]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/futex.c
x86/unwind/orc: Prevent unwinding before ORC initialization
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
33 */
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
59
60 #include <asm/futex.h>
61
62 #include "locking/rtmutex_common.h"
63
64 /*
65 * READ this before attempting to hack on futexes!
66 *
67 * Basic futex operation and ordering guarantees
68 * =============================================
69 *
70 * The waiter reads the futex value in user space and calls
71 * futex_wait(). This function computes the hash bucket and acquires
72 * the hash bucket lock. After that it reads the futex user space value
73 * again and verifies that the data has not changed. If it has not changed
74 * it enqueues itself into the hash bucket, releases the hash bucket lock
75 * and schedules.
76 *
77 * The waker side modifies the user space value of the futex and calls
78 * futex_wake(). This function computes the hash bucket and acquires the
79 * hash bucket lock. Then it looks for waiters on that futex in the hash
80 * bucket and wakes them.
81 *
82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
83 * the hb spinlock can be avoided and simply return. In order for this
84 * optimization to work, ordering guarantees must exist so that the waiter
85 * being added to the list is acknowledged when the list is concurrently being
86 * checked by the waker, avoiding scenarios like the following:
87 *
88 * CPU 0 CPU 1
89 * val = *futex;
90 * sys_futex(WAIT, futex, val);
91 * futex_wait(futex, val);
92 * uval = *futex;
93 * *futex = newval;
94 * sys_futex(WAKE, futex);
95 * futex_wake(futex);
96 * if (queue_empty())
97 * return;
98 * if (uval == val)
99 * lock(hash_bucket(futex));
100 * queue();
101 * unlock(hash_bucket(futex));
102 * schedule();
103 *
104 * This would cause the waiter on CPU 0 to wait forever because it
105 * missed the transition of the user space value from val to newval
106 * and the waker did not find the waiter in the hash bucket queue.
107 *
108 * The correct serialization ensures that a waiter either observes
109 * the changed user space value before blocking or is woken by a
110 * concurrent waker:
111 *
112 * CPU 0 CPU 1
113 * val = *futex;
114 * sys_futex(WAIT, futex, val);
115 * futex_wait(futex, val);
116 *
117 * waiters++; (a)
118 * smp_mb(); (A) <-- paired with -.
119 * |
120 * lock(hash_bucket(futex)); |
121 * |
122 * uval = *futex; |
123 * | *futex = newval;
124 * | sys_futex(WAKE, futex);
125 * | futex_wake(futex);
126 * |
127 * `--------> smp_mb(); (B)
128 * if (uval == val)
129 * queue();
130 * unlock(hash_bucket(futex));
131 * schedule(); if (waiters)
132 * lock(hash_bucket(futex));
133 * else wake_waiters(futex);
134 * waiters--; (b) unlock(hash_bucket(futex));
135 *
136 * Where (A) orders the waiters increment and the futex value read through
137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
138 * to futex and the waiters read (see hb_waiters_pending()).
139 *
140 * This yields the following case (where X:=waiters, Y:=futex):
141 *
142 * X = Y = 0
143 *
144 * w[X]=1 w[Y]=1
145 * MB MB
146 * r[Y]=y r[X]=x
147 *
148 * Which guarantees that x==0 && y==0 is impossible; which translates back into
149 * the guarantee that we cannot both miss the futex variable change and the
150 * enqueue.
151 *
152 * Note that a new waiter is accounted for in (a) even when it is possible that
153 * the wait call can return error, in which case we backtrack from it in (b).
154 * Refer to the comment in queue_lock().
155 *
156 * Similarly, in order to account for waiters being requeued on another
157 * address we always increment the waiters for the destination bucket before
158 * acquiring the lock. It then decrements them again after releasing it -
159 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
160 * will do the additional required waiter count housekeeping. This is done for
161 * double_lock_hb() and double_unlock_hb(), respectively.
162 */
163
164 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
165 #define futex_cmpxchg_enabled 1
166 #else
167 static int __read_mostly futex_cmpxchg_enabled;
168 #endif
169
170 /*
171 * Futex flags used to encode options to functions and preserve them across
172 * restarts.
173 */
174 #ifdef CONFIG_MMU
175 # define FLAGS_SHARED 0x01
176 #else
177 /*
178 * NOMMU does not have per process address space. Let the compiler optimize
179 * code away.
180 */
181 # define FLAGS_SHARED 0x00
182 #endif
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
185
186 /*
187 * Priority Inheritance state:
188 */
189 struct futex_pi_state {
190 /*
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
193 */
194 struct list_head list;
195
196 /*
197 * The PI object:
198 */
199 struct rt_mutex pi_mutex;
200
201 struct task_struct *owner;
202 refcount_t refcount;
203
204 union futex_key key;
205 } __randomize_layout;
206
207 /**
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
217 *
218 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
220 *
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
225 *
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
228 */
229 struct futex_q {
230 struct plist_node list;
231
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
239 } __randomize_layout;
240
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
245 };
246
247 /*
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
251 */
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
257
258 /*
259 * The base of the bucket array and its size are always used together
260 * (after initialization only in hash_futex()), so ensure that they
261 * reside in the same cacheline.
262 */
263 static struct {
264 struct futex_hash_bucket *queues;
265 unsigned long hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
269
270
271 /*
272 * Fault injections for futexes.
273 */
274 #ifdef CONFIG_FAIL_FUTEX
275
276 static struct {
277 struct fault_attr attr;
278
279 bool ignore_private;
280 } fail_futex = {
281 .attr = FAULT_ATTR_INITIALIZER,
282 .ignore_private = false,
283 };
284
285 static int __init setup_fail_futex(char *str)
286 {
287 return setup_fault_attr(&fail_futex.attr, str);
288 }
289 __setup("fail_futex=", setup_fail_futex);
290
291 static bool should_fail_futex(bool fshared)
292 {
293 if (fail_futex.ignore_private && !fshared)
294 return false;
295
296 return should_fail(&fail_futex.attr, 1);
297 }
298
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
300
301 static int __init fail_futex_debugfs(void)
302 {
303 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304 struct dentry *dir;
305
306 dir = fault_create_debugfs_attr("fail_futex", NULL,
307 &fail_futex.attr);
308 if (IS_ERR(dir))
309 return PTR_ERR(dir);
310
311 debugfs_create_bool("ignore-private", mode, dir,
312 &fail_futex.ignore_private);
313 return 0;
314 }
315
316 late_initcall(fail_futex_debugfs);
317
318 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
319
320 #else
321 static inline bool should_fail_futex(bool fshared)
322 {
323 return false;
324 }
325 #endif /* CONFIG_FAIL_FUTEX */
326
327 #ifdef CONFIG_COMPAT
328 static void compat_exit_robust_list(struct task_struct *curr);
329 #else
330 static inline void compat_exit_robust_list(struct task_struct *curr) { }
331 #endif
332
333 /*
334 * Reflects a new waiter being added to the waitqueue.
335 */
336 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
337 {
338 #ifdef CONFIG_SMP
339 atomic_inc(&hb->waiters);
340 /*
341 * Full barrier (A), see the ordering comment above.
342 */
343 smp_mb__after_atomic();
344 #endif
345 }
346
347 /*
348 * Reflects a waiter being removed from the waitqueue by wakeup
349 * paths.
350 */
351 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
352 {
353 #ifdef CONFIG_SMP
354 atomic_dec(&hb->waiters);
355 #endif
356 }
357
358 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
359 {
360 #ifdef CONFIG_SMP
361 /*
362 * Full barrier (B), see the ordering comment above.
