
1063 if (pid)
1064 goto out_einval;
1065 /*
1066 * Take a ref on the state and return success. [4]
1067 */
1068 goto out_attach;
1069 }
1070
1071 /*
1072 * If TID is 0, then either the dying owner has not
1073 * yet executed exit_pi_state_list() or some waiter
1074 * acquired the rtmutex in the pi state, but did not
1075 * yet fixup the TID in user space.
1076 *
1077 * Take a ref on the state and return success. [6]
1078 */
1079 if (!pid)
1080 goto out_attach;
1081 } else {
1082 /*
1083 * If the owner died bit is not set, then the pi_state
1084 * must have an owner. [7]
1085 */
1086 if (!pi_state->owner)
1087 goto out_einval;
1088 }
1089
1090 /*
1091 * Bail out if user space manipulated the futex value. If pi
1092 * state exists then the owner TID must be the same as the
1093 * user space TID. [9/10]
1094 */
1095 if (pid != task_pid_vnr(pi_state->owner))
1096 goto out_einval;
1097
1098 out_attach:
1099 get_pi_state(pi_state);
1100 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101 *ps = pi_state;
1102 return 0;
1103
1104 out_einval:
1105 ret = -EINVAL;
1106 goto out_error;
1107
1108 out_eagain:
1109 ret = -EAGAIN;
1110 goto out_error;
1111
1112 out_efault:
1113 ret = -EFAULT;
1114 goto out_error;
1115
1116 out_error:
1117 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118 return ret;
1119 }
1120
1121 /**
1122 * wait_for_owner_exiting - Block until the owner has exited
1123 * @ret: owner's current futex lock status
1124 * @exiting: Pointer to the exiting task
1125 *
1126 * Caller must hold a refcount on @exiting.
1127 */
1128 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129 {
1130 if (ret != -EBUSY) {
1131 WARN_ON_ONCE(exiting);
1132 return;
1133 }
1134
1135 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136 return;
1137
1138 mutex_lock(&exiting->futex_exit_mutex);
1139 /*
1140 * No point in doing state checking here. If the waiter got here
1141 * while the task was in exec()->exec_futex_release() then it can
1142 * have any FUTEX_STATE_* value when the waiter has acquired the
1143 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144 * already. Highly unlikely and not a problem. Just one more round
1145 * through the futex maze.
1146 */
1147 mutex_unlock(&exiting->futex_exit_mutex);
1148
1149 put_task_struct(exiting);
1150 }
1151
1152 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153 struct task_struct *tsk)
1154 {
1155 u32 uval2;
1156
1157 /*
1158 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159 * caller that the alleged owner is busy.
1160 */
1161 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1162 return -EBUSY;
1163
1164 /*
1165 * Reread the user space value to handle the following situation:
1166 *
1167 * CPU0 CPU1
1168 *
1169 * sys_exit() sys_futex()
1170 * do_exit() futex_lock_pi()
1171 * futex_lock_pi_atomic()
1172 * exit_signals(tsk) No waiters:
1173 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1174 * mm_release(tsk) Set waiter bit
1175 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1176 * Set owner died attach_to_pi_owner() {
1177 * *uaddr = 0xC0000000; tsk = get_task(PID);
1178 * } if (!tsk->flags & PF_EXITING) {
1179 * ... attach();
1180 * tsk->futex_state = } else {
1181 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1182 * FUTEX_STATE_DEAD)
1183 * return -EAGAIN;
1184 * return -ESRCH; <--- FAIL
1185 * }
1186 *
1187 * Returning ESRCH unconditionally is wrong here because the
1188 * user space value has been changed by the exiting task.
1189 *
1190 * The same logic applies to the case where the exiting task is
1191 * already gone.
1192 */
1193 if (get_futex_value_locked(&uval2, uaddr))
1194 return -EFAULT;
1195
1196 /* If the user space value has changed, try again. */
1197 if (uval2 != uval)
1198 return -EAGAIN;
1199
1200 /*
1201 * The exiting task did not have a robust list, the robust list was
1202 * corrupted or the user space value in *uaddr is simply bogus.
1203 * Give up and tell user space.
1204 */
1205 return -ESRCH;
1206 }
1207
1208 /*
1209 * Lookup the task for the TID provided from user space and attach to
1210 * it after doing proper sanity checks.
1211 */
1212 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1213 struct futex_pi_state **ps,
1214 struct task_struct **exiting)
1215 {
1216 pid_t pid = uval & FUTEX_TID_MASK;
1217 struct futex_pi_state *pi_state;
1218 struct task_struct *p;
1219
1220 /*
1221 * We are the first waiter - try to look up the real owner and attach
1222 * the new pi_state to it, but bail out when TID = 0 [1]
1223 *
1224 * The !pid check is paranoid. None of the call sites should end up
1225 * with pid == 0, but better safe than sorry. Let the caller retry
1226 */
1227 if (!pid)
1228 return -EAGAIN;
1229 p = find_get_task_by_vpid(pid);
1230 if (!p)
1231 return handle_exit_race(uaddr, uval, NULL);
1232
1233 if (unlikely(p->flags & PF_KTHREAD)) {
1234 put_task_struct(p);
1235 return -EPERM;
1236 }
1237
1238 /*
1239 * We need to look at the task state to figure out, whether the
1240 * task is exiting. To protect against the change of the task state
1241 * in futex_exit_release(), we do this protected by p->pi_lock:
1242 */
1243 raw_spin_lock_irq(&p->pi_lock);
1244 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1245 /*
1246 * The task is on the way out. When the futex state is
1247 * FUTEX_STATE_DEAD, we know that the task has finished
1248 * the cleanup:
1249 */
1250 int ret = handle_exit_race(uaddr, uval, p);
1251
1252 raw_spin_unlock_irq(&p->pi_lock);
1253 /*
1254 * If the owner task is between FUTEX_STATE_EXITING and
1255 * FUTEX_STATE_DEAD then store the task pointer and keep
1256 * the reference on the task struct. The calling code will
1257 * drop all locks, wait for the task to reach
1258 * FUTEX_STATE_DEAD and then drop the refcount. This is
1259 * required to prevent a live lock when the current task
1260 * preempted the exiting task between the two states.
1261 */
1262 if (ret == -EBUSY)
1263 *exiting = p;
1264 else
1265 put_task_struct(p);
1266 return ret;
1267 }
1268
1269 /*
1270 * No existing pi state. First waiter. [2]
1271 *
1272 * This creates pi_state, we have hb->lock held, this means nothing can
1273 * observe this state, wait_lock is irrelevant.
1274 */
1275 pi_state = alloc_pi_state();
1276
1277 /*
1278 * Initialize the pi_mutex in locked state and make @p
1279 * the owner of it:
1280 */
1281 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283 /* Store the key for possible exit cleanups: */
1284 pi_state->key = *key;
1285
1286 WARN_ON(!list_empty(&pi_state->list));
1287 list_add(&pi_state->list, &p->pi_state_list);
1288 /*
1289 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290 * because there is no concurrency as the object is not published yet.
1291 */
1292 pi_state->owner = p;
1293 raw_spin_unlock_irq(&p->pi_lock);
1294
1295 put_task_struct(p);
1296
1297 *ps = pi_state;
1298
1299 return 0;
1300 }
1301
1302 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1303 struct futex_hash_bucket *hb,
1304 union futex_key *key, struct futex_pi_state **ps,
1305 struct task_struct **exiting)
1306 {
1307 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1308
1309 /*
1310 * If there is a waiter on that futex, validate it and
1311 * attach to the pi_state when the validation succeeds.
1312 */
1313 if (top_waiter)
1314 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1315
1316 /*
1317 * We are the first waiter - try to look up the owner based on
1318 * @uval and attach to it.
1319 */
1320 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1321 }
1322
1323 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1324 {
1325 int err;
1326 u32 curval;
1327
1328 if (unlikely(should_fail_futex(true)))
1329 return -EFAULT;
1330
1331 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1332 if (unlikely(err))
1333 return err;
1334
1335 /* If user space value changed, let the caller retry */
1336 return curval != uval ? -EAGAIN : 0;
1337 }
1338
1339 /**
1340 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1341 * @uaddr: the pi futex user address
1342 * @hb: the pi futex hash bucket
1343 * @key: the futex key associated with uaddr and hb
1344 * @ps: the pi_state pointer where we store the result of the
1345 * lookup
1346 * @task: the task to perform the atomic lock work for. This will
1347 * be "current" except in the case of requeue pi.
1348 * @exiting: Pointer to store the task pointer of the owner task
1349 * which is in the middle of exiting
1350 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1351 *
1352 * Return:
1353 * - 0 - ready to wait;
1354 * - 1 - acquired the lock;
1355 * - <0 - error
1356 *
1357 * The hb->lock and futex_key refs shall be held by the caller.
1358 *
1359 * @exiting is only set when the return value is -EBUSY. If so, this holds
1360 * a refcount on the exiting task on return and the caller needs to drop it
1361 * after waiting for the exit to complete.
1362 */
1363 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1364 union futex_key *key,
1365 struct futex_pi_state **ps,
1366 struct task_struct *task,
1367 struct task_struct **exiting,
1368 int set_waiters)
1369 {
1370 u32 uval, newval, vpid = task_pid_vnr(task);
1371 struct futex_q *top_waiter;
1372 int ret;
1373
1374 /*
1375 * Read the user space value first so we can validate a few
1376 * things before proceeding further.
1377 */
1378 if (get_futex_value_locked(&uval, uaddr))
1379 return -EFAULT;
1380
1381 if (unlikely(should_fail_futex(true)))
1382 return -EFAULT;
1383
1384 /*
1385 * Detect deadlocks.
1386 */
1387 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1388 return -EDEADLK;
1389
1390 if ((unlikely(should_fail_futex(true))))
1391 return -EDEADLK;
1392
1393 /*
1394 * Lookup existing state first. If it exists, try to attach to
1395 * its pi_state.
1396 */
1397 top_waiter = futex_top_waiter(hb, key);
1398 if (top_waiter)
1399 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1400
1401 /*
1402 * No waiter and user TID is 0. We are here because the
1403 * waiters or the owner died bit is set or called from
1404 * requeue_cmp_pi or for whatever reason something took the
1405 * syscall.
1406 */
1407 if (!(uval & FUTEX_TID_MASK)) {
1408 /*
1409 * We take over the futex. No other waiters and the user space
1410 * TID is 0. We preserve the owner died bit.
1411 */
1412 newval = uval & FUTEX_OWNER_DIED;
1413 newval |= vpid;
1414
1415 /* The futex requeue_pi code can enforce the waiters bit */
1416 if (set_waiters)
1417 newval |= FUTEX_WAITERS;
1418
1419 ret = lock_pi_update_atomic(uaddr, uval, newval);
1420 /* If the take over worked, return 1 */
1421 return ret < 0 ? ret : 1;
1422 }
1423
1424 /*
1425 * First waiter. Set the waiters bit before attaching ourself to
1426 * the owner. If owner tries to unlock, it will be forced into
1427 * the kernel and blocked on hb->lock.
1428 */
1429 newval = uval | FUTEX_WAITERS;
1430 ret = lock_pi_update_atomic(uaddr, uval, newval);
1431 if (ret)
1432 return ret;
1433 /*
1434 * If the update of the user space value succeeded, we try to
1435 * attach to the owner. If that fails, no harm done, we only
1436 * set the FUTEX_WAITERS bit in the user space variable.
