]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
futex: Add another early deadlock detection check
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73 * READ this before attempting to hack on futexes!
74 *
75 * Basic futex operation and ordering guarantees
76 * =============================================
77 *
78 * The waiter reads the futex value in user space and calls
79 * futex_wait(). This function computes the hash bucket and acquires
80 * the hash bucket lock. After that it reads the futex user space value
81 * again and verifies that the data has not changed. If it has not changed
82 * it enqueues itself into the hash bucket, releases the hash bucket lock
83 * and schedules.
84 *
85 * The waker side modifies the user space value of the futex and calls
86 * futex_wake(). This function computes the hash bucket and acquires the
87 * hash bucket lock. Then it looks for waiters on that futex in the hash
88 * bucket and wakes them.
89 *
90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
91 * the hb spinlock can be avoided and simply return. In order for this
92 * optimization to work, ordering guarantees must exist so that the waiter
93 * being added to the list is acknowledged when the list is concurrently being
94 * checked by the waker, avoiding scenarios like the following:
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 * uval = *futex;
101 * *futex = newval;
102 * sys_futex(WAKE, futex);
103 * futex_wake(futex);
104 * if (queue_empty())
105 * return;
106 * if (uval == val)
107 * lock(hash_bucket(futex));
108 * queue();
109 * unlock(hash_bucket(futex));
110 * schedule();
111 *
112 * This would cause the waiter on CPU 0 to wait forever because it
113 * missed the transition of the user space value from val to newval
114 * and the waker did not find the waiter in the hash bucket queue.
115 *
116 * The correct serialization ensures that a waiter either observes
117 * the changed user space value before blocking or is woken by a
118 * concurrent waker:
119 *
120 * CPU 0 CPU 1
121 * val = *futex;
122 * sys_futex(WAIT, futex, val);
123 * futex_wait(futex, val);
124 *
125 * waiters++; (a)
126 * mb(); (A) <-- paired with -.
127 * |
128 * lock(hash_bucket(futex)); |
129 * |
130 * uval = *futex; |
131 * | *futex = newval;
132 * | sys_futex(WAKE, futex);
133 * | futex_wake(futex);
134 * |
135 * `-------> mb(); (B)
136 * if (uval == val)
137 * queue();
138 * unlock(hash_bucket(futex));
139 * schedule(); if (waiters)
140 * lock(hash_bucket(futex));
141 * else wake_waiters(futex);
142 * waiters--; (b) unlock(hash_bucket(futex));
143 *
144 * Where (A) orders the waiters increment and the futex value read through
145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
146 * to futex and the waiters read -- this is done by the barriers in
147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
148 * futex type.
149 *
150 * This yields the following case (where X:=waiters, Y:=futex):
151 *
152 * X = Y = 0
153 *
154 * w[X]=1 w[Y]=1
155 * MB MB
156 * r[Y]=y r[X]=x
157 *
158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
159 * the guarantee that we cannot both miss the futex variable change and the
160 * enqueue.
161 *
162 * Note that a new waiter is accounted for in (a) even when it is possible that
163 * the wait call can return error, in which case we backtrack from it in (b).
164 * Refer to the comment in queue_lock().
165 *
166 * Similarly, in order to account for waiters being requeued on another
167 * address we always increment the waiters for the destination bucket before
168 * acquiring the lock. It then decrements them again after releasing it -
169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
170 * will do the additional required waiter count housekeeping. This is done for
171 * double_lock_hb() and double_unlock_hb(), respectively.
172 */
173
174 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
175 int __read_mostly futex_cmpxchg_enabled;
176 #endif
177
178 /*
179 * Futex flags used to encode options to functions and preserve them across
180 * restarts.
181 */
182 #define FLAGS_SHARED 0x01
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
185
186 /*
187 * Priority Inheritance state:
188 */
189 struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 atomic_t refcount;
203
204 union futex_key key;
205 };
206
207 /**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
228 */
229 struct futex_q {
230 struct plist_node list;
231
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
239 };
240
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
251 */
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 static unsigned long __read_mostly futex_hashsize;
259
260 static struct futex_hash_bucket *futex_queues;
261
262 static inline void futex_get_mm(union futex_key *key)
263 {
264 atomic_inc(&key->private.mm->mm_count);
265 /*
266 * Ensure futex_get_mm() implies a full barrier such that
267 * get_futex_key() implies a full barrier. This is relied upon
268 * as full barrier (B), see the ordering comment above.
269 */
270 smp_mb__after_atomic_inc();
271 }
272
273 /*
274 * Reflects a new waiter being added to the waitqueue.
275 */
276 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
277 {
278 #ifdef CONFIG_SMP
279 atomic_inc(&hb->waiters);
280 /*
281 * Full barrier (A), see the ordering comment above.
282 */
283 smp_mb__after_atomic_inc();
284 #endif
285 }
286
287 /*
288 * Reflects a waiter being removed from the waitqueue by wakeup
289 * paths.
290 */
291 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
292 {
293 #ifdef CONFIG_SMP
294 atomic_dec(&hb->waiters);
295 #endif
296 }
297
298 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
299 {
300 #ifdef CONFIG_SMP
301 return atomic_read(&hb->waiters);
302 #else
303 return 1;
304 #endif
305 }
306
307 /*
308 * We hash on the keys returned from get_futex_key (see below).
309 */
310 static struct futex_hash_bucket *hash_futex(union futex_key *key)
311 {
312 u32 hash = jhash2((u32*)&key->both.word,
313 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
314 key->both.offset);
315 return &futex_queues[hash & (futex_hashsize - 1)];
316 }
317
318 /*
319 * Return 1 if two futex_keys are equal, 0 otherwise.
320 */
321 static inline int match_futex(union futex_key *key1, union futex_key *key2)
322 {
323 return (key1 && key2
324 && key1->both.word == key2->both.word
325 && key1->both.ptr == key2->both.ptr
326 && key1->both.offset == key2->both.offset);
327 }
328
329 /*
330 * Take a reference to the resource addressed by a key.
331 * Can be called while holding spinlocks.
332 *
333 */
334 static void get_futex_key_refs(union futex_key *key)
335 {
336 if (!key->both.ptr)
337 return;
338
339 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
340 case FUT_OFF_INODE:
341 ihold(key->shared.inode); /* implies MB (B) */
342 break;
343 case FUT_OFF_MMSHARED:
344 futex_get_mm(key); /* implies MB (B) */
345 break;
346 }
347 }
348
349 /*
350 * Drop a reference to the resource addressed by a key.
351 * The hash bucket spinlock must not be held.
352 */
353 static void drop_futex_key_refs(union futex_key *key)
354 {
355 if (!key->both.ptr) {
356 /* If we're here then we tried to put a key we failed to get */
357 WARN_ON_ONCE(1);
358 return;
359 }
360
361 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
362 case FUT_OFF_INODE:
363 iput(key->shared.inode);
364 break;
365 case FUT_OFF_MMSHARED:
366 mmdrop(key->private.mm);
367 break;
368 }
369 }
370
371 /**
372 * get_futex_key() - Get parameters which are the keys for a futex
373 * @uaddr: virtual address of the futex
374 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
375 * @key: address where result is stored.
376 * @rw: mapping needs to be read/write (values: VERIFY_READ,
377 * VERIFY_WRITE)
378 *
379 * Return: a negative error code or 0
380 *
381 * The key words are stored in *key on success.
382 *
383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
384 * offset_within_page). For private mappings, it's (uaddr, current->mm).
385 * We can usually work out the index without swapping in the page.
386 *
387 * lock_page() might sleep, the caller should not hold a spinlock.
388 */
389 static int
390 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
391 {
392 unsigned long address = (unsigned long)uaddr;
393 struct mm_struct *mm = current->mm;
394 struct page *page, *page_head;
395 int err, ro = 0;
396
397 /*
398 * The futex address must be "naturally" aligned.
399 */
400 key->both.offset = address % PAGE_SIZE;
401 if (unlikely((address % sizeof(u32)) != 0))
402 return -EINVAL;
403 address -= key->both.offset;
404
405 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
406 return -EFAULT;
407
408 /*
409 * PROCESS_PRIVATE futexes are fast.
410 * As the mm cannot disappear under us and the 'key' only needs
411 * virtual address, we dont even have to find the underlying vma.
412 * Note : We do have to check 'uaddr' is a valid user address,
413 * but access_ok() should be faster than find_vma()
414 */
415 if (!fshared) {
416 key->private.mm = mm;
417 key->private.address = address;
418 get_futex_key_refs(key); /* implies MB (B) */
419 return 0;
420 }
421
422 again:
423 err = get_user_pages_fast(address, 1, 1, &page);
424 /*
425 * If write access is not required (eg. FUTEX_WAIT), try
426 * and get read-only access.
427 */
428 if (err == -EFAULT && rw == VERIFY_READ) {
429 err = get_user_pages_fast(address, 1, 0, &page);
430 ro = 1;
431 }
432 if (err < 0)
433 return err;
434 else
435 err = 0;
436
437 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
438 page_head = page;
439 if (unlikely(PageTail(page))) {
440 put_page(page);
441 /* serialize against __split_huge_page_splitting() */
442 local_irq_disable();
443 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
444 page_head = compound_head(page);
445 /*
446 * page_head is valid pointer but we must pin
447 * it before taking the PG_lock and/or
448 * PG_compound_lock. The moment we re-enable
449 * irqs __split_huge_page_splitting() can
450 * return and the head page can be freed from
451 * under us. We can't take the PG_lock and/or
452 * PG_compound_lock on a page that could be
453 * freed from under us.
454 */
455 if (page != page_head) {
456 get_page(page_head);
457 put_page(page);
458 }
459 local_irq_enable();
460 } else {
461 local_irq_enable();
462 goto again;
463 }
464 }
465 #else
466 page_head = compound_head(page);
467 if (page != page_head) {
468 get_page(page_head);
469 put_page(page);
470 }
471 #endif
472
473 lock_page(page_head);
474
475 /*
476 * If page_head->mapping is NULL, then it cannot be a PageAnon
477 * page; but it might be the ZERO_PAGE or in the gate area or
478 * in a special mapping (all cases which we are happy to fail);
479 * or it may have been a good file page when get_user_pages_fast
480 * found it, but truncated or holepunched or subjected to
481 * invalidate_complete_page2 before we got the page lock (also
482 * cases which we are happy to fail). And we hold a reference,
483 * so refcount care in invalidate_complete_page's remove_mapping
484 * prevents drop_caches from setting mapping to NULL beneath us.