363 */
364 smp_mb();
365 return atomic_read(&hb->waiters);
366 #else
367 return 1;
368 #endif
369 }
370
371 /**
372 * hash_futex - Return the hash bucket in the global hash
373 * @key: Pointer to the futex key for which the hash is calculated
374 *
375 * We hash on the keys returned from get_futex_key (see below) and return the
376 * corresponding hash bucket in the global hash.
377 */
378 static struct futex_hash_bucket *hash_futex(union futex_key *key)
379 {
380 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
381 key->both.offset);
382
383 return &futex_queues[hash & (futex_hashsize - 1)];
384 }
385
386
387 /**
388 * match_futex - Check whether two futex keys are equal
389 * @key1: Pointer to key1
390 * @key2: Pointer to key2
391 *
392 * Return 1 if two futex_keys are equal, 0 otherwise.
393 */
394 static inline int match_futex(union futex_key *key1, union futex_key *key2)
395 {
396 return (key1 && key2
397 && key1->both.word == key2->both.word
398 && key1->both.ptr == key2->both.ptr
399 && key1->both.offset == key2->both.offset);
400 }
401
402 enum futex_access {
403 FUTEX_READ,
404 FUTEX_WRITE
405 };
406
407 /**
408 * futex_setup_timer - set up the sleeping hrtimer.
409 * @time: ptr to the given timeout value
410 * @timeout: the hrtimer_sleeper structure to be set up
411 * @flags: futex flags
412 * @range_ns: optional range in ns
413 *
414 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
415 * value given
416 */
417 static inline struct hrtimer_sleeper *
418 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
419 int flags, u64 range_ns)
420 {
421 if (!time)
422 return NULL;
423
424 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
425 CLOCK_REALTIME : CLOCK_MONOTONIC,
426 HRTIMER_MODE_ABS);
427 /*
428 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
429 * effectively the same as calling hrtimer_set_expires().
430 */
431 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
432
433 return timeout;
434 }
435
436 /*
437 * Generate a machine wide unique identifier for this inode.
438 *
439 * This relies on u64 not wrapping in the life-time of the machine; which with
440 * 1ns resolution means almost 585 years.
441 *
442 * This further relies on the fact that a well formed program will not unmap
443 * the file while it has a (shared) futex waiting on it. This mapping will have
444 * a file reference which pins the mount and inode.
445 *
446 * If for some reason an inode gets evicted and read back in again, it will get
447 * a new sequence number and will _NOT_ match, even though it is the exact same
448 * file.
449 *
450 * It is important that match_futex() will never have a false-positive, esp.
451 * for PI futexes that can mess up the state. The above argues that false-negatives
452 * are only possible for malformed programs.
453 */
454 static u64 get_inode_sequence_number(struct inode *inode)
455 {
456 static atomic64_t i_seq;
457 u64 old;
458
459 /* Does the inode already have a sequence number? */
460 old = atomic64_read(&inode->i_sequence);
461 if (likely(old))
462 return old;
463
464 for (;;) {
465 u64 new = atomic64_add_return(1, &i_seq);
466 if (WARN_ON_ONCE(!new))
467 continue;
468
469 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
470 if (old)
471 return old;
472 return new;
473 }
474 }
475
476 /**
477 * get_futex_key() - Get parameters which are the keys for a futex
478 * @uaddr: virtual address of the futex
479 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
480 * @key: address where result is stored.
481 * @rw: mapping needs to be read/write (values: FUTEX_READ,
482 * FUTEX_WRITE)
483 *
484 * Return: a negative error code or 0
485 *
486 * The key words are stored in @key on success.
487 *
488 * For shared mappings (when @fshared), the key is:
489 * ( inode->i_sequence, page->index, offset_within_page )
490 * [ also see get_inode_sequence_number() ]
491 *
492 * For private mappings (or when !@fshared), the key is:
493 * ( current->mm, address, 0 )
494 *
495 * This allows (cross process, where applicable) identification of the futex
496 * without keeping the page pinned for the duration of the FUTEX_WAIT.
497 *
498 * lock_page() might sleep, the caller should not hold a spinlock.
499 */
500 static int
501 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
502 {
503 unsigned long address = (unsigned long)uaddr;
504 struct mm_struct *mm = current->mm;
505 struct page *page, *tail;
506 struct address_space *mapping;
507 int err, ro = 0;
508
509 /*
510 * The futex address must be "naturally" aligned.
511 */
512 key->both.offset = address % PAGE_SIZE;
513 if (unlikely((address % sizeof(u32)) != 0))
514 return -EINVAL;
515 address -= key->both.offset;
516
517 if (unlikely(!access_ok(uaddr, sizeof(u32))))
518 return -EFAULT;
519
520 if (unlikely(should_fail_futex(fshared)))
521 return -EFAULT;
522
523 /*
524 * PROCESS_PRIVATE futexes are fast.
525 * As the mm cannot disappear under us and the 'key' only needs
526 * virtual address, we dont even have to find the underlying vma.
527 * Note : We do have to check 'uaddr' is a valid user address,
528 * but access_ok() should be faster than find_vma()
529 */
530 if (!fshared) {
531 key->private.mm = mm;
532 key->private.address = address;
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == FUTEX_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 } else {
636 struct inode *inode;
637
638 /*
639 * The associated futex object in this case is the inode and
640 * the page->mapping must be traversed. Ordinarily this should
641 * be stabilised under page lock but it's not strictly
642 * necessary in this case as we just want to pin the inode, not
643 * update the radix tree or anything like that.
644 *
645 * The RCU read lock is taken as the inode is finally freed
646 * under RCU. If the mapping still matches expectations then the
647 * mapping->host can be safely accessed as being a valid inode.
648 */
649 rcu_read_lock();
650
651 if (READ_ONCE(page->mapping) != mapping) {
652 rcu_read_unlock();
653 put_page(page);
654
655 goto again;
656 }
657
658 inode = READ_ONCE(mapping->host);
659 if (!inode) {
660 rcu_read_unlock();
661 put_page(page);
662
663 goto again;
664 }
665
666 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
667 key->shared.i_seq = get_inode_sequence_number(inode);
668 key->shared.pgoff = basepage_index(tail);
669 rcu_read_unlock();
670 }
671
672 out:
673 put_page(page);
674 return err;
675 }
676
677 static inline void put_futex_key(union futex_key *key)
678 {
679 }
680
681 /**
682 * fault_in_user_writeable() - Fault in user address and verify RW access
683 * @uaddr: pointer to faulting user space address
684 *
685 * Slow path to fixup the fault we just took in the atomic write
686 * access to @uaddr.
687 *
688 * We have no generic implementation of a non-destructive write to the
689 * user address. We know that we faulted in the atomic pagefault
690 * disabled section so we can as well avoid the #PF overhead by
691 * calling get_user_pages() right away.
692 */
693 static int fault_in_user_writeable(u32 __user *uaddr)
694 {
695 struct mm_struct *mm = current->mm;
696 int ret;
697
698 down_read(&mm->mmap_sem);
699 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
700 FAULT_FLAG_WRITE, NULL);
701 up_read(&mm->mmap_sem);
702
703 return ret < 0 ? ret : 0;
704 }
705
706 /**
707 * futex_top_waiter() - Return the highest priority waiter on a futex
708 * @hb: the hash bucket the futex_q's reside in
709 * @key: the futex key (to distinguish it from other futex futex_q's)
710 *
711 * Must be called with the hb lock held.
