]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
sched/fair: Don't assign runtime for throttled cfs_rq
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
700 }
701
702 out:
703 put_page(page);
704 return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709 drop_futex_key_refs(key);
710 }
711
712 /**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
733
734 return ret < 0 ? ret : 0;
735 }
736
737 /**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
741 *
742 * Must be called with the hb lock held.
743 */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746 {
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
758 {
759 int ret;
760
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
764
765 return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 int ret;
771
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
775
776 return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781 * PI code:
782 */
783 static int refill_pi_state_cache(void)
784 {
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792 if (!pi_state)
793 return -ENOMEM;
794
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 */
825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827 if (!pi_state)
828 return;
829
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
838 struct task_struct *owner;
839
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 }
850
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863 }
864
865 /*
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
868 */
869 static struct task_struct *futex_find_get_task(pid_t pid)
870 {
871 struct task_struct *p;
872
873 rcu_read_lock();
874 p = find_task_by_vpid(pid);
875 if (p)
876 get_task_struct(p);
877
878 rcu_read_unlock();
879
880 return p;
881 }
882
883 #ifdef CONFIG_FUTEX_PI
884
885 /*
886 * This task is holding PI mutexes at exit time => bad.
887 * Kernel cleans up PI-state, but userspace is likely hosed.
888 * (Robust-futex cleanup is separate and might save the day for userspace.)
889 */
890 void exit_pi_state_list(struct task_struct *curr)
891 {
892 struct list_head *next, *head = &curr->pi_state_list;
893 struct futex_pi_state *pi_state;
894 struct futex_hash_bucket *hb;
895 union futex_key key = FUTEX_KEY_INIT;
896
897 if (!futex_cmpxchg_enabled)
898 return;
899 /*
900 * We are a ZOMBIE and nobody can enqueue itself on
901 * pi_state_list anymore, but we have to be careful
902 * versus waiters unqueueing themselves:
903 */
904 raw_spin_lock_irq(&curr->pi_lock);
905 while (!list_empty(head)) {
906 next = head->next;
907 pi_state = list_entry(next, struct futex_pi_state, list);
908 key = pi_state->key;
909 hb = hash_futex(&key);
910
911 /*
912 * We can race against put_pi_state() removing itself from the
913 * list (a waiter going away). put_pi_state() will first
914 * decrement the reference count and then modify the list, so
915 * its possible to see the list entry but fail this reference
916 * acquire.
917 *
918 * In that case; drop the locks to let put_pi_state() make
919 * progress and retry the loop.
920 */
921 if (!atomic_inc_not_zero(&pi_state->refcount)) {
922 raw_spin_unlock_irq(&curr->pi_lock);
923 cpu_relax();
924 raw_spin_lock_irq(&curr->pi_lock);
925 continue;
926 }
927 raw_spin_unlock_irq(&curr->pi_lock);
928
929 spin_lock(&hb->lock);
930 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
931 raw_spin_lock(&curr->pi_lock);
932 /*
933 * We dropped the pi-lock, so re-check whether this
934 * task still owns the PI-state:
935 */
936 if (head->next != next) {
937 /* retain curr->pi_lock for the loop invariant */
938 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
939 spin_unlock(&hb->lock);
940 put_pi_state(pi_state);
941 continue;
942 }
943
944 WARN_ON(pi_state->owner != curr);
945 WARN_ON(list_empty(&pi_state->list));
946 list_del_init(&pi_state->list);
947 pi_state->owner = NULL;
948
949 raw_spin_unlock(&curr->pi_lock);
950 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
951 spin_unlock(&hb->lock);
952
953 rt_mutex_futex_unlock(&pi_state->pi_mutex);
954 put_pi_state(pi_state);
955
956 raw_spin_lock_irq(&curr->pi_lock);
957 }
958 raw_spin_unlock_irq(&curr->pi_lock);
959 }
960
961 #endif
962
963 /*
964 * We need to check the following states:
965 *
966 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
967 *
968 * [1] NULL | --- | --- | 0 | 0/1 | Valid
969 * [2] NULL | --- | --- | >0 | 0/1 | Valid
970 *
971 * [3] Found | NULL | -- | Any | 0/1 | Invalid
972 *
973 * [4] Found | Found | NULL | 0 | 1 | Valid
974 * [5] Found | Found | NULL | >0 | 1 | Invalid
975 *
976 * [6] Found | Found | task | 0 | 1 | Valid
977 *
978 * [7] Found | Found | NULL | Any | 0 | Invalid
979 *
980 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
981 * [9] Found | Found | task | 0 | 0 | Invalid
982 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
983 *
984 * [1] Indicates that the kernel can acquire the futex atomically. We
985 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
986 *
987 * [2] Valid, if TID does not belong to a kernel thread. If no matching
988 * thread is found then it indicates that the owner TID has died.
989 *
990 * [3] Invalid. The waiter is queued on a non PI futex
991 *
992 * [4] Valid state after exit_robust_list(), which sets the user space
993 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
994 *
995 * [5] The user space value got manipulated between exit_robust_list()
996 * and exit_pi_state_list()
997 *
998 * [6] Valid state after exit_pi_state_list() which sets the new owner in
999 * the pi_state but cannot access the user space value.
1000 *
1001 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1002 *
1003 * [8] Owner and user space value match
1004 *
1005 * [9] There is no transient state which sets the user space TID to 0
1006 * except exit_robust_list(), but this is indicated by the
1007 * FUTEX_OWNER_DIED bit. See [4]
1008 *
1009 * [10] There is no transient state which leaves owner and user space
1010 * TID out of sync.
1011 *
1012 *
1013 * Serialization and lifetime rules:
1014 *
1015 * hb->lock:
1016 *
1017 * hb -> futex_q, relation
1018 * futex_q -> pi_state, relation
1019 *
1020 * (cannot be raw because hb can contain arbitrary amount
1021 * of futex_q's)
1022 *
1023 * pi_mutex->wait_lock:
1024 *
1025 * {uval, pi_state}
1026 *
1027 * (and pi_mutex 'obviously')
1028 *
1029 * p->pi_lock:
1030 *
1031 * p->pi_state_list -> pi_state->list, relation
1032 *
1033 * pi_state->refcount:
1034 *
1035 * pi_state lifetime
1036 *
1037 *
1038 * Lock order:
1039 *
1040 * hb->lock
1041 * pi_mutex->wait_lock
1042 * p->pi_lock
1043 *
1044 */
1045
1046 /*
1047 * Validate that the existing waiter has a pi_state and sanity check
1048 * the pi_state against the user space value. If correct, attach to
1049 * it.
1050 */
1051 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1052 struct futex_pi_state *pi_state,
1053 struct futex_pi_state **ps)
1054 {
1055 pid_t pid = uval & FUTEX_TID_MASK;
1056 u32 uval2;
1057 int ret;
1058
1059 /*
1060 * Userspace might have messed up non-PI and PI futexes [3]
1061 */
1062 if (unlikely(!pi_state))
1063 return -EINVAL;
1064
1065 /*
1066 * We get here with hb->lock held, and having found a
1067 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1068 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1069 * which in turn means that futex_lock_pi() still has a reference on
1070 * our pi_state.
1071 *
1072 * The waiter holding a reference on @pi_state also protects against
1073 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1074 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1075 * free pi_state before we can take a reference ourselves.
1076 */
1077 WARN_ON(!atomic_read(&pi_state->refcount));
1078
1079 /*
1080 * Now that we have a pi_state, we can acquire wait_lock
1081 * and do the state validation.
1082 */
1083 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1084
1085 /*
1086 * Since {uval, pi_state} is serialized by wait_lock, and our current
1087 * uval was read without holding it, it can have changed. Verify it
1088 * still is what we expect it to be, otherwise retry the entire
1089 * operation.
1090 */
1091 if (get_futex_value_locked(&uval2, uaddr))
1092 goto out_efault;
1093
1094 if (uval != uval2)
1095 goto out_eagain;
1096
1097 /*
1098 * Handle the owner died case:
1099 */
1100 if (uval & FUTEX_OWNER_DIED) {
1101 /*
1102 * exit_pi_state_list sets owner to NULL and wakes the
1103 * topmost waiter. The task which acquires the
1104 * pi_state->rt_mutex will fixup owner.
1105 */
1106 if (!pi_state->owner) {
1107 /*
1108 * No pi state owner, but the user space TID
1109 * is not 0. Inconsistent state. [5]
1110 */
1111 if (pid)
1112 goto out_einval;
1113 /*
1114 * Take a ref on the state and return success. [4]
1115 */
1116 goto out_attach;
1117 }
1118
1119 /*
1120 * If TID is 0, then either the dying owner has not
1121 * yet executed exit_pi_state_list() or some waiter
1122 * acquired the rtmutex in the pi state, but did not
1123 * yet fixup the TID in user space.
1124 *
1125 * Take a ref on the state and return success. [6]
1126 */
1127 if (!pid)
1128 goto out_attach;
1129 } else {
1130 /*
1131 * If the owner died bit is not set, then the pi_state
1132 * must have an owner. [7]
1133 */
1134 if (!pi_state->owner)
1135 goto out_einval;
1136 }
1137
1138 /*
1139 * Bail out if user space manipulated the futex value. If pi
1140 * state exists then the owner TID must be the same as the
1141 * user space TID. [9/10]
1142 */
1143 if (pid != task_pid_vnr(pi_state->owner))
1144 goto out_einval;
1145
1146 out_attach:
1147 get_pi_state(pi_state);
1148 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1149 *ps = pi_state;
1150 return 0;
1151
1152 out_einval:
1153 ret = -EINVAL;
1154 goto out_error;
1155
1156 out_eagain:
1157 ret = -EAGAIN;
1158 goto out_error;
1159
1160 out_efault:
1161 ret = -EFAULT;
1162 goto out_error;
1163
1164 out_error:
1165 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1166 return ret;
1167 }
1168
1169 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1170 struct task_struct *tsk)
1171 {
1172 u32 uval2;
1173
1174 /*
1175 * If PF_EXITPIDONE is not yet set, then try again.
1176 */
1177 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1178 return -EAGAIN;
1179
1180 /*
1181 * Reread the user space value to handle the following situation:
1182 *
1183 * CPU0 CPU1
1184 *
1185 * sys_exit() sys_futex()
1186 * do_exit() futex_lock_pi()
1187 * futex_lock_pi_atomic()
1188 * exit_signals(tsk) No waiters:
1189 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1190 * mm_release(tsk) Set waiter bit
1191 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1192 * Set owner died attach_to_pi_owner() {
1193 * *uaddr = 0xC0000000; tsk = get_task(PID);
1194 * } if (!tsk->flags & PF_EXITING) {
1195 * ... attach();
1196 * tsk->flags |= PF_EXITPIDONE; } else {
1197 * if (!(tsk->flags & PF_EXITPIDONE))
1198 * return -EAGAIN;
1199 * return -ESRCH; <--- FAIL
1200 * }
1201 *
1202 * Returning ESRCH unconditionally is wrong here because the
1203 * user space value has been changed by the exiting task.
1204 *
1205 * The same logic applies to the case where the exiting task is
1206 * already gone.