485 *
486 * The case we do have to guard against is when memory pressure made
487 * shmem_writepage move it from filecache to swapcache beneath us:
488 * an unlikely race, but we do need to retry for page_head->mapping.
489 */
490 if (!page_head->mapping) {
491 int shmem_swizzled = PageSwapCache(page_head);
492 unlock_page(page_head);
493 put_page(page_head);
494 if (shmem_swizzled)
495 goto again;
496 return -EFAULT;
497 }
498
499 /*
500 * Private mappings are handled in a simple way.
501 *
502 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
503 * it's a read-only handle, it's expected that futexes attach to
504 * the object not the particular process.
505 */
506 if (PageAnon(page_head)) {
507 /*
508 * A RO anonymous page will never change and thus doesn't make
509 * sense for futex operations.
510 */
511 if (ro) {
512 err = -EFAULT;
513 goto out;
514 }
515
516 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
517 key->private.mm = mm;
518 key->private.address = address;
519 } else {
520 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
521 key->shared.inode = page_head->mapping->host;
522 key->shared.pgoff = basepage_index(page);
523 }
524
525 get_futex_key_refs(key); /* implies MB (B) */
526
527 out:
528 unlock_page(page_head);
529 put_page(page_head);
530 return err;
531 }
532
533 static inline void put_futex_key(union futex_key *key)
534 {
535 drop_futex_key_refs(key);
536 }
537
538 /**
539 * fault_in_user_writeable() - Fault in user address and verify RW access
540 * @uaddr: pointer to faulting user space address
541 *
542 * Slow path to fixup the fault we just took in the atomic write
543 * access to @uaddr.
544 *
545 * We have no generic implementation of a non-destructive write to the
546 * user address. We know that we faulted in the atomic pagefault
547 * disabled section so we can as well avoid the #PF overhead by
548 * calling get_user_pages() right away.
549 */
550 static int fault_in_user_writeable(u32 __user *uaddr)
551 {
552 struct mm_struct *mm = current->mm;
553 int ret;
554
555 down_read(&mm->mmap_sem);
556 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
557 FAULT_FLAG_WRITE);
558 up_read(&mm->mmap_sem);
559
560 return ret < 0 ? ret : 0;
561 }
562
563 /**
564 * futex_top_waiter() - Return the highest priority waiter on a futex
565 * @hb: the hash bucket the futex_q's reside in
566 * @key: the futex key (to distinguish it from other futex futex_q's)
567 *
568 * Must be called with the hb lock held.
569 */
570 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
571 union futex_key *key)
572 {
573 struct futex_q *this;
574
575 plist_for_each_entry(this, &hb->chain, list) {
576 if (match_futex(&this->key, key))
577 return this;
578 }
579 return NULL;
580 }
581
582 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
583 u32 uval, u32 newval)
584 {
585 int ret;
586
587 pagefault_disable();
588 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
589 pagefault_enable();
590
591 return ret;
592 }
593
594 static int get_futex_value_locked(u32 *dest, u32 __user *from)
595 {
596 int ret;
597
598 pagefault_disable();
599 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
600 pagefault_enable();
601
602 return ret ? -EFAULT : 0;
603 }
604
605
606 /*
607 * PI code:
608 */
609 static int refill_pi_state_cache(void)
610 {
611 struct futex_pi_state *pi_state;
612
613 if (likely(current->pi_state_cache))
614 return 0;
615
616 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
617
618 if (!pi_state)
619 return -ENOMEM;
620
621 INIT_LIST_HEAD(&pi_state->list);
622 /* pi_mutex gets initialized later */
623 pi_state->owner = NULL;
624 atomic_set(&pi_state->refcount, 1);
625 pi_state->key = FUTEX_KEY_INIT;
626
627 current->pi_state_cache = pi_state;
628
629 return 0;
630 }
631
632 static struct futex_pi_state * alloc_pi_state(void)
633 {
634 struct futex_pi_state *pi_state = current->pi_state_cache;
635
636 WARN_ON(!pi_state);
637 current->pi_state_cache = NULL;
638
639 return pi_state;
640 }
641
642 static void free_pi_state(struct futex_pi_state *pi_state)
643 {
644 if (!atomic_dec_and_test(&pi_state->refcount))
645 return;
646
647 /*
648 * If pi_state->owner is NULL, the owner is most probably dying
649 * and has cleaned up the pi_state already
650 */
651 if (pi_state->owner) {
652 raw_spin_lock_irq(&pi_state->owner->pi_lock);
653 list_del_init(&pi_state->list);
654 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
655
656 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
657 }
658
659 if (current->pi_state_cache)
660 kfree(pi_state);
661 else {
662 /*
663 * pi_state->list is already empty.
664 * clear pi_state->owner.
665 * refcount is at 0 - put it back to 1.
666 */
667 pi_state->owner = NULL;
668 atomic_set(&pi_state->refcount, 1);
669 current->pi_state_cache = pi_state;
670 }
671 }
672
673 /*
674 * Look up the task based on what TID userspace gave us.
675 * We dont trust it.
676 */
677 static struct task_struct * futex_find_get_task(pid_t pid)
678 {
679 struct task_struct *p;
680
681 rcu_read_lock();
682 p = find_task_by_vpid(pid);
683 if (p)
684 get_task_struct(p);
685
686 rcu_read_unlock();
687
688 return p;
689 }
690
691 /*
692 * This task is holding PI mutexes at exit time => bad.
693 * Kernel cleans up PI-state, but userspace is likely hosed.
694 * (Robust-futex cleanup is separate and might save the day for userspace.)
695 */
696 void exit_pi_state_list(struct task_struct *curr)
697 {
698 struct list_head *next, *head = &curr->pi_state_list;
699 struct futex_pi_state *pi_state;
700 struct futex_hash_bucket *hb;
701 union futex_key key = FUTEX_KEY_INIT;
702
703 if (!futex_cmpxchg_enabled)
704 return;
705 /*
706 * We are a ZOMBIE and nobody can enqueue itself on
707 * pi_state_list anymore, but we have to be careful
708 * versus waiters unqueueing themselves:
709 */
710 raw_spin_lock_irq(&curr->pi_lock);
711 while (!list_empty(head)) {
712
713 next = head->next;
714 pi_state = list_entry(next, struct futex_pi_state, list);
715 key = pi_state->key;
716 hb = hash_futex(&key);
717 raw_spin_unlock_irq(&curr->pi_lock);
718
719 spin_lock(&hb->lock);
720
721 raw_spin_lock_irq(&curr->pi_lock);
722 /*
723 * We dropped the pi-lock, so re-check whether this
724 * task still owns the PI-state:
725 */
726 if (head->next != next) {
727 spin_unlock(&hb->lock);
728 continue;
729 }
730
731 WARN_ON(pi_state->owner != curr);
732 WARN_ON(list_empty(&pi_state->list));
733 list_del_init(&pi_state->list);
734 pi_state->owner = NULL;
735 raw_spin_unlock_irq(&curr->pi_lock);
736
737 rt_mutex_unlock(&pi_state->pi_mutex);
738
739 spin_unlock(&hb->lock);
740
741 raw_spin_lock_irq(&curr->pi_lock);
742 }
743 raw_spin_unlock_irq(&curr->pi_lock);
744 }
745
746 static int
747 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
748 union futex_key *key, struct futex_pi_state **ps,
749 struct task_struct *task)
750 {
751 struct futex_pi_state *pi_state = NULL;
752 struct futex_q *this, *next;
753 struct task_struct *p;
754 pid_t pid = uval & FUTEX_TID_MASK;
755
756 plist_for_each_entry_safe(this, next, &hb->chain, list) {
757 if (match_futex(&this->key, key)) {
758 /*
759 * Another waiter already exists - bump up
760 * the refcount and return its pi_state:
761 */
762 pi_state = this->pi_state;
763 /*
764 * Userspace might have messed up non-PI and PI futexes
765 */
766 if (unlikely(!pi_state))
767 return -EINVAL;
768
769 WARN_ON(!atomic_read(&pi_state->refcount));
770
771 /*
772 * When pi_state->owner is NULL then the owner died
773 * and another waiter is on the fly. pi_state->owner
774 * is fixed up by the task which acquires
775 * pi_state->rt_mutex.
776 *
777 * We do not check for pid == 0 which can happen when
778 * the owner died and robust_list_exit() cleared the
779 * TID.
780 */
781 if (pid && pi_state->owner) {
782 /*
783 * Bail out if user space manipulated the
784 * futex value.
785 */
786 if (pid != task_pid_vnr(pi_state->owner))
787 return -EINVAL;
788 }
789
790 /*
791 * Protect against a corrupted uval. If uval
792 * is 0x80000000 then pid is 0 and the waiter
793 * bit is set. So the deadlock check in the
794 * calling code has failed and we did not fall
795 * into the check above due to !pid.
796 */
797 if (task && pi_state->owner == task)
798 return -EDEADLK;
799
800 atomic_inc(&pi_state->refcount);
801 *ps = pi_state;
802
803 return 0;
804 }
805 }
806
807 /*
808 * We are the first waiter - try to look up the real owner and attach
809 * the new pi_state to it, but bail out when TID = 0
810 */
811 if (!pid)
812 return -ESRCH;
813 p = futex_find_get_task(pid);
814 if (!p)
815 return -ESRCH;
816
817 /*
818 * We need to look at the task state flags to figure out,
819 * whether the task is exiting. To protect against the do_exit
820 * change of the task flags, we do this protected by
821 * p->pi_lock:
822 */
823 raw_spin_lock_irq(&p->pi_lock);
824 if (unlikely(p->flags & PF_EXITING)) {
825 /*
826 * The task is on the way out. When PF_EXITPIDONE is
827 * set, we know that the task has finished the
828 * cleanup:
829 */
830 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
831
832 raw_spin_unlock_irq(&p->pi_lock);
833 put_task_struct(p);
834 return ret;
835 }
836
837 pi_state = alloc_pi_state();
838
839 /*
840 * Initialize the pi_mutex in locked state and make 'p'
841 * the owner of it:
842 */
843 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
844
845 /* Store the key for possible exit cleanups: */
846 pi_state->key = *key;
847
848 WARN_ON(!list_empty(&pi_state->list));
849 list_add(&pi_state->list, &p->pi_state_list);
850 pi_state->owner = p;
851 raw_spin_unlock_irq(&p->pi_lock);
852
853 put_task_struct(p);
854
855 *ps = pi_state;
856
857 return 0;
858 }
859
860 /**
861 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
862 * @uaddr: the pi futex user address
863 * @hb: the pi futex hash bucket
864 * @key: the futex key associated with uaddr and hb
865 * @ps: the pi_state pointer where we store the result of the
866 * lookup
867 * @task: the task to perform the atomic lock work for. This will
868 * be "current" except in the case of requeue pi.