712 */
713 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
714 union futex_key *key)
715 {
716 struct futex_q *this;
717
718 plist_for_each_entry(this, &hb->chain, list) {
719 if (match_futex(&this->key, key))
720 return this;
721 }
722 return NULL;
723 }
724
725 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
726 u32 uval, u32 newval)
727 {
728 int ret;
729
730 pagefault_disable();
731 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
732 pagefault_enable();
733
734 return ret;
735 }
736
737 static int get_futex_value_locked(u32 *dest, u32 __user *from)
738 {
739 int ret;
740
741 pagefault_disable();
742 ret = __get_user(*dest, from);
743 pagefault_enable();
744
745 return ret ? -EFAULT : 0;
746 }
747
748
749 /*
750 * PI code:
751 */
752 static int refill_pi_state_cache(void)
753 {
754 struct futex_pi_state *pi_state;
755
756 if (likely(current->pi_state_cache))
757 return 0;
758
759 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
760
761 if (!pi_state)
762 return -ENOMEM;
763
764 INIT_LIST_HEAD(&pi_state->list);
765 /* pi_mutex gets initialized later */
766 pi_state->owner = NULL;
767 refcount_set(&pi_state->refcount, 1);
768 pi_state->key = FUTEX_KEY_INIT;
769
770 current->pi_state_cache = pi_state;
771
772 return 0;
773 }
774
775 static struct futex_pi_state *alloc_pi_state(void)
776 {
777 struct futex_pi_state *pi_state = current->pi_state_cache;
778
779 WARN_ON(!pi_state);
780 current->pi_state_cache = NULL;
781
782 return pi_state;
783 }
784
785 static void get_pi_state(struct futex_pi_state *pi_state)
786 {
787 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
788 }
789
790 /*
791 * Drops a reference to the pi_state object and frees or caches it
792 * when the last reference is gone.
793 */
794 static void put_pi_state(struct futex_pi_state *pi_state)
795 {
796 if (!pi_state)
797 return;
798
799 if (!refcount_dec_and_test(&pi_state->refcount))
800 return;
801
802 /*
803 * If pi_state->owner is NULL, the owner is most probably dying
804 * and has cleaned up the pi_state already
805 */
806 if (pi_state->owner) {
807 struct task_struct *owner;
808
809 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
810 owner = pi_state->owner;
811 if (owner) {
812 raw_spin_lock(&owner->pi_lock);
813 list_del_init(&pi_state->list);
814 raw_spin_unlock(&owner->pi_lock);
815 }
816 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
817 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
818 }
819
820 if (current->pi_state_cache) {
821 kfree(pi_state);
822 } else {
823 /*
824 * pi_state->list is already empty.
825 * clear pi_state->owner.
826 * refcount is at 0 - put it back to 1.
827 */
828 pi_state->owner = NULL;
829 refcount_set(&pi_state->refcount, 1);
830 current->pi_state_cache = pi_state;
831 }
832 }
833
834 #ifdef CONFIG_FUTEX_PI
835
836 /*
837 * This task is holding PI mutexes at exit time => bad.
838 * Kernel cleans up PI-state, but userspace is likely hosed.
839 * (Robust-futex cleanup is separate and might save the day for userspace.)
840 */
841 static void exit_pi_state_list(struct task_struct *curr)
842 {
843 struct list_head *next, *head = &curr->pi_state_list;
844 struct futex_pi_state *pi_state;
845 struct futex_hash_bucket *hb;
846 union futex_key key = FUTEX_KEY_INIT;
847
848 if (!futex_cmpxchg_enabled)
849 return;
850 /*
851 * We are a ZOMBIE and nobody can enqueue itself on
852 * pi_state_list anymore, but we have to be careful
853 * versus waiters unqueueing themselves:
854 */
855 raw_spin_lock_irq(&curr->pi_lock);
856 while (!list_empty(head)) {
857 next = head->next;
858 pi_state = list_entry(next, struct futex_pi_state, list);
859 key = pi_state->key;
860 hb = hash_futex(&key);
861
862 /*
863 * We can race against put_pi_state() removing itself from the
864 * list (a waiter going away). put_pi_state() will first
865 * decrement the reference count and then modify the list, so
866 * its possible to see the list entry but fail this reference
867 * acquire.
868 *
869 * In that case; drop the locks to let put_pi_state() make
870 * progress and retry the loop.
871 */
872 if (!refcount_inc_not_zero(&pi_state->refcount)) {
873 raw_spin_unlock_irq(&curr->pi_lock);
874 cpu_relax();
875 raw_spin_lock_irq(&curr->pi_lock);
876 continue;
877 }
878 raw_spin_unlock_irq(&curr->pi_lock);
879
880 spin_lock(&hb->lock);
881 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
882 raw_spin_lock(&curr->pi_lock);
883 /*
884 * We dropped the pi-lock, so re-check whether this
885 * task still owns the PI-state:
886 */
887 if (head->next != next) {
888 /* retain curr->pi_lock for the loop invariant */
889 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
890 spin_unlock(&hb->lock);
891 put_pi_state(pi_state);
892 continue;
893 }
894
895 WARN_ON(pi_state->owner != curr);
896 WARN_ON(list_empty(&pi_state->list));
897 list_del_init(&pi_state->list);
898 pi_state->owner = NULL;
899
900 raw_spin_unlock(&curr->pi_lock);
901 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
902 spin_unlock(&hb->lock);
903
904 rt_mutex_futex_unlock(&pi_state->pi_mutex);
905 put_pi_state(pi_state);
906
907 raw_spin_lock_irq(&curr->pi_lock);
908 }
909 raw_spin_unlock_irq(&curr->pi_lock);
910 }
911 #else
912 static inline void exit_pi_state_list(struct task_struct *curr) { }
913 #endif
914
915 /*
916 * We need to check the following states:
917 *
918 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
919 *
920 * [1] NULL | --- | --- | 0 | 0/1 | Valid
921 * [2] NULL | --- | --- | >0 | 0/1 | Valid
922 *
923 * [3] Found | NULL | -- | Any | 0/1 | Invalid
924 *
925 * [4] Found | Found | NULL | 0 | 1 | Valid
926 * [5] Found | Found | NULL | >0 | 1 | Invalid
927 *
928 * [6] Found | Found | task | 0 | 1 | Valid
929 *
930 * [7] Found | Found | NULL | Any | 0 | Invalid
931 *
932 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
933 * [9] Found | Found | task | 0 | 0 | Invalid
934 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
935 *
936 * [1] Indicates that the kernel can acquire the futex atomically. We
937 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
938 *
939 * [2] Valid, if TID does not belong to a kernel thread. If no matching
940 * thread is found then it indicates that the owner TID has died.
941 *
942 * [3] Invalid. The waiter is queued on a non PI futex
943 *
944 * [4] Valid state after exit_robust_list(), which sets the user space
945 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
946 *
947 * [5] The user space value got manipulated between exit_robust_list()
948 * and exit_pi_state_list()
949 *
950 * [6] Valid state after exit_pi_state_list() which sets the new owner in
951 * the pi_state but cannot access the user space value.
952 *
953 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
954 *
955 * [8] Owner and user space value match
956 *
957 * [9] There is no transient state which sets the user space TID to 0
958 * except exit_robust_list(), but this is indicated by the
959 * FUTEX_OWNER_DIED bit. See [4]
960 *
961 * [10] There is no transient state which leaves owner and user space
962 * TID out of sync.
