]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/futex.c
UBUNTU: [Config] CONFIG_QCOM_PM8XXX_XOADC=m
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
700 }
701
702 out:
703 put_page(page);
704 return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709 drop_futex_key_refs(key);
710 }
711
712 /**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
733
734 return ret < 0 ? ret : 0;
735 }
736
737 /**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
741 *
742 * Must be called with the hb lock held.
743 */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746 {
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
758 {
759 int ret;
760
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
764
765 return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 int ret;
771
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
775
776 return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781 * PI code:
782 */
783 static int refill_pi_state_cache(void)
784 {
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792 if (!pi_state)
793 return -ENOMEM;
794
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 */
825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827 if (!pi_state)
828 return;
829
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
838 struct task_struct *owner;
839
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 }
850
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863 }
864
865 /*
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
868 */
869 static struct task_struct *futex_find_get_task(pid_t pid)
870 {
871 struct task_struct *p;
872
873 rcu_read_lock();
874 p = find_task_by_vpid(pid);
875 if (p)
876 get_task_struct(p);
877
878 rcu_read_unlock();
879
880 return p;
881 }
882
883 /*
884 * This task is holding PI mutexes at exit time => bad.
885 * Kernel cleans up PI-state, but userspace is likely hosed.
886 * (Robust-futex cleanup is separate and might save the day for userspace.)
887 */
888 void exit_pi_state_list(struct task_struct *curr)
889 {
890 struct list_head *next, *head = &curr->pi_state_list;
891 struct futex_pi_state *pi_state;
892 struct futex_hash_bucket *hb;
893 union futex_key key = FUTEX_KEY_INIT;
894
895 if (!futex_cmpxchg_enabled)
896 return;
897 /*
898 * We are a ZOMBIE and nobody can enqueue itself on
899 * pi_state_list anymore, but we have to be careful
900 * versus waiters unqueueing themselves:
901 */
902 raw_spin_lock_irq(&curr->pi_lock);
903 while (!list_empty(head)) {
904 next = head->next;
905 pi_state = list_entry(next, struct futex_pi_state, list);
906 key = pi_state->key;
907 hb = hash_futex(&key);
908
909 /*
910 * We can race against put_pi_state() removing itself from the
911 * list (a waiter going away). put_pi_state() will first
912 * decrement the reference count and then modify the list, so
913 * its possible to see the list entry but fail this reference
914 * acquire.
915 *
916 * In that case; drop the locks to let put_pi_state() make
917 * progress and retry the loop.
918 */
919 if (!atomic_inc_not_zero(&pi_state->refcount)) {
920 raw_spin_unlock_irq(&curr->pi_lock);
921 cpu_relax();
922 raw_spin_lock_irq(&curr->pi_lock);
923 continue;
924 }
925 raw_spin_unlock_irq(&curr->pi_lock);
926
927 spin_lock(&hb->lock);
928 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
929 raw_spin_lock(&curr->pi_lock);
930 /*
931 * We dropped the pi-lock, so re-check whether this
932 * task still owns the PI-state:
933 */
934 if (head->next != next) {
935 /* retain curr->pi_lock for the loop invariant */
936 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
937 spin_unlock(&hb->lock);
938 put_pi_state(pi_state);
939 continue;
940 }
941
942 WARN_ON(pi_state->owner != curr);
943 WARN_ON(list_empty(&pi_state->list));
944 list_del_init(&pi_state->list);
945 pi_state->owner = NULL;
946
947 raw_spin_unlock(&curr->pi_lock);
948 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
949 spin_unlock(&hb->lock);
950
951 rt_mutex_futex_unlock(&pi_state->pi_mutex);
952 put_pi_state(pi_state);
953
954 raw_spin_lock_irq(&curr->pi_lock);
955 }
956 raw_spin_unlock_irq(&curr->pi_lock);
957 }
958
959 /*
960 * We need to check the following states:
961 *
962 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
963 *
964 * [1] NULL | --- | --- | 0 | 0/1 | Valid
965 * [2] NULL | --- | --- | >0 | 0/1 | Valid
966 *
967 * [3] Found | NULL | -- | Any | 0/1 | Invalid
968 *
969 * [4] Found | Found | NULL | 0 | 1 | Valid
970 * [5] Found | Found | NULL | >0 | 1 | Invalid
971 *
972 * [6] Found | Found | task | 0 | 1 | Valid
973 *
974 * [7] Found | Found | NULL | Any | 0 | Invalid
975 *
976 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
977 * [9] Found | Found | task | 0 | 0 | Invalid
978 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
979 *
980 * [1] Indicates that the kernel can acquire the futex atomically. We
981 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
982 *
983 * [2] Valid, if TID does not belong to a kernel thread. If no matching
984 * thread is found then it indicates that the owner TID has died.
985 *
986 * [3] Invalid. The waiter is queued on a non PI futex
987 *
988 * [4] Valid state after exit_robust_list(), which sets the user space
989 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
990 *
991 * [5] The user space value got manipulated between exit_robust_list()
992 * and exit_pi_state_list()
993 *
994 * [6] Valid state after exit_pi_state_list() which sets the new owner in
995 * the pi_state but cannot access the user space value.
996 *
997 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
998 *
999 * [8] Owner and user space value match
1000 *
1001 * [9] There is no transient state which sets the user space TID to 0
1002 * except exit_robust_list(), but this is indicated by the
1003 * FUTEX_OWNER_DIED bit. See [4]
1004 *
1005 * [10] There is no transient state which leaves owner and user space
1006 * TID out of sync.
1007 *
1008 *
1009 * Serialization and lifetime rules:
1010 *
1011 * hb->lock:
1012 *
1013 * hb -> futex_q, relation
1014 * futex_q -> pi_state, relation
1015 *
1016 * (cannot be raw because hb can contain arbitrary amount
1017 * of futex_q's)
1018 *
1019 * pi_mutex->wait_lock:
1020 *
1021 * {uval, pi_state}
1022 *
1023 * (and pi_mutex 'obviously')
1024 *
1025 * p->pi_lock:
1026 *
1027 * p->pi_state_list -> pi_state->list, relation
1028 *
1029 * pi_state->refcount:
1030 *
1031 * pi_state lifetime
1032 *
1033 *
1034 * Lock order:
1035 *
1036 * hb->lock
1037 * pi_mutex->wait_lock
1038 * p->pi_lock
1039 *
1040 */
1041
1042 /*
1043 * Validate that the existing waiter has a pi_state and sanity check
1044 * the pi_state against the user space value. If correct, attach to
1045 * it.
1046 */
1047 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1048 struct futex_pi_state *pi_state,
1049 struct futex_pi_state **ps)
1050 {
1051 pid_t pid = uval & FUTEX_TID_MASK;
1052 u32 uval2;
1053 int ret;
1054
1055 /*
1056 * Userspace might have messed up non-PI and PI futexes [3]
1057 */
1058 if (unlikely(!pi_state))
1059 return -EINVAL;
1060
1061 /*
1062 * We get here with hb->lock held, and having found a
1063 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1064 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1065 * which in turn means that futex_lock_pi() still has a reference on
1066 * our pi_state.
1067 *
1068 * The waiter holding a reference on @pi_state also protects against
1069 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1070 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1071 * free pi_state before we can take a reference ourselves.
1072 */
1073 WARN_ON(!atomic_read(&pi_state->refcount));
1074
1075 /*
1076 * Now that we have a pi_state, we can acquire wait_lock
1077 * and do the state validation.
1078 */
1079 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1080
1081 /*
1082 * Since {uval, pi_state} is serialized by wait_lock, and our current
1083 * uval was read without holding it, it can have changed. Verify it
1084 * still is what we expect it to be, otherwise retry the entire
1085 * operation.
1086 */
1087 if (get_futex_value_locked(&uval2, uaddr))
1088 goto out_efault;
1089
1090 if (uval != uval2)
1091 goto out_eagain;
1092
1093 /*
1094 * Handle the owner died case:
1095 */
1096 if (uval & FUTEX_OWNER_DIED) {
1097 /*
1098 * exit_pi_state_list sets owner to NULL and wakes the
1099 * topmost waiter. The task which acquires the
1100 * pi_state->rt_mutex will fixup owner.
1101 */
1102 if (!pi_state->owner) {
1103 /*
1104 * No pi state owner, but the user space TID
1105 * is not 0. Inconsistent state. [5]
1106 */
1107 if (pid)
1108 goto out_einval;
1109 /*
1110 * Take a ref on the state and return success. [4]
1111 */
1112 goto out_attach;
1113 }
1114
1115 /*
1116 * If TID is 0, then either the dying owner has not
1117 * yet executed exit_pi_state_list() or some waiter
1118 * acquired the rtmutex in the pi state, but did not
1119 * yet fixup the TID in user space.
1120 *
1121 * Take a ref on the state and return success. [6]
1122 */
1123 if (!pid)
1124 goto out_attach;
1125 } else {
1126 /*
1127 * If the owner died bit is not set, then the pi_state
1128 * must have an owner. [7]
1129 */
1130 if (!pi_state->owner)
1131 goto out_einval;
1132 }
1133
1134 /*
1135 * Bail out if user space manipulated the futex value. If pi
1136 * state exists then the owner TID must be the same as the
1137 * user space TID. [9/10]
1138 */
1139 if (pid != task_pid_vnr(pi_state->owner))
1140 goto out_einval;
1141
1142 out_attach:
1143 get_pi_state(pi_state);
1144 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1145 *ps = pi_state;
1146 return 0;
1147
1148 out_einval:
1149 ret = -EINVAL;
1150 goto out_error;
1151
1152 out_eagain:
1153 ret = -EAGAIN;
1154 goto out_error;
1155
1156 out_efault:
1157 ret = -EFAULT;
1158 goto out_error;
1159
1160 out_error:
1161 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1162 return ret;
1163 }
1164
1165 /*
1166 * Lookup the task for the TID provided from user space and attach to
1167 * it after doing proper sanity checks.