869 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
870 *
871 * Return:
872 * 0 - ready to wait;
873 * 1 - acquired the lock;
874 * <0 - error
875 *
876 * The hb->lock and futex_key refs shall be held by the caller.
877 */
878 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
879 union futex_key *key,
880 struct futex_pi_state **ps,
881 struct task_struct *task, int set_waiters)
882 {
883 int lock_taken, ret, force_take = 0;
884 u32 uval, newval, curval, vpid = task_pid_vnr(task);
885
886 retry:
887 ret = lock_taken = 0;
888
889 /*
890 * To avoid races, we attempt to take the lock here again
891 * (by doing a 0 -> TID atomic cmpxchg), while holding all
892 * the locks. It will most likely not succeed.
893 */
894 newval = vpid;
895 if (set_waiters)
896 newval |= FUTEX_WAITERS;
897
898 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
899 return -EFAULT;
900
901 /*
902 * Detect deadlocks.
903 */
904 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
905 return -EDEADLK;
906
907 /*
908 * Surprise - we got the lock. Just return to userspace:
909 */
910 if (unlikely(!curval))
911 return 1;
912
913 uval = curval;
914
915 /*
916 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
917 * to wake at the next unlock.
918 */
919 newval = curval | FUTEX_WAITERS;
920
921 /*
922 * Should we force take the futex? See below.
923 */
924 if (unlikely(force_take)) {
925 /*
926 * Keep the OWNER_DIED and the WAITERS bit and set the
927 * new TID value.
928 */
929 newval = (curval & ~FUTEX_TID_MASK) | vpid;
930 force_take = 0;
931 lock_taken = 1;
932 }
933
934 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
935 return -EFAULT;
936 if (unlikely(curval != uval))
937 goto retry;
938
939 /*
940 * We took the lock due to forced take over.
941 */
942 if (unlikely(lock_taken))
943 return 1;
944
945 /*
946 * We dont have the lock. Look up the PI state (or create it if
947 * we are the first waiter):
948 */
949 ret = lookup_pi_state(uval, hb, key, ps, task);
950
951 if (unlikely(ret)) {
952 switch (ret) {
953 case -ESRCH:
954 /*
955 * We failed to find an owner for this
956 * futex. So we have no pi_state to block
957 * on. This can happen in two cases:
958 *
959 * 1) The owner died
960 * 2) A stale FUTEX_WAITERS bit
961 *
962 * Re-read the futex value.
963 */
964 if (get_futex_value_locked(&curval, uaddr))
965 return -EFAULT;
966
967 /*
968 * If the owner died or we have a stale
969 * WAITERS bit the owner TID in the user space
970 * futex is 0.
971 */
972 if (!(curval & FUTEX_TID_MASK)) {
973 force_take = 1;
974 goto retry;
975 }
976 default:
977 break;
978 }
979 }
980
981 return ret;
982 }
983
984 /**
985 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
986 * @q: The futex_q to unqueue
987 *
988 * The q->lock_ptr must not be NULL and must be held by the caller.
989 */
990 static void __unqueue_futex(struct futex_q *q)
991 {
992 struct futex_hash_bucket *hb;
993
994 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
995 || WARN_ON(plist_node_empty(&q->list)))
996 return;
997
998 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
999 plist_del(&q->list, &hb->chain);
1000 hb_waiters_dec(hb);
1001 }
1002
1003 /*
1004 * The hash bucket lock must be held when this is called.
1005 * Afterwards, the futex_q must not be accessed.
1006 */
1007 static void wake_futex(struct futex_q *q)
1008 {
1009 struct task_struct *p = q->task;
1010
1011 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1012 return;
1013
1014 /*
1015 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1016 * a non-futex wake up happens on another CPU then the task
1017 * might exit and p would dereference a non-existing task
1018 * struct. Prevent this by holding a reference on p across the
1019 * wake up.
1020 */
1021 get_task_struct(p);
1022
1023 __unqueue_futex(q);
1024 /*
1025 * The waiting task can free the futex_q as soon as
1026 * q->lock_ptr = NULL is written, without taking any locks. A
1027 * memory barrier is required here to prevent the following
1028 * store to lock_ptr from getting ahead of the plist_del.
1029 */
1030 smp_wmb();
1031 q->lock_ptr = NULL;
1032
1033 wake_up_state(p, TASK_NORMAL);
1034 put_task_struct(p);
1035 }
1036
1037 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1038 {
1039 struct task_struct *new_owner;
1040 struct futex_pi_state *pi_state = this->pi_state;
1041 u32 uninitialized_var(curval), newval;
1042
1043 if (!pi_state)
1044 return -EINVAL;
1045
1046 /*
1047 * If current does not own the pi_state then the futex is
1048 * inconsistent and user space fiddled with the futex value.
1049 */
1050 if (pi_state->owner != current)
1051 return -EINVAL;
1052
1053 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1054 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1055
1056 /*
1057 * It is possible that the next waiter (the one that brought
1058 * this owner to the kernel) timed out and is no longer
1059 * waiting on the lock.
1060 */
1061 if (!new_owner)
1062 new_owner = this->task;
1063
1064 /*
1065 * We pass it to the next owner. (The WAITERS bit is always
1066 * kept enabled while there is PI state around. We must also
1067 * preserve the owner died bit.)
1068 */
1069 if (!(uval & FUTEX_OWNER_DIED)) {
1070 int ret = 0;
1071
1072 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1073
1074 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1075 ret = -EFAULT;
1076 else if (curval != uval)
1077 ret = -EINVAL;
1078 if (ret) {
1079 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1080 return ret;
1081 }
1082 }
1083
1084 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1085 WARN_ON(list_empty(&pi_state->list));
1086 list_del_init(&pi_state->list);
1087 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1088
1089 raw_spin_lock_irq(&new_owner->pi_lock);
1090 WARN_ON(!list_empty(&pi_state->list));
1091 list_add(&pi_state->list, &new_owner->pi_state_list);
1092 pi_state->owner = new_owner;
1093 raw_spin_unlock_irq(&new_owner->pi_lock);
1094
1095 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1096 rt_mutex_unlock(&pi_state->pi_mutex);
1097
1098 return 0;
1099 }
1100
1101 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1102 {
1103 u32 uninitialized_var(oldval);
1104
1105 /*
1106 * There is no waiter, so we unlock the futex. The owner died
1107 * bit has not to be preserved here. We are the owner:
1108 */
1109 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1110 return -EFAULT;
1111 if (oldval != uval)
1112 return -EAGAIN;
1113
1114 return 0;
1115 }
1116
1117 /*
1118 * Express the locking dependencies for lockdep:
1119 */
1120 static inline void
1121 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1122 {
1123 if (hb1 <= hb2) {
1124 spin_lock(&hb1->lock);
1125 if (hb1 < hb2)
1126 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1127 } else { /* hb1 > hb2 */
1128 spin_lock(&hb2->lock);
1129 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1130 }
1131 }
1132
1133 static inline void
1134 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1135 {
1136 spin_unlock(&hb1->lock);
1137 if (hb1 != hb2)
1138 spin_unlock(&hb2->lock);
1139 }
1140
1141 /*
1142 * Wake up waiters matching bitset queued on this futex (uaddr).
1143 */
1144 static int
1145 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1146 {
1147 struct futex_hash_bucket *hb;
1148 struct futex_q *this, *next;
1149 union futex_key key = FUTEX_KEY_INIT;
1150 int ret;
1151
1152 if (!bitset)
1153 return -EINVAL;
1154
1155 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1156 if (unlikely(ret != 0))
1157 goto out;
1158
1159 hb = hash_futex(&key);
1160
1161 /* Make sure we really have tasks to wakeup */
1162 if (!hb_waiters_pending(hb))
1163 goto out_put_key;
1164
1165 spin_lock(&hb->lock);
1166
1167 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1168 if (match_futex (&this->key, &key)) {
1169 if (this->pi_state || this->rt_waiter) {
1170 ret = -EINVAL;
1171 break;
1172 }
1173
1174 /* Check if one of the bits is set in both bitsets */
1175 if (!(this->bitset & bitset))
1176 continue;
1177
1178 wake_futex(this);
1179 if (++ret >= nr_wake)
1180 break;
1181 }
1182 }
1183
1184 spin_unlock(&hb->lock);
1185 out_put_key:
1186 put_futex_key(&key);
1187 out:
1188 return ret;
1189 }
1190
1191 /*
1192 * Wake up all waiters hashed on the physical page that is mapped
1193 * to this virtual address:
1194 */
1195 static int
1196 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1197 int nr_wake, int nr_wake2, int op)
1198 {
1199 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1200 struct futex_hash_bucket *hb1, *hb2;
1201 struct futex_q *this, *next;
1202 int ret, op_ret;
1203
1204 retry:
1205 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1206 if (unlikely(ret != 0))
1207 goto out;
1208 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1209 if (unlikely(ret != 0))
1210 goto out_put_key1;
1211
1212 hb1 = hash_futex(&key1);
1213 hb2 = hash_futex(&key2);
1214
1215 retry_private:
1216 double_lock_hb(hb1, hb2);
1217 op_ret = futex_atomic_op_inuser(op, uaddr2);
1218 if (unlikely(op_ret < 0)) {
1219
1220 double_unlock_hb(hb1, hb2);
1221
1222 #ifndef CONFIG_MMU
1223 /*
1224 * we don't get EFAULT from MMU faults if we don't have an MMU,
1225 * but we might get them from range checking
1226 */
1227 ret = op_ret;
1228 goto out_put_keys;
1229 #endif
1230
1231 if (unlikely(op_ret != -EFAULT)) {
1232 ret = op_ret;
1233 goto out_put_keys;
1234 }
1235
1236 ret = fault_in_user_writeable(uaddr2);
1237 if (ret)
1238 goto out_put_keys;
1239
1240 if (!(flags & FLAGS_SHARED))
1241 goto retry_private;
1242
1243 put_futex_key(&key2);
1244 put_futex_key(&key1);
1245 goto retry;
1246 }
1247
1248 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1249 if (match_futex (&this->key, &key1)) {
1250 if (this->pi_state || this->rt_waiter) {
1251 ret = -EINVAL;
1252 goto out_unlock;
1253 }
1254 wake_futex(this);
1255 if (++ret >= nr_wake)
1256 break;
1257 }
1258 }
1259
1260 if (op_ret > 0) {
1261 op_ret = 0;
1262 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1263 if (match_futex (&this->key, &key2)) {
1264 if (this->pi_state || this->rt_waiter) {
1265 ret = -EINVAL;
1266 goto out_unlock;
1267 }
1268 wake_futex(this);
1269 if (++op_ret >= nr_wake2)
1270 break;
1271 }
1272 }
1273 ret += op_ret;
1274 }
1275
1276 out_unlock:
1277 double_unlock_hb(hb1, hb2);
1278 out_put_keys:
1279 put_futex_key(&key2);
1280 out_put_key1:
1281 put_futex_key(&key1);
1282 out:
1283 return ret;
1284 }
1285
1286 /**
1287 * requeue_futex() - Requeue a futex_q from one hb to another
1288 * @q: the futex_q to requeue
1289 * @hb1: the source hash_bucket
1290 * @hb2: the target hash_bucket
1291 * @key2: the new key for the requeued futex_q
1292 */
1293 static inline
1294 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1295 struct futex_hash_bucket *hb2, union futex_key *key2)
1296 {
1297
1298 /*
1299 * If key1 and key2 hash to the same bucket, no need to
1300 * requeue.