963 *
964 *
965 * Serialization and lifetime rules:
966 *
967 * hb->lock:
968 *
969 * hb -> futex_q, relation
970 * futex_q -> pi_state, relation
971 *
972 * (cannot be raw because hb can contain arbitrary amount
973 * of futex_q's)
974 *
975 * pi_mutex->wait_lock:
976 *
977 * {uval, pi_state}
978 *
979 * (and pi_mutex 'obviously')
980 *
981 * p->pi_lock:
982 *
983 * p->pi_state_list -> pi_state->list, relation
984 *
985 * pi_state->refcount:
986 *
987 * pi_state lifetime
988 *
989 *
990 * Lock order:
991 *
992 * hb->lock
993 * pi_mutex->wait_lock
994 * p->pi_lock
995 *
996 */
997
998 /*
999 * Validate that the existing waiter has a pi_state and sanity check
1000 * the pi_state against the user space value. If correct, attach to
1001 * it.
1002 */
1003 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1004 struct futex_pi_state *pi_state,
1005 struct futex_pi_state **ps)
1006 {
1007 pid_t pid = uval & FUTEX_TID_MASK;
1008 u32 uval2;
1009 int ret;
1010
1011 /*
1012 * Userspace might have messed up non-PI and PI futexes [3]
1013 */
1014 if (unlikely(!pi_state))
1015 return -EINVAL;
1016
1017 /*
1018 * We get here with hb->lock held, and having found a
1019 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1020 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1021 * which in turn means that futex_lock_pi() still has a reference on
1022 * our pi_state.
1023 *
1024 * The waiter holding a reference on @pi_state also protects against
1025 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1026 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1027 * free pi_state before we can take a reference ourselves.
1028 */
1029 WARN_ON(!refcount_read(&pi_state->refcount));
1030
1031 /*
1032 * Now that we have a pi_state, we can acquire wait_lock
1033 * and do the state validation.
1034 */
1035 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1036
1037 /*
1038 * Since {uval, pi_state} is serialized by wait_lock, and our current
1039 * uval was read without holding it, it can have changed. Verify it
1040 * still is what we expect it to be, otherwise retry the entire
1041 * operation.
1042 */
1043 if (get_futex_value_locked(&uval2, uaddr))
1044 goto out_efault;
1045
1046 if (uval != uval2)
1047 goto out_eagain;
1048
1049 /*
1050 * Handle the owner died case:
1051 */
1052 if (uval & FUTEX_OWNER_DIED) {
1053 /*
1054 * exit_pi_state_list sets owner to NULL and wakes the
1055 * topmost waiter. The task which acquires the
1056 * pi_state->rt_mutex will fixup owner.
1057 */
1058 if (!pi_state->owner) {
1059 /*
1060 * No pi state owner, but the user space TID
1061 * is not 0. Inconsistent state. [5]
1062 */
1063 if (pid)
1064 goto out_einval;
1065 /*
1066 * Take a ref on the state and return success. [4]
1067 */
1068 goto out_attach;
1069 }
1070
1071 /*
1072 * If TID is 0, then either the dying owner has not
1073 * yet executed exit_pi_state_list() or some waiter
1074 * acquired the rtmutex in the pi state, but did not
1075 * yet fixup the TID in user space.
1076 *
1077 * Take a ref on the state and return success. [6]
1078 */
1079 if (!pid)
1080 goto out_attach;
1081 } else {
1082 /*
1083 * If the owner died bit is not set, then the pi_state
1084 * must have an owner. [7]
1085 */
1086 if (!pi_state->owner)
1087 goto out_einval;
1088 }
1089
1090 /*
1091 * Bail out if user space manipulated the futex value. If pi
1092 * state exists then the owner TID must be the same as the
1093 * user space TID. [9/10]
1094 */
1095 if (pid != task_pid_vnr(pi_state->owner))
1096 goto out_einval;
1097
1098 out_attach:
1099 get_pi_state(pi_state);
1100 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101 *ps = pi_state;
1102 return 0;
1103
1104 out_einval:
1105 ret = -EINVAL;
1106 goto out_error;
1107
1108 out_eagain:
1109 ret = -EAGAIN;
1110 goto out_error;
1111
1112 out_efault:
1113 ret = -EFAULT;
1114 goto out_error;
1115
1116 out_error:
1117 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1118 return ret;
1119 }
1120
1121 /**
1122 * wait_for_owner_exiting - Block until the owner has exited
1123 * @ret: owner's current futex lock status
1124 * @exiting: Pointer to the exiting task
1125 *
1126 * Caller must hold a refcount on @exiting.
1127 */
1128 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1129 {
1130 if (ret != -EBUSY) {
1131 WARN_ON_ONCE(exiting);
1132 return;
1133 }
1134
1135 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1136 return;
1137
1138 mutex_lock(&exiting->futex_exit_mutex);
1139 /*
1140 * No point in doing state checking here. If the waiter got here
1141 * while the task was in exec()->exec_futex_release() then it can
1142 * have any FUTEX_STATE_* value when the waiter has acquired the
1143 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1144 * already. Highly unlikely and not a problem. Just one more round
1145 * through the futex maze.
1146 */
1147 mutex_unlock(&exiting->futex_exit_mutex);
1148
1149 put_task_struct(exiting);
1150 }
1151
1152 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1153 struct task_struct *tsk)
1154 {
1155 u32 uval2;
1156
1157 /*
1158 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1159 * caller that the alleged owner is busy.
1160 */
1161 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1162 return -EBUSY;
1163
1164 /*
1165 * Reread the user space value to handle the following situation:
1166 *
1167 * CPU0 CPU1
1168 *
1169 * sys_exit() sys_futex()
1170 * do_exit() futex_lock_pi()
1171 * futex_lock_pi_atomic()
1172 * exit_signals(tsk) No waiters:
1173 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1174 * mm_release(tsk) Set waiter bit
1175 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1176 * Set owner died attach_to_pi_owner() {
1177 * *uaddr = 0xC0000000; tsk = get_task(PID);
1178 * } if (!tsk->flags & PF_EXITING) {
1179 * ... attach();
1180 * tsk->futex_state = } else {
1181 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1182 * FUTEX_STATE_DEAD)
1183 * return -EAGAIN;
1184 * return -ESRCH; <--- FAIL
1185 * }
1186 *
1187 * Returning ESRCH unconditionally is wrong here because the
1188 * user space value has been changed by the exiting task.
1189 *
1190 * The same logic applies to the case where the exiting task is
1191 * already gone.
1192 */
1193 if (get_futex_value_locked(&uval2, uaddr))
1194 return -EFAULT;
1195
1196 /* If the user space value has changed, try again. */
1197 if (uval2 != uval)
1198 return -EAGAIN;
1199
1200 /*
1201 * The exiting task did not have a robust list, the robust list was
1202 * corrupted or the user space value in *uaddr is simply bogus.
1203 * Give up and tell user space.
1204 */
1205 return -ESRCH;
1206 }
1207
1208 /*
1209 * Lookup the task for the TID provided from user space and attach to
1210 * it after doing proper sanity checks.