1168 */
1169 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1170 struct futex_pi_state **ps)
1171 {
1172 pid_t pid = uval & FUTEX_TID_MASK;
1173 struct futex_pi_state *pi_state;
1174 struct task_struct *p;
1175
1176 /*
1177 * We are the first waiter - try to look up the real owner and attach
1178 * the new pi_state to it, but bail out when TID = 0 [1]
1179 */
1180 if (!pid)
1181 return -ESRCH;
1182 p = futex_find_get_task(pid);
1183 if (!p)
1184 return -ESRCH;
1185
1186 if (unlikely(p->flags & PF_KTHREAD)) {
1187 put_task_struct(p);
1188 return -EPERM;
1189 }
1190
1191 /*
1192 * We need to look at the task state flags to figure out,
1193 * whether the task is exiting. To protect against the do_exit
1194 * change of the task flags, we do this protected by
1195 * p->pi_lock:
1196 */
1197 raw_spin_lock_irq(&p->pi_lock);
1198 if (unlikely(p->flags & PF_EXITING)) {
1199 /*
1200 * The task is on the way out. When PF_EXITPIDONE is
1201 * set, we know that the task has finished the
1202 * cleanup:
1203 */
1204 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1205
1206 raw_spin_unlock_irq(&p->pi_lock);
1207 put_task_struct(p);
1208 return ret;
1209 }
1210
1211 /*
1212 * No existing pi state. First waiter. [2]
1213 *
1214 * This creates pi_state, we have hb->lock held, this means nothing can
1215 * observe this state, wait_lock is irrelevant.
1216 */
1217 pi_state = alloc_pi_state();
1218
1219 /*
1220 * Initialize the pi_mutex in locked state and make @p
1221 * the owner of it:
1222 */
1223 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1224
1225 /* Store the key for possible exit cleanups: */
1226 pi_state->key = *key;
1227
1228 WARN_ON(!list_empty(&pi_state->list));
1229 list_add(&pi_state->list, &p->pi_state_list);
1230 /*
1231 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1232 * because there is no concurrency as the object is not published yet.
1233 */
1234 pi_state->owner = p;
1235 raw_spin_unlock_irq(&p->pi_lock);
1236
1237 put_task_struct(p);
1238
1239 *ps = pi_state;
1240
1241 return 0;
1242 }
1243
1244 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1245 struct futex_hash_bucket *hb,
1246 union futex_key *key, struct futex_pi_state **ps)
1247 {
1248 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1249
1250 /*
1251 * If there is a waiter on that futex, validate it and
1252 * attach to the pi_state when the validation succeeds.
1253 */
1254 if (top_waiter)
1255 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1256
1257 /*
1258 * We are the first waiter - try to look up the owner based on
1259 * @uval and attach to it.
1260 */
1261 return attach_to_pi_owner(uval, key, ps);
1262 }
1263
1264 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1265 {
1266 u32 uninitialized_var(curval);
1267
1268 if (unlikely(should_fail_futex(true)))
1269 return -EFAULT;
1270
1271 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1272 return -EFAULT;
1273
1274 /* If user space value changed, let the caller retry */
1275 return curval != uval ? -EAGAIN : 0;
1276 }
1277
1278 /**
1279 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1280 * @uaddr: the pi futex user address
1281 * @hb: the pi futex hash bucket
1282 * @key: the futex key associated with uaddr and hb
1283 * @ps: the pi_state pointer where we store the result of the
1284 * lookup
1285 * @task: the task to perform the atomic lock work for. This will
1286 * be "current" except in the case of requeue pi.
1287 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1288 *
1289 * Return:
1290 * - 0 - ready to wait;
1291 * - 1 - acquired the lock;
1292 * - <0 - error
1293 *
1294 * The hb->lock and futex_key refs shall be held by the caller.
1295 */
1296 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1297 union futex_key *key,
1298 struct futex_pi_state **ps,
1299 struct task_struct *task, int set_waiters)
1300 {
1301 u32 uval, newval, vpid = task_pid_vnr(task);
1302 struct futex_q *top_waiter;
1303 int ret;
1304
1305 /*
1306 * Read the user space value first so we can validate a few
1307 * things before proceeding further.
1308 */
1309 if (get_futex_value_locked(&uval, uaddr))
1310 return -EFAULT;
1311
1312 if (unlikely(should_fail_futex(true)))
1313 return -EFAULT;
1314
1315 /*
1316 * Detect deadlocks.
1317 */
1318 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1319 return -EDEADLK;
1320
1321 if ((unlikely(should_fail_futex(true))))
1322 return -EDEADLK;
1323
1324 /*
1325 * Lookup existing state first. If it exists, try to attach to
1326 * its pi_state.
1327 */
1328 top_waiter = futex_top_waiter(hb, key);
1329 if (top_waiter)
1330 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1331
1332 /*
1333 * No waiter and user TID is 0. We are here because the
1334 * waiters or the owner died bit is set or called from
1335 * requeue_cmp_pi or for whatever reason something took the
1336 * syscall.
1337 */
1338 if (!(uval & FUTEX_TID_MASK)) {
1339 /*
1340 * We take over the futex. No other waiters and the user space
1341 * TID is 0. We preserve the owner died bit.
1342 */
1343 newval = uval & FUTEX_OWNER_DIED;
1344 newval |= vpid;
1345
1346 /* The futex requeue_pi code can enforce the waiters bit */
1347 if (set_waiters)
1348 newval |= FUTEX_WAITERS;
1349
1350 ret = lock_pi_update_atomic(uaddr, uval, newval);
1351 /* If the take over worked, return 1 */
1352 return ret < 0 ? ret : 1;
1353 }
1354
1355 /*
1356 * First waiter. Set the waiters bit before attaching ourself to
1357 * the owner. If owner tries to unlock, it will be forced into
1358 * the kernel and blocked on hb->lock.
1359 */
1360 newval = uval | FUTEX_WAITERS;
1361 ret = lock_pi_update_atomic(uaddr, uval, newval);
1362 if (ret)
1363 return ret;
1364 /*
1365 * If the update of the user space value succeeded, we try to
1366 * attach to the owner. If that fails, no harm done, we only
1367 * set the FUTEX_WAITERS bit in the user space variable.
1368 */
1369 return attach_to_pi_owner(uval, key, ps);
1370 }
1371
1372 /**
1373 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1374 * @q: The futex_q to unqueue
1375 *
1376 * The q->lock_ptr must not be NULL and must be held by the caller.
1377 */
1378 static void __unqueue_futex(struct futex_q *q)
1379 {
1380 struct futex_hash_bucket *hb;
1381
1382 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1383 || WARN_ON(plist_node_empty(&q->list)))
1384 return;
1385
1386 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1387 plist_del(&q->list, &hb->chain);
1388 hb_waiters_dec(hb);
1389 }
1390
1391 /*
1392 * The hash bucket lock must be held when this is called.
1393 * Afterwards, the futex_q must not be accessed. Callers
1394 * must ensure to later call wake_up_q() for the actual
1395 * wakeups to occur.
1396 */
1397 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1398 {
1399 struct task_struct *p = q->task;
1400
1401 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1402 return;
1403
1404 /*
1405 * Queue the task for later wakeup for after we've released
1406 * the hb->lock. wake_q_add() grabs reference to p.
1407 */
1408 wake_q_add(wake_q, p);
1409 __unqueue_futex(q);
1410 /*
1411 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1412 * is written, without taking any locks. This is possible in the event
1413 * of a spurious wakeup, for example. A memory barrier is required here
1414 * to prevent the following store to lock_ptr from getting ahead of the
1415 * plist_del in __unqueue_futex().
1416 */
1417 smp_store_release(&q->lock_ptr, NULL);
1418 }
1419
1420 /*
1421 * Caller must hold a reference on @pi_state.
1422 */
1423 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1424 {
1425 u32 uninitialized_var(curval), newval;
1426 struct task_struct *new_owner;
1427 bool postunlock = false;
1428 DEFINE_WAKE_Q(wake_q);
1429 int ret = 0;
1430
1431 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1432 if (WARN_ON_ONCE(!new_owner)) {
1433 /*
1434 * As per the comment in futex_unlock_pi() this should not happen.
1435 *
1436 * When this happens, give up our locks and try again, giving
1437 * the futex_lock_pi() instance time to complete, either by
1438 * waiting on the rtmutex or removing itself from the futex
1439 * queue.
1440 */
1441 ret = -EAGAIN;
1442 goto out_unlock;
1443 }
1444
1445 /*
1446 * We pass it to the next owner. The WAITERS bit is always kept
1447 * enabled while there is PI state around. We cleanup the owner
1448 * died bit, because we are the owner.
1449 */
1450 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1451
1452 if (unlikely(should_fail_futex(true)))
1453 ret = -EFAULT;
1454
1455 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1456 ret = -EFAULT;
1457
1458 } else if (curval != uval) {
1459 /*
1460 * If a unconditional UNLOCK_PI operation (user space did not
1461 * try the TID->0 transition) raced with a waiter setting the
1462 * FUTEX_WAITERS flag between get_user() and locking the hash
1463 * bucket lock, retry the operation.
1464 */
1465 if ((FUTEX_TID_MASK & curval) == uval)
1466 ret = -EAGAIN;
1467 else
1468 ret = -EINVAL;
1469 }
1470
1471 if (ret)
1472 goto out_unlock;
1473
1474 /*
1475 * This is a point of no return; once we modify the uval there is no
1476 * going back and subsequent operations must not fail.
1477 */
1478
1479 raw_spin_lock(&pi_state->owner->pi_lock);
1480 WARN_ON(list_empty(&pi_state->list));
1481 list_del_init(&pi_state->list);
1482 raw_spin_unlock(&pi_state->owner->pi_lock);
1483
1484 raw_spin_lock(&new_owner->pi_lock);
1485 WARN_ON(!list_empty(&pi_state->list));
1486 list_add(&pi_state->list, &new_owner->pi_state_list);
1487 pi_state->owner = new_owner;
1488 raw_spin_unlock(&new_owner->pi_lock);
1489
1490 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1491
1492 out_unlock:
1493 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1494
1495 if (postunlock)
1496 rt_mutex_postunlock(&wake_q);
1497
1498 return ret;
1499 }
1500
1501 /*
1502 * Express the locking dependencies for lockdep:
1503 */
1504 static inline void
1505 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1506 {
1507 if (hb1 <= hb2) {
1508 spin_lock(&hb1->lock);
1509 if (hb1 < hb2)
1510 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1511 } else { /* hb1 > hb2 */
1512 spin_lock(&hb2->lock);
1513 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1514 }
1515 }
1516
1517 static inline void
1518 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1519 {
1520 spin_unlock(&hb1->lock);
1521 if (hb1 != hb2)
1522 spin_unlock(&hb2->lock);
1523 }
1524
1525 /*
1526 * Wake up waiters matching bitset queued on this futex (uaddr).