1301 */
1302 if (likely(&hb1->chain != &hb2->chain)) {
1303 plist_del(&q->list, &hb1->chain);
1304 hb_waiters_dec(hb1);
1305 plist_add(&q->list, &hb2->chain);
1306 hb_waiters_inc(hb2);
1307 q->lock_ptr = &hb2->lock;
1308 }
1309 get_futex_key_refs(key2);
1310 q->key = *key2;
1311 }
1312
1313 /**
1314 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1315 * @q: the futex_q
1316 * @key: the key of the requeue target futex
1317 * @hb: the hash_bucket of the requeue target futex
1318 *
1319 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1320 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1321 * to the requeue target futex so the waiter can detect the wakeup on the right
1322 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1323 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1324 * to protect access to the pi_state to fixup the owner later. Must be called
1325 * with both q->lock_ptr and hb->lock held.
1326 */
1327 static inline
1328 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1329 struct futex_hash_bucket *hb)
1330 {
1331 get_futex_key_refs(key);
1332 q->key = *key;
1333
1334 __unqueue_futex(q);
1335
1336 WARN_ON(!q->rt_waiter);
1337 q->rt_waiter = NULL;
1338
1339 q->lock_ptr = &hb->lock;
1340
1341 wake_up_state(q->task, TASK_NORMAL);
1342 }
1343
1344 /**
1345 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1346 * @pifutex: the user address of the to futex
1347 * @hb1: the from futex hash bucket, must be locked by the caller
1348 * @hb2: the to futex hash bucket, must be locked by the caller
1349 * @key1: the from futex key
1350 * @key2: the to futex key
1351 * @ps: address to store the pi_state pointer
1352 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1353 *
1354 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1355 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1356 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1357 * hb1 and hb2 must be held by the caller.
1358 *
1359 * Return:
1360 * 0 - failed to acquire the lock atomically;
1361 * >0 - acquired the lock, return value is vpid of the top_waiter
1362 * <0 - error
1363 */
1364 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1365 struct futex_hash_bucket *hb1,
1366 struct futex_hash_bucket *hb2,
1367 union futex_key *key1, union futex_key *key2,
1368 struct futex_pi_state **ps, int set_waiters)
1369 {
1370 struct futex_q *top_waiter = NULL;
1371 u32 curval;
1372 int ret, vpid;
1373
1374 if (get_futex_value_locked(&curval, pifutex))
1375 return -EFAULT;
1376
1377 /*
1378 * Find the top_waiter and determine if there are additional waiters.
1379 * If the caller intends to requeue more than 1 waiter to pifutex,
1380 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1381 * as we have means to handle the possible fault. If not, don't set
1382 * the bit unecessarily as it will force the subsequent unlock to enter
1383 * the kernel.
1384 */
1385 top_waiter = futex_top_waiter(hb1, key1);
1386
1387 /* There are no waiters, nothing for us to do. */
1388 if (!top_waiter)
1389 return 0;
1390
1391 /* Ensure we requeue to the expected futex. */
1392 if (!match_futex(top_waiter->requeue_pi_key, key2))
1393 return -EINVAL;
1394
1395 /*
1396 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1397 * the contended case or if set_waiters is 1. The pi_state is returned
1398 * in ps in contended cases.
1399 */
1400 vpid = task_pid_vnr(top_waiter->task);
1401 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1402 set_waiters);
1403 if (ret == 1) {
1404 requeue_pi_wake_futex(top_waiter, key2, hb2);
1405 return vpid;
1406 }
1407 return ret;
1408 }
1409
1410 /**
1411 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1412 * @uaddr1: source futex user address
1413 * @flags: futex flags (FLAGS_SHARED, etc.)
1414 * @uaddr2: target futex user address
1415 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1416 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1417 * @cmpval: @uaddr1 expected value (or %NULL)
1418 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1419 * pi futex (pi to pi requeue is not supported)
1420 *
1421 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1422 * uaddr2 atomically on behalf of the top waiter.
1423 *
1424 * Return:
1425 * >=0 - on success, the number of tasks requeued or woken;
1426 * <0 - on error
1427 */
1428 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1429 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1430 u32 *cmpval, int requeue_pi)
1431 {
1432 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1433 int drop_count = 0, task_count = 0, ret;
1434 struct futex_pi_state *pi_state = NULL;
1435 struct futex_hash_bucket *hb1, *hb2;
1436 struct futex_q *this, *next;
1437
1438 if (requeue_pi) {
1439 /*
1440 * requeue_pi requires a pi_state, try to allocate it now
1441 * without any locks in case it fails.
1442 */
1443 if (refill_pi_state_cache())
1444 return -ENOMEM;
1445 /*
1446 * requeue_pi must wake as many tasks as it can, up to nr_wake
1447 * + nr_requeue, since it acquires the rt_mutex prior to
1448 * returning to userspace, so as to not leave the rt_mutex with
1449 * waiters and no owner. However, second and third wake-ups
1450 * cannot be predicted as they involve race conditions with the
1451 * first wake and a fault while looking up the pi_state. Both
1452 * pthread_cond_signal() and pthread_cond_broadcast() should
1453 * use nr_wake=1.
1454 */
1455 if (nr_wake != 1)
1456 return -EINVAL;
1457 }
1458
1459 retry:
1460 if (pi_state != NULL) {
1461 /*
1462 * We will have to lookup the pi_state again, so free this one
1463 * to keep the accounting correct.
1464 */
1465 free_pi_state(pi_state);
1466 pi_state = NULL;
1467 }
1468
1469 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1470 if (unlikely(ret != 0))
1471 goto out;
1472 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1473 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1474 if (unlikely(ret != 0))
1475 goto out_put_key1;
1476
1477 hb1 = hash_futex(&key1);
1478 hb2 = hash_futex(&key2);
1479
1480 retry_private:
1481 hb_waiters_inc(hb2);
1482 double_lock_hb(hb1, hb2);
1483
1484 if (likely(cmpval != NULL)) {
1485 u32 curval;
1486
1487 ret = get_futex_value_locked(&curval, uaddr1);
1488
1489 if (unlikely(ret)) {
1490 double_unlock_hb(hb1, hb2);
1491 hb_waiters_dec(hb2);
1492
1493 ret = get_user(curval, uaddr1);
1494 if (ret)
1495 goto out_put_keys;
1496
1497 if (!(flags & FLAGS_SHARED))
1498 goto retry_private;
1499
1500 put_futex_key(&key2);
1501 put_futex_key(&key1);
1502 goto retry;
1503 }
1504 if (curval != *cmpval) {
1505 ret = -EAGAIN;
1506 goto out_unlock;
1507 }
1508 }
1509
1510 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1511 /*
1512 * Attempt to acquire uaddr2 and wake the top waiter. If we
1513 * intend to requeue waiters, force setting the FUTEX_WAITERS
1514 * bit. We force this here where we are able to easily handle
1515 * faults rather in the requeue loop below.
1516 */
1517 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1518 &key2, &pi_state, nr_requeue);
1519
1520 /*
1521 * At this point the top_waiter has either taken uaddr2 or is
1522 * waiting on it. If the former, then the pi_state will not
1523 * exist yet, look it up one more time to ensure we have a
1524 * reference to it. If the lock was taken, ret contains the
1525 * vpid of the top waiter task.
1526 */
1527 if (ret > 0) {
1528 WARN_ON(pi_state);
1529 drop_count++;
1530 task_count++;
1531 /*
1532 * If we acquired the lock, then the user
1533 * space value of uaddr2 should be vpid. It
1534 * cannot be changed by the top waiter as it
1535 * is blocked on hb2 lock if it tries to do
1536 * so. If something fiddled with it behind our
1537 * back the pi state lookup might unearth
1538 * it. So we rather use the known value than
1539 * rereading and handing potential crap to
1540 * lookup_pi_state.
1541 */
1542 ret = lookup_pi_state(ret, hb2, &key2, &pi_state, NULL);
1543 }
1544
1545 switch (ret) {
1546 case 0:
1547 break;
1548 case -EFAULT:
1549 double_unlock_hb(hb1, hb2);
1550 hb_waiters_dec(hb2);
1551 put_futex_key(&key2);
1552 put_futex_key(&key1);
1553 ret = fault_in_user_writeable(uaddr2);
1554 if (!ret)
1555 goto retry;
1556 goto out;
1557 case -EAGAIN:
1558 /* The owner was exiting, try again. */
1559 double_unlock_hb(hb1, hb2);
1560 hb_waiters_dec(hb2);
1561 put_futex_key(&key2);
1562 put_futex_key(&key1);
1563 cond_resched();
1564 goto retry;
1565 default:
1566 goto out_unlock;
1567 }
1568 }
1569
1570 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1571 if (task_count - nr_wake >= nr_requeue)
1572 break;
1573
1574 if (!match_futex(&this->key, &key1))
1575 continue;
1576
1577 /*
1578 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1579 * be paired with each other and no other futex ops.
1580 *
1581 * We should never be requeueing a futex_q with a pi_state,
1582 * which is awaiting a futex_unlock_pi().
1583 */
1584 if ((requeue_pi && !this->rt_waiter) ||
1585 (!requeue_pi && this->rt_waiter) ||
1586 this->pi_state) {
1587 ret = -EINVAL;
1588 break;
1589 }
1590
1591 /*
1592 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1593 * lock, we already woke the top_waiter. If not, it will be
1594 * woken by futex_unlock_pi().