1211 */
1212 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1213 struct futex_pi_state **ps,
1214 struct task_struct **exiting)
1215 {
1216 pid_t pid = uval & FUTEX_TID_MASK;
1217 struct futex_pi_state *pi_state;
1218 struct task_struct *p;
1219
1220 /*
1221 * We are the first waiter - try to look up the real owner and attach
1222 * the new pi_state to it, but bail out when TID = 0 [1]
1223 *
1224 * The !pid check is paranoid. None of the call sites should end up
1225 * with pid == 0, but better safe than sorry. Let the caller retry
1226 */
1227 if (!pid)
1228 return -EAGAIN;
1229 p = find_get_task_by_vpid(pid);
1230 if (!p)
1231 return handle_exit_race(uaddr, uval, NULL);
1232
1233 if (unlikely(p->flags & PF_KTHREAD)) {
1234 put_task_struct(p);
1235 return -EPERM;
1236 }
1237
1238 /*
1239 * We need to look at the task state to figure out, whether the
1240 * task is exiting. To protect against the change of the task state
1241 * in futex_exit_release(), we do this protected by p->pi_lock:
1242 */
1243 raw_spin_lock_irq(&p->pi_lock);
1244 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1245 /*
1246 * The task is on the way out. When the futex state is
1247 * FUTEX_STATE_DEAD, we know that the task has finished
1248 * the cleanup:
1249 */
1250 int ret = handle_exit_race(uaddr, uval, p);
1251
1252 raw_spin_unlock_irq(&p->pi_lock);
1253 /*
1254 * If the owner task is between FUTEX_STATE_EXITING and
1255 * FUTEX_STATE_DEAD then store the task pointer and keep
1256 * the reference on the task struct. The calling code will
1257 * drop all locks, wait for the task to reach
1258 * FUTEX_STATE_DEAD and then drop the refcount. This is
1259 * required to prevent a live lock when the current task
1260 * preempted the exiting task between the two states.
1261 */
1262 if (ret == -EBUSY)
1263 *exiting = p;
1264 else
1265 put_task_struct(p);
1266 return ret;
1267 }
1268
1269 /*
1270 * No existing pi state. First waiter. [2]
1271 *
1272 * This creates pi_state, we have hb->lock held, this means nothing can
1273 * observe this state, wait_lock is irrelevant.
1274 */
1275 pi_state = alloc_pi_state();
1276
1277 /*
1278 * Initialize the pi_mutex in locked state and make @p
1279 * the owner of it:
1280 */
1281 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1282
1283 /* Store the key for possible exit cleanups: */
1284 pi_state->key = *key;
1285
1286 WARN_ON(!list_empty(&pi_state->list));
1287 list_add(&pi_state->list, &p->pi_state_list);
1288 /*
1289 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1290 * because there is no concurrency as the object is not published yet.
1291 */
1292 pi_state->owner = p;
1293 raw_spin_unlock_irq(&p->pi_lock);
1294
1295 put_task_struct(p);
1296
1297 *ps = pi_state;
1298
1299 return 0;
1300 }
1301
1302 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1303 struct futex_hash_bucket *hb,
1304 union futex_key *key, struct futex_pi_state **ps,
1305 struct task_struct **exiting)
1306 {
1307 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1308
1309 /*
1310 * If there is a waiter on that futex, validate it and
1311 * attach to the pi_state when the validation succeeds.
1312 */
1313 if (top_waiter)
1314 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1315
1316 /*
1317 * We are the first waiter - try to look up the owner based on
1318 * @uval and attach to it.
1319 */
1320 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1321 }
1322
1323 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1324 {
1325 int err;
1326 u32 uninitialized_var(curval);
1327
1328 if (unlikely(should_fail_futex(true)))
1329 return -EFAULT;
1330
1331 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1332 if (unlikely(err))
1333 return err;
1334
1335 /* If user space value changed, let the caller retry */
1336 return curval != uval ? -EAGAIN : 0;
1337 }
1338
1339 /**
1340 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1341 * @uaddr: the pi futex user address
1342 * @hb: the pi futex hash bucket
1343 * @key: the futex key associated with uaddr and hb
1344 * @ps: the pi_state pointer where we store the result of the
1345 * lookup
1346 * @task: the task to perform the atomic lock work for. This will
1347 * be "current" except in the case of requeue pi.
1348 * @exiting: Pointer to store the task pointer of the owner task
1349 * which is in the middle of exiting
1350 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1351 *
1352 * Return:
1353 * - 0 - ready to wait;
1354 * - 1 - acquired the lock;
1355 * - <0 - error
1356 *
1357 * The hb->lock and futex_key refs shall be held by the caller.
1358 *
1359 * @exiting is only set when the return value is -EBUSY. If so, this holds
1360 * a refcount on the exiting task on return and the caller needs to drop it
1361 * after waiting for the exit to complete.
1362 */
1363 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1364 union futex_key *key,
1365 struct futex_pi_state **ps,
1366 struct task_struct *task,
1367 struct task_struct **exiting,
1368 int set_waiters)
1369 {
1370 u32 uval, newval, vpid = task_pid_vnr(task);
1371 struct futex_q *top_waiter;
1372 int ret;
1373
1374 /*
1375 * Read the user space value first so we can validate a few
1376 * things before proceeding further.
1377 */
1378 if (get_futex_value_locked(&uval, uaddr))
1379 return -EFAULT;
1380
1381 if (unlikely(should_fail_futex(true)))
1382 return -EFAULT;
1383
1384 /*
1385 * Detect deadlocks.
1386 */
1387 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1388 return -EDEADLK;
1389
1390 if ((unlikely(should_fail_futex(true))))
1391 return -EDEADLK;
1392
1393 /*
1394 * Lookup existing state first. If it exists, try to attach to
1395 * its pi_state.
1396 */
1397 top_waiter = futex_top_waiter(hb, key);
1398 if (top_waiter)
1399 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1400
1401 /*
1402 * No waiter and user TID is 0. We are here because the
1403 * waiters or the owner died bit is set or called from
1404 * requeue_cmp_pi or for whatever reason something took the
1405 * syscall.
1406 */
1407 if (!(uval & FUTEX_TID_MASK)) {
1408 /*
1409 * We take over the futex. No other waiters and the user space
1410 * TID is 0. We preserve the owner died bit.
1411 */
1412 newval = uval & FUTEX_OWNER_DIED;
1413 newval |= vpid;
1414
1415 /* The futex requeue_pi code can enforce the waiters bit */
1416 if (set_waiters)
1417 newval |= FUTEX_WAITERS;
1418
1419 ret = lock_pi_update_atomic(uaddr, uval, newval);
1420 /* If the take over worked, return 1 */
1421 return ret < 0 ? ret : 1;
1422 }
1423
1424 /*
1425 * First waiter. Set the waiters bit before attaching ourself to
1426 * the owner. If owner tries to unlock, it will be forced into
1427 * the kernel and blocked on hb->lock.
1428 */
1429 newval = uval | FUTEX_WAITERS;
1430 ret = lock_pi_update_atomic(uaddr, uval, newval);
1431 if (ret)
1432 return ret;
1433 /*
1434 * If the update of the user space value succeeded, we try to
1435 * attach to the owner. If that fails, no harm done, we only
1436 * set the FUTEX_WAITERS bit in the user space variable.
1437 */
1438 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1439 }
1440
1441 /**
1442 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1443 * @q: The futex_q to unqueue
1444 *
1445 * The q->lock_ptr must not be NULL and must be held by the caller.