1437 */
1438 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1439 }
1440
1441 /**
1442 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1443 * @q: The futex_q to unqueue
1444 *
1445 * The q->lock_ptr must not be NULL and must be held by the caller.
1446 */
1447 static void __unqueue_futex(struct futex_q *q)
1448 {
1449 struct futex_hash_bucket *hb;
1450
1451 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1452 return;
1453 lockdep_assert_held(q->lock_ptr);
1454
1455 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1456 plist_del(&q->list, &hb->chain);
1457 hb_waiters_dec(hb);
1458 }
1459
1460 /*
1461 * The hash bucket lock must be held when this is called.
1462 * Afterwards, the futex_q must not be accessed. Callers
1463 * must ensure to later call wake_up_q() for the actual
1464 * wakeups to occur.
1465 */
1466 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1467 {
1468 struct task_struct *p = q->task;
1469
1470 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1471 return;
1472
1473 get_task_struct(p);
1474 __unqueue_futex(q);
1475 /*
1476 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1477 * is written, without taking any locks. This is possible in the event
1478 * of a spurious wakeup, for example. A memory barrier is required here
1479 * to prevent the following store to lock_ptr from getting ahead of the
1480 * plist_del in __unqueue_futex().
1481 */
1482 smp_store_release(&q->lock_ptr, NULL);
1483
1484 /*
1485 * Queue the task for later wakeup for after we've released
1486 * the hb->lock.
1487 */
1488 wake_q_add_safe(wake_q, p);
1489 }
1490
1491 /*
1492 * Caller must hold a reference on @pi_state.
1493 */
1494 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1495 {
1496 u32 curval, newval;
1497 struct task_struct *new_owner;
1498 bool postunlock = false;
1499 DEFINE_WAKE_Q(wake_q);
1500 int ret = 0;
1501
1502 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1503 if (WARN_ON_ONCE(!new_owner)) {
1504 /*
1505 * As per the comment in futex_unlock_pi() this should not happen.
1506 *
1507 * When this happens, give up our locks and try again, giving
1508 * the futex_lock_pi() instance time to complete, either by
1509 * waiting on the rtmutex or removing itself from the futex
1510 * queue.
1511 */
1512 ret = -EAGAIN;
1513 goto out_unlock;
1514 }
1515
1516 /*
1517 * We pass it to the next owner. The WAITERS bit is always kept
1518 * enabled while there is PI state around. We cleanup the owner
1519 * died bit, because we are the owner.
1520 */
1521 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1522
1523 if (unlikely(should_fail_futex(true))) {
1524 ret = -EFAULT;
1525 goto out_unlock;
1526 }
1527
1528 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1529 if (!ret && (curval != uval)) {
1530 /*
1531 * If a unconditional UNLOCK_PI operation (user space did not
1532 * try the TID->0 transition) raced with a waiter setting the
1533 * FUTEX_WAITERS flag between get_user() and locking the hash
1534 * bucket lock, retry the operation.
1535 */
1536 if ((FUTEX_TID_MASK & curval) == uval)
1537 ret = -EAGAIN;
1538 else
1539 ret = -EINVAL;
1540 }
1541
1542 if (!ret) {
1543 /*
1544 * This is a point of no return; once we modified the uval
1545 * there is no going back and subsequent operations must
1546 * not fail.
1547 */
1548 pi_state_update_owner(pi_state, new_owner);
1549 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1550 }
1551
1552 out_unlock:
1553 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1554
1555 if (postunlock)
1556 rt_mutex_postunlock(&wake_q);
1557
1558 return ret;
1559 }
1560
1561 /*
1562 * Express the locking dependencies for lockdep:
1563 */
1564 static inline void
1565 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1566 {
1567 if (hb1 <= hb2) {
1568 spin_lock(&hb1->lock);
1569 if (hb1 < hb2)
1570 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1571 } else { /* hb1 > hb2 */
1572 spin_lock(&hb2->lock);
1573 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1574 }
1575 }
1576
1577 static inline void
1578 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1579 {
1580 spin_unlock(&hb1->lock);
1581 if (hb1 != hb2)
1582 spin_unlock(&hb2->lock);
1583 }
1584
1585 /*
1586 * Wake up waiters matching bitset queued on this futex (uaddr).
1587 */
1588 static int
1589 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1590 {
1591 struct futex_hash_bucket *hb;
1592 struct futex_q *this, *next;
1593 union futex_key key = FUTEX_KEY_INIT;
1594 int ret;
1595 DEFINE_WAKE_Q(wake_q);
1596
1597 if (!bitset)
1598 return -EINVAL;
1599
1600 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1601 if (unlikely(ret != 0))
1602 return ret;
1603
1604 hb = hash_futex(&key);
1605
1606 /* Make sure we really have tasks to wakeup */
1607 if (!hb_waiters_pending(hb))
1608 return ret;
1609
1610 spin_lock(&hb->lock);
1611
1612 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1613 if (match_futex (&this->key, &key)) {
1614 if (this->pi_state || this->rt_waiter) {
1615 ret = -EINVAL;
1616 break;
1617 }
1618
1619 /* Check if one of the bits is set in both bitsets */
1620 if (!(this->bitset & bitset))
1621 continue;
1622
1623 mark_wake_futex(&wake_q, this);
1624 if (++ret >= nr_wake)
1625 break;
1626 }
1627 }
1628
1629 spin_unlock(&hb->lock);
1630 wake_up_q(&wake_q);
1631 return ret;
1632 }
1633
1634 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1635 {
1636 unsigned int op = (encoded_op & 0x70000000) >> 28;
1637 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1638 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1639 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1640 int oldval, ret;
1641
1642 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1643 if (oparg < 0 || oparg > 31) {
1644 char comm[sizeof(current->comm)];
1645 /*
1646 * kill this print and return -EINVAL when userspace
1647 * is sane again
1648 */
1649 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1650 get_task_comm(comm, current), oparg);
1651 oparg &= 31;
1652 }
1653 oparg = 1 << oparg;
1654 }
1655
1656 pagefault_disable();
1657 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1658 pagefault_enable();
1659 if (ret)
1660 return ret;
1661
1662 switch (cmp) {
1663 case FUTEX_OP_CMP_EQ:
1664 return oldval == cmparg;
1665 case FUTEX_OP_CMP_NE:
1666 return oldval != cmparg;
1667 case FUTEX_OP_CMP_LT:
1668 return oldval < cmparg;
1669 case FUTEX_OP_CMP_GE:
1670 return oldval >= cmparg;
1671 case FUTEX_OP_CMP_LE:
1672 return oldval <= cmparg;
1673 case FUTEX_OP_CMP_GT:
1674 return oldval > cmparg;
1675 default:
1676 return -ENOSYS;
1677 }
1678 }
1679
1680 /*
1681 * Wake up all waiters hashed on the physical page that is mapped
1682 * to this virtual address:
1683 */
1684 static int
1685 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1686 int nr_wake, int nr_wake2, int op)
1687 {
1688 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1689 struct futex_hash_bucket *hb1, *hb2;
1690 struct futex_q *this, *next;
1691 int ret, op_ret;
1692 DEFINE_WAKE_Q(wake_q);
1693
1694 retry:
1695 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1696 if (unlikely(ret != 0))
1697 return ret;
1698 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1699 if (unlikely(ret != 0))
1700 return ret;
1701
1702 hb1 = hash_futex(&key1);
1703 hb2 = hash_futex(&key2);
1704
1705 retry_private:
1706 double_lock_hb(hb1, hb2);
1707 op_ret = futex_atomic_op_inuser(op, uaddr2);
1708 if (unlikely(op_ret < 0)) {
1709 double_unlock_hb(hb1, hb2);
1710
1711 if (!IS_ENABLED(CONFIG_MMU) ||
1712 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1713 /*
1714 * we don't get EFAULT from MMU faults if we don't have
1715 * an MMU, but we might get them from range checking
1716 */
1717 ret = op_ret;
1718 return ret;
1719 }
1720
1721 if (op_ret == -EFAULT) {
1722 ret = fault_in_user_writeable(uaddr2);
1723 if (ret)
1724 return ret;
1725 }
1726
1727 if (!(flags & FLAGS_SHARED)) {
1728 cond_resched();
1729 goto retry_private;
1730 }
1731
1732 cond_resched();
1733 goto retry;
1734 }
1735
1736 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1737 if (match_futex (&this->key, &key1)) {
1738 if (this->pi_state || this->rt_waiter) {
1739 ret = -EINVAL;
1740 goto out_unlock;
1741 }
1742 mark_wake_futex(&wake_q, this);
1743 if (++ret >= nr_wake)
1744 break;
1745 }
1746 }
1747
1748 if (op_ret > 0) {
1749 op_ret = 0;
1750 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1751 if (match_futex (&this->key, &key2)) {
1752 if (this->pi_state || this->rt_waiter) {
1753 ret = -EINVAL;
1754 goto out_unlock;
1755 }
1756 mark_wake_futex(&wake_q, this);
1757 if (++op_ret >= nr_wake2)
1758 break;
1759 }
1760 }
1761 ret += op_ret;
1762 }
1763
1764 out_unlock:
1765 double_unlock_hb(hb1, hb2);
1766 wake_up_q(&wake_q);
1767 return ret;
1768 }
1769
1770 /**
1771 * requeue_futex() - Requeue a futex_q from one hb to another
1772 * @q: the futex_q to requeue
1773 * @hb1: the source hash_bucket
1774 * @hb2: the target hash_bucket
1775 * @key2: the new key for the requeued futex_q
1776 */
1777 static inline
1778 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1779 struct futex_hash_bucket *hb2, union futex_key *key2)
1780 {
1781
1782 /*
1783 * If key1 and key2 hash to the same bucket, no need to
1784 * requeue.
1785 */
1786 if (likely(&hb1->chain != &hb2->chain)) {
1787 plist_del(&q->list, &hb1->chain);
1788 hb_waiters_dec(hb1);
1789 hb_waiters_inc(hb2);
1790 plist_add(&q->list, &hb2->chain);
1791 q->lock_ptr = &hb2->lock;
1792 }
1793 q->key = *key2;
1794 }
1795
1796 /**
1797 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1798 * @q: the futex_q
1799 * @key: the key of the requeue target futex
1800 * @hb: the hash_bucket of the requeue target futex
1801 *
1802 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1803 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1804 * to the requeue target futex so the waiter can detect the wakeup on the right
1805 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1806 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1807 * to protect access to the pi_state to fixup the owner later. Must be called
1808 * with both q->lock_ptr and hb->lock held.
1809 */
1810 static inline
1811 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1812 struct futex_hash_bucket *hb)
1813 {
1814 q->key = *key;
1815
1816 __unqueue_futex(q);
1817
1818 WARN_ON(!q->rt_waiter);
1819 q->rt_waiter = NULL;
1820
1821 q->lock_ptr = &hb->lock;
1822
1823 wake_up_state(q->task, TASK_NORMAL);
1824 }
1825
1826 /**
1827 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1828 * @pifutex: the user address of the to futex
1829 * @hb1: the from futex hash bucket, must be locked by the caller
1830 * @hb2: the to futex hash bucket, must be locked by the caller
1831 * @key1: the from futex key
1832 * @key2: the to futex key
1833 * @ps: address to store the pi_state pointer
1834 * @exiting: Pointer to store the task pointer of the owner task
1835 * which is in the middle of exiting
1836 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1837 *
1838 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1839 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1840 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1841 * hb1 and hb2 must be held by the caller.