1595 */
1596 if (++task_count <= nr_wake && !requeue_pi) {
1597 wake_futex(this);
1598 continue;
1599 }
1600
1601 /* Ensure we requeue to the expected futex for requeue_pi. */
1602 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1603 ret = -EINVAL;
1604 break;
1605 }
1606
1607 /*
1608 * Requeue nr_requeue waiters and possibly one more in the case
1609 * of requeue_pi if we couldn't acquire the lock atomically.
1610 */
1611 if (requeue_pi) {
1612 /* Prepare the waiter to take the rt_mutex. */
1613 atomic_inc(&pi_state->refcount);
1614 this->pi_state = pi_state;
1615 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1616 this->rt_waiter,
1617 this->task, 1);
1618 if (ret == 1) {
1619 /* We got the lock. */
1620 requeue_pi_wake_futex(this, &key2, hb2);
1621 drop_count++;
1622 continue;
1623 } else if (ret) {
1624 /* -EDEADLK */
1625 this->pi_state = NULL;
1626 free_pi_state(pi_state);
1627 goto out_unlock;
1628 }
1629 }
1630 requeue_futex(this, hb1, hb2, &key2);
1631 drop_count++;
1632 }
1633
1634 out_unlock:
1635 double_unlock_hb(hb1, hb2);
1636 hb_waiters_dec(hb2);
1637
1638 /*
1639 * drop_futex_key_refs() must be called outside the spinlocks. During
1640 * the requeue we moved futex_q's from the hash bucket at key1 to the
1641 * one at key2 and updated their key pointer. We no longer need to
1642 * hold the references to key1.
1643 */
1644 while (--drop_count >= 0)
1645 drop_futex_key_refs(&key1);
1646
1647 out_put_keys:
1648 put_futex_key(&key2);
1649 out_put_key1:
1650 put_futex_key(&key1);
1651 out:
1652 if (pi_state != NULL)
1653 free_pi_state(pi_state);
1654 return ret ? ret : task_count;
1655 }
1656
1657 /* The key must be already stored in q->key. */
1658 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1659 __acquires(&hb->lock)
1660 {
1661 struct futex_hash_bucket *hb;
1662
1663 hb = hash_futex(&q->key);
1664
1665 /*
1666 * Increment the counter before taking the lock so that
1667 * a potential waker won't miss a to-be-slept task that is
1668 * waiting for the spinlock. This is safe as all queue_lock()
1669 * users end up calling queue_me(). Similarly, for housekeeping,
1670 * decrement the counter at queue_unlock() when some error has
1671 * occurred and we don't end up adding the task to the list.
1672 */
1673 hb_waiters_inc(hb);
1674
1675 q->lock_ptr = &hb->lock;
1676
1677 spin_lock(&hb->lock); /* implies MB (A) */
1678 return hb;
1679 }
1680
1681 static inline void
1682 queue_unlock(struct futex_hash_bucket *hb)
1683 __releases(&hb->lock)
1684 {
1685 spin_unlock(&hb->lock);
1686 hb_waiters_dec(hb);
1687 }
1688
1689 /**
1690 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1691 * @q: The futex_q to enqueue
1692 * @hb: The destination hash bucket
1693 *
1694 * The hb->lock must be held by the caller, and is released here. A call to
1695 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1696 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1697 * or nothing if the unqueue is done as part of the wake process and the unqueue
1698 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1699 * an example).
1700 */
1701 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1702 __releases(&hb->lock)
1703 {
1704 int prio;
1705
1706 /*
1707 * The priority used to register this element is
1708 * - either the real thread-priority for the real-time threads
1709 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1710 * - or MAX_RT_PRIO for non-RT threads.
1711 * Thus, all RT-threads are woken first in priority order, and
1712 * the others are woken last, in FIFO order.
1713 */
1714 prio = min(current->normal_prio, MAX_RT_PRIO);
1715
1716 plist_node_init(&q->list, prio);
1717 plist_add(&q->list, &hb->chain);
1718 q->task = current;
1719 spin_unlock(&hb->lock);
1720 }
1721
1722 /**
1723 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1724 * @q: The futex_q to unqueue
1725 *
1726 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1727 * be paired with exactly one earlier call to queue_me().
1728 *
1729 * Return:
1730 * 1 - if the futex_q was still queued (and we removed unqueued it);
1731 * 0 - if the futex_q was already removed by the waking thread
1732 */
1733 static int unqueue_me(struct futex_q *q)
1734 {
1735 spinlock_t *lock_ptr;
1736 int ret = 0;
1737
1738 /* In the common case we don't take the spinlock, which is nice. */
1739 retry:
1740 lock_ptr = q->lock_ptr;
1741 barrier();
1742 if (lock_ptr != NULL) {
1743 spin_lock(lock_ptr);
1744 /*
1745 * q->lock_ptr can change between reading it and
1746 * spin_lock(), causing us to take the wrong lock. This
1747 * corrects the race condition.
1748 *
1749 * Reasoning goes like this: if we have the wrong lock,
1750 * q->lock_ptr must have changed (maybe several times)
1751 * between reading it and the spin_lock(). It can
1752 * change again after the spin_lock() but only if it was
1753 * already changed before the spin_lock(). It cannot,
1754 * however, change back to the original value. Therefore
1755 * we can detect whether we acquired the correct lock.
1756 */
1757 if (unlikely(lock_ptr != q->lock_ptr)) {
1758 spin_unlock(lock_ptr);
1759 goto retry;
1760 }
1761 __unqueue_futex(q);
1762
1763 BUG_ON(q->pi_state);
1764
1765 spin_unlock(lock_ptr);
1766 ret = 1;
1767 }
1768
1769 drop_futex_key_refs(&q->key);
1770 return ret;
1771 }
1772
1773 /*
1774 * PI futexes can not be requeued and must remove themself from the
1775 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1776 * and dropped here.
1777 */
1778 static void unqueue_me_pi(struct futex_q *q)
1779 __releases(q->lock_ptr)
1780 {
1781 __unqueue_futex(q);
1782
1783 BUG_ON(!q->pi_state);
1784 free_pi_state(q->pi_state);
1785 q->pi_state = NULL;
1786
1787 spin_unlock(q->lock_ptr);
1788 }
1789
1790 /*
1791 * Fixup the pi_state owner with the new owner.
1792 *
1793 * Must be called with hash bucket lock held and mm->sem held for non
1794 * private futexes.
1795 */
1796 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1797 struct task_struct *newowner)
1798 {
1799 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1800 struct futex_pi_state *pi_state = q->pi_state;
1801 struct task_struct *oldowner = pi_state->owner;
1802 u32 uval, uninitialized_var(curval), newval;
1803 int ret;
1804
1805 /* Owner died? */
1806 if (!pi_state->owner)
1807 newtid |= FUTEX_OWNER_DIED;
1808
1809 /*
1810 * We are here either because we stole the rtmutex from the
1811 * previous highest priority waiter or we are the highest priority
1812 * waiter but failed to get the rtmutex the first time.
1813 * We have to replace the newowner TID in the user space variable.
1814 * This must be atomic as we have to preserve the owner died bit here.
1815 *
1816 * Note: We write the user space value _before_ changing the pi_state
1817 * because we can fault here. Imagine swapped out pages or a fork
1818 * that marked all the anonymous memory readonly for cow.
1819 *
1820 * Modifying pi_state _before_ the user space value would
1821 * leave the pi_state in an inconsistent state when we fault
1822 * here, because we need to drop the hash bucket lock to
1823 * handle the fault. This might be observed in the PID check
1824 * in lookup_pi_state.
1825 */
1826 retry:
1827 if (get_futex_value_locked(&uval, uaddr))
1828 goto handle_fault;
1829
1830 while (1) {
1831 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1832
1833 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1834 goto handle_fault;
1835 if (curval == uval)
1836 break;
1837 uval = curval;
1838 }
1839
1840 /*
1841 * We fixed up user space. Now we need to fix the pi_state
1842 * itself.
1843 */
1844 if (pi_state->owner != NULL) {
1845 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1846 WARN_ON(list_empty(&pi_state->list));
1847 list_del_init(&pi_state->list);
1848 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1849 }
1850
1851 pi_state->owner = newowner;
1852
1853 raw_spin_lock_irq(&newowner->pi_lock);
1854 WARN_ON(!list_empty(&pi_state->list));
1855 list_add(&pi_state->list, &newowner->pi_state_list);
1856 raw_spin_unlock_irq(&newowner->pi_lock);
1857 return 0;
1858
1859 /*
1860 * To handle the page fault we need to drop the hash bucket
1861 * lock here. That gives the other task (either the highest priority
1862 * waiter itself or the task which stole the rtmutex) the
1863 * chance to try the fixup of the pi_state. So once we are
1864 * back from handling the fault we need to check the pi_state
1865 * after reacquiring the hash bucket lock and before trying to
1866 * do another fixup. When the fixup has been done already we
1867 * simply return.
1868 */
1869 handle_fault:
1870 spin_unlock(q->lock_ptr);
1871
1872 ret = fault_in_user_writeable(uaddr);
1873
1874 spin_lock(q->lock_ptr);
1875
1876 /*
1877 * Check if someone else fixed it for us:
1878 */
1879 if (pi_state->owner != oldowner)
1880 return 0;
1881
1882 if (ret)
1883 return ret;
1884
1885 goto retry;
1886 }
1887
1888 static long futex_wait_restart(struct restart_block *restart);
1889
1890 /**
1891 * fixup_owner() - Post lock pi_state and corner case management
1892 * @uaddr: user address of the futex
1893 * @q: futex_q (contains pi_state and access to the rt_mutex)
1894 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1895 *
1896 * After attempting to lock an rt_mutex, this function is called to cleanup
1897 * the pi_state owner as well as handle race conditions that may allow us to
1898 * acquire the lock. Must be called with the hb lock held.
1899 *
1900 * Return:
1901 * 1 - success, lock taken;
1902 * 0 - success, lock not taken;
1903 * <0 - on error (-EFAULT)
1904 */
1905 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1906 {
1907 struct task_struct *owner;
1908 int ret = 0;
1909
1910 if (locked) {
1911 /*
1912 * Got the lock. We might not be the anticipated owner if we
1913 * did a lock-steal - fix up the PI-state in that case:
1914 */
1915 if (q->pi_state->owner != current)
1916 ret = fixup_pi_state_owner(uaddr, q, current);
1917 goto out;
1918 }
1919
1920 /*
1921 * Catch the rare case, where the lock was released when we were on the
1922 * way back before we locked the hash bucket.
1923 */
1924 if (q->pi_state->owner == current) {
1925 /*
1926 * Try to get the rt_mutex now. This might fail as some other
1927 * task acquired the rt_mutex after we removed ourself from the
1928 * rt_mutex waiters list.