1446 */
1447 static void __unqueue_futex(struct futex_q *q)
1448 {
1449 struct futex_hash_bucket *hb;
1450
1451 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1452 return;
1453 lockdep_assert_held(q->lock_ptr);
1454
1455 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1456 plist_del(&q->list, &hb->chain);
1457 hb_waiters_dec(hb);
1458 }
1459
1460 /*
1461 * The hash bucket lock must be held when this is called.
1462 * Afterwards, the futex_q must not be accessed. Callers
1463 * must ensure to later call wake_up_q() for the actual
1464 * wakeups to occur.
1465 */
1466 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1467 {
1468 struct task_struct *p = q->task;
1469
1470 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1471 return;
1472
1473 get_task_struct(p);
1474 __unqueue_futex(q);
1475 /*
1476 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1477 * is written, without taking any locks. This is possible in the event
1478 * of a spurious wakeup, for example. A memory barrier is required here
1479 * to prevent the following store to lock_ptr from getting ahead of the
1480 * plist_del in __unqueue_futex().
1481 */
1482 smp_store_release(&q->lock_ptr, NULL);
1483
1484 /*
1485 * Queue the task for later wakeup for after we've released
1486 * the hb->lock.
1487 */
1488 wake_q_add_safe(wake_q, p);
1489 }
1490
1491 /*
1492 * Caller must hold a reference on @pi_state.
1493 */
1494 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1495 {
1496 u32 uninitialized_var(curval), newval;
1497 struct task_struct *new_owner;
1498 bool postunlock = false;
1499 DEFINE_WAKE_Q(wake_q);
1500 int ret = 0;
1501
1502 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1503 if (WARN_ON_ONCE(!new_owner)) {
1504 /*
1505 * As per the comment in futex_unlock_pi() this should not happen.
1506 *
1507 * When this happens, give up our locks and try again, giving
1508 * the futex_lock_pi() instance time to complete, either by
1509 * waiting on the rtmutex or removing itself from the futex
1510 * queue.
1511 */
1512 ret = -EAGAIN;
1513 goto out_unlock;
1514 }
1515
1516 /*
1517 * We pass it to the next owner. The WAITERS bit is always kept
1518 * enabled while there is PI state around. We cleanup the owner
1519 * died bit, because we are the owner.
1520 */
1521 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1522
1523 if (unlikely(should_fail_futex(true)))
1524 ret = -EFAULT;
1525
1526 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1527 if (!ret && (curval != uval)) {
1528 /*
1529 * If a unconditional UNLOCK_PI operation (user space did not
1530 * try the TID->0 transition) raced with a waiter setting the
1531 * FUTEX_WAITERS flag between get_user() and locking the hash
1532 * bucket lock, retry the operation.
1533 */
1534 if ((FUTEX_TID_MASK & curval) == uval)
1535 ret = -EAGAIN;
1536 else
1537 ret = -EINVAL;
1538 }
1539
1540 if (ret)
1541 goto out_unlock;
1542
1543 /*
1544 * This is a point of no return; once we modify the uval there is no
1545 * going back and subsequent operations must not fail.
1546 */
1547
1548 raw_spin_lock(&pi_state->owner->pi_lock);
1549 WARN_ON(list_empty(&pi_state->list));
1550 list_del_init(&pi_state->list);
1551 raw_spin_unlock(&pi_state->owner->pi_lock);
1552
1553 raw_spin_lock(&new_owner->pi_lock);
1554 WARN_ON(!list_empty(&pi_state->list));
1555 list_add(&pi_state->list, &new_owner->pi_state_list);
1556 pi_state->owner = new_owner;
1557 raw_spin_unlock(&new_owner->pi_lock);
1558
1559 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1560
1561 out_unlock:
1562 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1563
1564 if (postunlock)
1565 rt_mutex_postunlock(&wake_q);
1566
1567 return ret;
1568 }
1569
1570 /*
1571 * Express the locking dependencies for lockdep:
1572 */
1573 static inline void
1574 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1575 {
1576 if (hb1 <= hb2) {
1577 spin_lock(&hb1->lock);
1578 if (hb1 < hb2)
1579 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1580 } else { /* hb1 > hb2 */
1581 spin_lock(&hb2->lock);
1582 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1583 }
1584 }
1585
1586 static inline void
1587 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1588 {
1589 spin_unlock(&hb1->lock);
1590 if (hb1 != hb2)
1591 spin_unlock(&hb2->lock);
1592 }
1593
1594 /*
1595 * Wake up waiters matching bitset queued on this futex (uaddr).
1596 */
1597 static int
1598 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1599 {
1600 struct futex_hash_bucket *hb;
1601 struct futex_q *this, *next;
1602 union futex_key key = FUTEX_KEY_INIT;
1603 int ret;
1604 DEFINE_WAKE_Q(wake_q);
1605
1606 if (!bitset)
1607 return -EINVAL;
1608
1609 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1610 if (unlikely(ret != 0))
1611 goto out;
1612
1613 hb = hash_futex(&key);
1614
1615 /* Make sure we really have tasks to wakeup */
1616 if (!hb_waiters_pending(hb))
1617 goto out_put_key;
1618
1619 spin_lock(&hb->lock);
1620
1621 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1622 if (match_futex (&this->key, &key)) {
1623 if (this->pi_state || this->rt_waiter) {
1624 ret = -EINVAL;
1625 break;
1626 }
1627
1628 /* Check if one of the bits is set in both bitsets */
1629 if (!(this->bitset & bitset))
1630 continue;
1631
1632 mark_wake_futex(&wake_q, this);
1633 if (++ret >= nr_wake)
1634 break;
1635 }
1636 }
1637
1638 spin_unlock(&hb->lock);
1639 wake_up_q(&wake_q);
1640 out_put_key:
1641 put_futex_key(&key);
1642 out:
1643 return ret;
1644 }
1645
1646 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1647 {
1648 unsigned int op = (encoded_op & 0x70000000) >> 28;
1649 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1650 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1651 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1652 int oldval, ret;
1653
1654 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1655 if (oparg < 0 || oparg > 31) {
1656 char comm[sizeof(current->comm)];
1657 /*
1658 * kill this print and return -EINVAL when userspace
1659 * is sane again
1660 */
1661 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1662 get_task_comm(comm, current), oparg);
1663 oparg &= 31;
1664 }
1665 oparg = 1 << oparg;
1666 }
1667
1668 pagefault_disable();
1669 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1670 pagefault_enable();
1671 if (ret)
1672 return ret;
1673
1674 switch (cmp) {
1675 case FUTEX_OP_CMP_EQ:
1676 return oldval == cmparg;
1677 case FUTEX_OP_CMP_NE:
1678 return oldval != cmparg;
1679 case FUTEX_OP_CMP_LT:
1680 return oldval < cmparg;
1681 case FUTEX_OP_CMP_GE:
1682 return oldval >= cmparg;
1683 case FUTEX_OP_CMP_LE:
1684 return oldval <= cmparg;
1685 case FUTEX_OP_CMP_GT:
1686 return oldval > cmparg;
1687 default:
1688 return -ENOSYS;
1689 }
1690 }
1691
1692 /*
1693 * Wake up all waiters hashed on the physical page that is mapped
1694 * to this virtual address:
1695 */
1696 static int
1697 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1698 int nr_wake, int nr_wake2, int op)
1699 {
1700 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1701 struct futex_hash_bucket *hb1, *hb2;