1842 *
1843 * @exiting is only set when the return value is -EBUSY. If so, this holds
1844 * a refcount on the exiting task on return and the caller needs to drop it
1845 * after waiting for the exit to complete.
1846 *
1847 * Return:
1848 * - 0 - failed to acquire the lock atomically;
1849 * - >0 - acquired the lock, return value is vpid of the top_waiter
1850 * - <0 - error
1851 */
1852 static int
1853 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1854 struct futex_hash_bucket *hb2, union futex_key *key1,
1855 union futex_key *key2, struct futex_pi_state **ps,
1856 struct task_struct **exiting, int set_waiters)
1857 {
1858 struct futex_q *top_waiter = NULL;
1859 u32 curval;
1860 int ret, vpid;
1861
1862 if (get_futex_value_locked(&curval, pifutex))
1863 return -EFAULT;
1864
1865 if (unlikely(should_fail_futex(true)))
1866 return -EFAULT;
1867
1868 /*
1869 * Find the top_waiter and determine if there are additional waiters.
1870 * If the caller intends to requeue more than 1 waiter to pifutex,
1871 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1872 * as we have means to handle the possible fault. If not, don't set
1873 * the bit unecessarily as it will force the subsequent unlock to enter
1874 * the kernel.
1875 */
1876 top_waiter = futex_top_waiter(hb1, key1);
1877
1878 /* There are no waiters, nothing for us to do. */
1879 if (!top_waiter)
1880 return 0;
1881
1882 /* Ensure we requeue to the expected futex. */
1883 if (!match_futex(top_waiter->requeue_pi_key, key2))
1884 return -EINVAL;
1885
1886 /*
1887 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1888 * the contended case or if set_waiters is 1. The pi_state is returned
1889 * in ps in contended cases.
1890 */
1891 vpid = task_pid_vnr(top_waiter->task);
1892 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1893 exiting, set_waiters);
1894 if (ret == 1) {
1895 requeue_pi_wake_futex(top_waiter, key2, hb2);
1896 return vpid;
1897 }
1898 return ret;
1899 }
1900
1901 /**
1902 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1903 * @uaddr1: source futex user address
1904 * @flags: futex flags (FLAGS_SHARED, etc.)
1905 * @uaddr2: target futex user address
1906 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1907 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1908 * @cmpval: @uaddr1 expected value (or %NULL)
1909 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1910 * pi futex (pi to pi requeue is not supported)
1911 *
1912 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1913 * uaddr2 atomically on behalf of the top waiter.
1914 *
1915 * Return:
1916 * - >=0 - on success, the number of tasks requeued or woken;
1917 * - <0 - on error
1918 */
1919 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1920 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1921 u32 *cmpval, int requeue_pi)
1922 {
1923 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1924 int task_count = 0, ret;
1925 struct futex_pi_state *pi_state = NULL;
1926 struct futex_hash_bucket *hb1, *hb2;
1927 struct futex_q *this, *next;
1928 DEFINE_WAKE_Q(wake_q);
1929
1930 if (nr_wake < 0 || nr_requeue < 0)
1931 return -EINVAL;
1932
1933 /*
1934 * When PI not supported: return -ENOSYS if requeue_pi is true,
1935 * consequently the compiler knows requeue_pi is always false past
1936 * this point which will optimize away all the conditional code
1937 * further down.
1938 */
1939 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1940 return -ENOSYS;
1941
1942 if (requeue_pi) {
1943 /*
1944 * Requeue PI only works on two distinct uaddrs. This
1945 * check is only valid for private futexes. See below.
1946 */
1947 if (uaddr1 == uaddr2)
1948 return -EINVAL;
1949
1950 /*
1951 * requeue_pi requires a pi_state, try to allocate it now
1952 * without any locks in case it fails.
1953 */
1954 if (refill_pi_state_cache())
1955 return -ENOMEM;
1956 /*
1957 * requeue_pi must wake as many tasks as it can, up to nr_wake
1958 * + nr_requeue, since it acquires the rt_mutex prior to
1959 * returning to userspace, so as to not leave the rt_mutex with
1960 * waiters and no owner. However, second and third wake-ups
1961 * cannot be predicted as they involve race conditions with the
1962 * first wake and a fault while looking up the pi_state. Both
1963 * pthread_cond_signal() and pthread_cond_broadcast() should
1964 * use nr_wake=1.
1965 */
1966 if (nr_wake != 1)
1967 return -EINVAL;
1968 }
1969
1970 retry:
1971 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1972 if (unlikely(ret != 0))
1973 return ret;
1974 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1975 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1976 if (unlikely(ret != 0))
1977 return ret;
1978
1979 /*
1980 * The check above which compares uaddrs is not sufficient for
1981 * shared futexes. We need to compare the keys:
1982 */
1983 if (requeue_pi && match_futex(&key1, &key2))
1984 return -EINVAL;
1985
1986 hb1 = hash_futex(&key1);
1987 hb2 = hash_futex(&key2);
1988
1989 retry_private:
1990 hb_waiters_inc(hb2);
1991 double_lock_hb(hb1, hb2);
1992
1993 if (likely(cmpval != NULL)) {
1994 u32 curval;
1995
1996 ret = get_futex_value_locked(&curval, uaddr1);
1997
1998 if (unlikely(ret)) {
1999 double_unlock_hb(hb1, hb2);
2000 hb_waiters_dec(hb2);
2001
2002 ret = get_user(curval, uaddr1);
2003 if (ret)
2004 return ret;
2005
2006 if (!(flags & FLAGS_SHARED))
2007 goto retry_private;
2008
2009 goto retry;
2010 }
2011 if (curval != *cmpval) {
2012 ret = -EAGAIN;
2013 goto out_unlock;
2014 }
2015 }
2016
2017 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2018 struct task_struct *exiting = NULL;
2019
2020 /*
2021 * Attempt to acquire uaddr2 and wake the top waiter. If we
2022 * intend to requeue waiters, force setting the FUTEX_WAITERS
2023 * bit. We force this here where we are able to easily handle
2024 * faults rather in the requeue loop below.
2025 */
2026 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2027 &key2, &pi_state,
2028 &exiting, nr_requeue);
2029
2030 /*
2031 * At this point the top_waiter has either taken uaddr2 or is
2032 * waiting on it. If the former, then the pi_state will not
2033 * exist yet, look it up one more time to ensure we have a
2034 * reference to it. If the lock was taken, ret contains the
2035 * vpid of the top waiter task.
2036 * If the lock was not taken, we have pi_state and an initial
2037 * refcount on it. In case of an error we have nothing.
2038 */
2039 if (ret > 0) {
2040 WARN_ON(pi_state);
2041 task_count++;
2042 /*
2043 * If we acquired the lock, then the user space value
2044 * of uaddr2 should be vpid. It cannot be changed by
2045 * the top waiter as it is blocked on hb2 lock if it
2046 * tries to do so. If something fiddled with it behind
2047 * our back the pi state lookup might unearth it. So
2048 * we rather use the known value than rereading and
2049 * handing potential crap to lookup_pi_state.
2050 *
2051 * If that call succeeds then we have pi_state and an
2052 * initial refcount on it.
2053 */
2054 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2055 &pi_state, &exiting);
2056 }
2057
2058 switch (ret) {
2059 case 0:
2060 /* We hold a reference on the pi state. */
2061 break;
2062
2063 /* If the above failed, then pi_state is NULL */
2064 case -EFAULT:
2065 double_unlock_hb(hb1, hb2);
2066 hb_waiters_dec(hb2);
2067 ret = fault_in_user_writeable(uaddr2);
2068 if (!ret)
2069 goto retry;
2070 return ret;
2071 case -EBUSY:
2072 case -EAGAIN:
2073 /*
2074 * Two reasons for this:
2075 * - EBUSY: Owner is exiting and we just wait for the
2076 * exit to complete.
2077 * - EAGAIN: The user space value changed.
2078 */
2079 double_unlock_hb(hb1, hb2);
2080 hb_waiters_dec(hb2);
2081 /*
2082 * Handle the case where the owner is in the middle of
2083 * exiting. Wait for the exit to complete otherwise
2084 * this task might loop forever, aka. live lock.
2085 */
2086 wait_for_owner_exiting(ret, exiting);
2087 cond_resched();
2088 goto retry;
2089 default:
2090 goto out_unlock;
2091 }
2092 }
2093
2094 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2095 if (task_count - nr_wake >= nr_requeue)
2096 break;
2097
2098 if (!match_futex(&this->key, &key1))
2099 continue;
2100
2101 /*
2102 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2103 * be paired with each other and no other futex ops.
2104 *
2105 * We should never be requeueing a futex_q with a pi_state,
2106 * which is awaiting a futex_unlock_pi().
2107 */
2108 if ((requeue_pi && !this->rt_waiter) ||
2109 (!requeue_pi && this->rt_waiter) ||
2110 this->pi_state) {
2111 ret = -EINVAL;
2112 break;
2113 }
2114
2115 /*
2116 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2117 * lock, we already woke the top_waiter. If not, it will be
2118 * woken by futex_unlock_pi().
2119 */
2120 if (++task_count <= nr_wake && !requeue_pi) {
2121 mark_wake_futex(&wake_q, this);
2122 continue;
2123 }
2124
2125 /* Ensure we requeue to the expected futex for requeue_pi. */
2126 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2127 ret = -EINVAL;
2128 break;
2129 }
2130
2131 /*
2132 * Requeue nr_requeue waiters and possibly one more in the case
2133 * of requeue_pi if we couldn't acquire the lock atomically.
2134 */
2135 if (requeue_pi) {
2136 /*
2137 * Prepare the waiter to take the rt_mutex. Take a
2138 * refcount on the pi_state and store the pointer in
2139 * the futex_q object of the waiter.
2140 */
2141 get_pi_state(pi_state);
2142 this->pi_state = pi_state;
2143 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2144 this->rt_waiter,
2145 this->task);
2146 if (ret == 1) {
2147 /*
2148 * We got the lock. We do neither drop the
2149 * refcount on pi_state nor clear
2150 * this->pi_state because the waiter needs the
2151 * pi_state for cleaning up the user space
2152 * value. It will drop the refcount after
2153 * doing so.
2154 */
2155 requeue_pi_wake_futex(this, &key2, hb2);
2156 continue;
2157 } else if (ret) {
2158 /*
2159 * rt_mutex_start_proxy_lock() detected a
2160 * potential deadlock when we tried to queue
2161 * that waiter. Drop the pi_state reference
2162 * which we took above and remove the pointer
2163 * to the state from the waiters futex_q
2164 * object.
2165 */
2166 this->pi_state = NULL;
2167 put_pi_state(pi_state);
2168 /*
2169 * We stop queueing more waiters and let user
2170 * space deal with the mess.
2171 */
2172 break;
2173 }
2174 }
2175 requeue_futex(this, hb1, hb2, &key2);
2176 }
2177
2178 /*
2179 * We took an extra initial reference to the pi_state either
2180 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2181 * need to drop it here again.