1929 */
1930 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1931 locked = 1;
1932 goto out;
1933 }
1934
1935 /*
1936 * pi_state is incorrect, some other task did a lock steal and
1937 * we returned due to timeout or signal without taking the
1938 * rt_mutex. Too late.
1939 */
1940 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1941 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1942 if (!owner)
1943 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1944 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1945 ret = fixup_pi_state_owner(uaddr, q, owner);
1946 goto out;
1947 }
1948
1949 /*
1950 * Paranoia check. If we did not take the lock, then we should not be
1951 * the owner of the rt_mutex.
1952 */
1953 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1954 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1955 "pi-state %p\n", ret,
1956 q->pi_state->pi_mutex.owner,
1957 q->pi_state->owner);
1958
1959 out:
1960 return ret ? ret : locked;
1961 }
1962
1963 /**
1964 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1965 * @hb: the futex hash bucket, must be locked by the caller
1966 * @q: the futex_q to queue up on
1967 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1968 */
1969 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1970 struct hrtimer_sleeper *timeout)
1971 {
1972 /*
1973 * The task state is guaranteed to be set before another task can
1974 * wake it. set_current_state() is implemented using set_mb() and
1975 * queue_me() calls spin_unlock() upon completion, both serializing
1976 * access to the hash list and forcing another memory barrier.
1977 */
1978 set_current_state(TASK_INTERRUPTIBLE);
1979 queue_me(q, hb);
1980
1981 /* Arm the timer */
1982 if (timeout) {
1983 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1984 if (!hrtimer_active(&timeout->timer))
1985 timeout->task = NULL;
1986 }
1987
1988 /*
1989 * If we have been removed from the hash list, then another task
1990 * has tried to wake us, and we can skip the call to schedule().
1991 */
1992 if (likely(!plist_node_empty(&q->list))) {
1993 /*
1994 * If the timer has already expired, current will already be
1995 * flagged for rescheduling. Only call schedule if there
1996 * is no timeout, or if it has yet to expire.
1997 */
1998 if (!timeout || timeout->task)
1999 freezable_schedule();
2000 }
2001 __set_current_state(TASK_RUNNING);
2002 }
2003
2004 /**
2005 * futex_wait_setup() - Prepare to wait on a futex
2006 * @uaddr: the futex userspace address
2007 * @val: the expected value
2008 * @flags: futex flags (FLAGS_SHARED, etc.)
2009 * @q: the associated futex_q
2010 * @hb: storage for hash_bucket pointer to be returned to caller
2011 *
2012 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2013 * compare it with the expected value. Handle atomic faults internally.
2014 * Return with the hb lock held and a q.key reference on success, and unlocked
2015 * with no q.key reference on failure.
2016 *
2017 * Return:
2018 * 0 - uaddr contains val and hb has been locked;
2019 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2020 */
2021 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2022 struct futex_q *q, struct futex_hash_bucket **hb)
2023 {
2024 u32 uval;
2025 int ret;
2026
2027 /*
2028 * Access the page AFTER the hash-bucket is locked.
2029 * Order is important:
2030 *
2031 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2032 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2033 *
2034 * The basic logical guarantee of a futex is that it blocks ONLY
2035 * if cond(var) is known to be true at the time of blocking, for
2036 * any cond. If we locked the hash-bucket after testing *uaddr, that
2037 * would open a race condition where we could block indefinitely with
2038 * cond(var) false, which would violate the guarantee.
2039 *
2040 * On the other hand, we insert q and release the hash-bucket only
2041 * after testing *uaddr. This guarantees that futex_wait() will NOT
2042 * absorb a wakeup if *uaddr does not match the desired values
2043 * while the syscall executes.
2044 */
2045 retry:
2046 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2047 if (unlikely(ret != 0))
2048 return ret;
2049
2050 retry_private:
2051 *hb = queue_lock(q);
2052
2053 ret = get_futex_value_locked(&uval, uaddr);
2054
2055 if (ret) {
2056 queue_unlock(*hb);
2057
2058 ret = get_user(uval, uaddr);
2059 if (ret)
2060 goto out;
2061
2062 if (!(flags & FLAGS_SHARED))
2063 goto retry_private;
2064
2065 put_futex_key(&q->key);
2066 goto retry;
2067 }
2068
2069 if (uval != val) {
2070 queue_unlock(*hb);
2071 ret = -EWOULDBLOCK;
2072 }
2073
2074 out:
2075 if (ret)
2076 put_futex_key(&q->key);
2077 return ret;
2078 }
2079
2080 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2081 ktime_t *abs_time, u32 bitset)
2082 {
2083 struct hrtimer_sleeper timeout, *to = NULL;
2084 struct restart_block *restart;
2085 struct futex_hash_bucket *hb;
2086 struct futex_q q = futex_q_init;
2087 int ret;
2088
2089 if (!bitset)
2090 return -EINVAL;
2091 q.bitset = bitset;
2092
2093 if (abs_time) {
2094 to = &timeout;
2095
2096 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2097 CLOCK_REALTIME : CLOCK_MONOTONIC,
2098 HRTIMER_MODE_ABS);
2099 hrtimer_init_sleeper(to, current);
2100 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2101 current->timer_slack_ns);
2102 }
2103
2104 retry:
2105 /*
2106 * Prepare to wait on uaddr. On success, holds hb lock and increments
2107 * q.key refs.
2108 */
2109 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2110 if (ret)
2111 goto out;
2112
2113 /* queue_me and wait for wakeup, timeout, or a signal. */
2114 futex_wait_queue_me(hb, &q, to);
2115
2116 /* If we were woken (and unqueued), we succeeded, whatever. */
2117 ret = 0;
2118 /* unqueue_me() drops q.key ref */
2119 if (!unqueue_me(&q))
2120 goto out;
2121 ret = -ETIMEDOUT;
2122 if (to && !to->task)
2123 goto out;
2124
2125 /*
2126 * We expect signal_pending(current), but we might be the
2127 * victim of a spurious wakeup as well.
2128 */
2129 if (!signal_pending(current))
2130 goto retry;
2131
2132 ret = -ERESTARTSYS;
2133 if (!abs_time)
2134 goto out;
2135
2136 restart = &current_thread_info()->restart_block;
2137 restart->fn = futex_wait_restart;
2138 restart->futex.uaddr = uaddr;
2139 restart->futex.val = val;
2140 restart->futex.time = abs_time->tv64;
2141 restart->futex.bitset = bitset;
2142 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2143
2144 ret = -ERESTART_RESTARTBLOCK;
2145
2146 out:
2147 if (to) {
2148 hrtimer_cancel(&to->timer);
2149 destroy_hrtimer_on_stack(&to->timer);
2150 }
2151 return ret;
2152 }
2153
2154
2155 static long futex_wait_restart(struct restart_block *restart)
2156 {
2157 u32 __user *uaddr = restart->futex.uaddr;
2158 ktime_t t, *tp = NULL;
2159
2160 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2161 t.tv64 = restart->futex.time;
2162 tp = &t;
2163 }
2164 restart->fn = do_no_restart_syscall;
2165
2166 return (long)futex_wait(uaddr, restart->futex.flags,
2167 restart->futex.val, tp, restart->futex.bitset);
2168 }
2169
2170
2171 /*
2172 * Userspace tried a 0 -> TID atomic transition of the futex value
2173 * and failed. The kernel side here does the whole locking operation:
2174 * if there are waiters then it will block, it does PI, etc. (Due to
2175 * races the kernel might see a 0 value of the futex too.)
2176 */
2177 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2178 ktime_t *time, int trylock)
2179 {
2180 struct hrtimer_sleeper timeout, *to = NULL;
2181 struct futex_hash_bucket *hb;
2182 struct futex_q q = futex_q_init;
2183 int res, ret;
2184
2185 if (refill_pi_state_cache())
2186 return -ENOMEM;
2187
2188 if (time) {
2189 to = &timeout;
2190 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2191 HRTIMER_MODE_ABS);
2192 hrtimer_init_sleeper(to, current);
2193 hrtimer_set_expires(&to->timer, *time);
2194 }
2195
2196 retry:
2197 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2198 if (unlikely(ret != 0))
2199 goto out;
2200
2201 retry_private:
2202 hb = queue_lock(&q);
2203
2204 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2205 if (unlikely(ret)) {
2206 switch (ret) {
2207 case 1:
2208 /* We got the lock. */
2209 ret = 0;
2210 goto out_unlock_put_key;
2211 case -EFAULT:
2212 goto uaddr_faulted;
2213 case -EAGAIN:
2214 /*
2215 * Task is exiting and we just wait for the
2216 * exit to complete.
2217 */
2218 queue_unlock(hb);
2219 put_futex_key(&q.key);
2220 cond_resched();
2221 goto retry;
2222 default:
2223 goto out_unlock_put_key;
2224 }
2225 }
2226
2227 /*
2228 * Only actually queue now that the atomic ops are done:
2229 */
2230 queue_me(&q, hb);
2231
2232 WARN_ON(!q.pi_state);
2233 /*
2234 * Block on the PI mutex:
2235 */
2236 if (!trylock)
2237 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2238 else {
2239 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2240 /* Fixup the trylock return value: */
2241 ret = ret ? 0 : -EWOULDBLOCK;
2242 }
2243
2244 spin_lock(q.lock_ptr);
2245 /*
2246 * Fixup the pi_state owner and possibly acquire the lock if we
2247 * haven't already.
2248 */
2249 res = fixup_owner(uaddr, &q, !ret);
2250 /*
2251 * If fixup_owner() returned an error, proprogate that. If it acquired
2252 * the lock, clear our -ETIMEDOUT or -EINTR.
2253 */
2254 if (res)
2255 ret = (res < 0) ? res : 0;
2256
2257 /*
2258 * If fixup_owner() faulted and was unable to handle the fault, unlock
2259 * it and return the fault to userspace.
2260 */
2261 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2262 rt_mutex_unlock(&q.pi_state->pi_mutex);
2263
2264 /* Unqueue and drop the lock */
2265 unqueue_me_pi(&q);
2266
2267 goto out_put_key;
2268
2269 out_unlock_put_key:
2270 queue_unlock(hb);
2271
2272 out_put_key:
2273 put_futex_key(&q.key);
2274 out:
2275 if (to)
2276 destroy_hrtimer_on_stack(&to->timer);
2277 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2278
2279 uaddr_faulted:
2280 queue_unlock(hb);
2281
2282 ret = fault_in_user_writeable(uaddr);
2283 if (ret)
2284 goto out_put_key;
2285
2286 if (!(flags & FLAGS_SHARED))
2287 goto retry_private;
2288
2289 put_futex_key(&q.key);
2290 goto retry;
2291 }
2292
2293 /*
2294 * Userspace attempted a TID -> 0 atomic transition, and failed.