1527 */
1528 static int
1529 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1530 {
1531 struct futex_hash_bucket *hb;
1532 struct futex_q *this, *next;
1533 union futex_key key = FUTEX_KEY_INIT;
1534 int ret;
1535 DEFINE_WAKE_Q(wake_q);
1536
1537 if (!bitset)
1538 return -EINVAL;
1539
1540 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1541 if (unlikely(ret != 0))
1542 goto out;
1543
1544 hb = hash_futex(&key);
1545
1546 /* Make sure we really have tasks to wakeup */
1547 if (!hb_waiters_pending(hb))
1548 goto out_put_key;
1549
1550 spin_lock(&hb->lock);
1551
1552 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1553 if (match_futex (&this->key, &key)) {
1554 if (this->pi_state || this->rt_waiter) {
1555 ret = -EINVAL;
1556 break;
1557 }
1558
1559 /* Check if one of the bits is set in both bitsets */
1560 if (!(this->bitset & bitset))
1561 continue;
1562
1563 mark_wake_futex(&wake_q, this);
1564 if (++ret >= nr_wake)
1565 break;
1566 }
1567 }
1568
1569 spin_unlock(&hb->lock);
1570 wake_up_q(&wake_q);
1571 out_put_key:
1572 put_futex_key(&key);
1573 out:
1574 return ret;
1575 }
1576
1577 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1578 {
1579 unsigned int op = (encoded_op & 0x70000000) >> 28;
1580 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1581 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 12);
1582 int cmparg = sign_extend32(encoded_op & 0x00000fff, 12);
1583 int oldval, ret;
1584
1585 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1586 if (oparg < 0 || oparg > 31)
1587 return -EINVAL;
1588 oparg = 1 << oparg;
1589 }
1590
1591 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1592 return -EFAULT;
1593
1594 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1595 if (ret)
1596 return ret;
1597
1598 switch (cmp) {
1599 case FUTEX_OP_CMP_EQ:
1600 return oldval == cmparg;
1601 case FUTEX_OP_CMP_NE:
1602 return oldval != cmparg;
1603 case FUTEX_OP_CMP_LT:
1604 return oldval < cmparg;
1605 case FUTEX_OP_CMP_GE:
1606 return oldval >= cmparg;
1607 case FUTEX_OP_CMP_LE:
1608 return oldval <= cmparg;
1609 case FUTEX_OP_CMP_GT:
1610 return oldval > cmparg;
1611 default:
1612 return -ENOSYS;
1613 }
1614 }
1615
1616 /*
1617 * Wake up all waiters hashed on the physical page that is mapped
1618 * to this virtual address:
1619 */
1620 static int
1621 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1622 int nr_wake, int nr_wake2, int op)
1623 {
1624 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1625 struct futex_hash_bucket *hb1, *hb2;
1626 struct futex_q *this, *next;
1627 int ret, op_ret;
1628 DEFINE_WAKE_Q(wake_q);
1629
1630 retry:
1631 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1632 if (unlikely(ret != 0))
1633 goto out;
1634 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1635 if (unlikely(ret != 0))
1636 goto out_put_key1;
1637
1638 hb1 = hash_futex(&key1);
1639 hb2 = hash_futex(&key2);
1640
1641 retry_private:
1642 double_lock_hb(hb1, hb2);
1643 op_ret = futex_atomic_op_inuser(op, uaddr2);
1644 if (unlikely(op_ret < 0)) {
1645
1646 double_unlock_hb(hb1, hb2);
1647
1648 #ifndef CONFIG_MMU
1649 /*
1650 * we don't get EFAULT from MMU faults if we don't have an MMU,
1651 * but we might get them from range checking
1652 */
1653 ret = op_ret;
1654 goto out_put_keys;
1655 #endif
1656
1657 if (unlikely(op_ret != -EFAULT)) {
1658 ret = op_ret;
1659 goto out_put_keys;
1660 }
1661
1662 ret = fault_in_user_writeable(uaddr2);
1663 if (ret)
1664 goto out_put_keys;
1665
1666 if (!(flags & FLAGS_SHARED))
1667 goto retry_private;
1668
1669 put_futex_key(&key2);
1670 put_futex_key(&key1);
1671 goto retry;
1672 }
1673
1674 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1675 if (match_futex (&this->key, &key1)) {
1676 if (this->pi_state || this->rt_waiter) {
1677 ret = -EINVAL;
1678 goto out_unlock;
1679 }
1680 mark_wake_futex(&wake_q, this);
1681 if (++ret >= nr_wake)
1682 break;
1683 }
1684 }
1685
1686 if (op_ret > 0) {
1687 op_ret = 0;
1688 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1689 if (match_futex (&this->key, &key2)) {
1690 if (this->pi_state || this->rt_waiter) {
1691 ret = -EINVAL;
1692 goto out_unlock;
1693 }
1694 mark_wake_futex(&wake_q, this);
1695 if (++op_ret >= nr_wake2)
1696 break;
1697 }
1698 }
1699 ret += op_ret;
1700 }
1701
1702 out_unlock:
1703 double_unlock_hb(hb1, hb2);
1704 wake_up_q(&wake_q);
1705 out_put_keys:
1706 put_futex_key(&key2);
1707 out_put_key1:
1708 put_futex_key(&key1);
1709 out:
1710 return ret;
1711 }
1712
1713 /**
1714 * requeue_futex() - Requeue a futex_q from one hb to another
1715 * @q: the futex_q to requeue
1716 * @hb1: the source hash_bucket
1717 * @hb2: the target hash_bucket
1718 * @key2: the new key for the requeued futex_q
1719 */
1720 static inline
1721 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1722 struct futex_hash_bucket *hb2, union futex_key *key2)
1723 {
1724
1725 /*
1726 * If key1 and key2 hash to the same bucket, no need to
1727 * requeue.
1728 */
1729 if (likely(&hb1->chain != &hb2->chain)) {
1730 plist_del(&q->list, &hb1->chain);
1731 hb_waiters_dec(hb1);
1732 hb_waiters_inc(hb2);
1733 plist_add(&q->list, &hb2->chain);
1734 q->lock_ptr = &hb2->lock;
1735 }
1736 get_futex_key_refs(key2);
1737 q->key = *key2;
1738 }
1739
1740 /**
1741 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1742 * @q: the futex_q
1743 * @key: the key of the requeue target futex
1744 * @hb: the hash_bucket of the requeue target futex
1745 *
1746 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1747 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1748 * to the requeue target futex so the waiter can detect the wakeup on the right
1749 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1750 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1751 * to protect access to the pi_state to fixup the owner later. Must be called
1752 * with both q->lock_ptr and hb->lock held.
1753 */
1754 static inline
1755 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1756 struct futex_hash_bucket *hb)
1757 {
1758 get_futex_key_refs(key);
1759 q->key = *key;
1760
1761 __unqueue_futex(q);
1762
1763 WARN_ON(!q->rt_waiter);
1764 q->rt_waiter = NULL;
1765
1766 q->lock_ptr = &hb->lock;
1767
1768 wake_up_state(q->task, TASK_NORMAL);
1769 }
1770
1771 /**
1772 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1773 * @pifutex: the user address of the to futex
1774 * @hb1: the from futex hash bucket, must be locked by the caller
1775 * @hb2: the to futex hash bucket, must be locked by the caller
1776 * @key1: the from futex key
1777 * @key2: the to futex key
1778 * @ps: address to store the pi_state pointer
1779 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1780 *
1781 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1782 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1783 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1784 * hb1 and hb2 must be held by the caller.
1785 *
1786 * Return:
1787 * - 0 - failed to acquire the lock atomically;
1788 * - >0 - acquired the lock, return value is vpid of the top_waiter
1789 * - <0 - error
1790 */
1791 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1792 struct futex_hash_bucket *hb1,
1793 struct futex_hash_bucket *hb2,
1794 union futex_key *key1, union futex_key *key2,
1795 struct futex_pi_state **ps, int set_waiters)
1796 {
1797 struct futex_q *top_waiter = NULL;
1798 u32 curval;
1799 int ret, vpid;
1800
1801 if (get_futex_value_locked(&curval, pifutex))
1802 return -EFAULT;
1803
1804 if (unlikely(should_fail_futex(true)))
1805 return -EFAULT;
1806
1807 /*
1808 * Find the top_waiter and determine if there are additional waiters.
1809 * If the caller intends to requeue more than 1 waiter to pifutex,
1810 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1811 * as we have means to handle the possible fault. If not, don't set
1812 * the bit unecessarily as it will force the subsequent unlock to enter
1813 * the kernel.
1814 */
1815 top_waiter = futex_top_waiter(hb1, key1);
1816
1817 /* There are no waiters, nothing for us to do. */
1818 if (!top_waiter)
1819 return 0;
1820
1821 /* Ensure we requeue to the expected futex. */
1822 if (!match_futex(top_waiter->requeue_pi_key, key2))
1823 return -EINVAL;
1824
1825 /*
1826 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1827 * the contended case or if set_waiters is 1. The pi_state is returned
1828 * in ps in contended cases.
1829 */
1830 vpid = task_pid_vnr(top_waiter->task);
1831 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1832 set_waiters);
1833 if (ret == 1) {
1834 requeue_pi_wake_futex(top_waiter, key2, hb2);
1835 return vpid;
1836 }
1837 return ret;
1838 }
1839
1840 /**
1841 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1842 * @uaddr1: source futex user address
1843 * @flags: futex flags (FLAGS_SHARED, etc.)
1844 * @uaddr2: target futex user address
1845 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1846 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1847 * @cmpval: @uaddr1 expected value (or %NULL)
1848 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1849 * pi futex (pi to pi requeue is not supported)
1850 *
1851 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1852 * uaddr2 atomically on behalf of the top waiter.
1853 *
1854 * Return:
1855 * - >=0 - on success, the number of tasks requeued or woken;
1856 * - <0 - on error
1857 */
1858 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1859 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1860 u32 *cmpval, int requeue_pi)
1861 {
1862 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1863 int drop_count = 0, task_count = 0, ret;
1864 struct futex_pi_state *pi_state = NULL;
1865 struct futex_hash_bucket *hb1, *hb2;
1866 struct futex_q *this, *next;
1867 DEFINE_WAKE_Q(wake_q);
1868
1869 if (requeue_pi) {
1870 /*
1871 * Requeue PI only works on two distinct uaddrs. This
1872 * check is only valid for private futexes. See below.