2182 */
2183 put_pi_state(pi_state);
2184
2185 out_unlock:
2186 double_unlock_hb(hb1, hb2);
2187 wake_up_q(&wake_q);
2188 hb_waiters_dec(hb2);
2189 return ret ? ret : task_count;
2190 }
2191
2192 /* The key must be already stored in q->key. */
2193 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2194 __acquires(&hb->lock)
2195 {
2196 struct futex_hash_bucket *hb;
2197
2198 hb = hash_futex(&q->key);
2199
2200 /*
2201 * Increment the counter before taking the lock so that
2202 * a potential waker won't miss a to-be-slept task that is
2203 * waiting for the spinlock. This is safe as all queue_lock()
2204 * users end up calling queue_me(). Similarly, for housekeeping,
2205 * decrement the counter at queue_unlock() when some error has
2206 * occurred and we don't end up adding the task to the list.
2207 */
2208 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2209
2210 q->lock_ptr = &hb->lock;
2211
2212 spin_lock(&hb->lock);
2213 return hb;
2214 }
2215
2216 static inline void
2217 queue_unlock(struct futex_hash_bucket *hb)
2218 __releases(&hb->lock)
2219 {
2220 spin_unlock(&hb->lock);
2221 hb_waiters_dec(hb);
2222 }
2223
2224 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2225 {
2226 int prio;
2227
2228 /*
2229 * The priority used to register this element is
2230 * - either the real thread-priority for the real-time threads
2231 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2232 * - or MAX_RT_PRIO for non-RT threads.
2233 * Thus, all RT-threads are woken first in priority order, and
2234 * the others are woken last, in FIFO order.
2235 */
2236 prio = min(current->normal_prio, MAX_RT_PRIO);
2237
2238 plist_node_init(&q->list, prio);
2239 plist_add(&q->list, &hb->chain);
2240 q->task = current;
2241 }
2242
2243 /**
2244 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2245 * @q: The futex_q to enqueue
2246 * @hb: The destination hash bucket
2247 *
2248 * The hb->lock must be held by the caller, and is released here. A call to
2249 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2250 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2251 * or nothing if the unqueue is done as part of the wake process and the unqueue
2252 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2253 * an example).
2254 */
2255 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2256 __releases(&hb->lock)
2257 {
2258 __queue_me(q, hb);
2259 spin_unlock(&hb->lock);
2260 }
2261
2262 /**
2263 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2264 * @q: The futex_q to unqueue
2265 *
2266 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2267 * be paired with exactly one earlier call to queue_me().
2268 *
2269 * Return:
2270 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2271 * - 0 - if the futex_q was already removed by the waking thread
2272 */
2273 static int unqueue_me(struct futex_q *q)
2274 {
2275 spinlock_t *lock_ptr;
2276 int ret = 0;
2277
2278 /* In the common case we don't take the spinlock, which is nice. */
2279 retry:
2280 /*
2281 * q->lock_ptr can change between this read and the following spin_lock.
2282 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2283 * optimizing lock_ptr out of the logic below.
2284 */
2285 lock_ptr = READ_ONCE(q->lock_ptr);
2286 if (lock_ptr != NULL) {
2287 spin_lock(lock_ptr);
2288 /*
2289 * q->lock_ptr can change between reading it and
2290 * spin_lock(), causing us to take the wrong lock. This
2291 * corrects the race condition.
2292 *
2293 * Reasoning goes like this: if we have the wrong lock,
2294 * q->lock_ptr must have changed (maybe several times)
2295 * between reading it and the spin_lock(). It can
2296 * change again after the spin_lock() but only if it was
2297 * already changed before the spin_lock(). It cannot,
2298 * however, change back to the original value. Therefore
2299 * we can detect whether we acquired the correct lock.
2300 */
2301 if (unlikely(lock_ptr != q->lock_ptr)) {
2302 spin_unlock(lock_ptr);
2303 goto retry;
2304 }
2305 __unqueue_futex(q);
2306
2307 BUG_ON(q->pi_state);
2308
2309 spin_unlock(lock_ptr);
2310 ret = 1;
2311 }
2312
2313 return ret;
2314 }
2315
2316 /*
2317 * PI futexes can not be requeued and must remove themself from the
2318 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2319 * and dropped here.
2320 */
2321 static void unqueue_me_pi(struct futex_q *q)
2322 __releases(q->lock_ptr)
2323 {
2324 __unqueue_futex(q);
2325
2326 BUG_ON(!q->pi_state);
2327 put_pi_state(q->pi_state);
2328 q->pi_state = NULL;
2329
2330 spin_unlock(q->lock_ptr);
2331 }
2332
2333 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2334 struct task_struct *argowner)
2335 {
2336 struct futex_pi_state *pi_state = q->pi_state;
2337 struct task_struct *oldowner, *newowner;
2338 u32 uval, curval, newval, newtid;
2339 int err = 0;
2340
2341 oldowner = pi_state->owner;
2342
2343 /*
2344 * We are here because either:
2345 *
2346 * - we stole the lock and pi_state->owner needs updating to reflect
2347 * that (@argowner == current),
2348 *
2349 * or:
2350 *
2351 * - someone stole our lock and we need to fix things to point to the
2352 * new owner (@argowner == NULL).
2353 *
2354 * Either way, we have to replace the TID in the user space variable.
2355 * This must be atomic as we have to preserve the owner died bit here.
2356 *
2357 * Note: We write the user space value _before_ changing the pi_state
2358 * because we can fault here. Imagine swapped out pages or a fork
2359 * that marked all the anonymous memory readonly for cow.
2360 *
2361 * Modifying pi_state _before_ the user space value would leave the
2362 * pi_state in an inconsistent state when we fault here, because we
2363 * need to drop the locks to handle the fault. This might be observed
2364 * in the PID check in lookup_pi_state.
2365 */
2366 retry:
2367 if (!argowner) {
2368 if (oldowner != current) {
2369 /*
2370 * We raced against a concurrent self; things are
2371 * already fixed up. Nothing to do.
2372 */
2373 return 0;
2374 }
2375
2376 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2377 /* We got the lock. pi_state is correct. Tell caller. */
2378 return 1;
2379 }
2380
2381 /*
2382 * The trylock just failed, so either there is an owner or
2383 * there is a higher priority waiter than this one.
2384 */
2385 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2386 /*
2387 * If the higher priority waiter has not yet taken over the
2388 * rtmutex then newowner is NULL. We can't return here with
2389 * that state because it's inconsistent vs. the user space
2390 * state. So drop the locks and try again. It's a valid
2391 * situation and not any different from the other retry
2392 * conditions.
2393 */
2394 if (unlikely(!newowner)) {
2395 err = -EAGAIN;
2396 goto handle_err;
2397 }
2398 } else {
2399 WARN_ON_ONCE(argowner != current);
2400 if (oldowner == current) {
2401 /*
2402 * We raced against a concurrent self; things are
2403 * already fixed up. Nothing to do.
2404 */
2405 return 1;
2406 }
2407 newowner = argowner;
2408 }
2409
2410 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2411 /* Owner died? */
2412 if (!pi_state->owner)
2413 newtid |= FUTEX_OWNER_DIED;
2414
2415 err = get_futex_value_locked(&uval, uaddr);
2416 if (err)
2417 goto handle_err;
2418
2419 for (;;) {
2420 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2421
2422 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2423 if (err)
2424 goto handle_err;
2425
2426 if (curval == uval)
2427 break;
2428 uval = curval;
2429 }
2430
2431 /*
2432 * We fixed up user space. Now we need to fix the pi_state
2433 * itself.
2434 */
2435 pi_state_update_owner(pi_state, newowner);
2436
2437 return argowner == current;
2438
2439 /*
2440 * In order to reschedule or handle a page fault, we need to drop the
2441 * locks here. In the case of a fault, this gives the other task
2442 * (either the highest priority waiter itself or the task which stole
2443 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2444 * are back from handling the fault we need to check the pi_state after
2445 * reacquiring the locks and before trying to do another fixup. When
2446 * the fixup has been done already we simply return.
2447 *
2448 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2449 * drop hb->lock since the caller owns the hb -> futex_q relation.
2450 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2451 */
2452 handle_err:
2453 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2454 spin_unlock(q->lock_ptr);
2455
2456 switch (err) {
2457 case -EFAULT:
2458 err = fault_in_user_writeable(uaddr);
2459 break;
2460
2461 case -EAGAIN:
2462 cond_resched();
2463 err = 0;
2464 break;
2465
2466 default:
2467 WARN_ON_ONCE(1);
2468 break;
2469 }
2470
2471 spin_lock(q->lock_ptr);
2472 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2473
2474 /*
2475 * Check if someone else fixed it for us:
2476 */
2477 if (pi_state->owner != oldowner)
2478 return argowner == current;
2479
2480 /* Retry if err was -EAGAIN or the fault in succeeded */
2481 if (!err)
2482 goto retry;
2483
2484 /*
2485 * fault_in_user_writeable() failed so user state is immutable. At
2486 * best we can make the kernel state consistent but user state will
2487 * be most likely hosed and any subsequent unlock operation will be
2488 * rejected due to PI futex rule [10].
2489 *
2490 * Ensure that the rtmutex owner is also the pi_state owner despite
2491 * the user space value claiming something different. There is no
2492 * point in unlocking the rtmutex if current is the owner as it
2493 * would need to wait until the next waiter has taken the rtmutex
2494 * to guarantee consistent state. Keep it simple. Userspace asked
2495 * for this wreckaged state.
2496 *
2497 * The rtmutex has an owner - either current or some other
2498 * task. See the EAGAIN loop above.
2499 */
2500 pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2501
2502 return err;
2503 }
2504
2505 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2506 struct task_struct *argowner)
2507 {
2508 struct futex_pi_state *pi_state = q->pi_state;
2509 int ret;
2510
2511 lockdep_assert_held(q->lock_ptr);
2512
2513 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2514 ret = __fixup_pi_state_owner(uaddr, q, argowner);
2515 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2516 return ret;
2517 }
2518
2519 static long futex_wait_restart(struct restart_block *restart);
2520
2521 /**
2522 * fixup_owner() - Post lock pi_state and corner case management
2523 * @uaddr: user address of the futex
2524 * @q: futex_q (contains pi_state and access to the rt_mutex)
2525 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2526 *
2527 * After attempting to lock an rt_mutex, this function is called to cleanup
2528 * the pi_state owner as well as handle race conditions that may allow us to
2529 * acquire the lock. Must be called with the hb lock held.
2530 *
2531 * Return:
2532 * - 1 - success, lock taken;
2533 * - 0 - success, lock not taken;
2534 * - <0 - on error (-EFAULT)
2535 */
2536 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2537 {
2538 if (locked) {
2539 /*
2540 * Got the lock. We might not be the anticipated owner if we
2541 * did a lock-steal - fix up the PI-state in that case:
2542 *
2543 * Speculative pi_state->owner read (we don't hold wait_lock);
2544 * since we own the lock pi_state->owner == current is the
2545 * stable state, anything else needs more attention.
2546 */
2547 if (q->pi_state->owner != current)
2548 return fixup_pi_state_owner(uaddr, q, current);
2549 return 1;
2550 }
2551
2552 /*
2553 * If we didn't get the lock; check if anybody stole it from us. In
2554 * that case, we need to fix up the uval to point to them instead of
2555 * us, otherwise bad things happen. [10]
2556 *
2557 * Another speculative read; pi_state->owner == current is unstable
2558 * but needs our attention.