2295 * This is the in-kernel slowpath: we look up the PI state (if any),
2296 * and do the rt-mutex unlock.
2297 */
2298 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2299 {
2300 struct futex_hash_bucket *hb;
2301 struct futex_q *this, *next;
2302 union futex_key key = FUTEX_KEY_INIT;
2303 u32 uval, vpid = task_pid_vnr(current);
2304 int ret;
2305
2306 retry:
2307 if (get_user(uval, uaddr))
2308 return -EFAULT;
2309 /*
2310 * We release only a lock we actually own:
2311 */
2312 if ((uval & FUTEX_TID_MASK) != vpid)
2313 return -EPERM;
2314
2315 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2316 if (unlikely(ret != 0))
2317 goto out;
2318
2319 hb = hash_futex(&key);
2320 spin_lock(&hb->lock);
2321
2322 /*
2323 * To avoid races, try to do the TID -> 0 atomic transition
2324 * again. If it succeeds then we can return without waking
2325 * anyone else up:
2326 */
2327 if (!(uval & FUTEX_OWNER_DIED) &&
2328 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2329 goto pi_faulted;
2330 /*
2331 * Rare case: we managed to release the lock atomically,
2332 * no need to wake anyone else up:
2333 */
2334 if (unlikely(uval == vpid))
2335 goto out_unlock;
2336
2337 /*
2338 * Ok, other tasks may need to be woken up - check waiters
2339 * and do the wakeup if necessary:
2340 */
2341 plist_for_each_entry_safe(this, next, &hb->chain, list) {
2342 if (!match_futex (&this->key, &key))
2343 continue;
2344 ret = wake_futex_pi(uaddr, uval, this);
2345 /*
2346 * The atomic access to the futex value
2347 * generated a pagefault, so retry the
2348 * user-access and the wakeup:
2349 */
2350 if (ret == -EFAULT)
2351 goto pi_faulted;
2352 goto out_unlock;
2353 }
2354 /*
2355 * No waiters - kernel unlocks the futex:
2356 */
2357 if (!(uval & FUTEX_OWNER_DIED)) {
2358 ret = unlock_futex_pi(uaddr, uval);
2359 if (ret == -EFAULT)
2360 goto pi_faulted;
2361 }
2362
2363 out_unlock:
2364 spin_unlock(&hb->lock);
2365 put_futex_key(&key);
2366
2367 out:
2368 return ret;
2369
2370 pi_faulted:
2371 spin_unlock(&hb->lock);
2372 put_futex_key(&key);
2373
2374 ret = fault_in_user_writeable(uaddr);
2375 if (!ret)
2376 goto retry;
2377
2378 return ret;
2379 }
2380
2381 /**
2382 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2383 * @hb: the hash_bucket futex_q was original enqueued on
2384 * @q: the futex_q woken while waiting to be requeued
2385 * @key2: the futex_key of the requeue target futex
2386 * @timeout: the timeout associated with the wait (NULL if none)
2387 *
2388 * Detect if the task was woken on the initial futex as opposed to the requeue
2389 * target futex. If so, determine if it was a timeout or a signal that caused
2390 * the wakeup and return the appropriate error code to the caller. Must be
2391 * called with the hb lock held.
2392 *
2393 * Return:
2394 * 0 = no early wakeup detected;
2395 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2396 */
2397 static inline
2398 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2399 struct futex_q *q, union futex_key *key2,
2400 struct hrtimer_sleeper *timeout)
2401 {
2402 int ret = 0;
2403
2404 /*
2405 * With the hb lock held, we avoid races while we process the wakeup.
2406 * We only need to hold hb (and not hb2) to ensure atomicity as the
2407 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2408 * It can't be requeued from uaddr2 to something else since we don't
2409 * support a PI aware source futex for requeue.
2410 */
2411 if (!match_futex(&q->key, key2)) {
2412 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2413 /*
2414 * We were woken prior to requeue by a timeout or a signal.
2415 * Unqueue the futex_q and determine which it was.
2416 */
2417 plist_del(&q->list, &hb->chain);
2418 hb_waiters_dec(hb);
2419
2420 /* Handle spurious wakeups gracefully */
2421 ret = -EWOULDBLOCK;
2422 if (timeout && !timeout->task)
2423 ret = -ETIMEDOUT;
2424 else if (signal_pending(current))
2425 ret = -ERESTARTNOINTR;
2426 }
2427 return ret;
2428 }
2429
2430 /**
2431 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2432 * @uaddr: the futex we initially wait on (non-pi)
2433 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2434 * the same type, no requeueing from private to shared, etc.
2435 * @val: the expected value of uaddr
2436 * @abs_time: absolute timeout
2437 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2438 * @uaddr2: the pi futex we will take prior to returning to user-space
2439 *
2440 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2441 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2442 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2443 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2444 * without one, the pi logic would not know which task to boost/deboost, if
2445 * there was a need to.
2446 *
2447 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2448 * via the following--
2449 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2450 * 2) wakeup on uaddr2 after a requeue
2451 * 3) signal
2452 * 4) timeout
2453 *
2454 * If 3, cleanup and return -ERESTARTNOINTR.
2455 *
2456 * If 2, we may then block on trying to take the rt_mutex and return via:
2457 * 5) successful lock
2458 * 6) signal
2459 * 7) timeout
2460 * 8) other lock acquisition failure
2461 *
2462 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2463 *
2464 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2465 *
2466 * Return:
2467 * 0 - On success;
2468 * <0 - On error
2469 */
2470 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2471 u32 val, ktime_t *abs_time, u32 bitset,
2472 u32 __user *uaddr2)
2473 {
2474 struct hrtimer_sleeper timeout, *to = NULL;
2475 struct rt_mutex_waiter rt_waiter;
2476 struct rt_mutex *pi_mutex = NULL;
2477 struct futex_hash_bucket *hb;
2478 union futex_key key2 = FUTEX_KEY_INIT;
2479 struct futex_q q = futex_q_init;
2480 int res, ret;
2481
2482 if (uaddr == uaddr2)
2483 return -EINVAL;
2484
2485 if (!bitset)
2486 return -EINVAL;
2487
2488 if (abs_time) {
2489 to = &timeout;
2490 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2491 CLOCK_REALTIME : CLOCK_MONOTONIC,
2492 HRTIMER_MODE_ABS);
2493 hrtimer_init_sleeper(to, current);
2494 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2495 current->timer_slack_ns);
2496 }
2497
2498 /*
2499 * The waiter is allocated on our stack, manipulated by the requeue
2500 * code while we sleep on uaddr.
2501 */
2502 debug_rt_mutex_init_waiter(&rt_waiter);
2503 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2504 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2505 rt_waiter.task = NULL;
2506
2507 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2508 if (unlikely(ret != 0))
2509 goto out;
2510
2511 q.bitset = bitset;
2512 q.rt_waiter = &rt_waiter;
2513 q.requeue_pi_key = &key2;
2514
2515 /*
2516 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2517 * count.
2518 */
2519 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2520 if (ret)
2521 goto out_key2;
2522
2523 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2524 futex_wait_queue_me(hb, &q, to);
2525
2526 spin_lock(&hb->lock);
2527 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2528 spin_unlock(&hb->lock);
2529 if (ret)
2530 goto out_put_keys;
2531
2532 /*
2533 * In order for us to be here, we know our q.key == key2, and since
2534 * we took the hb->lock above, we also know that futex_requeue() has
2535 * completed and we no longer have to concern ourselves with a wakeup
2536 * race with the atomic proxy lock acquisition by the requeue code. The
2537 * futex_requeue dropped our key1 reference and incremented our key2
2538 * reference count.
2539 */
2540
2541 /* Check if the requeue code acquired the second futex for us. */
2542 if (!q.rt_waiter) {
2543 /*
2544 * Got the lock. We might not be the anticipated owner if we
2545 * did a lock-steal - fix up the PI-state in that case.
2546 */
2547 if (q.pi_state && (q.pi_state->owner != current)) {
2548 spin_lock(q.lock_ptr);
2549 ret = fixup_pi_state_owner(uaddr2, &q, current);
2550 spin_unlock(q.lock_ptr);
2551 }
2552 } else {
2553 /*
2554 * We have been woken up by futex_unlock_pi(), a timeout, or a
2555 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2556 * the pi_state.
2557 */
2558 WARN_ON(!q.pi_state);
2559 pi_mutex = &q.pi_state->pi_mutex;
2560 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2561 debug_rt_mutex_free_waiter(&rt_waiter);
2562
2563 spin_lock(q.lock_ptr);
2564 /*
2565 * Fixup the pi_state owner and possibly acquire the lock if we
2566 * haven't already.
2567 */
2568 res = fixup_owner(uaddr2, &q, !ret);
2569 /*
2570 * If fixup_owner() returned an error, proprogate that. If it
2571 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2572 */
2573 if (res)
2574 ret = (res < 0) ? res : 0;
2575
2576 /* Unqueue and drop the lock. */
2577 unqueue_me_pi(&q);
2578 }
2579
2580 /*
2581 * If fixup_pi_state_owner() faulted and was unable to handle the
2582 * fault, unlock the rt_mutex and return the fault to userspace.
2583 */
2584 if (ret == -EFAULT) {
2585 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2586 rt_mutex_unlock(pi_mutex);
2587 } else if (ret == -EINTR) {
2588 /*
2589 * We've already been requeued, but cannot restart by calling
2590 * futex_lock_pi() directly. We could restart this syscall, but
2591 * it would detect that the user space "val" changed and return
2592 * -EWOULDBLOCK. Save the overhead of the restart and return
2593 * -EWOULDBLOCK directly.
2594 */
2595 ret = -EWOULDBLOCK;
2596 }
2597
2598 out_put_keys:
2599 put_futex_key(&q.key);
2600 out_key2:
2601 put_futex_key(&key2);
2602
2603 out:
2604 if (to) {
2605 hrtimer_cancel(&to->timer);
2606 destroy_hrtimer_on_stack(&to->timer);
2607 }
2608 return ret;
2609 }
2610
2611 /*
2612 * Support for robust futexes: the kernel cleans up held futexes at
2613 * thread exit time.