1207 */
1208 if (get_futex_value_locked(&uval2, uaddr))
1209 return -EFAULT;
1210
1211 /* If the user space value has changed, try again. */
1212 if (uval2 != uval)
1213 return -EAGAIN;
1214
1215 /*
1216 * The exiting task did not have a robust list, the robust list was
1217 * corrupted or the user space value in *uaddr is simply bogus.
1218 * Give up and tell user space.
1219 */
1220 return -ESRCH;
1221 }
1222
1223 /*
1224 * Lookup the task for the TID provided from user space and attach to
1225 * it after doing proper sanity checks.
1226 */
1227 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1228 struct futex_pi_state **ps)
1229 {
1230 pid_t pid = uval & FUTEX_TID_MASK;
1231 struct futex_pi_state *pi_state;
1232 struct task_struct *p;
1233
1234 /*
1235 * We are the first waiter - try to look up the real owner and attach
1236 * the new pi_state to it, but bail out when TID = 0 [1]
1237 *
1238 * The !pid check is paranoid. None of the call sites should end up
1239 * with pid == 0, but better safe than sorry. Let the caller retry
1240 */
1241 if (!pid)
1242 return -EAGAIN;
1243 p = futex_find_get_task(pid);
1244 if (!p)
1245 return handle_exit_race(uaddr, uval, NULL);
1246
1247 if (unlikely(p->flags & PF_KTHREAD)) {
1248 put_task_struct(p);
1249 return -EPERM;
1250 }
1251
1252 /*
1253 * We need to look at the task state flags to figure out,
1254 * whether the task is exiting. To protect against the do_exit
1255 * change of the task flags, we do this protected by
1256 * p->pi_lock:
1257 */
1258 raw_spin_lock_irq(&p->pi_lock);
1259 if (unlikely(p->flags & PF_EXITING)) {
1260 /*
1261 * The task is on the way out. When PF_EXITPIDONE is
1262 * set, we know that the task has finished the
1263 * cleanup:
1264 */
1265 int ret = handle_exit_race(uaddr, uval, p);
1266
1267 raw_spin_unlock_irq(&p->pi_lock);
1268 put_task_struct(p);
1269 return ret;
1270 }
1271
1272 /*
1273 * No existing pi state. First waiter. [2]
1274 *
1275 * This creates pi_state, we have hb->lock held, this means nothing can
1276 * observe this state, wait_lock is irrelevant.
1277 */
1278 pi_state = alloc_pi_state();
1279
1280 /*
1281 * Initialize the pi_mutex in locked state and make @p
1282 * the owner of it:
1283 */
1284 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1285
1286 /* Store the key for possible exit cleanups: */
1287 pi_state->key = *key;
1288
1289 WARN_ON(!list_empty(&pi_state->list));
1290 list_add(&pi_state->list, &p->pi_state_list);
1291 /*
1292 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1293 * because there is no concurrency as the object is not published yet.
1294 */
1295 pi_state->owner = p;
1296 raw_spin_unlock_irq(&p->pi_lock);
1297
1298 put_task_struct(p);
1299
1300 *ps = pi_state;
1301
1302 return 0;
1303 }
1304
1305 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1306 struct futex_hash_bucket *hb,
1307 union futex_key *key, struct futex_pi_state **ps)
1308 {
1309 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1310
1311 /*
1312 * If there is a waiter on that futex, validate it and
1313 * attach to the pi_state when the validation succeeds.
1314 */
1315 if (top_waiter)
1316 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1317
1318 /*
1319 * We are the first waiter - try to look up the owner based on
1320 * @uval and attach to it.
1321 */
1322 return attach_to_pi_owner(uaddr, uval, key, ps);
1323 }
1324
1325 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1326 {
1327 int err;
1328 u32 uninitialized_var(curval);
1329
1330 if (unlikely(should_fail_futex(true)))
1331 return -EFAULT;
1332
1333 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1334 if (unlikely(err))
1335 return err;
1336
1337 /* If user space value changed, let the caller retry */
1338 return curval != uval ? -EAGAIN : 0;
1339 }
1340
1341 /**
1342 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1343 * @uaddr: the pi futex user address
1344 * @hb: the pi futex hash bucket
1345 * @key: the futex key associated with uaddr and hb
1346 * @ps: the pi_state pointer where we store the result of the
1347 * lookup
1348 * @task: the task to perform the atomic lock work for. This will
1349 * be "current" except in the case of requeue pi.
1350 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1351 *
1352 * Return:
1353 * - 0 - ready to wait;
1354 * - 1 - acquired the lock;
1355 * - <0 - error
1356 *
1357 * The hb->lock and futex_key refs shall be held by the caller.
1358 */
1359 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1360 union futex_key *key,
1361 struct futex_pi_state **ps,
1362 struct task_struct *task, int set_waiters)
1363 {
1364 u32 uval, newval, vpid = task_pid_vnr(task);
1365 struct futex_q *top_waiter;
1366 int ret;
1367
1368 /*
1369 * Read the user space value first so we can validate a few
1370 * things before proceeding further.
1371 */
1372 if (get_futex_value_locked(&uval, uaddr))
1373 return -EFAULT;
1374
1375 if (unlikely(should_fail_futex(true)))
1376 return -EFAULT;
1377
1378 /*
1379 * Detect deadlocks.
1380 */
1381 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1382 return -EDEADLK;
1383
1384 if ((unlikely(should_fail_futex(true))))
1385 return -EDEADLK;
1386
1387 /*
1388 * Lookup existing state first. If it exists, try to attach to
1389 * its pi_state.
1390 */
1391 top_waiter = futex_top_waiter(hb, key);
1392 if (top_waiter)
1393 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1394
1395 /*
1396 * No waiter and user TID is 0. We are here because the
1397 * waiters or the owner died bit is set or called from
1398 * requeue_cmp_pi or for whatever reason something took the
1399 * syscall.
1400 */
1401 if (!(uval & FUTEX_TID_MASK)) {
1402 /*
1403 * We take over the futex. No other waiters and the user space
1404 * TID is 0. We preserve the owner died bit.
1405 */
1406 newval = uval & FUTEX_OWNER_DIED;
1407 newval |= vpid;
1408
1409 /* The futex requeue_pi code can enforce the waiters bit */
1410 if (set_waiters)
1411 newval |= FUTEX_WAITERS;
1412
1413 ret = lock_pi_update_atomic(uaddr, uval, newval);
1414 /* If the take over worked, return 1 */
1415 return ret < 0 ? ret : 1;
1416 }
1417
1418 /*
1419 * First waiter. Set the waiters bit before attaching ourself to
1420 * the owner. If owner tries to unlock, it will be forced into
1421 * the kernel and blocked on hb->lock.
1422 */
1423 newval = uval | FUTEX_WAITERS;
1424 ret = lock_pi_update_atomic(uaddr, uval, newval);
1425 if (ret)
1426 return ret;
1427 /*
1428 * If the update of the user space value succeeded, we try to
1429 * attach to the owner. If that fails, no harm done, we only
1430 * set the FUTEX_WAITERS bit in the user space variable.
1431 */
1432 return attach_to_pi_owner(uaddr, newval, key, ps);
1433 }
1434
1435 /**
1436 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1437 * @q: The futex_q to unqueue
1438 *
1439 * The q->lock_ptr must not be NULL and must be held by the caller.
1440 */
1441 static void __unqueue_futex(struct futex_q *q)
1442 {
1443 struct futex_hash_bucket *hb;
1444
1445 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1446 || WARN_ON(plist_node_empty(&q->list)))
1447 return;
1448
1449 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1450 plist_del(&q->list, &hb->chain);
1451 hb_waiters_dec(hb);
1452 }
1453
1454 /*
1455 * The hash bucket lock must be held when this is called.
1456 * Afterwards, the futex_q must not be accessed. Callers
1457 * must ensure to later call wake_up_q() for the actual
1458 * wakeups to occur.
1459 */
1460 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1461 {
1462 struct task_struct *p = q->task;
1463
1464 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1465 return;
1466
1467 get_task_struct(p);
1468 __unqueue_futex(q);
1469 /*
1470 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1471 * is written, without taking any locks. This is possible in the event
1472 * of a spurious wakeup, for example. A memory barrier is required here
1473 * to prevent the following store to lock_ptr from getting ahead of the
1474 * plist_del in __unqueue_futex().
1475 */
1476 smp_store_release(&q->lock_ptr, NULL);
1477
1478 /*
1479 * Queue the task for later wakeup for after we've released
1480 * the hb->lock. wake_q_add() grabs reference to p.
1481 */
1482 wake_q_add(wake_q, p);
1483 put_task_struct(p);
1484 }
1485
1486 /*
1487 * Caller must hold a reference on @pi_state.
1488 */
1489 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1490 {
1491 u32 uninitialized_var(curval), newval;
1492 struct task_struct *new_owner;
1493 bool postunlock = false;
1494 DEFINE_WAKE_Q(wake_q);
1495 int ret = 0;
1496
1497 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1498 if (WARN_ON_ONCE(!new_owner)) {
1499 /*
1500 * As per the comment in futex_unlock_pi() this should not happen.
1501 *
1502 * When this happens, give up our locks and try again, giving
1503 * the futex_lock_pi() instance time to complete, either by
1504 * waiting on the rtmutex or removing itself from the futex
1505 * queue.
1506 */
1507 ret = -EAGAIN;
1508 goto out_unlock;
1509 }
1510
1511 /*
1512 * We pass it to the next owner. The WAITERS bit is always kept
1513 * enabled while there is PI state around. We cleanup the owner
1514 * died bit, because we are the owner.
1515 */
1516 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1517
1518 if (unlikely(should_fail_futex(true)))
1519 ret = -EFAULT;
1520
1521 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1522 if (!ret && (curval != uval)) {
1523 /*
1524 * If a unconditional UNLOCK_PI operation (user space did not
1525 * try the TID->0 transition) raced with a waiter setting the
1526 * FUTEX_WAITERS flag between get_user() and locking the hash
1527 * bucket lock, retry the operation.
1528 */
1529 if ((FUTEX_TID_MASK & curval) == uval)
1530 ret = -EAGAIN;
1531 else
1532 ret = -EINVAL;
1533 }
1534
1535 if (ret)
1536 goto out_unlock;
1537
1538 /*
1539 * This is a point of no return; once we modify the uval there is no
1540 * going back and subsequent operations must not fail.