2559 */
2560 if (q->pi_state->owner == current)
2561 return fixup_pi_state_owner(uaddr, q, NULL);
2562
2563 /*
2564 * Paranoia check. If we did not take the lock, then we should not be
2565 * the owner of the rt_mutex. Warn and establish consistent state.
2566 */
2567 if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2568 return fixup_pi_state_owner(uaddr, q, current);
2569
2570 return 0;
2571 }
2572
2573 /**
2574 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2575 * @hb: the futex hash bucket, must be locked by the caller
2576 * @q: the futex_q to queue up on
2577 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2578 */
2579 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2580 struct hrtimer_sleeper *timeout)
2581 {
2582 /*
2583 * The task state is guaranteed to be set before another task can
2584 * wake it. set_current_state() is implemented using smp_store_mb() and
2585 * queue_me() calls spin_unlock() upon completion, both serializing
2586 * access to the hash list and forcing another memory barrier.
2587 */
2588 set_current_state(TASK_INTERRUPTIBLE);
2589 queue_me(q, hb);
2590
2591 /* Arm the timer */
2592 if (timeout)
2593 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2594
2595 /*
2596 * If we have been removed from the hash list, then another task
2597 * has tried to wake us, and we can skip the call to schedule().
2598 */
2599 if (likely(!plist_node_empty(&q->list))) {
2600 /*
2601 * If the timer has already expired, current will already be
2602 * flagged for rescheduling. Only call schedule if there
2603 * is no timeout, or if it has yet to expire.
2604 */
2605 if (!timeout || timeout->task)
2606 freezable_schedule();
2607 }
2608 __set_current_state(TASK_RUNNING);
2609 }
2610
2611 /**
2612 * futex_wait_setup() - Prepare to wait on a futex
2613 * @uaddr: the futex userspace address
2614 * @val: the expected value
2615 * @flags: futex flags (FLAGS_SHARED, etc.)
2616 * @q: the associated futex_q
2617 * @hb: storage for hash_bucket pointer to be returned to caller
2618 *
2619 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2620 * compare it with the expected value. Handle atomic faults internally.
2621 * Return with the hb lock held and a q.key reference on success, and unlocked
2622 * with no q.key reference on failure.
2623 *
2624 * Return:
2625 * - 0 - uaddr contains val and hb has been locked;
2626 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2627 */
2628 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2629 struct futex_q *q, struct futex_hash_bucket **hb)
2630 {
2631 u32 uval;
2632 int ret;
2633
2634 /*
2635 * Access the page AFTER the hash-bucket is locked.
2636 * Order is important:
2637 *
2638 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2639 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2640 *
2641 * The basic logical guarantee of a futex is that it blocks ONLY
2642 * if cond(var) is known to be true at the time of blocking, for
2643 * any cond. If we locked the hash-bucket after testing *uaddr, that
2644 * would open a race condition where we could block indefinitely with
2645 * cond(var) false, which would violate the guarantee.
2646 *
2647 * On the other hand, we insert q and release the hash-bucket only
2648 * after testing *uaddr. This guarantees that futex_wait() will NOT
2649 * absorb a wakeup if *uaddr does not match the desired values
2650 * while the syscall executes.
2651 */
2652 retry:
2653 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2654 if (unlikely(ret != 0))
2655 return ret;
2656
2657 retry_private:
2658 *hb = queue_lock(q);
2659
2660 ret = get_futex_value_locked(&uval, uaddr);
2661
2662 if (ret) {
2663 queue_unlock(*hb);
2664
2665 ret = get_user(uval, uaddr);
2666 if (ret)
2667 return ret;
2668
2669 if (!(flags & FLAGS_SHARED))
2670 goto retry_private;
2671
2672 goto retry;
2673 }
2674
2675 if (uval != val) {
2676 queue_unlock(*hb);
2677 ret = -EWOULDBLOCK;
2678 }
2679
2680 return ret;
2681 }
2682
2683 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2684 ktime_t *abs_time, u32 bitset)
2685 {
2686 struct hrtimer_sleeper timeout, *to;
2687 struct restart_block *restart;
2688 struct futex_hash_bucket *hb;
2689 struct futex_q q = futex_q_init;
2690 int ret;
2691
2692 if (!bitset)
2693 return -EINVAL;
2694 q.bitset = bitset;
2695
2696 to = futex_setup_timer(abs_time, &timeout, flags,
2697 current->timer_slack_ns);
2698 retry:
2699 /*
2700 * Prepare to wait on uaddr. On success, holds hb lock and increments
2701 * q.key refs.
2702 */
2703 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2704 if (ret)
2705 goto out;
2706
2707 /* queue_me and wait for wakeup, timeout, or a signal. */
2708 futex_wait_queue_me(hb, &q, to);
2709
2710 /* If we were woken (and unqueued), we succeeded, whatever. */
2711 ret = 0;
2712 /* unqueue_me() drops q.key ref */
2713 if (!unqueue_me(&q))
2714 goto out;
2715 ret = -ETIMEDOUT;
2716 if (to && !to->task)
2717 goto out;
2718
2719 /*
2720 * We expect signal_pending(current), but we might be the
2721 * victim of a spurious wakeup as well.
2722 */
2723 if (!signal_pending(current))
2724 goto retry;
2725
2726 ret = -ERESTARTSYS;
2727 if (!abs_time)
2728 goto out;
2729
2730 restart = &current->restart_block;
2731 restart->futex.uaddr = uaddr;
2732 restart->futex.val = val;
2733 restart->futex.time = *abs_time;
2734 restart->futex.bitset = bitset;
2735 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2736
2737 ret = set_restart_fn(restart, futex_wait_restart);
2738
2739 out:
2740 if (to) {
2741 hrtimer_cancel(&to->timer);
2742 destroy_hrtimer_on_stack(&to->timer);
2743 }
2744 return ret;
2745 }
2746
2747
2748 static long futex_wait_restart(struct restart_block *restart)
2749 {
2750 u32 __user *uaddr = restart->futex.uaddr;
2751 ktime_t t, *tp = NULL;
2752
2753 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2754 t = restart->futex.time;
2755 tp = &t;
2756 }
2757 restart->fn = do_no_restart_syscall;
2758
2759 return (long)futex_wait(uaddr, restart->futex.flags,
2760 restart->futex.val, tp, restart->futex.bitset);
2761 }
2762
2763
2764 /*
2765 * Userspace tried a 0 -> TID atomic transition of the futex value
2766 * and failed. The kernel side here does the whole locking operation:
2767 * if there are waiters then it will block as a consequence of relying
2768 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2769 * a 0 value of the futex too.).
2770 *
2771 * Also serves as futex trylock_pi()'ing, and due semantics.
2772 */
2773 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2774 ktime_t *time, int trylock)
2775 {
2776 struct hrtimer_sleeper timeout, *to;
2777 struct task_struct *exiting = NULL;
2778 struct rt_mutex_waiter rt_waiter;
2779 struct futex_hash_bucket *hb;
2780 struct futex_q q = futex_q_init;
2781 int res, ret;
2782
2783 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2784 return -ENOSYS;
2785
2786 if (refill_pi_state_cache())
2787 return -ENOMEM;
2788
2789 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2790
2791 retry:
2792 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2793 if (unlikely(ret != 0))
2794 goto out;
2795
2796 retry_private:
2797 hb = queue_lock(&q);
2798
2799 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2800 &exiting, 0);
2801 if (unlikely(ret)) {
2802 /*
2803 * Atomic work succeeded and we got the lock,
2804 * or failed. Either way, we do _not_ block.
2805 */
2806 switch (ret) {
2807 case 1:
2808 /* We got the lock. */
2809 ret = 0;
2810 goto out_unlock_put_key;
2811 case -EFAULT:
2812 goto uaddr_faulted;
2813 case -EBUSY:
2814 case -EAGAIN:
2815 /*
2816 * Two reasons for this:
2817 * - EBUSY: Task is exiting and we just wait for the
2818 * exit to complete.
2819 * - EAGAIN: The user space value changed.
2820 */
2821 queue_unlock(hb);
2822 /*
2823 * Handle the case where the owner is in the middle of
2824 * exiting. Wait for the exit to complete otherwise
2825 * this task might loop forever, aka. live lock.
2826 */
2827 wait_for_owner_exiting(ret, exiting);
2828 cond_resched();
2829 goto retry;
2830 default:
2831 goto out_unlock_put_key;
2832 }
2833 }
2834
2835 WARN_ON(!q.pi_state);
2836
2837 /*
2838 * Only actually queue now that the atomic ops are done:
2839 */
2840 __queue_me(&q, hb);
2841
2842 if (trylock) {
2843 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2844 /* Fixup the trylock return value: */
2845 ret = ret ? 0 : -EWOULDBLOCK;
2846 goto no_block;
2847 }
2848
2849 rt_mutex_init_waiter(&rt_waiter);
2850
2851 /*
2852 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2853 * hold it while doing rt_mutex_start_proxy(), because then it will
2854 * include hb->lock in the blocking chain, even through we'll not in
2855 * fact hold it while blocking. This will lead it to report -EDEADLK
2856 * and BUG when futex_unlock_pi() interleaves with this.
2857 *
2858 * Therefore acquire wait_lock while holding hb->lock, but drop the
2859 * latter before calling __rt_mutex_start_proxy_lock(). This
2860 * interleaves with futex_unlock_pi() -- which does a similar lock
2861 * handoff -- such that the latter can observe the futex_q::pi_state
2862 * before __rt_mutex_start_proxy_lock() is done.
2863 */
2864 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2865 spin_unlock(q.lock_ptr);
2866 /*
2867 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2868 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2869 * it sees the futex_q::pi_state.
2870 */
2871 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2872 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2873
2874 if (ret) {
2875 if (ret == 1)
2876 ret = 0;
2877 goto cleanup;
2878 }
2879
2880 if (unlikely(to))
2881 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2882
2883 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2884
2885 cleanup:
2886 spin_lock(q.lock_ptr);
2887 /*
2888 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2889 * first acquire the hb->lock before removing the lock from the
2890 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2891 * lists consistent.
2892 *
2893 * In particular; it is important that futex_unlock_pi() can not
2894 * observe this inconsistency.
2895 */
2896 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2897 ret = 0;
2898
2899 no_block:
2900 /*
2901 * Fixup the pi_state owner and possibly acquire the lock if we
2902 * haven't already.
2903 */
2904 res = fixup_owner(uaddr, &q, !ret);
2905 /*
2906 * If fixup_owner() returned an error, proprogate that. If it acquired
2907 * the lock, clear our -ETIMEDOUT or -EINTR.
2908 */
2909 if (res)
2910 ret = (res < 0) ? res : 0;
2911
2912 /* Unqueue and drop the lock */
2913 unqueue_me_pi(&q);
2914 goto out;
2915
2916 out_unlock_put_key:
2917 queue_unlock(hb);
2918
2919 out:
2920 if (to) {
2921 hrtimer_cancel(&to->timer);
2922 destroy_hrtimer_on_stack(&to->timer);
2923 }
2924 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2925
2926 uaddr_faulted:
2927 queue_unlock(hb);
2928
2929 ret = fault_in_user_writeable(uaddr);
2930 if (ret)
2931 goto out;
2932
2933 if (!(flags & FLAGS_SHARED))
2934 goto retry_private;
2935
2936 goto retry;
2937 }
2938
2939 /*
2940 * Userspace attempted a TID -> 0 atomic transition, and failed.