1873 */
1874 if (uaddr1 == uaddr2)
1875 return -EINVAL;
1876
1877 /*
1878 * requeue_pi requires a pi_state, try to allocate it now
1879 * without any locks in case it fails.
1880 */
1881 if (refill_pi_state_cache())
1882 return -ENOMEM;
1883 /*
1884 * requeue_pi must wake as many tasks as it can, up to nr_wake
1885 * + nr_requeue, since it acquires the rt_mutex prior to
1886 * returning to userspace, so as to not leave the rt_mutex with
1887 * waiters and no owner. However, second and third wake-ups
1888 * cannot be predicted as they involve race conditions with the
1889 * first wake and a fault while looking up the pi_state. Both
1890 * pthread_cond_signal() and pthread_cond_broadcast() should
1891 * use nr_wake=1.
1892 */
1893 if (nr_wake != 1)
1894 return -EINVAL;
1895 }
1896
1897 retry:
1898 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1899 if (unlikely(ret != 0))
1900 goto out;
1901 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1902 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1903 if (unlikely(ret != 0))
1904 goto out_put_key1;
1905
1906 /*
1907 * The check above which compares uaddrs is not sufficient for
1908 * shared futexes. We need to compare the keys:
1909 */
1910 if (requeue_pi && match_futex(&key1, &key2)) {
1911 ret = -EINVAL;
1912 goto out_put_keys;
1913 }
1914
1915 hb1 = hash_futex(&key1);
1916 hb2 = hash_futex(&key2);
1917
1918 retry_private:
1919 hb_waiters_inc(hb2);
1920 double_lock_hb(hb1, hb2);
1921
1922 if (likely(cmpval != NULL)) {
1923 u32 curval;
1924
1925 ret = get_futex_value_locked(&curval, uaddr1);
1926
1927 if (unlikely(ret)) {
1928 double_unlock_hb(hb1, hb2);
1929 hb_waiters_dec(hb2);
1930
1931 ret = get_user(curval, uaddr1);
1932 if (ret)
1933 goto out_put_keys;
1934
1935 if (!(flags & FLAGS_SHARED))
1936 goto retry_private;
1937
1938 put_futex_key(&key2);
1939 put_futex_key(&key1);
1940 goto retry;
1941 }
1942 if (curval != *cmpval) {
1943 ret = -EAGAIN;
1944 goto out_unlock;
1945 }
1946 }
1947
1948 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1949 /*
1950 * Attempt to acquire uaddr2 and wake the top waiter. If we
1951 * intend to requeue waiters, force setting the FUTEX_WAITERS
1952 * bit. We force this here where we are able to easily handle
1953 * faults rather in the requeue loop below.
1954 */
1955 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1956 &key2, &pi_state, nr_requeue);
1957
1958 /*
1959 * At this point the top_waiter has either taken uaddr2 or is
1960 * waiting on it. If the former, then the pi_state will not
1961 * exist yet, look it up one more time to ensure we have a
1962 * reference to it. If the lock was taken, ret contains the
1963 * vpid of the top waiter task.
1964 * If the lock was not taken, we have pi_state and an initial
1965 * refcount on it. In case of an error we have nothing.
1966 */
1967 if (ret > 0) {
1968 WARN_ON(pi_state);
1969 drop_count++;
1970 task_count++;
1971 /*
1972 * If we acquired the lock, then the user space value
1973 * of uaddr2 should be vpid. It cannot be changed by
1974 * the top waiter as it is blocked on hb2 lock if it
1975 * tries to do so. If something fiddled with it behind
1976 * our back the pi state lookup might unearth it. So
1977 * we rather use the known value than rereading and
1978 * handing potential crap to lookup_pi_state.
1979 *
1980 * If that call succeeds then we have pi_state and an
1981 * initial refcount on it.
1982 */
1983 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1984 }
1985
1986 switch (ret) {
1987 case 0:
1988 /* We hold a reference on the pi state. */
1989 break;
1990
1991 /* If the above failed, then pi_state is NULL */
1992 case -EFAULT:
1993 double_unlock_hb(hb1, hb2);
1994 hb_waiters_dec(hb2);
1995 put_futex_key(&key2);
1996 put_futex_key(&key1);
1997 ret = fault_in_user_writeable(uaddr2);
1998 if (!ret)
1999 goto retry;
2000 goto out;
2001 case -EAGAIN:
2002 /*
2003 * Two reasons for this:
2004 * - Owner is exiting and we just wait for the
2005 * exit to complete.
2006 * - The user space value changed.
2007 */
2008 double_unlock_hb(hb1, hb2);
2009 hb_waiters_dec(hb2);
2010 put_futex_key(&key2);
2011 put_futex_key(&key1);
2012 cond_resched();
2013 goto retry;
2014 default:
2015 goto out_unlock;
2016 }
2017 }
2018
2019 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2020 if (task_count - nr_wake >= nr_requeue)
2021 break;
2022
2023 if (!match_futex(&this->key, &key1))
2024 continue;
2025
2026 /*
2027 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2028 * be paired with each other and no other futex ops.
2029 *
2030 * We should never be requeueing a futex_q with a pi_state,
2031 * which is awaiting a futex_unlock_pi().
2032 */
2033 if ((requeue_pi && !this->rt_waiter) ||
2034 (!requeue_pi && this->rt_waiter) ||
2035 this->pi_state) {
2036 ret = -EINVAL;
2037 break;
2038 }
2039
2040 /*
2041 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2042 * lock, we already woke the top_waiter. If not, it will be
2043 * woken by futex_unlock_pi().
2044 */
2045 if (++task_count <= nr_wake && !requeue_pi) {
2046 mark_wake_futex(&wake_q, this);
2047 continue;
2048 }
2049
2050 /* Ensure we requeue to the expected futex for requeue_pi. */
2051 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2052 ret = -EINVAL;
2053 break;
2054 }
2055
2056 /*
2057 * Requeue nr_requeue waiters and possibly one more in the case
2058 * of requeue_pi if we couldn't acquire the lock atomically.
2059 */
2060 if (requeue_pi) {
2061 /*
2062 * Prepare the waiter to take the rt_mutex. Take a
2063 * refcount on the pi_state and store the pointer in
2064 * the futex_q object of the waiter.
2065 */
2066 get_pi_state(pi_state);
2067 this->pi_state = pi_state;
2068 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2069 this->rt_waiter,
2070 this->task);
2071 if (ret == 1) {
2072 /*
2073 * We got the lock. We do neither drop the
2074 * refcount on pi_state nor clear
2075 * this->pi_state because the waiter needs the
2076 * pi_state for cleaning up the user space
2077 * value. It will drop the refcount after
2078 * doing so.
2079 */
2080 requeue_pi_wake_futex(this, &key2, hb2);
2081 drop_count++;
2082 continue;
2083 } else if (ret) {
2084 /*
2085 * rt_mutex_start_proxy_lock() detected a
2086 * potential deadlock when we tried to queue
2087 * that waiter. Drop the pi_state reference
2088 * which we took above and remove the pointer
2089 * to the state from the waiters futex_q
2090 * object.
2091 */
2092 this->pi_state = NULL;
2093 put_pi_state(pi_state);
2094 /*
2095 * We stop queueing more waiters and let user
2096 * space deal with the mess.
2097 */
2098 break;
2099 }
2100 }
2101 requeue_futex(this, hb1, hb2, &key2);
2102 drop_count++;
2103 }
2104
2105 /*
2106 * We took an extra initial reference to the pi_state either
2107 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2108 * need to drop it here again.
2109 */
2110 put_pi_state(pi_state);
2111
2112 out_unlock:
2113 double_unlock_hb(hb1, hb2);
2114 wake_up_q(&wake_q);
2115 hb_waiters_dec(hb2);
2116
2117 /*
2118 * drop_futex_key_refs() must be called outside the spinlocks. During
2119 * the requeue we moved futex_q's from the hash bucket at key1 to the
2120 * one at key2 and updated their key pointer. We no longer need to
2121 * hold the references to key1.
2122 */
2123 while (--drop_count >= 0)
2124 drop_futex_key_refs(&key1);
2125
2126 out_put_keys:
2127 put_futex_key(&key2);
2128 out_put_key1:
2129 put_futex_key(&key1);
2130 out:
2131 return ret ? ret : task_count;
2132 }
2133
2134 /* The key must be already stored in q->key. */
2135 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2136 __acquires(&hb->lock)
2137 {
2138 struct futex_hash_bucket *hb;
2139
2140 hb = hash_futex(&q->key);
2141
2142 /*
2143 * Increment the counter before taking the lock so that
2144 * a potential waker won't miss a to-be-slept task that is
2145 * waiting for the spinlock. This is safe as all queue_lock()
2146 * users end up calling queue_me(). Similarly, for housekeeping,
2147 * decrement the counter at queue_unlock() when some error has
2148 * occurred and we don't end up adding the task to the list.
2149 */
2150 hb_waiters_inc(hb);
2151
2152 q->lock_ptr = &hb->lock;
2153
2154 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2155 return hb;
2156 }
2157
2158 static inline void
2159 queue_unlock(struct futex_hash_bucket *hb)
2160 __releases(&hb->lock)
2161 {
2162 spin_unlock(&hb->lock);
2163 hb_waiters_dec(hb);
2164 }
2165
2166 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2167 {
2168 int prio;
2169
2170 /*
2171 * The priority used to register this element is
2172 * - either the real thread-priority for the real-time threads
2173 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2174 * - or MAX_RT_PRIO for non-RT threads.
2175 * Thus, all RT-threads are woken first in priority order, and
2176 * the others are woken last, in FIFO order.
2177 */
2178 prio = min(current->normal_prio, MAX_RT_PRIO);
2179
2180 plist_node_init(&q->list, prio);
2181 plist_add(&q->list, &hb->chain);
2182 q->task = current;
2183 }
2184
2185 /**
2186 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2187 * @q: The futex_q to enqueue
2188 * @hb: The destination hash bucket
2189 *
2190 * The hb->lock must be held by the caller, and is released here. A call to
2191 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2192 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2193 * or nothing if the unqueue is done as part of the wake process and the unqueue
2194 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2195 * an example).
2196 */
2197 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2198 __releases(&hb->lock)
2199 {
2200 __queue_me(q, hb);
2201 spin_unlock(&hb->lock);
2202 }
2203
2204 /**
2205 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2206 * @q: The futex_q to unqueue
2207 *
2208 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2209 * be paired with exactly one earlier call to queue_me().