1541 */
1542
1543 raw_spin_lock(&pi_state->owner->pi_lock);
1544 WARN_ON(list_empty(&pi_state->list));
1545 list_del_init(&pi_state->list);
1546 raw_spin_unlock(&pi_state->owner->pi_lock);
1547
1548 raw_spin_lock(&new_owner->pi_lock);
1549 WARN_ON(!list_empty(&pi_state->list));
1550 list_add(&pi_state->list, &new_owner->pi_state_list);
1551 pi_state->owner = new_owner;
1552 raw_spin_unlock(&new_owner->pi_lock);
1553
1554 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1555
1556 out_unlock:
1557 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1558
1559 if (postunlock)
1560 rt_mutex_postunlock(&wake_q);
1561
1562 return ret;
1563 }
1564
1565 /*
1566 * Express the locking dependencies for lockdep:
1567 */
1568 static inline void
1569 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1570 {
1571 if (hb1 <= hb2) {
1572 spin_lock(&hb1->lock);
1573 if (hb1 < hb2)
1574 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1575 } else { /* hb1 > hb2 */
1576 spin_lock(&hb2->lock);
1577 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1578 }
1579 }
1580
1581 static inline void
1582 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1583 {
1584 spin_unlock(&hb1->lock);
1585 if (hb1 != hb2)
1586 spin_unlock(&hb2->lock);
1587 }
1588
1589 /*
1590 * Wake up waiters matching bitset queued on this futex (uaddr).
1591 */
1592 static int
1593 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1594 {
1595 struct futex_hash_bucket *hb;
1596 struct futex_q *this, *next;
1597 union futex_key key = FUTEX_KEY_INIT;
1598 int ret;
1599 DEFINE_WAKE_Q(wake_q);
1600
1601 if (!bitset)
1602 return -EINVAL;
1603
1604 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1605 if (unlikely(ret != 0))
1606 goto out;
1607
1608 hb = hash_futex(&key);
1609
1610 /* Make sure we really have tasks to wakeup */
1611 if (!hb_waiters_pending(hb))
1612 goto out_put_key;
1613
1614 spin_lock(&hb->lock);
1615
1616 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1617 if (match_futex (&this->key, &key)) {
1618 if (this->pi_state || this->rt_waiter) {
1619 ret = -EINVAL;
1620 break;
1621 }
1622
1623 /* Check if one of the bits is set in both bitsets */
1624 if (!(this->bitset & bitset))
1625 continue;
1626
1627 mark_wake_futex(&wake_q, this);
1628 if (++ret >= nr_wake)
1629 break;
1630 }
1631 }
1632
1633 spin_unlock(&hb->lock);
1634 wake_up_q(&wake_q);
1635 out_put_key:
1636 put_futex_key(&key);
1637 out:
1638 return ret;
1639 }
1640
1641 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1642 {
1643 unsigned int op = (encoded_op & 0x70000000) >> 28;
1644 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1645 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1646 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1647 int oldval, ret;
1648
1649 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1650 if (oparg < 0 || oparg > 31) {
1651 char comm[sizeof(current->comm)];
1652 /*
1653 * kill this print and return -EINVAL when userspace
1654 * is sane again
1655 */
1656 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1657 get_task_comm(comm, current), oparg);
1658 oparg &= 31;
1659 }
1660 oparg = 1 << oparg;
1661 }
1662
1663 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1664 return -EFAULT;
1665
1666 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1667 if (ret)
1668 return ret;
1669
1670 switch (cmp) {
1671 case FUTEX_OP_CMP_EQ:
1672 return oldval == cmparg;
1673 case FUTEX_OP_CMP_NE:
1674 return oldval != cmparg;
1675 case FUTEX_OP_CMP_LT:
1676 return oldval < cmparg;
1677 case FUTEX_OP_CMP_GE:
1678 return oldval >= cmparg;
1679 case FUTEX_OP_CMP_LE:
1680 return oldval <= cmparg;
1681 case FUTEX_OP_CMP_GT:
1682 return oldval > cmparg;
1683 default:
1684 return -ENOSYS;
1685 }
1686 }
1687
1688 /*
1689 * Wake up all waiters hashed on the physical page that is mapped
1690 * to this virtual address:
1691 */
1692 static int
1693 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1694 int nr_wake, int nr_wake2, int op)
1695 {
1696 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1697 struct futex_hash_bucket *hb1, *hb2;
1698 struct futex_q *this, *next;
1699 int ret, op_ret;
1700 DEFINE_WAKE_Q(wake_q);
1701
1702 retry:
1703 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1704 if (unlikely(ret != 0))
1705 goto out;
1706 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1707 if (unlikely(ret != 0))
1708 goto out_put_key1;
1709
1710 hb1 = hash_futex(&key1);
1711 hb2 = hash_futex(&key2);
1712
1713 retry_private:
1714 double_lock_hb(hb1, hb2);
1715 op_ret = futex_atomic_op_inuser(op, uaddr2);
1716 if (unlikely(op_ret < 0)) {
1717 double_unlock_hb(hb1, hb2);
1718
1719 if (!IS_ENABLED(CONFIG_MMU) ||
1720 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1721 /*
1722 * we don't get EFAULT from MMU faults if we don't have
1723 * an MMU, but we might get them from range checking
1724 */
1725 ret = op_ret;
1726 goto out_put_keys;
1727 }
1728
1729 if (op_ret == -EFAULT) {
1730 ret = fault_in_user_writeable(uaddr2);
1731 if (ret)
1732 goto out_put_keys;
1733 }
1734
1735 if (!(flags & FLAGS_SHARED)) {
1736 cond_resched();
1737 goto retry_private;
1738 }
1739
1740 put_futex_key(&key2);
1741 put_futex_key(&key1);
1742 cond_resched();
1743 goto retry;
1744 }
1745
1746 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1747 if (match_futex (&this->key, &key1)) {
1748 if (this->pi_state || this->rt_waiter) {
1749 ret = -EINVAL;
1750 goto out_unlock;
1751 }
1752 mark_wake_futex(&wake_q, this);
1753 if (++ret >= nr_wake)
1754 break;
1755 }
1756 }
1757
1758 if (op_ret > 0) {
1759 op_ret = 0;
1760 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1761 if (match_futex (&this->key, &key2)) {
1762 if (this->pi_state || this->rt_waiter) {
1763 ret = -EINVAL;
1764 goto out_unlock;
1765 }
1766 mark_wake_futex(&wake_q, this);
1767 if (++op_ret >= nr_wake2)
1768 break;
1769 }
1770 }
1771 ret += op_ret;
1772 }
1773
1774 out_unlock:
1775 double_unlock_hb(hb1, hb2);
1776 wake_up_q(&wake_q);
1777 out_put_keys:
1778 put_futex_key(&key2);
1779 out_put_key1:
1780 put_futex_key(&key1);
1781 out:
1782 return ret;
1783 }
1784
1785 /**
1786 * requeue_futex() - Requeue a futex_q from one hb to another
1787 * @q: the futex_q to requeue
1788 * @hb1: the source hash_bucket
1789 * @hb2: the target hash_bucket
1790 * @key2: the new key for the requeued futex_q
1791 */
1792 static inline
1793 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1794 struct futex_hash_bucket *hb2, union futex_key *key2)
1795 {
1796
1797 /*
1798 * If key1 and key2 hash to the same bucket, no need to
1799 * requeue.
1800 */
1801 if (likely(&hb1->chain != &hb2->chain)) {
1802 plist_del(&q->list, &hb1->chain);
1803 hb_waiters_dec(hb1);
1804 hb_waiters_inc(hb2);
1805 plist_add(&q->list, &hb2->chain);
1806 q->lock_ptr = &hb2->lock;
1807 }
1808 get_futex_key_refs(key2);
1809 q->key = *key2;
1810 }
1811
1812 /**
1813 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1814 * @q: the futex_q
1815 * @key: the key of the requeue target futex
1816 * @hb: the hash_bucket of the requeue target futex
1817 *
1818 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1819 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1820 * to the requeue target futex so the waiter can detect the wakeup on the right
1821 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1822 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1823 * to protect access to the pi_state to fixup the owner later. Must be called
1824 * with both q->lock_ptr and hb->lock held.
1825 */
1826 static inline
1827 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1828 struct futex_hash_bucket *hb)
1829 {
1830 get_futex_key_refs(key);
1831 q->key = *key;
1832
1833 __unqueue_futex(q);
1834
1835 WARN_ON(!q->rt_waiter);
1836 q->rt_waiter = NULL;
1837
1838 q->lock_ptr = &hb->lock;
1839
1840 wake_up_state(q->task, TASK_NORMAL);
1841 }
1842
1843 /**
1844 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1845 * @pifutex: the user address of the to futex
1846 * @hb1: the from futex hash bucket, must be locked by the caller
1847 * @hb2: the to futex hash bucket, must be locked by the caller
1848 * @key1: the from futex key
1849 * @key2: the to futex key
1850 * @ps: address to store the pi_state pointer
1851 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1852 *
1853 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1854 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1855 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1856 * hb1 and hb2 must be held by the caller.
1857 *
1858 * Return:
1859 * - 0 - failed to acquire the lock atomically;
1860 * - >0 - acquired the lock, return value is vpid of the top_waiter
1861 * - <0 - error
1862 */
1863 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1864 struct futex_hash_bucket *hb1,
1865 struct futex_hash_bucket *hb2,
1866 union futex_key *key1, union futex_key *key2,
1867 struct futex_pi_state **ps, int set_waiters)
1868 {
1869 struct futex_q *top_waiter = NULL;
1870 u32 curval;
1871 int ret, vpid;
1872
1873 if (get_futex_value_locked(&curval, pifutex))
1874 return -EFAULT;
1875
1876 if (unlikely(should_fail_futex(true)))
1877 return -EFAULT;
1878
1879 /*
1880 * Find the top_waiter and determine if there are additional waiters.
1881 * If the caller intends to requeue more than 1 waiter to pifutex,
1882 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1883 * as we have means to handle the possible fault. If not, don't set
1884 * the bit unecessarily as it will force the subsequent unlock to enter
1885 * the kernel.
1886 */
1887 top_waiter = futex_top_waiter(hb1, key1);
1888
1889 /* There are no waiters, nothing for us to do. */
1890 if (!top_waiter)
1891 return 0;
1892
1893 /* Ensure we requeue to the expected futex. */
1894 if (!match_futex(top_waiter->requeue_pi_key, key2))
1895 return -EINVAL;
1896
1897 /*
1898 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1899 * the contended case or if set_waiters is 1. The pi_state is returned
1900 * in ps in contended cases.
1901 */
1902 vpid = task_pid_vnr(top_waiter->task);
1903 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1904 set_waiters);
1905 if (ret == 1) {
1906 requeue_pi_wake_futex(top_waiter, key2, hb2);
1907 return vpid;
1908 }
1909 return ret;
1910 }
1911
1912 /**
1913 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1914 * @uaddr1: source futex user address
1915 * @flags: futex flags (FLAGS_SHARED, etc.)
1916 * @uaddr2: target futex user address
1917 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1918 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1919 * @cmpval: @uaddr1 expected value (or %NULL)
1920 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1921 * pi futex (pi to pi requeue is not supported)
1922 *
1923 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1924 * uaddr2 atomically on behalf of the top waiter.
1925 *
1926 * Return:
1927 * - >=0 - on success, the number of tasks requeued or woken;
1928 * - <0 - on error
1929 */
1930 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1931 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1932 u32 *cmpval, int requeue_pi)
1933 {
1934 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1935 int drop_count = 0, task_count = 0, ret;
1936 struct futex_pi_state *pi_state = NULL;
1937 struct futex_hash_bucket *hb1, *hb2;
1938 struct futex_q *this, *next;
1939 DEFINE_WAKE_Q(wake_q);
1940
1941 if (nr_wake < 0 || nr_requeue < 0)
1942 return -EINVAL;
1943
1944 /*
1945 * When PI not supported: return -ENOSYS if requeue_pi is true,
1946 * consequently the compiler knows requeue_pi is always false past
1947 * this point which will optimize away all the conditional code
1948 * further down.