2941 * This is the in-kernel slowpath: we look up the PI state (if any),
2942 * and do the rt-mutex unlock.
2943 */
2944 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2945 {
2946 u32 curval, uval, vpid = task_pid_vnr(current);
2947 union futex_key key = FUTEX_KEY_INIT;
2948 struct futex_hash_bucket *hb;
2949 struct futex_q *top_waiter;
2950 int ret;
2951
2952 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2953 return -ENOSYS;
2954
2955 retry:
2956 if (get_user(uval, uaddr))
2957 return -EFAULT;
2958 /*
2959 * We release only a lock we actually own:
2960 */
2961 if ((uval & FUTEX_TID_MASK) != vpid)
2962 return -EPERM;
2963
2964 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2965 if (ret)
2966 return ret;
2967
2968 hb = hash_futex(&key);
2969 spin_lock(&hb->lock);
2970
2971 /*
2972 * Check waiters first. We do not trust user space values at
2973 * all and we at least want to know if user space fiddled
2974 * with the futex value instead of blindly unlocking.
2975 */
2976 top_waiter = futex_top_waiter(hb, &key);
2977 if (top_waiter) {
2978 struct futex_pi_state *pi_state = top_waiter->pi_state;
2979
2980 ret = -EINVAL;
2981 if (!pi_state)
2982 goto out_unlock;
2983
2984 /*
2985 * If current does not own the pi_state then the futex is
2986 * inconsistent and user space fiddled with the futex value.
2987 */
2988 if (pi_state->owner != current)
2989 goto out_unlock;
2990
2991 get_pi_state(pi_state);
2992 /*
2993 * By taking wait_lock while still holding hb->lock, we ensure
2994 * there is no point where we hold neither; and therefore
2995 * wake_futex_pi() must observe a state consistent with what we
2996 * observed.
2997 *
2998 * In particular; this forces __rt_mutex_start_proxy() to
2999 * complete such that we're guaranteed to observe the
3000 * rt_waiter. Also see the WARN in wake_futex_pi().
3001 */
3002 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3003 spin_unlock(&hb->lock);
3004
3005 /* drops pi_state->pi_mutex.wait_lock */
3006 ret = wake_futex_pi(uaddr, uval, pi_state);
3007
3008 put_pi_state(pi_state);
3009
3010 /*
3011 * Success, we're done! No tricky corner cases.
3012 */
3013 if (!ret)
3014 goto out_putkey;
3015 /*
3016 * The atomic access to the futex value generated a
3017 * pagefault, so retry the user-access and the wakeup:
3018 */
3019 if (ret == -EFAULT)
3020 goto pi_faulted;
3021 /*
3022 * A unconditional UNLOCK_PI op raced against a waiter
3023 * setting the FUTEX_WAITERS bit. Try again.
3024 */
3025 if (ret == -EAGAIN)
3026 goto pi_retry;
3027 /*
3028 * wake_futex_pi has detected invalid state. Tell user
3029 * space.
3030 */
3031 goto out_putkey;
3032 }
3033
3034 /*
3035 * We have no kernel internal state, i.e. no waiters in the
3036 * kernel. Waiters which are about to queue themselves are stuck
3037 * on hb->lock. So we can safely ignore them. We do neither
3038 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3039 * owner.
3040 */
3041 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3042 spin_unlock(&hb->lock);
3043 switch (ret) {
3044 case -EFAULT:
3045 goto pi_faulted;
3046
3047 case -EAGAIN:
3048 goto pi_retry;
3049
3050 default:
3051 WARN_ON_ONCE(1);
3052 goto out_putkey;
3053 }
3054 }
3055
3056 /*
3057 * If uval has changed, let user space handle it.
3058 */
3059 ret = (curval == uval) ? 0 : -EAGAIN;
3060
3061 out_unlock:
3062 spin_unlock(&hb->lock);
3063 out_putkey:
3064 return ret;
3065
3066 pi_retry:
3067 cond_resched();
3068 goto retry;
3069
3070 pi_faulted:
3071
3072 ret = fault_in_user_writeable(uaddr);
3073 if (!ret)
3074 goto retry;
3075
3076 return ret;
3077 }
3078
3079 /**
3080 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3081 * @hb: the hash_bucket futex_q was original enqueued on
3082 * @q: the futex_q woken while waiting to be requeued
3083 * @key2: the futex_key of the requeue target futex
3084 * @timeout: the timeout associated with the wait (NULL if none)
3085 *
3086 * Detect if the task was woken on the initial futex as opposed to the requeue
3087 * target futex. If so, determine if it was a timeout or a signal that caused
3088 * the wakeup and return the appropriate error code to the caller. Must be
3089 * called with the hb lock held.
3090 *
3091 * Return:
3092 * - 0 = no early wakeup detected;
3093 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3094 */
3095 static inline
3096 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3097 struct futex_q *q, union futex_key *key2,
3098 struct hrtimer_sleeper *timeout)
3099 {
3100 int ret = 0;
3101
3102 /*
3103 * With the hb lock held, we avoid races while we process the wakeup.
3104 * We only need to hold hb (and not hb2) to ensure atomicity as the
3105 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3106 * It can't be requeued from uaddr2 to something else since we don't
3107 * support a PI aware source futex for requeue.
3108 */
3109 if (!match_futex(&q->key, key2)) {
3110 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3111 /*
3112 * We were woken prior to requeue by a timeout or a signal.
3113 * Unqueue the futex_q and determine which it was.
3114 */
3115 plist_del(&q->list, &hb->chain);
3116 hb_waiters_dec(hb);
3117
3118 /* Handle spurious wakeups gracefully */
3119 ret = -EWOULDBLOCK;
3120 if (timeout && !timeout->task)
3121 ret = -ETIMEDOUT;
3122 else if (signal_pending(current))
3123 ret = -ERESTARTNOINTR;
3124 }
3125 return ret;
3126 }
3127
3128 /**
3129 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3130 * @uaddr: the futex we initially wait on (non-pi)
3131 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3132 * the same type, no requeueing from private to shared, etc.
3133 * @val: the expected value of uaddr
3134 * @abs_time: absolute timeout
3135 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3136 * @uaddr2: the pi futex we will take prior to returning to user-space
3137 *
3138 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3139 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3140 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3141 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3142 * without one, the pi logic would not know which task to boost/deboost, if
3143 * there was a need to.
3144 *
3145 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3146 * via the following--
3147 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3148 * 2) wakeup on uaddr2 after a requeue
3149 * 3) signal
3150 * 4) timeout
3151 *
3152 * If 3, cleanup and return -ERESTARTNOINTR.
3153 *
3154 * If 2, we may then block on trying to take the rt_mutex and return via:
3155 * 5) successful lock
3156 * 6) signal
3157 * 7) timeout
3158 * 8) other lock acquisition failure
3159 *
3160 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3161 *
3162 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3163 *
3164 * Return:
3165 * - 0 - On success;
3166 * - <0 - On error
3167 */
3168 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3169 u32 val, ktime_t *abs_time, u32 bitset,
3170 u32 __user *uaddr2)
3171 {
3172 struct hrtimer_sleeper timeout, *to;
3173 struct rt_mutex_waiter rt_waiter;
3174 struct futex_hash_bucket *hb;
3175 union futex_key key2 = FUTEX_KEY_INIT;
3176 struct futex_q q = futex_q_init;
3177 int res, ret;
3178
3179 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3180 return -ENOSYS;
3181
3182 if (uaddr == uaddr2)
3183 return -EINVAL;
3184
3185 if (!bitset)
3186 return -EINVAL;
3187
3188 to = futex_setup_timer(abs_time, &timeout, flags,
3189 current->timer_slack_ns);
3190
3191 /*
3192 * The waiter is allocated on our stack, manipulated by the requeue
3193 * code while we sleep on uaddr.
3194 */
3195 rt_mutex_init_waiter(&rt_waiter);
3196
3197 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3198 if (unlikely(ret != 0))
3199 goto out;
3200
3201 q.bitset = bitset;
3202 q.rt_waiter = &rt_waiter;
3203 q.requeue_pi_key = &key2;
3204
3205 /*
3206 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3207 * count.
3208 */
3209 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3210 if (ret)
3211 goto out;
3212
3213 /*
3214 * The check above which compares uaddrs is not sufficient for
3215 * shared futexes. We need to compare the keys:
3216 */
3217 if (match_futex(&q.key, &key2)) {
3218 queue_unlock(hb);
3219 ret = -EINVAL;
3220 goto out;
3221 }
3222
3223 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3224 futex_wait_queue_me(hb, &q, to);
3225
3226 spin_lock(&hb->lock);
3227 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3228 spin_unlock(&hb->lock);
3229 if (ret)
3230 goto out;
3231
3232 /*
3233 * In order for us to be here, we know our q.key == key2, and since
3234 * we took the hb->lock above, we also know that futex_requeue() has
3235 * completed and we no longer have to concern ourselves with a wakeup
3236 * race with the atomic proxy lock acquisition by the requeue code. The
3237 * futex_requeue dropped our key1 reference and incremented our key2
3238 * reference count.
3239 */
3240
3241 /* Check if the requeue code acquired the second futex for us. */
3242 if (!q.rt_waiter) {
3243 /*
3244 * Got the lock. We might not be the anticipated owner if we
3245 * did a lock-steal - fix up the PI-state in that case.
3246 */
3247 if (q.pi_state && (q.pi_state->owner != current)) {
3248 spin_lock(q.lock_ptr);
3249 ret = fixup_pi_state_owner(uaddr2, &q, current);
3250 /*
3251 * Drop the reference to the pi state which
3252 * the requeue_pi() code acquired for us.
3253 */
3254 put_pi_state(q.pi_state);
3255 spin_unlock(q.lock_ptr);
3256 /*
3257 * Adjust the return value. It's either -EFAULT or
3258 * success (1) but the caller expects 0 for success.
3259 */
3260 ret = ret < 0 ? ret : 0;
3261 }
3262 } else {
3263 struct rt_mutex *pi_mutex;
3264
3265 /*
3266 * We have been woken up by futex_unlock_pi(), a timeout, or a
3267 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3268 * the pi_state.
3269 */
3270 WARN_ON(!q.pi_state);
3271 pi_mutex = &q.pi_state->pi_mutex;
3272 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3273
3274 spin_lock(q.lock_ptr);
3275 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3276 ret = 0;
3277
3278 debug_rt_mutex_free_waiter(&rt_waiter);
3279 /*
3280 * Fixup the pi_state owner and possibly acquire the lock if we
3281 * haven't already.
3282 */
3283 res = fixup_owner(uaddr2, &q, !ret);
3284 /*
3285 * If fixup_owner() returned an error, proprogate that. If it
3286 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3287 */
3288 if (res)
3289 ret = (res < 0) ? res : 0;
3290
3291 /* Unqueue and drop the lock. */
3292 unqueue_me_pi(&q);
3293 }
3294
3295 if (ret == -EINTR) {
3296 /*
3297 * We've already been requeued, but cannot restart by calling
3298 * futex_lock_pi() directly. We could restart this syscall, but
3299 * it would detect that the user space "val" changed and return
3300 * -EWOULDBLOCK. Save the overhead of the restart and return
3301 * -EWOULDBLOCK directly.