2210 *
2211 * Return:
2212 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2213 * - 0 - if the futex_q was already removed by the waking thread
2214 */
2215 static int unqueue_me(struct futex_q *q)
2216 {
2217 spinlock_t *lock_ptr;
2218 int ret = 0;
2219
2220 /* In the common case we don't take the spinlock, which is nice. */
2221 retry:
2222 /*
2223 * q->lock_ptr can change between this read and the following spin_lock.
2224 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2225 * optimizing lock_ptr out of the logic below.
2226 */
2227 lock_ptr = READ_ONCE(q->lock_ptr);
2228 if (lock_ptr != NULL) {
2229 spin_lock(lock_ptr);
2230 /*
2231 * q->lock_ptr can change between reading it and
2232 * spin_lock(), causing us to take the wrong lock. This
2233 * corrects the race condition.
2234 *
2235 * Reasoning goes like this: if we have the wrong lock,
2236 * q->lock_ptr must have changed (maybe several times)
2237 * between reading it and the spin_lock(). It can
2238 * change again after the spin_lock() but only if it was
2239 * already changed before the spin_lock(). It cannot,
2240 * however, change back to the original value. Therefore
2241 * we can detect whether we acquired the correct lock.
2242 */
2243 if (unlikely(lock_ptr != q->lock_ptr)) {
2244 spin_unlock(lock_ptr);
2245 goto retry;
2246 }
2247 __unqueue_futex(q);
2248
2249 BUG_ON(q->pi_state);
2250
2251 spin_unlock(lock_ptr);
2252 ret = 1;
2253 }
2254
2255 drop_futex_key_refs(&q->key);
2256 return ret;
2257 }
2258
2259 /*
2260 * PI futexes can not be requeued and must remove themself from the
2261 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2262 * and dropped here.
2263 */
2264 static void unqueue_me_pi(struct futex_q *q)
2265 __releases(q->lock_ptr)
2266 {
2267 __unqueue_futex(q);
2268
2269 BUG_ON(!q->pi_state);
2270 put_pi_state(q->pi_state);
2271 q->pi_state = NULL;
2272
2273 spin_unlock(q->lock_ptr);
2274 }
2275
2276 /*
2277 * Fixup the pi_state owner with the new owner.
2278 *
2279 * Must be called with hash bucket lock held and mm->sem held for non
2280 * private futexes.
2281 */
2282 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2283 struct task_struct *newowner)
2284 {
2285 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2286 struct futex_pi_state *pi_state = q->pi_state;
2287 u32 uval, uninitialized_var(curval), newval;
2288 struct task_struct *oldowner;
2289 int ret;
2290
2291 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2292
2293 oldowner = pi_state->owner;
2294 /* Owner died? */
2295 if (!pi_state->owner)
2296 newtid |= FUTEX_OWNER_DIED;
2297
2298 /*
2299 * We are here either because we stole the rtmutex from the
2300 * previous highest priority waiter or we are the highest priority
2301 * waiter but have failed to get the rtmutex the first time.
2302 *
2303 * We have to replace the newowner TID in the user space variable.
2304 * This must be atomic as we have to preserve the owner died bit here.
2305 *
2306 * Note: We write the user space value _before_ changing the pi_state
2307 * because we can fault here. Imagine swapped out pages or a fork
2308 * that marked all the anonymous memory readonly for cow.
2309 *
2310 * Modifying pi_state _before_ the user space value would leave the
2311 * pi_state in an inconsistent state when we fault here, because we
2312 * need to drop the locks to handle the fault. This might be observed
2313 * in the PID check in lookup_pi_state.
2314 */
2315 retry:
2316 if (get_futex_value_locked(&uval, uaddr))
2317 goto handle_fault;
2318
2319 for (;;) {
2320 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2321
2322 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2323 goto handle_fault;
2324 if (curval == uval)
2325 break;
2326 uval = curval;
2327 }
2328
2329 /*
2330 * We fixed up user space. Now we need to fix the pi_state
2331 * itself.
2332 */
2333 if (pi_state->owner != NULL) {
2334 raw_spin_lock(&pi_state->owner->pi_lock);
2335 WARN_ON(list_empty(&pi_state->list));
2336 list_del_init(&pi_state->list);
2337 raw_spin_unlock(&pi_state->owner->pi_lock);
2338 }
2339
2340 pi_state->owner = newowner;
2341
2342 raw_spin_lock(&newowner->pi_lock);
2343 WARN_ON(!list_empty(&pi_state->list));
2344 list_add(&pi_state->list, &newowner->pi_state_list);
2345 raw_spin_unlock(&newowner->pi_lock);
2346 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2347
2348 return 0;
2349
2350 /*
2351 * To handle the page fault we need to drop the locks here. That gives
2352 * the other task (either the highest priority waiter itself or the
2353 * task which stole the rtmutex) the chance to try the fixup of the
2354 * pi_state. So once we are back from handling the fault we need to
2355 * check the pi_state after reacquiring the locks and before trying to
2356 * do another fixup. When the fixup has been done already we simply
2357 * return.
2358 *
2359 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2360 * drop hb->lock since the caller owns the hb -> futex_q relation.
2361 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2362 */
2363 handle_fault:
2364 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2365 spin_unlock(q->lock_ptr);
2366
2367 ret = fault_in_user_writeable(uaddr);
2368
2369 spin_lock(q->lock_ptr);
2370 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2371
2372 /*
2373 * Check if someone else fixed it for us:
2374 */
2375 if (pi_state->owner != oldowner) {
2376 ret = 0;
2377 goto out_unlock;
2378 }
2379
2380 if (ret)
2381 goto out_unlock;
2382
2383 goto retry;
2384
2385 out_unlock:
2386 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2387 return ret;
2388 }
2389
2390 static long futex_wait_restart(struct restart_block *restart);
2391
2392 /**
2393 * fixup_owner() - Post lock pi_state and corner case management
2394 * @uaddr: user address of the futex
2395 * @q: futex_q (contains pi_state and access to the rt_mutex)
2396 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2397 *
2398 * After attempting to lock an rt_mutex, this function is called to cleanup
2399 * the pi_state owner as well as handle race conditions that may allow us to
2400 * acquire the lock. Must be called with the hb lock held.
2401 *
2402 * Return:
2403 * - 1 - success, lock taken;
2404 * - 0 - success, lock not taken;
2405 * - <0 - on error (-EFAULT)
2406 */
2407 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2408 {
2409 int ret = 0;
2410
2411 if (locked) {
2412 /*
2413 * Got the lock. We might not be the anticipated owner if we
2414 * did a lock-steal - fix up the PI-state in that case:
2415 *
2416 * We can safely read pi_state->owner without holding wait_lock
2417 * because we now own the rt_mutex, only the owner will attempt
2418 * to change it.
2419 */
2420 if (q->pi_state->owner != current)
2421 ret = fixup_pi_state_owner(uaddr, q, current);
2422 goto out;
2423 }
2424
2425 /*
2426 * Paranoia check. If we did not take the lock, then we should not be
2427 * the owner of the rt_mutex.
2428 */
2429 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2430 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2431 "pi-state %p\n", ret,
2432 q->pi_state->pi_mutex.owner,
2433 q->pi_state->owner);
2434 }
2435
2436 out:
2437 return ret ? ret : locked;
2438 }
2439
2440 /**
2441 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2442 * @hb: the futex hash bucket, must be locked by the caller
2443 * @q: the futex_q to queue up on
2444 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2445 */
2446 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2447 struct hrtimer_sleeper *timeout)
2448 {
2449 /*
2450 * The task state is guaranteed to be set before another task can
2451 * wake it. set_current_state() is implemented using smp_store_mb() and
2452 * queue_me() calls spin_unlock() upon completion, both serializing
2453 * access to the hash list and forcing another memory barrier.
2454 */
2455 set_current_state(TASK_INTERRUPTIBLE);
2456 queue_me(q, hb);
2457
2458 /* Arm the timer */
2459 if (timeout)
2460 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2461
2462 /*
2463 * If we have been removed from the hash list, then another task
2464 * has tried to wake us, and we can skip the call to schedule().
2465 */
2466 if (likely(!plist_node_empty(&q->list))) {
2467 /*
2468 * If the timer has already expired, current will already be
2469 * flagged for rescheduling. Only call schedule if there
2470 * is no timeout, or if it has yet to expire.
2471 */
2472 if (!timeout || timeout->task)
2473 freezable_schedule();
2474 }
2475 __set_current_state(TASK_RUNNING);
2476 }
2477
2478 /**
2479 * futex_wait_setup() - Prepare to wait on a futex
2480 * @uaddr: the futex userspace address
2481 * @val: the expected value
2482 * @flags: futex flags (FLAGS_SHARED, etc.)
2483 * @q: the associated futex_q
2484 * @hb: storage for hash_bucket pointer to be returned to caller
2485 *
2486 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2487 * compare it with the expected value. Handle atomic faults internally.
2488 * Return with the hb lock held and a q.key reference on success, and unlocked
2489 * with no q.key reference on failure.
2490 *
2491 * Return:
2492 * - 0 - uaddr contains val and hb has been locked;
2493 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2494 */
2495 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2496 struct futex_q *q, struct futex_hash_bucket **hb)
2497 {
2498 u32 uval;
2499 int ret;
2500
2501 /*
2502 * Access the page AFTER the hash-bucket is locked.
2503 * Order is important:
2504 *
2505 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2506 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2507 *
2508 * The basic logical guarantee of a futex is that it blocks ONLY
2509 * if cond(var) is known to be true at the time of blocking, for
2510 * any cond. If we locked the hash-bucket after testing *uaddr, that
2511 * would open a race condition where we could block indefinitely with
2512 * cond(var) false, which would violate the guarantee.
2513 *
2514 * On the other hand, we insert q and release the hash-bucket only
2515 * after testing *uaddr. This guarantees that futex_wait() will NOT
2516 * absorb a wakeup if *uaddr does not match the desired values
2517 * while the syscall executes.