1949 */
1950 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1951 return -ENOSYS;
1952
1953 if (requeue_pi) {
1954 /*
1955 * Requeue PI only works on two distinct uaddrs. This
1956 * check is only valid for private futexes. See below.
1957 */
1958 if (uaddr1 == uaddr2)
1959 return -EINVAL;
1960
1961 /*
1962 * requeue_pi requires a pi_state, try to allocate it now
1963 * without any locks in case it fails.
1964 */
1965 if (refill_pi_state_cache())
1966 return -ENOMEM;
1967 /*
1968 * requeue_pi must wake as many tasks as it can, up to nr_wake
1969 * + nr_requeue, since it acquires the rt_mutex prior to
1970 * returning to userspace, so as to not leave the rt_mutex with
1971 * waiters and no owner. However, second and third wake-ups
1972 * cannot be predicted as they involve race conditions with the
1973 * first wake and a fault while looking up the pi_state. Both
1974 * pthread_cond_signal() and pthread_cond_broadcast() should
1975 * use nr_wake=1.
1976 */
1977 if (nr_wake != 1)
1978 return -EINVAL;
1979 }
1980
1981 retry:
1982 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1983 if (unlikely(ret != 0))
1984 goto out;
1985 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1986 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1987 if (unlikely(ret != 0))
1988 goto out_put_key1;
1989
1990 /*
1991 * The check above which compares uaddrs is not sufficient for
1992 * shared futexes. We need to compare the keys:
1993 */
1994 if (requeue_pi && match_futex(&key1, &key2)) {
1995 ret = -EINVAL;
1996 goto out_put_keys;
1997 }
1998
1999 hb1 = hash_futex(&key1);
2000 hb2 = hash_futex(&key2);
2001
2002 retry_private:
2003 hb_waiters_inc(hb2);
2004 double_lock_hb(hb1, hb2);
2005
2006 if (likely(cmpval != NULL)) {
2007 u32 curval;
2008
2009 ret = get_futex_value_locked(&curval, uaddr1);
2010
2011 if (unlikely(ret)) {
2012 double_unlock_hb(hb1, hb2);
2013 hb_waiters_dec(hb2);
2014
2015 ret = get_user(curval, uaddr1);
2016 if (ret)
2017 goto out_put_keys;
2018
2019 if (!(flags & FLAGS_SHARED))
2020 goto retry_private;
2021
2022 put_futex_key(&key2);
2023 put_futex_key(&key1);
2024 goto retry;
2025 }
2026 if (curval != *cmpval) {
2027 ret = -EAGAIN;
2028 goto out_unlock;
2029 }
2030 }
2031
2032 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2033 /*
2034 * Attempt to acquire uaddr2 and wake the top waiter. If we
2035 * intend to requeue waiters, force setting the FUTEX_WAITERS
2036 * bit. We force this here where we are able to easily handle
2037 * faults rather in the requeue loop below.
2038 */
2039 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2040 &key2, &pi_state, nr_requeue);
2041
2042 /*
2043 * At this point the top_waiter has either taken uaddr2 or is
2044 * waiting on it. If the former, then the pi_state will not
2045 * exist yet, look it up one more time to ensure we have a
2046 * reference to it. If the lock was taken, ret contains the
2047 * vpid of the top waiter task.
2048 * If the lock was not taken, we have pi_state and an initial
2049 * refcount on it. In case of an error we have nothing.
2050 */
2051 if (ret > 0) {
2052 WARN_ON(pi_state);
2053 drop_count++;
2054 task_count++;
2055 /*
2056 * If we acquired the lock, then the user space value
2057 * of uaddr2 should be vpid. It cannot be changed by
2058 * the top waiter as it is blocked on hb2 lock if it
2059 * tries to do so. If something fiddled with it behind
2060 * our back the pi state lookup might unearth it. So
2061 * we rather use the known value than rereading and
2062 * handing potential crap to lookup_pi_state.
2063 *
2064 * If that call succeeds then we have pi_state and an
2065 * initial refcount on it.
2066 */
2067 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2068 }
2069
2070 switch (ret) {
2071 case 0:
2072 /* We hold a reference on the pi state. */
2073 break;
2074
2075 /* If the above failed, then pi_state is NULL */
2076 case -EFAULT:
2077 double_unlock_hb(hb1, hb2);
2078 hb_waiters_dec(hb2);
2079 put_futex_key(&key2);
2080 put_futex_key(&key1);
2081 ret = fault_in_user_writeable(uaddr2);
2082 if (!ret)
2083 goto retry;
2084 goto out;
2085 case -EAGAIN:
2086 /*
2087 * Two reasons for this:
2088 * - Owner is exiting and we just wait for the
2089 * exit to complete.
2090 * - The user space value changed.
2091 */
2092 double_unlock_hb(hb1, hb2);
2093 hb_waiters_dec(hb2);
2094 put_futex_key(&key2);
2095 put_futex_key(&key1);
2096 cond_resched();
2097 goto retry;
2098 default:
2099 goto out_unlock;
2100 }
2101 }
2102
2103 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2104 if (task_count - nr_wake >= nr_requeue)
2105 break;
2106
2107 if (!match_futex(&this->key, &key1))
2108 continue;
2109
2110 /*
2111 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2112 * be paired with each other and no other futex ops.
2113 *
2114 * We should never be requeueing a futex_q with a pi_state,
2115 * which is awaiting a futex_unlock_pi().
2116 */
2117 if ((requeue_pi && !this->rt_waiter) ||
2118 (!requeue_pi && this->rt_waiter) ||
2119 this->pi_state) {
2120 ret = -EINVAL;
2121 break;
2122 }
2123
2124 /*
2125 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2126 * lock, we already woke the top_waiter. If not, it will be
2127 * woken by futex_unlock_pi().
2128 */
2129 if (++task_count <= nr_wake && !requeue_pi) {
2130 mark_wake_futex(&wake_q, this);
2131 continue;
2132 }
2133
2134 /* Ensure we requeue to the expected futex for requeue_pi. */
2135 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2136 ret = -EINVAL;
2137 break;
2138 }
2139
2140 /*
2141 * Requeue nr_requeue waiters and possibly one more in the case
2142 * of requeue_pi if we couldn't acquire the lock atomically.
2143 */
2144 if (requeue_pi) {
2145 /*
2146 * Prepare the waiter to take the rt_mutex. Take a
2147 * refcount on the pi_state and store the pointer in
2148 * the futex_q object of the waiter.
2149 */
2150 get_pi_state(pi_state);
2151 this->pi_state = pi_state;
2152 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2153 this->rt_waiter,
2154 this->task);
2155 if (ret == 1) {
2156 /*
2157 * We got the lock. We do neither drop the
2158 * refcount on pi_state nor clear
2159 * this->pi_state because the waiter needs the
2160 * pi_state for cleaning up the user space
2161 * value. It will drop the refcount after
2162 * doing so.
2163 */
2164 requeue_pi_wake_futex(this, &key2, hb2);
2165 drop_count++;
2166 continue;
2167 } else if (ret) {
2168 /*
2169 * rt_mutex_start_proxy_lock() detected a
2170 * potential deadlock when we tried to queue
2171 * that waiter. Drop the pi_state reference
2172 * which we took above and remove the pointer
2173 * to the state from the waiters futex_q
2174 * object.
2175 */
2176 this->pi_state = NULL;
2177 put_pi_state(pi_state);
2178 /*
2179 * We stop queueing more waiters and let user
2180 * space deal with the mess.
2181 */
2182 break;
2183 }
2184 }
2185 requeue_futex(this, hb1, hb2, &key2);
2186 drop_count++;
2187 }
2188
2189 /*
2190 * We took an extra initial reference to the pi_state either
2191 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2192 * need to drop it here again.
2193 */
2194 put_pi_state(pi_state);
2195
2196 out_unlock:
2197 double_unlock_hb(hb1, hb2);
2198 wake_up_q(&wake_q);
2199 hb_waiters_dec(hb2);
2200
2201 /*
2202 * drop_futex_key_refs() must be called outside the spinlocks. During
2203 * the requeue we moved futex_q's from the hash bucket at key1 to the
2204 * one at key2 and updated their key pointer. We no longer need to
2205 * hold the references to key1.
2206 */
2207 while (--drop_count >= 0)
2208 drop_futex_key_refs(&key1);
2209
2210 out_put_keys:
2211 put_futex_key(&key2);
2212 out_put_key1:
2213 put_futex_key(&key1);
2214 out:
2215 return ret ? ret : task_count;
2216 }
2217
2218 /* The key must be already stored in q->key. */
2219 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2220 __acquires(&hb->lock)
2221 {
2222 struct futex_hash_bucket *hb;
2223
2224 hb = hash_futex(&q->key);
2225
2226 /*
2227 * Increment the counter before taking the lock so that
2228 * a potential waker won't miss a to-be-slept task that is
2229 * waiting for the spinlock. This is safe as all queue_lock()
2230 * users end up calling queue_me(). Similarly, for housekeeping,
2231 * decrement the counter at queue_unlock() when some error has
2232 * occurred and we don't end up adding the task to the list.
2233 */
2234 hb_waiters_inc(hb);
2235
2236 q->lock_ptr = &hb->lock;
2237
2238 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2239 return hb;
2240 }
2241
2242 static inline void
2243 queue_unlock(struct futex_hash_bucket *hb)
2244 __releases(&hb->lock)
2245 {
2246 spin_unlock(&hb->lock);
2247 hb_waiters_dec(hb);
2248 }
2249
2250 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2251 {
2252 int prio;
2253
2254 /*
2255 * The priority used to register this element is
2256 * - either the real thread-priority for the real-time threads
2257 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2258 * - or MAX_RT_PRIO for non-RT threads.
2259 * Thus, all RT-threads are woken first in priority order, and
2260 * the others are woken last, in FIFO order.
2261 */
2262 prio = min(current->normal_prio, MAX_RT_PRIO);
2263
2264 plist_node_init(&q->list, prio);
2265 plist_add(&q->list, &hb->chain);
2266 q->task = current;
2267 }
2268
2269 /**
2270 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2271 * @q: The futex_q to enqueue
2272 * @hb: The destination hash bucket
2273 *
2274 * The hb->lock must be held by the caller, and is released here. A call to
2275 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2276 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2277 * or nothing if the unqueue is done as part of the wake process and the unqueue
2278 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2279 * an example).
2280 */
2281 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2282 __releases(&hb->lock)
2283 {
2284 __queue_me(q, hb);
2285 spin_unlock(&hb->lock);
2286 }
2287
2288 /**
2289 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2290 * @q: The futex_q to unqueue
2291 *
2292 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2293 * be paired with exactly one earlier call to queue_me().