2614 *
2615 * Implementation: user-space maintains a per-thread list of locks it
2616 * is holding. Upon do_exit(), the kernel carefully walks this list,
2617 * and marks all locks that are owned by this thread with the
2618 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2619 * always manipulated with the lock held, so the list is private and
2620 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2621 * field, to allow the kernel to clean up if the thread dies after
2622 * acquiring the lock, but just before it could have added itself to
2623 * the list. There can only be one such pending lock.
2624 */
2625
2626 /**
2627 * sys_set_robust_list() - Set the robust-futex list head of a task
2628 * @head: pointer to the list-head
2629 * @len: length of the list-head, as userspace expects
2630 */
2631 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2632 size_t, len)
2633 {
2634 if (!futex_cmpxchg_enabled)
2635 return -ENOSYS;
2636 /*
2637 * The kernel knows only one size for now:
2638 */
2639 if (unlikely(len != sizeof(*head)))
2640 return -EINVAL;
2641
2642 current->robust_list = head;
2643
2644 return 0;
2645 }
2646
2647 /**
2648 * sys_get_robust_list() - Get the robust-futex list head of a task
2649 * @pid: pid of the process [zero for current task]
2650 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2651 * @len_ptr: pointer to a length field, the kernel fills in the header size
2652 */
2653 SYSCALL_DEFINE3(get_robust_list, int, pid,
2654 struct robust_list_head __user * __user *, head_ptr,
2655 size_t __user *, len_ptr)
2656 {
2657 struct robust_list_head __user *head;
2658 unsigned long ret;
2659 struct task_struct *p;
2660
2661 if (!futex_cmpxchg_enabled)
2662 return -ENOSYS;
2663
2664 rcu_read_lock();
2665
2666 ret = -ESRCH;
2667 if (!pid)
2668 p = current;
2669 else {
2670 p = find_task_by_vpid(pid);
2671 if (!p)
2672 goto err_unlock;
2673 }
2674
2675 ret = -EPERM;
2676 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2677 goto err_unlock;
2678
2679 head = p->robust_list;
2680 rcu_read_unlock();
2681
2682 if (put_user(sizeof(*head), len_ptr))
2683 return -EFAULT;
2684 return put_user(head, head_ptr);
2685
2686 err_unlock:
2687 rcu_read_unlock();
2688
2689 return ret;
2690 }
2691
2692 /*
2693 * Process a futex-list entry, check whether it's owned by the
2694 * dying task, and do notification if so:
2695 */
2696 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2697 {
2698 u32 uval, uninitialized_var(nval), mval;
2699
2700 retry:
2701 if (get_user(uval, uaddr))
2702 return -1;
2703
2704 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2705 /*
2706 * Ok, this dying thread is truly holding a futex
2707 * of interest. Set the OWNER_DIED bit atomically
2708 * via cmpxchg, and if the value had FUTEX_WAITERS
2709 * set, wake up a waiter (if any). (We have to do a
2710 * futex_wake() even if OWNER_DIED is already set -
2711 * to handle the rare but possible case of recursive
2712 * thread-death.) The rest of the cleanup is done in
2713 * userspace.
2714 */
2715 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2716 /*
2717 * We are not holding a lock here, but we want to have
2718 * the pagefault_disable/enable() protection because
2719 * we want to handle the fault gracefully. If the
2720 * access fails we try to fault in the futex with R/W
2721 * verification via get_user_pages. get_user() above
2722 * does not guarantee R/W access. If that fails we
2723 * give up and leave the futex locked.
2724 */
2725 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2726 if (fault_in_user_writeable(uaddr))
2727 return -1;
2728 goto retry;
2729 }
2730 if (nval != uval)
2731 goto retry;
2732
2733 /*
2734 * Wake robust non-PI futexes here. The wakeup of
2735 * PI futexes happens in exit_pi_state():
2736 */
2737 if (!pi && (uval & FUTEX_WAITERS))
2738 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2739 }
2740 return 0;
2741 }
2742
2743 /*
2744 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2745 */
2746 static inline int fetch_robust_entry(struct robust_list __user **entry,
2747 struct robust_list __user * __user *head,
2748 unsigned int *pi)
2749 {
2750 unsigned long uentry;
2751
2752 if (get_user(uentry, (unsigned long __user *)head))
2753 return -EFAULT;
2754
2755 *entry = (void __user *)(uentry & ~1UL);
2756 *pi = uentry & 1;
2757
2758 return 0;
2759 }
2760
2761 /*
2762 * Walk curr->robust_list (very carefully, it's a userspace list!)
2763 * and mark any locks found there dead, and notify any waiters.
2764 *
2765 * We silently return on any sign of list-walking problem.
2766 */
2767 void exit_robust_list(struct task_struct *curr)
2768 {
2769 struct robust_list_head __user *head = curr->robust_list;
2770 struct robust_list __user *entry, *next_entry, *pending;
2771 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2772 unsigned int uninitialized_var(next_pi);
2773 unsigned long futex_offset;
2774 int rc;
2775
2776 if (!futex_cmpxchg_enabled)
2777 return;
2778
2779 /*
2780 * Fetch the list head (which was registered earlier, via
2781 * sys_set_robust_list()):
2782 */
2783 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2784 return;
2785 /*
2786 * Fetch the relative futex offset:
2787 */
2788 if (get_user(futex_offset, &head->futex_offset))
2789 return;
2790 /*
2791 * Fetch any possibly pending lock-add first, and handle it
2792 * if it exists:
2793 */
2794 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2795 return;
2796
2797 next_entry = NULL; /* avoid warning with gcc */
2798 while (entry != &head->list) {
2799 /*
2800 * Fetch the next entry in the list before calling
2801 * handle_futex_death:
2802 */
2803 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2804 /*
2805 * A pending lock might already be on the list, so
2806 * don't process it twice:
2807 */
2808 if (entry != pending)
2809 if (handle_futex_death((void __user *)entry + futex_offset,
2810 curr, pi))
2811 return;
2812 if (rc)
2813 return;
2814 entry = next_entry;
2815 pi = next_pi;
2816 /*
2817 * Avoid excessively long or circular lists:
2818 */
2819 if (!--limit)
2820 break;
2821
2822 cond_resched();
2823 }
2824
2825 if (pending)
2826 handle_futex_death((void __user *)pending + futex_offset,
2827 curr, pip);
2828 }
2829
2830 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2831 u32 __user *uaddr2, u32 val2, u32 val3)
2832 {
2833 int cmd = op & FUTEX_CMD_MASK;
2834 unsigned int flags = 0;
2835
2836 if (!(op & FUTEX_PRIVATE_FLAG))
2837 flags |= FLAGS_SHARED;
2838
2839 if (op & FUTEX_CLOCK_REALTIME) {
2840 flags |= FLAGS_CLOCKRT;
2841 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2842 return -ENOSYS;
2843 }
2844
2845 switch (cmd) {
2846 case FUTEX_LOCK_PI:
2847 case FUTEX_UNLOCK_PI:
2848 case FUTEX_TRYLOCK_PI:
2849 case FUTEX_WAIT_REQUEUE_PI:
2850 case FUTEX_CMP_REQUEUE_PI:
2851 if (!futex_cmpxchg_enabled)
2852 return -ENOSYS;
2853 }
2854
2855 switch (cmd) {
2856 case FUTEX_WAIT:
2857 val3 = FUTEX_BITSET_MATCH_ANY;
2858 case FUTEX_WAIT_BITSET:
2859 return futex_wait(uaddr, flags, val, timeout, val3);
2860 case FUTEX_WAKE:
2861 val3 = FUTEX_BITSET_MATCH_ANY;
2862 case FUTEX_WAKE_BITSET:
2863 return futex_wake(uaddr, flags, val, val3);
2864 case FUTEX_REQUEUE:
2865 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2866 case FUTEX_CMP_REQUEUE:
2867 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2868 case FUTEX_WAKE_OP:
2869 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2870 case FUTEX_LOCK_PI:
2871 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2872 case FUTEX_UNLOCK_PI:
2873 return futex_unlock_pi(uaddr, flags);
2874 case FUTEX_TRYLOCK_PI:
2875 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2876 case FUTEX_WAIT_REQUEUE_PI:
2877 val3 = FUTEX_BITSET_MATCH_ANY;
2878 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2879 uaddr2);
2880 case FUTEX_CMP_REQUEUE_PI:
2881 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2882 }
2883 return -ENOSYS;
2884 }
2885
2886
2887 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2888 struct timespec __user *, utime, u32 __user *, uaddr2,
2889 u32, val3)
2890 {
2891 struct timespec ts;
2892 ktime_t t, *tp = NULL;
2893 u32 val2 = 0;
2894 int cmd = op & FUTEX_CMD_MASK;
2895
2896 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2897 cmd == FUTEX_WAIT_BITSET ||
2898 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2899 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2900 return -EFAULT;
2901 if (!timespec_valid(&ts))
2902 return -EINVAL;
2903
2904 t = timespec_to_ktime(ts);
2905 if (cmd == FUTEX_WAIT)
2906 t = ktime_add_safe(ktime_get(), t);
2907 tp = &t;
2908 }
2909 /*
2910 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2911 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2912 */
2913 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2914 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2915 val2 = (u32) (unsigned long) utime;
2916
2917 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2918 }
2919
2920 static void __init futex_detect_cmpxchg(void)
2921 {
2922 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2923 u32 curval;
2924
2925 /*
2926 * This will fail and we want it. Some arch implementations do
2927 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2928 * functionality. We want to know that before we call in any
2929 * of the complex code paths. Also we want to prevent
2930 * registration of robust lists in that case. NULL is
2931 * guaranteed to fault and we get -EFAULT on functional
2932 * implementation, the non-functional ones will return
2933 * -ENOSYS.
2934 */
2935 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2936 futex_cmpxchg_enabled = 1;
2937 #endif
2938 }
2939
2940 static int __init futex_init(void)
2941 {
2942 unsigned int futex_shift;
2943 unsigned long i;
2944
2945 #if CONFIG_BASE_SMALL
2946 futex_hashsize = 16;
2947 #else
2948 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2949 #endif
2950
2951 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2952 futex_hashsize, 0,
2953 futex_hashsize < 256 ? HASH_SMALL : 0,
2954 &futex_shift, NULL,
2955 futex_hashsize, futex_hashsize);
2956 futex_hashsize = 1UL << futex_shift;
2957
2958 futex_detect_cmpxchg();
2959
2960 for (i = 0; i < futex_hashsize; i++) {
2961 atomic_set(&futex_queues[i].waiters, 0);
2962 plist_head_init(&futex_queues[i].chain);
2963 spin_lock_init(&futex_queues[i].lock);
2964 }
2965
2966 return 0;
2967 }
2968 __initcall(futex_init);