2518 */
2519 retry:
2520 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2521 if (unlikely(ret != 0))
2522 return ret;
2523
2524 retry_private:
2525 *hb = queue_lock(q);
2526
2527 ret = get_futex_value_locked(&uval, uaddr);
2528
2529 if (ret) {
2530 queue_unlock(*hb);
2531
2532 ret = get_user(uval, uaddr);
2533 if (ret)
2534 goto out;
2535
2536 if (!(flags & FLAGS_SHARED))
2537 goto retry_private;
2538
2539 put_futex_key(&q->key);
2540 goto retry;
2541 }
2542
2543 if (uval != val) {
2544 queue_unlock(*hb);
2545 ret = -EWOULDBLOCK;
2546 }
2547
2548 out:
2549 if (ret)
2550 put_futex_key(&q->key);
2551 return ret;
2552 }
2553
2554 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2555 ktime_t *abs_time, u32 bitset)
2556 {
2557 struct hrtimer_sleeper timeout, *to = NULL;
2558 struct restart_block *restart;
2559 struct futex_hash_bucket *hb;
2560 struct futex_q q = futex_q_init;
2561 int ret;
2562
2563 if (!bitset)
2564 return -EINVAL;
2565 q.bitset = bitset;
2566
2567 if (abs_time) {
2568 to = &timeout;
2569
2570 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2571 CLOCK_REALTIME : CLOCK_MONOTONIC,
2572 HRTIMER_MODE_ABS);
2573 hrtimer_init_sleeper(to, current);
2574 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2575 current->timer_slack_ns);
2576 }
2577
2578 retry:
2579 /*
2580 * Prepare to wait on uaddr. On success, holds hb lock and increments
2581 * q.key refs.
2582 */
2583 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2584 if (ret)
2585 goto out;
2586
2587 /* queue_me and wait for wakeup, timeout, or a signal. */
2588 futex_wait_queue_me(hb, &q, to);
2589
2590 /* If we were woken (and unqueued), we succeeded, whatever. */
2591 ret = 0;
2592 /* unqueue_me() drops q.key ref */
2593 if (!unqueue_me(&q))
2594 goto out;
2595 ret = -ETIMEDOUT;
2596 if (to && !to->task)
2597 goto out;
2598
2599 /*
2600 * We expect signal_pending(current), but we might be the
2601 * victim of a spurious wakeup as well.
2602 */
2603 if (!signal_pending(current))
2604 goto retry;
2605
2606 ret = -ERESTARTSYS;
2607 if (!abs_time)
2608 goto out;
2609
2610 restart = &current->restart_block;
2611 restart->fn = futex_wait_restart;
2612 restart->futex.uaddr = uaddr;
2613 restart->futex.val = val;
2614 restart->futex.time = *abs_time;
2615 restart->futex.bitset = bitset;
2616 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2617
2618 ret = -ERESTART_RESTARTBLOCK;
2619
2620 out:
2621 if (to) {
2622 hrtimer_cancel(&to->timer);
2623 destroy_hrtimer_on_stack(&to->timer);
2624 }
2625 return ret;
2626 }
2627
2628
2629 static long futex_wait_restart(struct restart_block *restart)
2630 {
2631 u32 __user *uaddr = restart->futex.uaddr;
2632 ktime_t t, *tp = NULL;
2633
2634 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2635 t = restart->futex.time;
2636 tp = &t;
2637 }
2638 restart->fn = do_no_restart_syscall;
2639
2640 return (long)futex_wait(uaddr, restart->futex.flags,
2641 restart->futex.val, tp, restart->futex.bitset);
2642 }
2643
2644
2645 /*
2646 * Userspace tried a 0 -> TID atomic transition of the futex value
2647 * and failed. The kernel side here does the whole locking operation:
2648 * if there are waiters then it will block as a consequence of relying
2649 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2650 * a 0 value of the futex too.).
2651 *
2652 * Also serves as futex trylock_pi()'ing, and due semantics.
2653 */
2654 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2655 ktime_t *time, int trylock)
2656 {
2657 struct hrtimer_sleeper timeout, *to = NULL;
2658 struct futex_pi_state *pi_state = NULL;
2659 struct rt_mutex_waiter rt_waiter;
2660 struct futex_hash_bucket *hb;
2661 struct futex_q q = futex_q_init;
2662 int res, ret;
2663
2664 if (refill_pi_state_cache())
2665 return -ENOMEM;
2666
2667 if (time) {
2668 to = &timeout;
2669 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2670 HRTIMER_MODE_ABS);
2671 hrtimer_init_sleeper(to, current);
2672 hrtimer_set_expires(&to->timer, *time);
2673 }
2674
2675 retry:
2676 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2677 if (unlikely(ret != 0))
2678 goto out;
2679
2680 retry_private:
2681 hb = queue_lock(&q);
2682
2683 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2684 if (unlikely(ret)) {
2685 /*
2686 * Atomic work succeeded and we got the lock,
2687 * or failed. Either way, we do _not_ block.
2688 */
2689 switch (ret) {
2690 case 1:
2691 /* We got the lock. */
2692 ret = 0;
2693 goto out_unlock_put_key;
2694 case -EFAULT:
2695 goto uaddr_faulted;
2696 case -EAGAIN:
2697 /*
2698 * Two reasons for this:
2699 * - Task is exiting and we just wait for the
2700 * exit to complete.
2701 * - The user space value changed.
2702 */
2703 queue_unlock(hb);
2704 put_futex_key(&q.key);
2705 cond_resched();
2706 goto retry;
2707 default:
2708 goto out_unlock_put_key;
2709 }
2710 }
2711
2712 WARN_ON(!q.pi_state);
2713
2714 /*
2715 * Only actually queue now that the atomic ops are done:
2716 */
2717 __queue_me(&q, hb);
2718
2719 if (trylock) {
2720 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2721 /* Fixup the trylock return value: */
2722 ret = ret ? 0 : -EWOULDBLOCK;
2723 goto no_block;
2724 }
2725
2726 rt_mutex_init_waiter(&rt_waiter);
2727
2728 /*
2729 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2730 * hold it while doing rt_mutex_start_proxy(), because then it will
2731 * include hb->lock in the blocking chain, even through we'll not in
2732 * fact hold it while blocking. This will lead it to report -EDEADLK
2733 * and BUG when futex_unlock_pi() interleaves with this.
2734 *
2735 * Therefore acquire wait_lock while holding hb->lock, but drop the
2736 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2737 * serializes against futex_unlock_pi() as that does the exact same
2738 * lock handoff sequence.
2739 */
2740 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2741 spin_unlock(q.lock_ptr);
2742 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2743 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2744
2745 if (ret) {
2746 if (ret == 1)
2747 ret = 0;
2748
2749 spin_lock(q.lock_ptr);
2750 goto no_block;
2751 }
2752
2753
2754 if (unlikely(to))
2755 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2756
2757 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2758
2759 spin_lock(q.lock_ptr);
2760 /*
2761 * If we failed to acquire the lock (signal/timeout), we must
2762 * first acquire the hb->lock before removing the lock from the
2763 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2764 * wait lists consistent.
2765 *
2766 * In particular; it is important that futex_unlock_pi() can not
2767 * observe this inconsistency.
2768 */
2769 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2770 ret = 0;
2771
2772 no_block:
2773 /*
2774 * Fixup the pi_state owner and possibly acquire the lock if we
2775 * haven't already.
2776 */
2777 res = fixup_owner(uaddr, &q, !ret);
2778 /*
2779 * If fixup_owner() returned an error, proprogate that. If it acquired
2780 * the lock, clear our -ETIMEDOUT or -EINTR.
2781 */
2782 if (res)
2783 ret = (res < 0) ? res : 0;
2784
2785 /*
2786 * If fixup_owner() faulted and was unable to handle the fault, unlock
2787 * it and return the fault to userspace.
2788 */
2789 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2790 pi_state = q.pi_state;
2791 get_pi_state(pi_state);
2792 }
2793
2794 /* Unqueue and drop the lock */
2795 unqueue_me_pi(&q);
2796
2797 if (pi_state) {
2798 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2799 put_pi_state(pi_state);
2800 }
2801
2802 goto out_put_key;
2803
2804 out_unlock_put_key:
2805 queue_unlock(hb);
2806
2807 out_put_key:
2808 put_futex_key(&q.key);
2809 out:
2810 if (to) {
2811 hrtimer_cancel(&to->timer);
2812 destroy_hrtimer_on_stack(&to->timer);
2813 }
2814 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2815
2816 uaddr_faulted:
2817 queue_unlock(hb);
2818
2819 ret = fault_in_user_writeable(uaddr);
2820 if (ret)
2821 goto out_put_key;
2822
2823 if (!(flags & FLAGS_SHARED))
2824 goto retry_private;
2825
2826 put_futex_key(&q.key);
2827 goto retry;
2828 }
2829
2830 /*
2831 * Userspace attempted a TID -> 0 atomic transition, and failed.
2832 * This is the in-kernel slowpath: we look up the PI state (if any),
2833 * and do the rt-mutex unlock.
2834 */
2835 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2836 {
2837 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2838 union futex_key key = FUTEX_KEY_INIT;
2839 struct futex_hash_bucket *hb;
2840 struct futex_q *top_waiter;
2841 int ret;
2842
2843 retry:
2844 if (get_user(uval, uaddr))
2845 return -EFAULT;
2846 /*
2847 * We release only a lock we actually own:
2848 */
2849 if ((uval & FUTEX_TID_MASK) != vpid)
2850 return -EPERM;
2851
2852 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2853 if (ret)
2854 return ret;
2855
2856 hb = hash_futex(&key);
2857 spin_lock(&hb->lock);
2858
2859 /*
2860 * Check waiters first. We do not trust user space values at
2861 * all and we at least want to know if user space fiddled
2862 * with the futex value instead of blindly unlocking.
2863 */
2864 top_waiter = futex_top_waiter(hb, &key);
2865 if (top_waiter) {
2866 struct futex_pi_state *pi_state = top_waiter->pi_state;
2867
2868 ret = -EINVAL;
2869 if (!pi_state)
2870 goto out_unlock;
2871
2872 /*
2873 * If current does not own the pi_state then the futex is
2874 * inconsistent and user space fiddled with the futex value.
2875 */
2876 if (pi_state->owner != current)
2877 goto out_unlock;
2878
2879 get_pi_state(pi_state);
2880 /*
2881 * By taking wait_lock while still holding hb->lock, we ensure
2882 * there is no point where we hold neither; and therefore
2883 * wake_futex_pi() must observe a state consistent with what we
2884 * observed.
2885 */
2886 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2887 spin_unlock(&hb->lock);
2888
2889 /* drops pi_state->pi_mutex.wait_lock */
2890 ret = wake_futex_pi(uaddr, uval, pi_state);
2891
2892 put_pi_state(pi_state);
2893
2894 /*
2895 * Success, we're done! No tricky corner cases.