2294 *
2295 * Return:
2296 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2297 * - 0 - if the futex_q was already removed by the waking thread
2298 */
2299 static int unqueue_me(struct futex_q *q)
2300 {
2301 spinlock_t *lock_ptr;
2302 int ret = 0;
2303
2304 /* In the common case we don't take the spinlock, which is nice. */
2305 retry:
2306 /*
2307 * q->lock_ptr can change between this read and the following spin_lock.
2308 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2309 * optimizing lock_ptr out of the logic below.
2310 */
2311 lock_ptr = READ_ONCE(q->lock_ptr);
2312 if (lock_ptr != NULL) {
2313 spin_lock(lock_ptr);
2314 /*
2315 * q->lock_ptr can change between reading it and
2316 * spin_lock(), causing us to take the wrong lock. This
2317 * corrects the race condition.
2318 *
2319 * Reasoning goes like this: if we have the wrong lock,
2320 * q->lock_ptr must have changed (maybe several times)
2321 * between reading it and the spin_lock(). It can
2322 * change again after the spin_lock() but only if it was
2323 * already changed before the spin_lock(). It cannot,
2324 * however, change back to the original value. Therefore
2325 * we can detect whether we acquired the correct lock.
2326 */
2327 if (unlikely(lock_ptr != q->lock_ptr)) {
2328 spin_unlock(lock_ptr);
2329 goto retry;
2330 }
2331 __unqueue_futex(q);
2332
2333 BUG_ON(q->pi_state);
2334
2335 spin_unlock(lock_ptr);
2336 ret = 1;
2337 }
2338
2339 drop_futex_key_refs(&q->key);
2340 return ret;
2341 }
2342
2343 /*
2344 * PI futexes can not be requeued and must remove themself from the
2345 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2346 * and dropped here.
2347 */
2348 static void unqueue_me_pi(struct futex_q *q)
2349 __releases(q->lock_ptr)
2350 {
2351 __unqueue_futex(q);
2352
2353 BUG_ON(!q->pi_state);
2354 put_pi_state(q->pi_state);
2355 q->pi_state = NULL;
2356
2357 spin_unlock(q->lock_ptr);
2358 }
2359
2360 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2361 struct task_struct *argowner)
2362 {
2363 struct futex_pi_state *pi_state = q->pi_state;
2364 u32 uval, uninitialized_var(curval), newval;
2365 struct task_struct *oldowner, *newowner;
2366 u32 newtid;
2367 int ret, err = 0;
2368
2369 lockdep_assert_held(q->lock_ptr);
2370
2371 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2372
2373 oldowner = pi_state->owner;
2374
2375 /*
2376 * We are here because either:
2377 *
2378 * - we stole the lock and pi_state->owner needs updating to reflect
2379 * that (@argowner == current),
2380 *
2381 * or:
2382 *
2383 * - someone stole our lock and we need to fix things to point to the
2384 * new owner (@argowner == NULL).
2385 *
2386 * Either way, we have to replace the TID in the user space variable.
2387 * This must be atomic as we have to preserve the owner died bit here.
2388 *
2389 * Note: We write the user space value _before_ changing the pi_state
2390 * because we can fault here. Imagine swapped out pages or a fork
2391 * that marked all the anonymous memory readonly for cow.
2392 *
2393 * Modifying pi_state _before_ the user space value would leave the
2394 * pi_state in an inconsistent state when we fault here, because we
2395 * need to drop the locks to handle the fault. This might be observed
2396 * in the PID check in lookup_pi_state.
2397 */
2398 retry:
2399 if (!argowner) {
2400 if (oldowner != current) {
2401 /*
2402 * We raced against a concurrent self; things are
2403 * already fixed up. Nothing to do.
2404 */
2405 ret = 0;
2406 goto out_unlock;
2407 }
2408
2409 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2410 /* We got the lock after all, nothing to fix. */
2411 ret = 0;
2412 goto out_unlock;
2413 }
2414
2415 /*
2416 * Since we just failed the trylock; there must be an owner.
2417 */
2418 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2419 BUG_ON(!newowner);
2420 } else {
2421 WARN_ON_ONCE(argowner != current);
2422 if (oldowner == current) {
2423 /*
2424 * We raced against a concurrent self; things are
2425 * already fixed up. Nothing to do.
2426 */
2427 ret = 0;
2428 goto out_unlock;
2429 }
2430 newowner = argowner;
2431 }
2432
2433 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2434 /* Owner died? */
2435 if (!pi_state->owner)
2436 newtid |= FUTEX_OWNER_DIED;
2437
2438 err = get_futex_value_locked(&uval, uaddr);
2439 if (err)
2440 goto handle_err;
2441
2442 for (;;) {
2443 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2444
2445 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2446 if (err)
2447 goto handle_err;
2448
2449 if (curval == uval)
2450 break;
2451 uval = curval;
2452 }
2453
2454 /*
2455 * We fixed up user space. Now we need to fix the pi_state
2456 * itself.
2457 */
2458 if (pi_state->owner != NULL) {
2459 raw_spin_lock(&pi_state->owner->pi_lock);
2460 WARN_ON(list_empty(&pi_state->list));
2461 list_del_init(&pi_state->list);
2462 raw_spin_unlock(&pi_state->owner->pi_lock);
2463 }
2464
2465 pi_state->owner = newowner;
2466
2467 raw_spin_lock(&newowner->pi_lock);
2468 WARN_ON(!list_empty(&pi_state->list));
2469 list_add(&pi_state->list, &newowner->pi_state_list);
2470 raw_spin_unlock(&newowner->pi_lock);
2471 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2472
2473 return 0;
2474
2475 /*
2476 * In order to reschedule or handle a page fault, we need to drop the
2477 * locks here. In the case of a fault, this gives the other task
2478 * (either the highest priority waiter itself or the task which stole
2479 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2480 * are back from handling the fault we need to check the pi_state after
2481 * reacquiring the locks and before trying to do another fixup. When
2482 * the fixup has been done already we simply return.
2483 *
2484 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2485 * drop hb->lock since the caller owns the hb -> futex_q relation.
2486 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2487 */
2488 handle_err:
2489 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2490 spin_unlock(q->lock_ptr);
2491
2492 switch (err) {
2493 case -EFAULT:
2494 ret = fault_in_user_writeable(uaddr);
2495 break;
2496
2497 case -EAGAIN:
2498 cond_resched();
2499 ret = 0;
2500 break;
2501
2502 default:
2503 WARN_ON_ONCE(1);
2504 ret = err;
2505 break;
2506 }
2507
2508 spin_lock(q->lock_ptr);
2509 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2510
2511 /*
2512 * Check if someone else fixed it for us:
2513 */
2514 if (pi_state->owner != oldowner) {
2515 ret = 0;
2516 goto out_unlock;
2517 }
2518
2519 if (ret)
2520 goto out_unlock;
2521
2522 goto retry;
2523
2524 out_unlock:
2525 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2526 return ret;
2527 }
2528
2529 static long futex_wait_restart(struct restart_block *restart);
2530
2531 /**
2532 * fixup_owner() - Post lock pi_state and corner case management
2533 * @uaddr: user address of the futex
2534 * @q: futex_q (contains pi_state and access to the rt_mutex)
2535 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2536 *
2537 * After attempting to lock an rt_mutex, this function is called to cleanup
2538 * the pi_state owner as well as handle race conditions that may allow us to
2539 * acquire the lock. Must be called with the hb lock held.
2540 *
2541 * Return:
2542 * - 1 - success, lock taken;
2543 * - 0 - success, lock not taken;
2544 * - <0 - on error (-EFAULT)
2545 */
2546 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2547 {
2548 int ret = 0;
2549
2550 if (locked) {
2551 /*
2552 * Got the lock. We might not be the anticipated owner if we
2553 * did a lock-steal - fix up the PI-state in that case:
2554 *
2555 * Speculative pi_state->owner read (we don't hold wait_lock);
2556 * since we own the lock pi_state->owner == current is the
2557 * stable state, anything else needs more attention.
2558 */
2559 if (q->pi_state->owner != current)
2560 ret = fixup_pi_state_owner(uaddr, q, current);
2561 goto out;
2562 }
2563
2564 /*
2565 * If we didn't get the lock; check if anybody stole it from us. In
2566 * that case, we need to fix up the uval to point to them instead of
2567 * us, otherwise bad things happen. [10]
2568 *
2569 * Another speculative read; pi_state->owner == current is unstable
2570 * but needs our attention.
2571 */
2572 if (q->pi_state->owner == current) {
2573 ret = fixup_pi_state_owner(uaddr, q, NULL);
2574 goto out;
2575 }
2576
2577 /*
2578 * Paranoia check. If we did not take the lock, then we should not be
2579 * the owner of the rt_mutex.
2580 */
2581 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2582 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2583 "pi-state %p\n", ret,
2584 q->pi_state->pi_mutex.owner,
2585 q->pi_state->owner);
2586 }
2587
2588 out:
2589 return ret ? ret : locked;
2590 }
2591
2592 /**
2593 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2594 * @hb: the futex hash bucket, must be locked by the caller
2595 * @q: the futex_q to queue up on
2596 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2597 */
2598 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2599 struct hrtimer_sleeper *timeout)
2600 {
2601 /*
2602 * The task state is guaranteed to be set before another task can
2603 * wake it. set_current_state() is implemented using smp_store_mb() and
2604 * queue_me() calls spin_unlock() upon completion, both serializing
2605 * access to the hash list and forcing another memory barrier.
2606 */
2607 set_current_state(TASK_INTERRUPTIBLE);
2608 queue_me(q, hb);
2609
2610 /* Arm the timer */
2611 if (timeout)
2612 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2613
2614 /*
2615 * If we have been removed from the hash list, then another task
2616 * has tried to wake us, and we can skip the call to schedule().
2617 */
2618 if (likely(!plist_node_empty(&q->list))) {
2619 /*
2620 * If the timer has already expired, current will already be
2621 * flagged for rescheduling. Only call schedule if there
2622 * is no timeout, or if it has yet to expire.
2623 */
2624 if (!timeout || timeout->task)
2625 freezable_schedule();
2626 }
2627 __set_current_state(TASK_RUNNING);
2628 }
2629
2630 /**
2631 * futex_wait_setup() - Prepare to wait on a futex
2632 * @uaddr: the futex userspace address
2633 * @val: the expected value
2634 * @flags: futex flags (FLAGS_SHARED, etc.)
2635 * @q: the associated futex_q
2636 * @hb: storage for hash_bucket pointer to be returned to caller
2637 *
2638 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2639 * compare it with the expected value. Handle atomic faults internally.
2640 * Return with the hb lock held and a q.key reference on success, and unlocked
2641 * with no q.key reference on failure.
2642 *
2643 * Return:
2644 * - 0 - uaddr contains val and hb has been locked;
2645 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2646 */
2647 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2648 struct futex_q *q, struct futex_hash_bucket **hb)
2649 {
2650 u32 uval;
2651 int ret;
2652
2653 /*
2654 * Access the page AFTER the hash-bucket is locked.