3302 */
3303 ret = -EWOULDBLOCK;
3304 }
3305
3306 out:
3307 if (to) {
3308 hrtimer_cancel(&to->timer);
3309 destroy_hrtimer_on_stack(&to->timer);
3310 }
3311 return ret;
3312 }
3313
3314 /*
3315 * Support for robust futexes: the kernel cleans up held futexes at
3316 * thread exit time.
3317 *
3318 * Implementation: user-space maintains a per-thread list of locks it
3319 * is holding. Upon do_exit(), the kernel carefully walks this list,
3320 * and marks all locks that are owned by this thread with the
3321 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3322 * always manipulated with the lock held, so the list is private and
3323 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3324 * field, to allow the kernel to clean up if the thread dies after
3325 * acquiring the lock, but just before it could have added itself to
3326 * the list. There can only be one such pending lock.
3327 */
3328
3329 /**
3330 * sys_set_robust_list() - Set the robust-futex list head of a task
3331 * @head: pointer to the list-head
3332 * @len: length of the list-head, as userspace expects
3333 */
3334 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3335 size_t, len)
3336 {
3337 if (!futex_cmpxchg_enabled)
3338 return -ENOSYS;
3339 /*
3340 * The kernel knows only one size for now:
3341 */
3342 if (unlikely(len != sizeof(*head)))
3343 return -EINVAL;
3344
3345 current->robust_list = head;
3346
3347 return 0;
3348 }
3349
3350 /**
3351 * sys_get_robust_list() - Get the robust-futex list head of a task
3352 * @pid: pid of the process [zero for current task]
3353 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3354 * @len_ptr: pointer to a length field, the kernel fills in the header size
3355 */
3356 SYSCALL_DEFINE3(get_robust_list, int, pid,
3357 struct robust_list_head __user * __user *, head_ptr,
3358 size_t __user *, len_ptr)
3359 {
3360 struct robust_list_head __user *head;
3361 unsigned long ret;
3362 struct task_struct *p;
3363
3364 if (!futex_cmpxchg_enabled)
3365 return -ENOSYS;
3366
3367 rcu_read_lock();
3368
3369 ret = -ESRCH;
3370 if (!pid)
3371 p = current;
3372 else {
3373 p = find_task_by_vpid(pid);
3374 if (!p)
3375 goto err_unlock;
3376 }
3377
3378 ret = -EPERM;
3379 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3380 goto err_unlock;
3381
3382 head = p->robust_list;
3383 rcu_read_unlock();
3384
3385 if (put_user(sizeof(*head), len_ptr))
3386 return -EFAULT;
3387 return put_user(head, head_ptr);
3388
3389 err_unlock:
3390 rcu_read_unlock();
3391
3392 return ret;
3393 }
3394
3395 /* Constants for the pending_op argument of handle_futex_death */
3396 #define HANDLE_DEATH_PENDING true
3397 #define HANDLE_DEATH_LIST false
3398
3399 /*
3400 * Process a futex-list entry, check whether it's owned by the
3401 * dying task, and do notification if so:
3402 */
3403 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3404 bool pi, bool pending_op)
3405 {
3406 u32 uval, nval, mval;
3407 int err;
3408
3409 /* Futex address must be 32bit aligned */
3410 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3411 return -1;
3412
3413 retry:
3414 if (get_user(uval, uaddr))
3415 return -1;
3416
3417 /*
3418 * Special case for regular (non PI) futexes. The unlock path in
3419 * user space has two race scenarios:
3420 *
3421 * 1. The unlock path releases the user space futex value and
3422 * before it can execute the futex() syscall to wake up
3423 * waiters it is killed.
3424 *
3425 * 2. A woken up waiter is killed before it can acquire the
3426 * futex in user space.
3427 *
3428 * In both cases the TID validation below prevents a wakeup of
3429 * potential waiters which can cause these waiters to block
3430 * forever.
3431 *
3432 * In both cases the following conditions are met:
3433 *
3434 * 1) task->robust_list->list_op_pending != NULL
3435 * @pending_op == true
3436 * 2) User space futex value == 0
3437 * 3) Regular futex: @pi == false
3438 *
3439 * If these conditions are met, it is safe to attempt waking up a
3440 * potential waiter without touching the user space futex value and
3441 * trying to set the OWNER_DIED bit. The user space futex value is
3442 * uncontended and the rest of the user space mutex state is
3443 * consistent, so a woken waiter will just take over the
3444 * uncontended futex. Setting the OWNER_DIED bit would create
3445 * inconsistent state and malfunction of the user space owner died
3446 * handling.
3447 */
3448 if (pending_op && !pi && !uval) {
3449 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3450 return 0;
3451 }
3452
3453 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3454 return 0;
3455
3456 /*
3457 * Ok, this dying thread is truly holding a futex
3458 * of interest. Set the OWNER_DIED bit atomically
3459 * via cmpxchg, and if the value had FUTEX_WAITERS
3460 * set, wake up a waiter (if any). (We have to do a
3461 * futex_wake() even if OWNER_DIED is already set -
3462 * to handle the rare but possible case of recursive
3463 * thread-death.) The rest of the cleanup is done in
3464 * userspace.
3465 */
3466 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3467
3468 /*
3469 * We are not holding a lock here, but we want to have
3470 * the pagefault_disable/enable() protection because
3471 * we want to handle the fault gracefully. If the
3472 * access fails we try to fault in the futex with R/W
3473 * verification via get_user_pages. get_user() above
3474 * does not guarantee R/W access. If that fails we
3475 * give up and leave the futex locked.
3476 */
3477 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3478 switch (err) {
3479 case -EFAULT:
3480 if (fault_in_user_writeable(uaddr))
3481 return -1;
3482 goto retry;
3483
3484 case -EAGAIN:
3485 cond_resched();
3486 goto retry;
3487
3488 default:
3489 WARN_ON_ONCE(1);
3490 return err;
3491 }
3492 }
3493
3494 if (nval != uval)
3495 goto retry;
3496
3497 /*
3498 * Wake robust non-PI futexes here. The wakeup of
3499 * PI futexes happens in exit_pi_state():
3500 */
3501 if (!pi && (uval & FUTEX_WAITERS))
3502 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3503
3504 return 0;
3505 }
3506
3507 /*
3508 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3509 */
3510 static inline int fetch_robust_entry(struct robust_list __user **entry,
3511 struct robust_list __user * __user *head,
3512 unsigned int *pi)
3513 {
3514 unsigned long uentry;
3515
3516 if (get_user(uentry, (unsigned long __user *)head))
3517 return -EFAULT;
3518
3519 *entry = (void __user *)(uentry & ~1UL);
3520 *pi = uentry & 1;
3521
3522 return 0;
3523 }
3524
3525 /*
3526 * Walk curr->robust_list (very carefully, it's a userspace list!)
3527 * and mark any locks found there dead, and notify any waiters.
3528 *
3529 * We silently return on any sign of list-walking problem.
3530 */
3531 static void exit_robust_list(struct task_struct *curr)
3532 {
3533 struct robust_list_head __user *head = curr->robust_list;
3534 struct robust_list __user *entry, *next_entry, *pending;
3535 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3536 unsigned int next_pi;
3537 unsigned long futex_offset;
3538 int rc;
3539
3540 if (!futex_cmpxchg_enabled)
3541 return;
3542
3543 /*
3544 * Fetch the list head (which was registered earlier, via
3545 * sys_set_robust_list()):
3546 */
3547 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3548 return;
3549 /*
3550 * Fetch the relative futex offset:
3551 */
3552 if (get_user(futex_offset, &head->futex_offset))
3553 return;
3554 /*
3555 * Fetch any possibly pending lock-add first, and handle it
3556 * if it exists:
3557 */
3558 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3559 return;
3560
3561 next_entry = NULL; /* avoid warning with gcc */
3562 while (entry != &head->list) {
3563 /*
3564 * Fetch the next entry in the list before calling
3565 * handle_futex_death:
3566 */
3567 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3568 /*
3569 * A pending lock might already be on the list, so
3570 * don't process it twice:
3571 */
3572 if (entry != pending) {
3573 if (handle_futex_death((void __user *)entry + futex_offset,
3574 curr, pi, HANDLE_DEATH_LIST))
3575 return;
3576 }
3577 if (rc)
3578 return;
3579 entry = next_entry;
3580 pi = next_pi;
3581 /*
3582 * Avoid excessively long or circular lists:
3583 */
3584 if (!--limit)
3585 break;
3586
3587 cond_resched();
3588 }
3589
3590 if (pending) {
3591 handle_futex_death((void __user *)pending + futex_offset,
3592 curr, pip, HANDLE_DEATH_PENDING);
3593 }
3594 }
3595
3596 static void futex_cleanup(struct task_struct *tsk)
3597 {
3598 if (unlikely(tsk->robust_list)) {
3599 exit_robust_list(tsk);
3600 tsk->robust_list = NULL;
3601 }
3602
3603 #ifdef CONFIG_COMPAT
3604 if (unlikely(tsk->compat_robust_list)) {
3605 compat_exit_robust_list(tsk);
3606 tsk->compat_robust_list = NULL;
3607 }
3608 #endif
3609
3610 if (unlikely(!list_empty(&tsk->pi_state_list)))
3611 exit_pi_state_list(tsk);
3612 }
3613
3614 /**
3615 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3616 * @tsk: task to set the state on
3617 *
3618 * Set the futex exit state of the task lockless. The futex waiter code
3619 * observes that state when a task is exiting and loops until the task has
3620 * actually finished the futex cleanup. The worst case for this is that the
3621 * waiter runs through the wait loop until the state becomes visible.
3622 *
3623 * This is called from the recursive fault handling path in do_exit().
3624 *
3625 * This is best effort. Either the futex exit code has run already or
3626 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3627 * take it over. If not, the problem is pushed back to user space. If the
3628 * futex exit code did not run yet, then an already queued waiter might
3629 * block forever, but there is nothing which can be done about that.
3630 */
3631 void futex_exit_recursive(struct task_struct *tsk)
3632 {
3633 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3634 if (tsk->futex_state == FUTEX_STATE_EXITING)
3635 mutex_unlock(&tsk->futex_exit_mutex);
3636 tsk->futex_state = FUTEX_STATE_DEAD;
3637 }
3638
3639 static void futex_cleanup_begin(struct task_struct *tsk)
3640 {
3641 /*
3642 * Prevent various race issues against a concurrent incoming waiter
3643 * including live locks by forcing the waiter to block on
3644 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3645 * attach_to_pi_owner().
3646 */
3647 mutex_lock(&tsk->futex_exit_mutex);
3648
3649 /*
3650 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3651 *
3652 * This ensures that all subsequent checks of tsk->futex_state in
3653 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3654 * tsk->pi_lock held.
3655 *
3656 * It guarantees also that a pi_state which was queued right before
3657 * the state change under tsk->pi_lock by a concurrent waiter must
3658 * be observed in exit_pi_state_list().
3659 */
3660 raw_spin_lock_irq(&tsk->pi_lock);
3661 tsk->futex_state = FUTEX_STATE_EXITING;
3662 raw_spin_unlock_irq(&tsk->pi_lock);
3663 }
3664
3665 static void futex_cleanup_end(struct task_struct *tsk, int state)
3666 {
3667 /*
3668 * Lockless store. The only side effect is that an observer might
3669 * take another loop until it becomes visible.