2896 */
2897 if (!ret)
2898 goto out_putkey;
2899 /*
2900 * The atomic access to the futex value generated a
2901 * pagefault, so retry the user-access and the wakeup:
2902 */
2903 if (ret == -EFAULT)
2904 goto pi_faulted;
2905 /*
2906 * A unconditional UNLOCK_PI op raced against a waiter
2907 * setting the FUTEX_WAITERS bit. Try again.
2908 */
2909 if (ret == -EAGAIN) {
2910 put_futex_key(&key);
2911 goto retry;
2912 }
2913 /*
2914 * wake_futex_pi has detected invalid state. Tell user
2915 * space.
2916 */
2917 goto out_putkey;
2918 }
2919
2920 /*
2921 * We have no kernel internal state, i.e. no waiters in the
2922 * kernel. Waiters which are about to queue themselves are stuck
2923 * on hb->lock. So we can safely ignore them. We do neither
2924 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2925 * owner.
2926 */
2927 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2928 spin_unlock(&hb->lock);
2929 goto pi_faulted;
2930 }
2931
2932 /*
2933 * If uval has changed, let user space handle it.
2934 */
2935 ret = (curval == uval) ? 0 : -EAGAIN;
2936
2937 out_unlock:
2938 spin_unlock(&hb->lock);
2939 out_putkey:
2940 put_futex_key(&key);
2941 return ret;
2942
2943 pi_faulted:
2944 put_futex_key(&key);
2945
2946 ret = fault_in_user_writeable(uaddr);
2947 if (!ret)
2948 goto retry;
2949
2950 return ret;
2951 }
2952
2953 /**
2954 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2955 * @hb: the hash_bucket futex_q was original enqueued on
2956 * @q: the futex_q woken while waiting to be requeued
2957 * @key2: the futex_key of the requeue target futex
2958 * @timeout: the timeout associated with the wait (NULL if none)
2959 *
2960 * Detect if the task was woken on the initial futex as opposed to the requeue
2961 * target futex. If so, determine if it was a timeout or a signal that caused
2962 * the wakeup and return the appropriate error code to the caller. Must be
2963 * called with the hb lock held.
2964 *
2965 * Return:
2966 * - 0 = no early wakeup detected;
2967 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2968 */
2969 static inline
2970 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2971 struct futex_q *q, union futex_key *key2,
2972 struct hrtimer_sleeper *timeout)
2973 {
2974 int ret = 0;
2975
2976 /*
2977 * With the hb lock held, we avoid races while we process the wakeup.
2978 * We only need to hold hb (and not hb2) to ensure atomicity as the
2979 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2980 * It can't be requeued from uaddr2 to something else since we don't
2981 * support a PI aware source futex for requeue.
2982 */
2983 if (!match_futex(&q->key, key2)) {
2984 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2985 /*
2986 * We were woken prior to requeue by a timeout or a signal.
2987 * Unqueue the futex_q and determine which it was.
2988 */
2989 plist_del(&q->list, &hb->chain);
2990 hb_waiters_dec(hb);
2991
2992 /* Handle spurious wakeups gracefully */
2993 ret = -EWOULDBLOCK;
2994 if (timeout && !timeout->task)
2995 ret = -ETIMEDOUT;
2996 else if (signal_pending(current))
2997 ret = -ERESTARTNOINTR;
2998 }
2999 return ret;
3000 }
3001
3002 /**
3003 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3004 * @uaddr: the futex we initially wait on (non-pi)
3005 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3006 * the same type, no requeueing from private to shared, etc.
3007 * @val: the expected value of uaddr
3008 * @abs_time: absolute timeout
3009 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3010 * @uaddr2: the pi futex we will take prior to returning to user-space
3011 *
3012 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3013 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3014 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3015 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3016 * without one, the pi logic would not know which task to boost/deboost, if
3017 * there was a need to.
3018 *
3019 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3020 * via the following--
3021 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3022 * 2) wakeup on uaddr2 after a requeue
3023 * 3) signal
3024 * 4) timeout
3025 *
3026 * If 3, cleanup and return -ERESTARTNOINTR.
3027 *
3028 * If 2, we may then block on trying to take the rt_mutex and return via:
3029 * 5) successful lock
3030 * 6) signal
3031 * 7) timeout
3032 * 8) other lock acquisition failure
3033 *
3034 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3035 *
3036 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3037 *
3038 * Return:
3039 * - 0 - On success;
3040 * - <0 - On error
3041 */
3042 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3043 u32 val, ktime_t *abs_time, u32 bitset,
3044 u32 __user *uaddr2)
3045 {
3046 struct hrtimer_sleeper timeout, *to = NULL;
3047 struct futex_pi_state *pi_state = NULL;
3048 struct rt_mutex_waiter rt_waiter;
3049 struct futex_hash_bucket *hb;
3050 union futex_key key2 = FUTEX_KEY_INIT;
3051 struct futex_q q = futex_q_init;
3052 int res, ret;
3053
3054 if (uaddr == uaddr2)
3055 return -EINVAL;
3056
3057 if (!bitset)
3058 return -EINVAL;
3059
3060 if (abs_time) {
3061 to = &timeout;
3062 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3063 CLOCK_REALTIME : CLOCK_MONOTONIC,
3064 HRTIMER_MODE_ABS);
3065 hrtimer_init_sleeper(to, current);
3066 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3067 current->timer_slack_ns);
3068 }
3069
3070 /*
3071 * The waiter is allocated on our stack, manipulated by the requeue
3072 * code while we sleep on uaddr.
3073 */
3074 rt_mutex_init_waiter(&rt_waiter);
3075
3076 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3077 if (unlikely(ret != 0))
3078 goto out;
3079
3080 q.bitset = bitset;
3081 q.rt_waiter = &rt_waiter;
3082 q.requeue_pi_key = &key2;
3083
3084 /*
3085 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3086 * count.
3087 */
3088 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3089 if (ret)
3090 goto out_key2;
3091
3092 /*
3093 * The check above which compares uaddrs is not sufficient for
3094 * shared futexes. We need to compare the keys:
3095 */
3096 if (match_futex(&q.key, &key2)) {
3097 queue_unlock(hb);
3098 ret = -EINVAL;
3099 goto out_put_keys;
3100 }
3101
3102 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3103 futex_wait_queue_me(hb, &q, to);
3104
3105 spin_lock(&hb->lock);
3106 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3107 spin_unlock(&hb->lock);
3108 if (ret)
3109 goto out_put_keys;
3110
3111 /*
3112 * In order for us to be here, we know our q.key == key2, and since
3113 * we took the hb->lock above, we also know that futex_requeue() has
3114 * completed and we no longer have to concern ourselves with a wakeup
3115 * race with the atomic proxy lock acquisition by the requeue code. The
3116 * futex_requeue dropped our key1 reference and incremented our key2
3117 * reference count.
3118 */
3119
3120 /* Check if the requeue code acquired the second futex for us. */
3121 if (!q.rt_waiter) {
3122 /*
3123 * Got the lock. We might not be the anticipated owner if we
3124 * did a lock-steal - fix up the PI-state in that case.
3125 */
3126 if (q.pi_state && (q.pi_state->owner != current)) {
3127 spin_lock(q.lock_ptr);
3128 ret = fixup_pi_state_owner(uaddr2, &q, current);
3129 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3130 pi_state = q.pi_state;
3131 get_pi_state(pi_state);
3132 }
3133 /*
3134 * Drop the reference to the pi state which
3135 * the requeue_pi() code acquired for us.
3136 */
3137 put_pi_state(q.pi_state);
3138 spin_unlock(q.lock_ptr);
3139 }
3140 } else {
3141 struct rt_mutex *pi_mutex;
3142
3143 /*
3144 * We have been woken up by futex_unlock_pi(), a timeout, or a
3145 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3146 * the pi_state.
3147 */
3148 WARN_ON(!q.pi_state);
3149 pi_mutex = &q.pi_state->pi_mutex;
3150 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3151
3152 spin_lock(q.lock_ptr);
3153 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3154 ret = 0;
3155
3156 debug_rt_mutex_free_waiter(&rt_waiter);
3157 /*
3158 * Fixup the pi_state owner and possibly acquire the lock if we
3159 * haven't already.
3160 */
3161 res = fixup_owner(uaddr2, &q, !ret);
3162 /*
3163 * If fixup_owner() returned an error, proprogate that. If it
3164 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3165 */
3166 if (res)
3167 ret = (res < 0) ? res : 0;
3168
3169 /*
3170 * If fixup_pi_state_owner() faulted and was unable to handle
3171 * the fault, unlock the rt_mutex and return the fault to
3172 * userspace.
3173 */
3174 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3175 pi_state = q.pi_state;
3176 get_pi_state(pi_state);
3177 }
3178
3179 /* Unqueue and drop the lock. */
3180 unqueue_me_pi(&q);
3181 }
3182
3183 if (pi_state) {
3184 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3185 put_pi_state(pi_state);
3186 }
3187
3188 if (ret == -EINTR) {
3189 /*
3190 * We've already been requeued, but cannot restart by calling
3191 * futex_lock_pi() directly. We could restart this syscall, but
3192 * it would detect that the user space "val" changed and return
3193 * -EWOULDBLOCK. Save the overhead of the restart and return
3194 * -EWOULDBLOCK directly.
3195 */
3196 ret = -EWOULDBLOCK;
3197 }
3198
3199 out_put_keys:
3200 put_futex_key(&q.key);
3201 out_key2:
3202 put_futex_key(&key2);
3203
3204 out:
3205 if (to) {
3206 hrtimer_cancel(&to->timer);
3207 destroy_hrtimer_on_stack(&to->timer);
3208 }
3209 return ret;
3210 }
3211
3212 /*
3213 * Support for robust futexes: the kernel cleans up held futexes at
3214 * thread exit time.
3215 *
3216 * Implementation: user-space maintains a per-thread list of locks it
3217 * is holding. Upon do_exit(), the kernel carefully walks this list,
3218 * and marks all locks that are owned by this thread with the
3219 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3220 * always manipulated with the lock held, so the list is private and
3221 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3222 * field, to allow the kernel to clean up if the thread dies after
3223 * acquiring the lock, but just before it could have added itself to
3224 * the list. There can only be one such pending lock.