2655 * Order is important:
2656 *
2657 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2658 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2659 *
2660 * The basic logical guarantee of a futex is that it blocks ONLY
2661 * if cond(var) is known to be true at the time of blocking, for
2662 * any cond. If we locked the hash-bucket after testing *uaddr, that
2663 * would open a race condition where we could block indefinitely with
2664 * cond(var) false, which would violate the guarantee.
2665 *
2666 * On the other hand, we insert q and release the hash-bucket only
2667 * after testing *uaddr. This guarantees that futex_wait() will NOT
2668 * absorb a wakeup if *uaddr does not match the desired values
2669 * while the syscall executes.
2670 */
2671 retry:
2672 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2673 if (unlikely(ret != 0))
2674 return ret;
2675
2676 retry_private:
2677 *hb = queue_lock(q);
2678
2679 ret = get_futex_value_locked(&uval, uaddr);
2680
2681 if (ret) {
2682 queue_unlock(*hb);
2683
2684 ret = get_user(uval, uaddr);
2685 if (ret)
2686 goto out;
2687
2688 if (!(flags & FLAGS_SHARED))
2689 goto retry_private;
2690
2691 put_futex_key(&q->key);
2692 goto retry;
2693 }
2694
2695 if (uval != val) {
2696 queue_unlock(*hb);
2697 ret = -EWOULDBLOCK;
2698 }
2699
2700 out:
2701 if (ret)
2702 put_futex_key(&q->key);
2703 return ret;
2704 }
2705
2706 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2707 ktime_t *abs_time, u32 bitset)
2708 {
2709 struct hrtimer_sleeper timeout, *to = NULL;
2710 struct restart_block *restart;
2711 struct futex_hash_bucket *hb;
2712 struct futex_q q = futex_q_init;
2713 int ret;
2714
2715 if (!bitset)
2716 return -EINVAL;
2717 q.bitset = bitset;
2718
2719 if (abs_time) {
2720 to = &timeout;
2721
2722 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2723 CLOCK_REALTIME : CLOCK_MONOTONIC,
2724 HRTIMER_MODE_ABS);
2725 hrtimer_init_sleeper(to, current);
2726 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2727 current->timer_slack_ns);
2728 }
2729
2730 retry:
2731 /*
2732 * Prepare to wait on uaddr. On success, holds hb lock and increments
2733 * q.key refs.
2734 */
2735 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2736 if (ret)
2737 goto out;
2738
2739 /* queue_me and wait for wakeup, timeout, or a signal. */
2740 futex_wait_queue_me(hb, &q, to);
2741
2742 /* If we were woken (and unqueued), we succeeded, whatever. */
2743 ret = 0;
2744 /* unqueue_me() drops q.key ref */
2745 if (!unqueue_me(&q))
2746 goto out;
2747 ret = -ETIMEDOUT;
2748 if (to && !to->task)
2749 goto out;
2750
2751 /*
2752 * We expect signal_pending(current), but we might be the
2753 * victim of a spurious wakeup as well.
2754 */
2755 if (!signal_pending(current))
2756 goto retry;
2757
2758 ret = -ERESTARTSYS;
2759 if (!abs_time)
2760 goto out;
2761
2762 restart = &current->restart_block;
2763 restart->fn = futex_wait_restart;
2764 restart->futex.uaddr = uaddr;
2765 restart->futex.val = val;
2766 restart->futex.time = *abs_time;
2767 restart->futex.bitset = bitset;
2768 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2769
2770 ret = -ERESTART_RESTARTBLOCK;
2771
2772 out:
2773 if (to) {
2774 hrtimer_cancel(&to->timer);
2775 destroy_hrtimer_on_stack(&to->timer);
2776 }
2777 return ret;
2778 }
2779
2780
2781 static long futex_wait_restart(struct restart_block *restart)
2782 {
2783 u32 __user *uaddr = restart->futex.uaddr;
2784 ktime_t t, *tp = NULL;
2785
2786 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2787 t = restart->futex.time;
2788 tp = &t;
2789 }
2790 restart->fn = do_no_restart_syscall;
2791
2792 return (long)futex_wait(uaddr, restart->futex.flags,
2793 restart->futex.val, tp, restart->futex.bitset);
2794 }
2795
2796
2797 /*
2798 * Userspace tried a 0 -> TID atomic transition of the futex value
2799 * and failed. The kernel side here does the whole locking operation:
2800 * if there are waiters then it will block as a consequence of relying
2801 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2802 * a 0 value of the futex too.).
2803 *
2804 * Also serves as futex trylock_pi()'ing, and due semantics.
2805 */
2806 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2807 ktime_t *time, int trylock)
2808 {
2809 struct hrtimer_sleeper timeout, *to = NULL;
2810 struct futex_pi_state *pi_state = NULL;
2811 struct rt_mutex_waiter rt_waiter;
2812 struct futex_hash_bucket *hb;
2813 struct futex_q q = futex_q_init;
2814 int res, ret;
2815
2816 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2817 return -ENOSYS;
2818
2819 if (refill_pi_state_cache())
2820 return -ENOMEM;
2821
2822 if (time) {
2823 to = &timeout;
2824 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2825 HRTIMER_MODE_ABS);
2826 hrtimer_init_sleeper(to, current);
2827 hrtimer_set_expires(&to->timer, *time);
2828 }
2829
2830 retry:
2831 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2832 if (unlikely(ret != 0))
2833 goto out;
2834
2835 retry_private:
2836 hb = queue_lock(&q);
2837
2838 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2839 if (unlikely(ret)) {
2840 /*
2841 * Atomic work succeeded and we got the lock,
2842 * or failed. Either way, we do _not_ block.
2843 */
2844 switch (ret) {
2845 case 1:
2846 /* We got the lock. */
2847 ret = 0;
2848 goto out_unlock_put_key;
2849 case -EFAULT:
2850 goto uaddr_faulted;
2851 case -EAGAIN:
2852 /*
2853 * Two reasons for this:
2854 * - Task is exiting and we just wait for the
2855 * exit to complete.
2856 * - The user space value changed.
2857 */
2858 queue_unlock(hb);
2859 put_futex_key(&q.key);
2860 cond_resched();
2861 goto retry;
2862 default:
2863 goto out_unlock_put_key;
2864 }
2865 }
2866
2867 WARN_ON(!q.pi_state);
2868
2869 /*
2870 * Only actually queue now that the atomic ops are done:
2871 */
2872 __queue_me(&q, hb);
2873
2874 if (trylock) {
2875 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2876 /* Fixup the trylock return value: */
2877 ret = ret ? 0 : -EWOULDBLOCK;
2878 goto no_block;
2879 }
2880
2881 rt_mutex_init_waiter(&rt_waiter);
2882
2883 /*
2884 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2885 * hold it while doing rt_mutex_start_proxy(), because then it will
2886 * include hb->lock in the blocking chain, even through we'll not in
2887 * fact hold it while blocking. This will lead it to report -EDEADLK
2888 * and BUG when futex_unlock_pi() interleaves with this.
2889 *
2890 * Therefore acquire wait_lock while holding hb->lock, but drop the
2891 * latter before calling __rt_mutex_start_proxy_lock(). This
2892 * interleaves with futex_unlock_pi() -- which does a similar lock
2893 * handoff -- such that the latter can observe the futex_q::pi_state
2894 * before __rt_mutex_start_proxy_lock() is done.
2895 */
2896 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2897 spin_unlock(q.lock_ptr);
2898 /*
2899 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2900 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2901 * it sees the futex_q::pi_state.
2902 */
2903 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2904 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2905
2906 if (ret) {
2907 if (ret == 1)
2908 ret = 0;
2909 goto cleanup;
2910 }
2911
2912 if (unlikely(to))
2913 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2914
2915 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2916
2917 cleanup:
2918 spin_lock(q.lock_ptr);
2919 /*
2920 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2921 * first acquire the hb->lock before removing the lock from the
2922 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2923 * lists consistent.
2924 *
2925 * In particular; it is important that futex_unlock_pi() can not
2926 * observe this inconsistency.
2927 */
2928 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2929 ret = 0;
2930
2931 no_block:
2932 /*
2933 * Fixup the pi_state owner and possibly acquire the lock if we
2934 * haven't already.
2935 */
2936 res = fixup_owner(uaddr, &q, !ret);
2937 /*
2938 * If fixup_owner() returned an error, proprogate that. If it acquired
2939 * the lock, clear our -ETIMEDOUT or -EINTR.
2940 */
2941 if (res)
2942 ret = (res < 0) ? res : 0;
2943
2944 /*
2945 * If fixup_owner() faulted and was unable to handle the fault, unlock
2946 * it and return the fault to userspace.
2947 */
2948 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2949 pi_state = q.pi_state;
2950 get_pi_state(pi_state);
2951 }
2952
2953 /* Unqueue and drop the lock */
2954 unqueue_me_pi(&q);
2955
2956 if (pi_state) {
2957 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2958 put_pi_state(pi_state);
2959 }
2960
2961 goto out_put_key;
2962
2963 out_unlock_put_key:
2964 queue_unlock(hb);
2965
2966 out_put_key:
2967 put_futex_key(&q.key);
2968 out:
2969 if (to) {
2970 hrtimer_cancel(&to->timer);
2971 destroy_hrtimer_on_stack(&to->timer);
2972 }
2973 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2974
2975 uaddr_faulted:
2976 queue_unlock(hb);
2977
2978 ret = fault_in_user_writeable(uaddr);
2979 if (ret)
2980 goto out_put_key;
2981
2982 if (!(flags & FLAGS_SHARED))
2983 goto retry_private;
2984
2985 put_futex_key(&q.key);
2986 goto retry;
2987 }
2988
2989 /*
2990 * Userspace attempted a TID -> 0 atomic transition, and failed.
2991 * This is the in-kernel slowpath: we look up the PI state (if any),
2992 * and do the rt-mutex unlock.
2993 */
2994 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2995 {
2996 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2997 union futex_key key = FUTEX_KEY_INIT;
2998 struct futex_hash_bucket *hb;
2999 struct futex_q *top_waiter;
3000 int ret;
3001
3002 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3003 return -ENOSYS;
3004
3005 retry:
3006 if (get_user(uval, uaddr))
3007 return -EFAULT;
3008 /*
3009 * We release only a lock we actually own:
3010 */
3011 if ((uval & FUTEX_TID_MASK) != vpid)
3012 return -EPERM;
3013
3014 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
3015 if (ret)
3016 return ret;
3017
3018 hb = hash_futex(&key);
3019 spin_lock(&hb->lock);
3020
3021 /*
3022 * Check waiters first. We do not trust user space values at
3023 * all and we at least want to know if user space fiddled
3024 * with the futex value instead of blindly unlocking.
3025 */
3026 top_waiter = futex_top_waiter(hb, &key);
3027 if (top_waiter) {
3028 struct futex_pi_state *pi_state = top_waiter->pi_state;
3029
3030 ret = -EINVAL;
3031 if (!pi_state)
3032 goto out_unlock;
3033
3034 /*
3035 * If current does not own the pi_state then the futex is
3036 * inconsistent and user space fiddled with the futex value.