1702 struct futex_q *this, *next;
1703 int ret, op_ret;
1704 DEFINE_WAKE_Q(wake_q);
1705
1706 retry:
1707 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1708 if (unlikely(ret != 0))
1709 goto out;
1710 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1711 if (unlikely(ret != 0))
1712 goto out_put_key1;
1713
1714 hb1 = hash_futex(&key1);
1715 hb2 = hash_futex(&key2);
1716
1717 retry_private:
1718 double_lock_hb(hb1, hb2);
1719 op_ret = futex_atomic_op_inuser(op, uaddr2);
1720 if (unlikely(op_ret < 0)) {
1721 double_unlock_hb(hb1, hb2);
1722
1723 if (!IS_ENABLED(CONFIG_MMU) ||
1724 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1725 /*
1726 * we don't get EFAULT from MMU faults if we don't have
1727 * an MMU, but we might get them from range checking
1728 */
1729 ret = op_ret;
1730 goto out_put_keys;
1731 }
1732
1733 if (op_ret == -EFAULT) {
1734 ret = fault_in_user_writeable(uaddr2);
1735 if (ret)
1736 goto out_put_keys;
1737 }
1738
1739 if (!(flags & FLAGS_SHARED)) {
1740 cond_resched();
1741 goto retry_private;
1742 }
1743
1744 put_futex_key(&key2);
1745 put_futex_key(&key1);
1746 cond_resched();
1747 goto retry;
1748 }
1749
1750 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1751 if (match_futex (&this->key, &key1)) {
1752 if (this->pi_state || this->rt_waiter) {
1753 ret = -EINVAL;
1754 goto out_unlock;
1755 }
1756 mark_wake_futex(&wake_q, this);
1757 if (++ret >= nr_wake)
1758 break;
1759 }
1760 }
1761
1762 if (op_ret > 0) {
1763 op_ret = 0;
1764 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1765 if (match_futex (&this->key, &key2)) {
1766 if (this->pi_state || this->rt_waiter) {
1767 ret = -EINVAL;
1768 goto out_unlock;
1769 }
1770 mark_wake_futex(&wake_q, this);
1771 if (++op_ret >= nr_wake2)
1772 break;
1773 }
1774 }
1775 ret += op_ret;
1776 }
1777
1778 out_unlock:
1779 double_unlock_hb(hb1, hb2);
1780 wake_up_q(&wake_q);
1781 out_put_keys:
1782 put_futex_key(&key2);
1783 out_put_key1:
1784 put_futex_key(&key1);
1785 out:
1786 return ret;
1787 }
1788
1789 /**
1790 * requeue_futex() - Requeue a futex_q from one hb to another
1791 * @q: the futex_q to requeue
1792 * @hb1: the source hash_bucket
1793 * @hb2: the target hash_bucket
1794 * @key2: the new key for the requeued futex_q
1795 */
1796 static inline
1797 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1798 struct futex_hash_bucket *hb2, union futex_key *key2)
1799 {
1800
1801 /*
1802 * If key1 and key2 hash to the same bucket, no need to
1803 * requeue.
1804 */
1805 if (likely(&hb1->chain != &hb2->chain)) {
1806 plist_del(&q->list, &hb1->chain);
1807 hb_waiters_dec(hb1);
1808 hb_waiters_inc(hb2);
1809 plist_add(&q->list, &hb2->chain);
1810 q->lock_ptr = &hb2->lock;
1811 }
1812 q->key = *key2;
1813 }
1814
1815 /**
1816 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1817 * @q: the futex_q
1818 * @key: the key of the requeue target futex
1819 * @hb: the hash_bucket of the requeue target futex
1820 *
1821 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1822 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1823 * to the requeue target futex so the waiter can detect the wakeup on the right
1824 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1825 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1826 * to protect access to the pi_state to fixup the owner later. Must be called
1827 * with both q->lock_ptr and hb->lock held.
1828 */
1829 static inline
1830 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1831 struct futex_hash_bucket *hb)
1832 {
1833 q->key = *key;
1834
1835 __unqueue_futex(q);
1836
1837 WARN_ON(!q->rt_waiter);
1838 q->rt_waiter = NULL;
1839
1840 q->lock_ptr = &hb->lock;
1841
1842 wake_up_state(q->task, TASK_NORMAL);
1843 }
1844
1845 /**
1846 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1847 * @pifutex: the user address of the to futex
1848 * @hb1: the from futex hash bucket, must be locked by the caller
1849 * @hb2: the to futex hash bucket, must be locked by the caller
1850 * @key1: the from futex key
1851 * @key2: the to futex key
1852 * @ps: address to store the pi_state pointer
1853 * @exiting: Pointer to store the task pointer of the owner task
1854 * which is in the middle of exiting
1855 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1856 *
1857 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1858 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1859 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1860 * hb1 and hb2 must be held by the caller.
1861 *
1862 * @exiting is only set when the return value is -EBUSY. If so, this holds
1863 * a refcount on the exiting task on return and the caller needs to drop it
1864 * after waiting for the exit to complete.
1865 *
1866 * Return:
1867 * - 0 - failed to acquire the lock atomically;
1868 * - >0 - acquired the lock, return value is vpid of the top_waiter
1869 * - <0 - error
1870 */
1871 static int
1872 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1873 struct futex_hash_bucket *hb2, union futex_key *key1,
1874 union futex_key *key2, struct futex_pi_state **ps,
1875 struct task_struct **exiting, int set_waiters)
1876 {
1877 struct futex_q *top_waiter = NULL;
1878 u32 curval;
1879 int ret, vpid;
1880
1881 if (get_futex_value_locked(&curval, pifutex))
1882 return -EFAULT;
1883
1884 if (unlikely(should_fail_futex(true)))
1885 return -EFAULT;
1886
1887 /*
1888 * Find the top_waiter and determine if there are additional waiters.
1889 * If the caller intends to requeue more than 1 waiter to pifutex,
1890 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1891 * as we have means to handle the possible fault. If not, don't set
1892 * the bit unecessarily as it will force the subsequent unlock to enter
1893 * the kernel.
1894 */
1895 top_waiter = futex_top_waiter(hb1, key1);
1896
1897 /* There are no waiters, nothing for us to do. */
1898 if (!top_waiter)
1899 return 0;
1900
1901 /* Ensure we requeue to the expected futex. */
1902 if (!match_futex(top_waiter->requeue_pi_key, key2))
1903 return -EINVAL;
1904
1905 /*
1906 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1907 * the contended case or if set_waiters is 1. The pi_state is returned
1908 * in ps in contended cases.
1909 */
1910 vpid = task_pid_vnr(top_waiter->task);
1911 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1912 exiting, set_waiters);
1913 if (ret == 1) {
1914 requeue_pi_wake_futex(top_waiter, key2, hb2);
1915 return vpid;
1916 }
1917 return ret;
1918 }
1919
1920 /**
1921 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1922 * @uaddr1: source futex user address
1923 * @flags: futex flags (FLAGS_SHARED, etc.)
1924 * @uaddr2: target futex user address
1925 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1926 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1927 * @cmpval: @uaddr1 expected value (or %NULL)
1928 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1929 * pi futex (pi to pi requeue is not supported)
1930 *
1931 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1932 * uaddr2 atomically on behalf of the top waiter.