3225 */
3226
3227 /**
3228 * sys_set_robust_list() - Set the robust-futex list head of a task
3229 * @head: pointer to the list-head
3230 * @len: length of the list-head, as userspace expects
3231 */
3232 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3233 size_t, len)
3234 {
3235 if (!futex_cmpxchg_enabled)
3236 return -ENOSYS;
3237 /*
3238 * The kernel knows only one size for now:
3239 */
3240 if (unlikely(len != sizeof(*head)))
3241 return -EINVAL;
3242
3243 current->robust_list = head;
3244
3245 return 0;
3246 }
3247
3248 /**
3249 * sys_get_robust_list() - Get the robust-futex list head of a task
3250 * @pid: pid of the process [zero for current task]
3251 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3252 * @len_ptr: pointer to a length field, the kernel fills in the header size
3253 */
3254 SYSCALL_DEFINE3(get_robust_list, int, pid,
3255 struct robust_list_head __user * __user *, head_ptr,
3256 size_t __user *, len_ptr)
3257 {
3258 struct robust_list_head __user *head;
3259 unsigned long ret;
3260 struct task_struct *p;
3261
3262 if (!futex_cmpxchg_enabled)
3263 return -ENOSYS;
3264
3265 rcu_read_lock();
3266
3267 ret = -ESRCH;
3268 if (!pid)
3269 p = current;
3270 else {
3271 p = find_task_by_vpid(pid);
3272 if (!p)
3273 goto err_unlock;
3274 }
3275
3276 ret = -EPERM;
3277 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3278 goto err_unlock;
3279
3280 head = p->robust_list;
3281 rcu_read_unlock();
3282
3283 if (put_user(sizeof(*head), len_ptr))
3284 return -EFAULT;
3285 return put_user(head, head_ptr);
3286
3287 err_unlock:
3288 rcu_read_unlock();
3289
3290 return ret;
3291 }
3292
3293 /*
3294 * Process a futex-list entry, check whether it's owned by the
3295 * dying task, and do notification if so:
3296 */
3297 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3298 {
3299 u32 uval, uninitialized_var(nval), mval;
3300
3301 retry:
3302 if (get_user(uval, uaddr))
3303 return -1;
3304
3305 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3306 /*
3307 * Ok, this dying thread is truly holding a futex
3308 * of interest. Set the OWNER_DIED bit atomically
3309 * via cmpxchg, and if the value had FUTEX_WAITERS
3310 * set, wake up a waiter (if any). (We have to do a
3311 * futex_wake() even if OWNER_DIED is already set -
3312 * to handle the rare but possible case of recursive
3313 * thread-death.) The rest of the cleanup is done in
3314 * userspace.
3315 */
3316 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3317 /*
3318 * We are not holding a lock here, but we want to have
3319 * the pagefault_disable/enable() protection because
3320 * we want to handle the fault gracefully. If the
3321 * access fails we try to fault in the futex with R/W
3322 * verification via get_user_pages. get_user() above
3323 * does not guarantee R/W access. If that fails we
3324 * give up and leave the futex locked.
3325 */
3326 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3327 if (fault_in_user_writeable(uaddr))
3328 return -1;
3329 goto retry;
3330 }
3331 if (nval != uval)
3332 goto retry;
3333
3334 /*
3335 * Wake robust non-PI futexes here. The wakeup of
3336 * PI futexes happens in exit_pi_state():
3337 */
3338 if (!pi && (uval & FUTEX_WAITERS))
3339 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3340 }
3341 return 0;
3342 }
3343
3344 /*
3345 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3346 */
3347 static inline int fetch_robust_entry(struct robust_list __user **entry,
3348 struct robust_list __user * __user *head,
3349 unsigned int *pi)
3350 {
3351 unsigned long uentry;
3352
3353 if (get_user(uentry, (unsigned long __user *)head))
3354 return -EFAULT;
3355
3356 *entry = (void __user *)(uentry & ~1UL);
3357 *pi = uentry & 1;
3358
3359 return 0;
3360 }
3361
3362 /*
3363 * Walk curr->robust_list (very carefully, it's a userspace list!)
3364 * and mark any locks found there dead, and notify any waiters.
3365 *
3366 * We silently return on any sign of list-walking problem.
3367 */
3368 void exit_robust_list(struct task_struct *curr)
3369 {
3370 struct robust_list_head __user *head = curr->robust_list;
3371 struct robust_list __user *entry, *next_entry, *pending;
3372 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3373 unsigned int uninitialized_var(next_pi);
3374 unsigned long futex_offset;
3375 int rc;
3376
3377 if (!futex_cmpxchg_enabled)
3378 return;
3379
3380 /*
3381 * Fetch the list head (which was registered earlier, via
3382 * sys_set_robust_list()):
3383 */
3384 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3385 return;
3386 /*
3387 * Fetch the relative futex offset:
3388 */
3389 if (get_user(futex_offset, &head->futex_offset))
3390 return;
3391 /*
3392 * Fetch any possibly pending lock-add first, and handle it
3393 * if it exists:
3394 */
3395 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3396 return;
3397
3398 next_entry = NULL; /* avoid warning with gcc */
3399 while (entry != &head->list) {
3400 /*
3401 * Fetch the next entry in the list before calling
3402 * handle_futex_death:
3403 */
3404 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3405 /*
3406 * A pending lock might already be on the list, so
3407 * don't process it twice:
3408 */
3409 if (entry != pending)
3410 if (handle_futex_death((void __user *)entry + futex_offset,
3411 curr, pi))
3412 return;
3413 if (rc)
3414 return;
3415 entry = next_entry;
3416 pi = next_pi;
3417 /*
3418 * Avoid excessively long or circular lists:
3419 */
3420 if (!--limit)
3421 break;
3422
3423 cond_resched();
3424 }
3425
3426 if (pending)
3427 handle_futex_death((void __user *)pending + futex_offset,
3428 curr, pip);
3429 }
3430
3431 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3432 u32 __user *uaddr2, u32 val2, u32 val3)
3433 {
3434 int cmd = op & FUTEX_CMD_MASK;
3435 unsigned int flags = 0;
3436
3437 if (!(op & FUTEX_PRIVATE_FLAG))
3438 flags |= FLAGS_SHARED;
3439
3440 if (op & FUTEX_CLOCK_REALTIME) {
3441 flags |= FLAGS_CLOCKRT;
3442 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3443 cmd != FUTEX_WAIT_REQUEUE_PI)
3444 return -ENOSYS;
3445 }
3446
3447 switch (cmd) {
3448 case FUTEX_LOCK_PI:
3449 case FUTEX_UNLOCK_PI:
3450 case FUTEX_TRYLOCK_PI:
3451 case FUTEX_WAIT_REQUEUE_PI:
3452 case FUTEX_CMP_REQUEUE_PI:
3453 if (!futex_cmpxchg_enabled)
3454 return -ENOSYS;
3455 }
3456
3457 switch (cmd) {
3458 case FUTEX_WAIT:
3459 val3 = FUTEX_BITSET_MATCH_ANY;
3460 case FUTEX_WAIT_BITSET:
3461 return futex_wait(uaddr, flags, val, timeout, val3);
3462 case FUTEX_WAKE:
3463 val3 = FUTEX_BITSET_MATCH_ANY;
3464 case FUTEX_WAKE_BITSET:
3465 return futex_wake(uaddr, flags, val, val3);
3466 case FUTEX_REQUEUE:
3467 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3468 case FUTEX_CMP_REQUEUE:
3469 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3470 case FUTEX_WAKE_OP:
3471 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3472 case FUTEX_LOCK_PI:
3473 return futex_lock_pi(uaddr, flags, timeout, 0);
3474 case FUTEX_UNLOCK_PI:
3475 return futex_unlock_pi(uaddr, flags);
3476 case FUTEX_TRYLOCK_PI:
3477 return futex_lock_pi(uaddr, flags, NULL, 1);
3478 case FUTEX_WAIT_REQUEUE_PI:
3479 val3 = FUTEX_BITSET_MATCH_ANY;
3480 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3481 uaddr2);
3482 case FUTEX_CMP_REQUEUE_PI:
3483 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3484 }
3485 return -ENOSYS;
3486 }
3487
3488
3489 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3490 struct timespec __user *, utime, u32 __user *, uaddr2,
3491 u32, val3)
3492 {
3493 struct timespec ts;
3494 ktime_t t, *tp = NULL;
3495 u32 val2 = 0;
3496 int cmd = op & FUTEX_CMD_MASK;
3497
3498 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3499 cmd == FUTEX_WAIT_BITSET ||
3500 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3501 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3502 return -EFAULT;
3503 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3504 return -EFAULT;
3505 if (!timespec_valid(&ts))
3506 return -EINVAL;
3507
3508 t = timespec_to_ktime(ts);
3509 if (cmd == FUTEX_WAIT)
3510 t = ktime_add_safe(ktime_get(), t);
3511 tp = &t;
3512 }
3513 /*
3514 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3515 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3516 */
3517 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3518 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3519 val2 = (u32) (unsigned long) utime;
3520
3521 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3522 }
3523
3524 static void __init futex_detect_cmpxchg(void)
3525 {
3526 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3527 u32 curval;
3528
3529 /*
3530 * This will fail and we want it. Some arch implementations do
3531 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3532 * functionality. We want to know that before we call in any
3533 * of the complex code paths. Also we want to prevent
3534 * registration of robust lists in that case. NULL is
3535 * guaranteed to fault and we get -EFAULT on functional
3536 * implementation, the non-functional ones will return
3537 * -ENOSYS.
3538 */
3539 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3540 futex_cmpxchg_enabled = 1;
3541 #endif
3542 }
3543
3544 static int __init futex_init(void)
3545 {
3546 unsigned int futex_shift;
3547 unsigned long i;
3548
3549 #if CONFIG_BASE_SMALL
3550 futex_hashsize = 16;
3551 #else
3552 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3553 #endif
3554
3555 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3556 futex_hashsize, 0,
3557 futex_hashsize < 256 ? HASH_SMALL : 0,
3558 &futex_shift, NULL,
3559 futex_hashsize, futex_hashsize);
3560 futex_hashsize = 1UL << futex_shift;
3561
3562 futex_detect_cmpxchg();
3563
3564 for (i = 0; i < futex_hashsize; i++) {
3565 atomic_set(&futex_queues[i].waiters, 0);
3566 plist_head_init(&futex_queues[i].chain);
3567 spin_lock_init(&futex_queues[i].lock);
3568 }
3569
3570 return 0;
3571 }
3572 core_initcall(futex_init);