3037 */
3038 if (pi_state->owner != current)
3039 goto out_unlock;
3040
3041 get_pi_state(pi_state);
3042 /*
3043 * By taking wait_lock while still holding hb->lock, we ensure
3044 * there is no point where we hold neither; and therefore
3045 * wake_futex_pi() must observe a state consistent with what we
3046 * observed.
3047 *
3048 * In particular; this forces __rt_mutex_start_proxy() to
3049 * complete such that we're guaranteed to observe the
3050 * rt_waiter. Also see the WARN in wake_futex_pi().
3051 */
3052 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3053 spin_unlock(&hb->lock);
3054
3055 /* drops pi_state->pi_mutex.wait_lock */
3056 ret = wake_futex_pi(uaddr, uval, pi_state);
3057
3058 put_pi_state(pi_state);
3059
3060 /*
3061 * Success, we're done! No tricky corner cases.
3062 */
3063 if (!ret)
3064 goto out_putkey;
3065 /*
3066 * The atomic access to the futex value generated a
3067 * pagefault, so retry the user-access and the wakeup:
3068 */
3069 if (ret == -EFAULT)
3070 goto pi_faulted;
3071 /*
3072 * A unconditional UNLOCK_PI op raced against a waiter
3073 * setting the FUTEX_WAITERS bit. Try again.
3074 */
3075 if (ret == -EAGAIN)
3076 goto pi_retry;
3077 /*
3078 * wake_futex_pi has detected invalid state. Tell user
3079 * space.
3080 */
3081 goto out_putkey;
3082 }
3083
3084 /*
3085 * We have no kernel internal state, i.e. no waiters in the
3086 * kernel. Waiters which are about to queue themselves are stuck
3087 * on hb->lock. So we can safely ignore them. We do neither
3088 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3089 * owner.
3090 */
3091 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3092 spin_unlock(&hb->lock);
3093 switch (ret) {
3094 case -EFAULT:
3095 goto pi_faulted;
3096
3097 case -EAGAIN:
3098 goto pi_retry;
3099
3100 default:
3101 WARN_ON_ONCE(1);
3102 goto out_putkey;
3103 }
3104 }
3105
3106 /*
3107 * If uval has changed, let user space handle it.
3108 */
3109 ret = (curval == uval) ? 0 : -EAGAIN;
3110
3111 out_unlock:
3112 spin_unlock(&hb->lock);
3113 out_putkey:
3114 put_futex_key(&key);
3115 return ret;
3116
3117 pi_retry:
3118 put_futex_key(&key);
3119 cond_resched();
3120 goto retry;
3121
3122 pi_faulted:
3123 put_futex_key(&key);
3124
3125 ret = fault_in_user_writeable(uaddr);
3126 if (!ret)
3127 goto retry;
3128
3129 return ret;
3130 }
3131
3132 /**
3133 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3134 * @hb: the hash_bucket futex_q was original enqueued on
3135 * @q: the futex_q woken while waiting to be requeued
3136 * @key2: the futex_key of the requeue target futex
3137 * @timeout: the timeout associated with the wait (NULL if none)
3138 *
3139 * Detect if the task was woken on the initial futex as opposed to the requeue
3140 * target futex. If so, determine if it was a timeout or a signal that caused
3141 * the wakeup and return the appropriate error code to the caller. Must be
3142 * called with the hb lock held.
3143 *
3144 * Return:
3145 * - 0 = no early wakeup detected;
3146 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3147 */
3148 static inline
3149 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3150 struct futex_q *q, union futex_key *key2,
3151 struct hrtimer_sleeper *timeout)
3152 {
3153 int ret = 0;
3154
3155 /*
3156 * With the hb lock held, we avoid races while we process the wakeup.
3157 * We only need to hold hb (and not hb2) to ensure atomicity as the
3158 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3159 * It can't be requeued from uaddr2 to something else since we don't
3160 * support a PI aware source futex for requeue.
3161 */
3162 if (!match_futex(&q->key, key2)) {
3163 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3164 /*
3165 * We were woken prior to requeue by a timeout or a signal.
3166 * Unqueue the futex_q and determine which it was.
3167 */
3168 plist_del(&q->list, &hb->chain);
3169 hb_waiters_dec(hb);
3170
3171 /* Handle spurious wakeups gracefully */
3172 ret = -EWOULDBLOCK;
3173 if (timeout && !timeout->task)
3174 ret = -ETIMEDOUT;
3175 else if (signal_pending(current))
3176 ret = -ERESTARTNOINTR;
3177 }
3178 return ret;
3179 }
3180
3181 /**
3182 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3183 * @uaddr: the futex we initially wait on (non-pi)
3184 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3185 * the same type, no requeueing from private to shared, etc.
3186 * @val: the expected value of uaddr
3187 * @abs_time: absolute timeout
3188 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3189 * @uaddr2: the pi futex we will take prior to returning to user-space
3190 *
3191 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3192 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3193 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3194 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3195 * without one, the pi logic would not know which task to boost/deboost, if
3196 * there was a need to.
3197 *
3198 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3199 * via the following--
3200 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3201 * 2) wakeup on uaddr2 after a requeue
3202 * 3) signal
3203 * 4) timeout
3204 *
3205 * If 3, cleanup and return -ERESTARTNOINTR.
3206 *
3207 * If 2, we may then block on trying to take the rt_mutex and return via:
3208 * 5) successful lock
3209 * 6) signal
3210 * 7) timeout
3211 * 8) other lock acquisition failure
3212 *
3213 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3214 *
3215 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3216 *
3217 * Return:
3218 * - 0 - On success;
3219 * - <0 - On error
3220 */
3221 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3222 u32 val, ktime_t *abs_time, u32 bitset,
3223 u32 __user *uaddr2)
3224 {
3225 struct hrtimer_sleeper timeout, *to = NULL;
3226 struct futex_pi_state *pi_state = NULL;
3227 struct rt_mutex_waiter rt_waiter;
3228 struct futex_hash_bucket *hb;
3229 union futex_key key2 = FUTEX_KEY_INIT;
3230 struct futex_q q = futex_q_init;
3231 int res, ret;
3232
3233 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3234 return -ENOSYS;
3235
3236 if (uaddr == uaddr2)
3237 return -EINVAL;
3238
3239 if (!bitset)
3240 return -EINVAL;
3241
3242 if (abs_time) {
3243 to = &timeout;
3244 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3245 CLOCK_REALTIME : CLOCK_MONOTONIC,
3246 HRTIMER_MODE_ABS);
3247 hrtimer_init_sleeper(to, current);
3248 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3249 current->timer_slack_ns);
3250 }
3251
3252 /*
3253 * The waiter is allocated on our stack, manipulated by the requeue
3254 * code while we sleep on uaddr.
3255 */
3256 rt_mutex_init_waiter(&rt_waiter);
3257
3258 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3259 if (unlikely(ret != 0))
3260 goto out;
3261
3262 q.bitset = bitset;
3263 q.rt_waiter = &rt_waiter;
3264 q.requeue_pi_key = &key2;
3265
3266 /*
3267 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3268 * count.
3269 */
3270 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3271 if (ret)
3272 goto out_key2;
3273
3274 /*
3275 * The check above which compares uaddrs is not sufficient for
3276 * shared futexes. We need to compare the keys:
3277 */
3278 if (match_futex(&q.key, &key2)) {
3279 queue_unlock(hb);
3280 ret = -EINVAL;
3281 goto out_put_keys;
3282 }
3283
3284 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3285 futex_wait_queue_me(hb, &q, to);
3286
3287 spin_lock(&hb->lock);
3288 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3289 spin_unlock(&hb->lock);
3290 if (ret)
3291 goto out_put_keys;
3292
3293 /*
3294 * In order for us to be here, we know our q.key == key2, and since
3295 * we took the hb->lock above, we also know that futex_requeue() has
3296 * completed and we no longer have to concern ourselves with a wakeup
3297 * race with the atomic proxy lock acquisition by the requeue code. The
3298 * futex_requeue dropped our key1 reference and incremented our key2
3299 * reference count.
3300 */
3301
3302 /* Check if the requeue code acquired the second futex for us. */
3303 if (!q.rt_waiter) {
3304 /*
3305 * Got the lock. We might not be the anticipated owner if we
3306 * did a lock-steal - fix up the PI-state in that case.
3307 */
3308 if (q.pi_state && (q.pi_state->owner != current)) {
3309 spin_lock(q.lock_ptr);
3310 ret = fixup_pi_state_owner(uaddr2, &q, current);
3311 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3312 pi_state = q.pi_state;
3313 get_pi_state(pi_state);
3314 }
3315 /*
3316 * Drop the reference to the pi state which
3317 * the requeue_pi() code acquired for us.
3318 */
3319 put_pi_state(q.pi_state);
3320 spin_unlock(q.lock_ptr);
3321 }
3322 } else {
3323 struct rt_mutex *pi_mutex;
3324
3325 /*
3326 * We have been woken up by futex_unlock_pi(), a timeout, or a
3327 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3328 * the pi_state.
3329 */
3330 WARN_ON(!q.pi_state);
3331 pi_mutex = &q.pi_state->pi_mutex;
3332 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3333
3334 spin_lock(q.lock_ptr);
3335 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3336 ret = 0;
3337
3338 debug_rt_mutex_free_waiter(&rt_waiter);
3339 /*
3340 * Fixup the pi_state owner and possibly acquire the lock if we
3341 * haven't already.
3342 */
3343 res = fixup_owner(uaddr2, &q, !ret);
3344 /*
3345 * If fixup_owner() returned an error, proprogate that. If it
3346 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3347 */
3348 if (res)
3349 ret = (res < 0) ? res : 0;
3350
3351 /*
3352 * If fixup_pi_state_owner() faulted and was unable to handle
3353 * the fault, unlock the rt_mutex and return the fault to
3354 * userspace.
3355 */
3356 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3357 pi_state = q.pi_state;
3358 get_pi_state(pi_state);
3359 }
3360
3361 /* Unqueue and drop the lock. */
3362 unqueue_me_pi(&q);
3363 }
3364
3365 if (pi_state) {
3366 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3367 put_pi_state(pi_state);
3368 }
3369
3370 if (ret == -EINTR) {
3371 /*
3372 * We've already been requeued, but cannot restart by calling
3373 * futex_lock_pi() directly. We could restart this syscall, but
3374 * it would detect that the user space "val" changed and return
3375 * -EWOULDBLOCK. Save the overhead of the restart and return
3376 * -EWOULDBLOCK directly.
3377 */
3378 ret = -EWOULDBLOCK;
3379 }
3380
3381 out_put_keys:
3382 put_futex_key(&q.key);
3383 out_key2:
3384 put_futex_key(&key2);
3385
3386 out:
3387 if (to) {
3388 hrtimer_cancel(&to->timer);
3389 destroy_hrtimer_on_stack(&to->timer);
3390 }
3391 return ret;
3392 }
3393
3394 /*
3395 * Support for robust futexes: the kernel cleans up held futexes at
3396 * thread exit time.
3397 *
3398 * Implementation: user-space maintains a per-thread list of locks it
3399 * is holding. Upon do_exit(), the kernel carefully walks this list,
3400 * and marks all locks that are owned by this thread with the
3401 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3402 * always manipulated with the lock held, so the list is private and
3403 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3404 * field, to allow the kernel to clean up if the thread dies after
3405 * acquiring the lock, but just before it could have added itself to
3406 * the list. There can only be one such pending lock.