3670 */
3671 tsk->futex_state = state;
3672 /*
3673 * Drop the exit protection. This unblocks waiters which observed
3674 * FUTEX_STATE_EXITING to reevaluate the state.
3675 */
3676 mutex_unlock(&tsk->futex_exit_mutex);
3677 }
3678
3679 void futex_exec_release(struct task_struct *tsk)
3680 {
3681 /*
3682 * The state handling is done for consistency, but in the case of
3683 * exec() there is no way to prevent futher damage as the PID stays
3684 * the same. But for the unlikely and arguably buggy case that a
3685 * futex is held on exec(), this provides at least as much state
3686 * consistency protection which is possible.
3687 */
3688 futex_cleanup_begin(tsk);
3689 futex_cleanup(tsk);
3690 /*
3691 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3692 * exec a new binary.
3693 */
3694 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3695 }
3696
3697 void futex_exit_release(struct task_struct *tsk)
3698 {
3699 futex_cleanup_begin(tsk);
3700 futex_cleanup(tsk);
3701 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3702 }
3703
3704 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3705 u32 __user *uaddr2, u32 val2, u32 val3)
3706 {
3707 int cmd = op & FUTEX_CMD_MASK;
3708 unsigned int flags = 0;
3709
3710 if (!(op & FUTEX_PRIVATE_FLAG))
3711 flags |= FLAGS_SHARED;
3712
3713 if (op & FUTEX_CLOCK_REALTIME) {
3714 flags |= FLAGS_CLOCKRT;
3715 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3716 return -ENOSYS;
3717 }
3718
3719 switch (cmd) {
3720 case FUTEX_LOCK_PI:
3721 case FUTEX_UNLOCK_PI:
3722 case FUTEX_TRYLOCK_PI:
3723 case FUTEX_WAIT_REQUEUE_PI:
3724 case FUTEX_CMP_REQUEUE_PI:
3725 if (!futex_cmpxchg_enabled)
3726 return -ENOSYS;
3727 }
3728
3729 switch (cmd) {
3730 case FUTEX_WAIT:
3731 val3 = FUTEX_BITSET_MATCH_ANY;
3732 fallthrough;
3733 case FUTEX_WAIT_BITSET:
3734 return futex_wait(uaddr, flags, val, timeout, val3);
3735 case FUTEX_WAKE:
3736 val3 = FUTEX_BITSET_MATCH_ANY;
3737 fallthrough;
3738 case FUTEX_WAKE_BITSET:
3739 return futex_wake(uaddr, flags, val, val3);
3740 case FUTEX_REQUEUE:
3741 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3742 case FUTEX_CMP_REQUEUE:
3743 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3744 case FUTEX_WAKE_OP:
3745 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3746 case FUTEX_LOCK_PI:
3747 return futex_lock_pi(uaddr, flags, timeout, 0);
3748 case FUTEX_UNLOCK_PI:
3749 return futex_unlock_pi(uaddr, flags);
3750 case FUTEX_TRYLOCK_PI:
3751 return futex_lock_pi(uaddr, flags, NULL, 1);
3752 case FUTEX_WAIT_REQUEUE_PI:
3753 val3 = FUTEX_BITSET_MATCH_ANY;
3754 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3755 uaddr2);
3756 case FUTEX_CMP_REQUEUE_PI:
3757 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3758 }
3759 return -ENOSYS;
3760 }
3761
3762
3763 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3764 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3765 u32, val3)
3766 {
3767 struct timespec64 ts;
3768 ktime_t t, *tp = NULL;
3769 u32 val2 = 0;
3770 int cmd = op & FUTEX_CMD_MASK;
3771
3772 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3773 cmd == FUTEX_WAIT_BITSET ||
3774 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3775 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3776 return -EFAULT;
3777 if (get_timespec64(&ts, utime))
3778 return -EFAULT;
3779 if (!timespec64_valid(&ts))
3780 return -EINVAL;
3781
3782 t = timespec64_to_ktime(ts);
3783 if (cmd == FUTEX_WAIT)
3784 t = ktime_add_safe(ktime_get(), t);
3785 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3786 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3787 tp = &t;
3788 }
3789 /*
3790 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3791 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3792 */
3793 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3794 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3795 val2 = (u32) (unsigned long) utime;
3796
3797 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3798 }
3799
3800 #ifdef CONFIG_COMPAT
3801 /*
3802 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3803 */
3804 static inline int
3805 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3806 compat_uptr_t __user *head, unsigned int *pi)
3807 {
3808 if (get_user(*uentry, head))
3809 return -EFAULT;
3810
3811 *entry = compat_ptr((*uentry) & ~1);
3812 *pi = (unsigned int)(*uentry) & 1;
3813
3814 return 0;
3815 }
3816
3817 static void __user *futex_uaddr(struct robust_list __user *entry,
3818 compat_long_t futex_offset)
3819 {
3820 compat_uptr_t base = ptr_to_compat(entry);
3821 void __user *uaddr = compat_ptr(base + futex_offset);
3822
3823 return uaddr;
3824 }
3825
3826 /*
3827 * Walk curr->robust_list (very carefully, it's a userspace list!)
3828 * and mark any locks found there dead, and notify any waiters.
3829 *
3830 * We silently return on any sign of list-walking problem.
3831 */
3832 static void compat_exit_robust_list(struct task_struct *curr)
3833 {
3834 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3835 struct robust_list __user *entry, *next_entry, *pending;
3836 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3837 unsigned int next_pi;
3838 compat_uptr_t uentry, next_uentry, upending;
3839 compat_long_t futex_offset;
3840 int rc;
3841
3842 if (!futex_cmpxchg_enabled)
3843 return;
3844
3845 /*
3846 * Fetch the list head (which was registered earlier, via
3847 * sys_set_robust_list()):
3848 */
3849 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3850 return;
3851 /*
3852 * Fetch the relative futex offset:
3853 */
3854 if (get_user(futex_offset, &head->futex_offset))
3855 return;
3856 /*
3857 * Fetch any possibly pending lock-add first, and handle it
3858 * if it exists:
3859 */
3860 if (compat_fetch_robust_entry(&upending, &pending,
3861 &head->list_op_pending, &pip))
3862 return;
3863
3864 next_entry = NULL; /* avoid warning with gcc */
3865 while (entry != (struct robust_list __user *) &head->list) {
3866 /*
3867 * Fetch the next entry in the list before calling
3868 * handle_futex_death:
3869 */
3870 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3871 (compat_uptr_t __user *)&entry->next, &next_pi);
3872 /*
3873 * A pending lock might already be on the list, so
3874 * dont process it twice:
3875 */
3876 if (entry != pending) {
3877 void __user *uaddr = futex_uaddr(entry, futex_offset);
3878
3879 if (handle_futex_death(uaddr, curr, pi,
3880 HANDLE_DEATH_LIST))
3881 return;
3882 }
3883 if (rc)
3884 return;
3885 uentry = next_uentry;
3886 entry = next_entry;
3887 pi = next_pi;
3888 /*
3889 * Avoid excessively long or circular lists:
3890 */
3891 if (!--limit)
3892 break;
3893
3894 cond_resched();
3895 }
3896 if (pending) {
3897 void __user *uaddr = futex_uaddr(pending, futex_offset);
3898
3899 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3900 }
3901 }
3902
3903 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3904 struct compat_robust_list_head __user *, head,
3905 compat_size_t, len)
3906 {
3907 if (!futex_cmpxchg_enabled)
3908 return -ENOSYS;
3909
3910 if (unlikely(len != sizeof(*head)))
3911 return -EINVAL;
3912
3913 current->compat_robust_list = head;
3914
3915 return 0;
3916 }
3917
3918 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3919 compat_uptr_t __user *, head_ptr,
3920 compat_size_t __user *, len_ptr)
3921 {
3922 struct compat_robust_list_head __user *head;
3923 unsigned long ret;
3924 struct task_struct *p;
3925
3926 if (!futex_cmpxchg_enabled)
3927 return -ENOSYS;
3928
3929 rcu_read_lock();
3930
3931 ret = -ESRCH;
3932 if (!pid)
3933 p = current;
3934 else {
3935 p = find_task_by_vpid(pid);
3936 if (!p)
3937 goto err_unlock;
3938 }
3939
3940 ret = -EPERM;
3941 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3942 goto err_unlock;
3943
3944 head = p->compat_robust_list;
3945 rcu_read_unlock();
3946
3947 if (put_user(sizeof(*head), len_ptr))
3948 return -EFAULT;
3949 return put_user(ptr_to_compat(head), head_ptr);
3950
3951 err_unlock:
3952 rcu_read_unlock();
3953
3954 return ret;
3955 }
3956 #endif /* CONFIG_COMPAT */
3957
3958 #ifdef CONFIG_COMPAT_32BIT_TIME
3959 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3960 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3961 u32, val3)
3962 {
3963 struct timespec64 ts;
3964 ktime_t t, *tp = NULL;
3965 int val2 = 0;
3966 int cmd = op & FUTEX_CMD_MASK;
3967
3968 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3969 cmd == FUTEX_WAIT_BITSET ||
3970 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3971 if (get_old_timespec32(&ts, utime))
3972 return -EFAULT;
3973 if (!timespec64_valid(&ts))
3974 return -EINVAL;
3975
3976 t = timespec64_to_ktime(ts);
3977 if (cmd == FUTEX_WAIT)
3978 t = ktime_add_safe(ktime_get(), t);
3979 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3980 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3981 tp = &t;
3982 }
3983 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3984 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3985 val2 = (int) (unsigned long) utime;
3986
3987 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3988 }
3989 #endif /* CONFIG_COMPAT_32BIT_TIME */
3990
3991 static void __init futex_detect_cmpxchg(void)
3992 {
3993 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3994 u32 curval;
3995
3996 /*
3997 * This will fail and we want it. Some arch implementations do
3998 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3999 * functionality. We want to know that before we call in any
4000 * of the complex code paths. Also we want to prevent
4001 * registration of robust lists in that case. NULL is
4002 * guaranteed to fault and we get -EFAULT on functional
4003 * implementation, the non-functional ones will return
4004 * -ENOSYS.
4005 */
4006 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4007 futex_cmpxchg_enabled = 1;
4008 #endif
4009 }
4010
4011 static int __init futex_init(void)
4012 {
4013 unsigned int futex_shift;
4014 unsigned long i;
4015
4016 #if CONFIG_BASE_SMALL
4017 futex_hashsize = 16;
4018 #else
4019 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4020 #endif
4021
4022 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4023 futex_hashsize, 0,
4024 futex_hashsize < 256 ? HASH_SMALL : 0,
4025 &futex_shift, NULL,
4026 futex_hashsize, futex_hashsize);
4027 futex_hashsize = 1UL << futex_shift;
4028
4029 futex_detect_cmpxchg();
4030
4031 for (i = 0; i < futex_hashsize; i++) {
4032 atomic_set(&futex_queues[i].waiters, 0);
4033 plist_head_init(&futex_queues[i].chain);
4034 spin_lock_init(&futex_queues[i].lock);
4035 }
4036
4037 return 0;
4038 }
4039 core_initcall(futex_init);