3407 */
3408
3409 /**
3410 * sys_set_robust_list() - Set the robust-futex list head of a task
3411 * @head: pointer to the list-head
3412 * @len: length of the list-head, as userspace expects
3413 */
3414 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3415 size_t, len)
3416 {
3417 if (!futex_cmpxchg_enabled)
3418 return -ENOSYS;
3419 /*
3420 * The kernel knows only one size for now:
3421 */
3422 if (unlikely(len != sizeof(*head)))
3423 return -EINVAL;
3424
3425 current->robust_list = head;
3426
3427 return 0;
3428 }
3429
3430 /**
3431 * sys_get_robust_list() - Get the robust-futex list head of a task
3432 * @pid: pid of the process [zero for current task]
3433 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3434 * @len_ptr: pointer to a length field, the kernel fills in the header size
3435 */
3436 SYSCALL_DEFINE3(get_robust_list, int, pid,
3437 struct robust_list_head __user * __user *, head_ptr,
3438 size_t __user *, len_ptr)
3439 {
3440 struct robust_list_head __user *head;
3441 unsigned long ret;
3442 struct task_struct *p;
3443
3444 if (!futex_cmpxchg_enabled)
3445 return -ENOSYS;
3446
3447 rcu_read_lock();
3448
3449 ret = -ESRCH;
3450 if (!pid)
3451 p = current;
3452 else {
3453 p = find_task_by_vpid(pid);
3454 if (!p)
3455 goto err_unlock;
3456 }
3457
3458 ret = -EPERM;
3459 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3460 goto err_unlock;
3461
3462 head = p->robust_list;
3463 rcu_read_unlock();
3464
3465 if (put_user(sizeof(*head), len_ptr))
3466 return -EFAULT;
3467 return put_user(head, head_ptr);
3468
3469 err_unlock:
3470 rcu_read_unlock();
3471
3472 return ret;
3473 }
3474
3475 /*
3476 * Process a futex-list entry, check whether it's owned by the
3477 * dying task, and do notification if so:
3478 */
3479 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3480 {
3481 u32 uval, uninitialized_var(nval), mval;
3482 int err;
3483
3484 /* Futex address must be 32bit aligned */
3485 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3486 return -1;
3487
3488 retry:
3489 if (get_user(uval, uaddr))
3490 return -1;
3491
3492 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3493 return 0;
3494
3495 /*
3496 * Ok, this dying thread is truly holding a futex
3497 * of interest. Set the OWNER_DIED bit atomically
3498 * via cmpxchg, and if the value had FUTEX_WAITERS
3499 * set, wake up a waiter (if any). (We have to do a
3500 * futex_wake() even if OWNER_DIED is already set -
3501 * to handle the rare but possible case of recursive
3502 * thread-death.) The rest of the cleanup is done in
3503 * userspace.
3504 */
3505 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3506
3507 /*
3508 * We are not holding a lock here, but we want to have
3509 * the pagefault_disable/enable() protection because
3510 * we want to handle the fault gracefully. If the
3511 * access fails we try to fault in the futex with R/W
3512 * verification via get_user_pages. get_user() above
3513 * does not guarantee R/W access. If that fails we
3514 * give up and leave the futex locked.
3515 */
3516 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3517 switch (err) {
3518 case -EFAULT:
3519 if (fault_in_user_writeable(uaddr))
3520 return -1;
3521 goto retry;
3522
3523 case -EAGAIN:
3524 cond_resched();
3525 goto retry;
3526
3527 default:
3528 WARN_ON_ONCE(1);
3529 return err;
3530 }
3531 }
3532
3533 if (nval != uval)
3534 goto retry;
3535
3536 /*
3537 * Wake robust non-PI futexes here. The wakeup of
3538 * PI futexes happens in exit_pi_state():
3539 */
3540 if (!pi && (uval & FUTEX_WAITERS))
3541 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3542
3543 return 0;
3544 }
3545
3546 /*
3547 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3548 */
3549 static inline int fetch_robust_entry(struct robust_list __user **entry,
3550 struct robust_list __user * __user *head,
3551 unsigned int *pi)
3552 {
3553 unsigned long uentry;
3554
3555 if (get_user(uentry, (unsigned long __user *)head))
3556 return -EFAULT;
3557
3558 *entry = (void __user *)(uentry & ~1UL);
3559 *pi = uentry & 1;
3560
3561 return 0;
3562 }
3563
3564 /*
3565 * Walk curr->robust_list (very carefully, it's a userspace list!)
3566 * and mark any locks found there dead, and notify any waiters.
3567 *
3568 * We silently return on any sign of list-walking problem.
3569 */
3570 void exit_robust_list(struct task_struct *curr)
3571 {
3572 struct robust_list_head __user *head = curr->robust_list;
3573 struct robust_list __user *entry, *next_entry, *pending;
3574 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3575 unsigned int uninitialized_var(next_pi);
3576 unsigned long futex_offset;
3577 int rc;
3578
3579 if (!futex_cmpxchg_enabled)
3580 return;
3581
3582 /*
3583 * Fetch the list head (which was registered earlier, via
3584 * sys_set_robust_list()):
3585 */
3586 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3587 return;
3588 /*
3589 * Fetch the relative futex offset:
3590 */
3591 if (get_user(futex_offset, &head->futex_offset))
3592 return;
3593 /*
3594 * Fetch any possibly pending lock-add first, and handle it
3595 * if it exists:
3596 */
3597 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3598 return;
3599
3600 next_entry = NULL; /* avoid warning with gcc */
3601 while (entry != &head->list) {
3602 /*
3603 * Fetch the next entry in the list before calling
3604 * handle_futex_death:
3605 */
3606 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3607 /*
3608 * A pending lock might already be on the list, so
3609 * don't process it twice:
3610 */
3611 if (entry != pending)
3612 if (handle_futex_death((void __user *)entry + futex_offset,
3613 curr, pi))
3614 return;
3615 if (rc)
3616 return;
3617 entry = next_entry;
3618 pi = next_pi;
3619 /*
3620 * Avoid excessively long or circular lists:
3621 */
3622 if (!--limit)
3623 break;
3624
3625 cond_resched();
3626 }
3627
3628 if (pending)
3629 handle_futex_death((void __user *)pending + futex_offset,
3630 curr, pip);
3631 }
3632
3633 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3634 u32 __user *uaddr2, u32 val2, u32 val3)
3635 {
3636 int cmd = op & FUTEX_CMD_MASK;
3637 unsigned int flags = 0;
3638
3639 if (!(op & FUTEX_PRIVATE_FLAG))
3640 flags |= FLAGS_SHARED;
3641
3642 if (op & FUTEX_CLOCK_REALTIME) {
3643 flags |= FLAGS_CLOCKRT;
3644 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3645 cmd != FUTEX_WAIT_REQUEUE_PI)
3646 return -ENOSYS;
3647 }
3648
3649 switch (cmd) {
3650 case FUTEX_LOCK_PI:
3651 case FUTEX_UNLOCK_PI:
3652 case FUTEX_TRYLOCK_PI:
3653 case FUTEX_WAIT_REQUEUE_PI:
3654 case FUTEX_CMP_REQUEUE_PI:
3655 if (!futex_cmpxchg_enabled)
3656 return -ENOSYS;
3657 }
3658
3659 switch (cmd) {
3660 case FUTEX_WAIT:
3661 val3 = FUTEX_BITSET_MATCH_ANY;
3662 case FUTEX_WAIT_BITSET:
3663 return futex_wait(uaddr, flags, val, timeout, val3);
3664 case FUTEX_WAKE:
3665 val3 = FUTEX_BITSET_MATCH_ANY;
3666 case FUTEX_WAKE_BITSET:
3667 return futex_wake(uaddr, flags, val, val3);
3668 case FUTEX_REQUEUE:
3669 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3670 case FUTEX_CMP_REQUEUE:
3671 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3672 case FUTEX_WAKE_OP:
3673 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3674 case FUTEX_LOCK_PI:
3675 return futex_lock_pi(uaddr, flags, timeout, 0);
3676 case FUTEX_UNLOCK_PI:
3677 return futex_unlock_pi(uaddr, flags);
3678 case FUTEX_TRYLOCK_PI:
3679 return futex_lock_pi(uaddr, flags, NULL, 1);
3680 case FUTEX_WAIT_REQUEUE_PI:
3681 val3 = FUTEX_BITSET_MATCH_ANY;
3682 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3683 uaddr2);
3684 case FUTEX_CMP_REQUEUE_PI:
3685 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3686 }
3687 return -ENOSYS;
3688 }
3689
3690
3691 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3692 struct timespec __user *, utime, u32 __user *, uaddr2,
3693 u32, val3)
3694 {
3695 struct timespec ts;
3696 ktime_t t, *tp = NULL;
3697 u32 val2 = 0;
3698 int cmd = op & FUTEX_CMD_MASK;
3699
3700 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3701 cmd == FUTEX_WAIT_BITSET ||
3702 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3703 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3704 return -EFAULT;
3705 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3706 return -EFAULT;
3707 if (!timespec_valid(&ts))
3708 return -EINVAL;
3709
3710 t = timespec_to_ktime(ts);
3711 if (cmd == FUTEX_WAIT)
3712 t = ktime_add_safe(ktime_get(), t);
3713 tp = &t;
3714 }
3715 /*
3716 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3717 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3718 */
3719 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3720 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3721 val2 = (u32) (unsigned long) utime;
3722
3723 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3724 }
3725
3726 static void __init futex_detect_cmpxchg(void)
3727 {
3728 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3729 u32 curval;
3730
3731 /*
3732 * This will fail and we want it. Some arch implementations do
3733 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3734 * functionality. We want to know that before we call in any
3735 * of the complex code paths. Also we want to prevent
3736 * registration of robust lists in that case. NULL is
3737 * guaranteed to fault and we get -EFAULT on functional
3738 * implementation, the non-functional ones will return
3739 * -ENOSYS.
3740 */
3741 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3742 futex_cmpxchg_enabled = 1;
3743 #endif
3744 }
3745
3746 static int __init futex_init(void)
3747 {
3748 unsigned int futex_shift;
3749 unsigned long i;
3750
3751 #if CONFIG_BASE_SMALL
3752 futex_hashsize = 16;
3753 #else
3754 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3755 #endif
3756
3757 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3758 futex_hashsize, 0,
3759 futex_hashsize < 256 ? HASH_SMALL : 0,
3760 &futex_shift, NULL,
3761 futex_hashsize, futex_hashsize);
3762 futex_hashsize = 1UL << futex_shift;
3763
3764 futex_detect_cmpxchg();
3765
3766 for (i = 0; i < futex_hashsize; i++) {
3767 atomic_set(&futex_queues[i].waiters, 0);
3768 plist_head_init(&futex_queues[i].chain);
3769 spin_lock_init(&futex_queues[i].lock);
3770 }
3771
3772 return 0;
3773 }
3774 core_initcall(futex_init);