1933 *
1934 * Return:
1935 * - >=0 - on success, the number of tasks requeued or woken;
1936 * - <0 - on error
1937 */
1938 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1939 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1940 u32 *cmpval, int requeue_pi)
1941 {
1942 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1943 int task_count = 0, ret;
1944 struct futex_pi_state *pi_state = NULL;
1945 struct futex_hash_bucket *hb1, *hb2;
1946 struct futex_q *this, *next;
1947 DEFINE_WAKE_Q(wake_q);
1948
1949 if (nr_wake < 0 || nr_requeue < 0)
1950 return -EINVAL;
1951
1952 /*
1953 * When PI not supported: return -ENOSYS if requeue_pi is true,
1954 * consequently the compiler knows requeue_pi is always false past
1955 * this point which will optimize away all the conditional code
1956 * further down.
1957 */
1958 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1959 return -ENOSYS;
1960
1961 if (requeue_pi) {
1962 /*
1963 * Requeue PI only works on two distinct uaddrs. This
1964 * check is only valid for private futexes. See below.
1965 */
1966 if (uaddr1 == uaddr2)
1967 return -EINVAL;
1968
1969 /*
1970 * requeue_pi requires a pi_state, try to allocate it now
1971 * without any locks in case it fails.
1972 */
1973 if (refill_pi_state_cache())
1974 return -ENOMEM;
1975 /*
1976 * requeue_pi must wake as many tasks as it can, up to nr_wake
1977 * + nr_requeue, since it acquires the rt_mutex prior to
1978 * returning to userspace, so as to not leave the rt_mutex with
1979 * waiters and no owner. However, second and third wake-ups
1980 * cannot be predicted as they involve race conditions with the
1981 * first wake and a fault while looking up the pi_state. Both
1982 * pthread_cond_signal() and pthread_cond_broadcast() should
1983 * use nr_wake=1.
1984 */
1985 if (nr_wake != 1)
1986 return -EINVAL;
1987 }
1988
1989 retry:
1990 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1991 if (unlikely(ret != 0))
1992 goto out;
1993 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1994 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1995 if (unlikely(ret != 0))
1996 goto out_put_key1;
1997
1998 /*
1999 * The check above which compares uaddrs is not sufficient for
2000 * shared futexes. We need to compare the keys:
2001 */
2002 if (requeue_pi && match_futex(&key1, &key2)) {
2003 ret = -EINVAL;
2004 goto out_put_keys;
2005 }
2006
2007 hb1 = hash_futex(&key1);
2008 hb2 = hash_futex(&key2);
2009
2010 retry_private:
2011 hb_waiters_inc(hb2);
2012 double_lock_hb(hb1, hb2);
2013
2014 if (likely(cmpval != NULL)) {
2015 u32 curval;
2016
2017 ret = get_futex_value_locked(&curval, uaddr1);
2018
2019 if (unlikely(ret)) {
2020 double_unlock_hb(hb1, hb2);
2021 hb_waiters_dec(hb2);
2022
2023 ret = get_user(curval, uaddr1);
2024 if (ret)
2025 goto out_put_keys;
2026
2027 if (!(flags & FLAGS_SHARED))
2028 goto retry_private;
2029
2030 put_futex_key(&key2);
2031 put_futex_key(&key1);
2032 goto retry;
2033 }
2034 if (curval != *cmpval) {
2035 ret = -EAGAIN;
2036 goto out_unlock;
2037 }
2038 }
2039
2040 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2041 struct task_struct *exiting = NULL;
2042
2043 /*
2044 * Attempt to acquire uaddr2 and wake the top waiter. If we
2045 * intend to requeue waiters, force setting the FUTEX_WAITERS
2046 * bit. We force this here where we are able to easily handle
2047 * faults rather in the requeue loop below.
2048 */
2049 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2050 &key2, &pi_state,
2051 &exiting, nr_requeue);
2052
2053 /*
2054 * At this point the top_waiter has either taken uaddr2 or is
2055 * waiting on it. If the former, then the pi_state will not
2056 * exist yet, look it up one more time to ensure we have a
2057 * reference to it. If the lock was taken, ret contains the
2058 * vpid of the top waiter task.
2059 * If the lock was not taken, we have pi_state and an initial
2060 * refcount on it. In case of an error we have nothing.
2061 */
2062 if (ret > 0) {
2063 WARN_ON(pi_state);
2064 task_count++;
2065 /*
2066 * If we acquired the lock, then the user space value
2067 * of uaddr2 should be vpid. It cannot be changed by
2068 * the top waiter as it is blocked on hb2 lock if it
2069 * tries to do so. If something fiddled with it behind
2070 * our back the pi state lookup might unearth it. So
2071 * we rather use the known value than rereading and
2072 * handing potential crap to lookup_pi_state.
2073 *
2074 * If that call succeeds then we have pi_state and an
2075 * initial refcount on it.
2076 */
2077 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2078 &pi_state, &exiting);
2079 }
2080
2081 switch (ret) {
2082 case 0:
2083 /* We hold a reference on the pi state. */
2084 break;
2085
2086 /* If the above failed, then pi_state is NULL */
2087 case -EFAULT:
2088 double_unlock_hb(hb1, hb2);
2089 hb_waiters_dec(hb2);
2090 put_futex_key(&key2);
2091 put_futex_key(&key1);
2092 ret = fault_in_user_writeable(uaddr2);
2093 if (!ret)
2094 goto retry;
2095 goto out;
2096 case -EBUSY:
2097 case -EAGAIN:
2098 /*
2099 * Two reasons for this:
2100 * - EBUSY: Owner is exiting and we just wait for the
2101 * exit to complete.
2102 * - EAGAIN: The user space value changed.
2103 */
2104 double_unlock_hb(hb1, hb2);
2105 hb_waiters_dec(hb2);
2106 put_futex_key(&key2);
2107 put_futex_key(&key1);
2108 /*
2109 * Handle the case where the owner is in the middle of
2110 * exiting. Wait for the exit to complete otherwise
2111 * this task might loop forever, aka. live lock.
2112 */
2113 wait_for_owner_exiting(ret, exiting);
2114 cond_resched();
2115 goto retry;
2116 default:
2117 goto out_unlock;
2118 }
2119 }
2120
2121 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2122 if (task_count - nr_wake >= nr_requeue)
2123 break;
2124
2125 if (!match_futex(&this->key, &key1))
2126 continue;
2127
2128 /*
2129 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2130 * be paired with each other and no other futex ops.
2131 *
2132 * We should never be requeueing a futex_q with a pi_state,
2133 * which is awaiting a futex_unlock_pi().
2134 */
2135 if ((requeue_pi && !this->rt_waiter) ||
2136 (!requeue_pi && this->rt_waiter) ||
2137 this->pi_state) {
2138 ret = -EINVAL;
2139 break;
2140 }
2141
2142 /*
2143 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2144 * lock, we already woke the top_waiter. If not, it will be
2145 * woken by futex_unlock_pi().
2146 */
2147 if (++task_count <= nr_wake && !requeue_pi) {
2148 mark_wake_futex(&wake_q, this);
2149 continue;
2150 }
2151
2152 /* Ensure we requeue to the expected futex for requeue_pi. */
2153 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2154 ret = -EINVAL;
2155 break;
2156 }
2157
2158 /*
2159 * Requeue nr_requeue waiters and possibly one more in the case
2160 * of requeue_pi if we couldn't acquire the lock atomically.
2161 */
2162 if (requeue_pi) {
2163 /*
2164 * Prepare the waiter to take the rt_mutex. Take a
2165 * refcount on the pi_state and store the pointer in
2166 * the futex_q object of the waiter.
2167 */
2168 get_pi_state(pi_state);
2169 this->pi_state = pi_state;
2170 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2171 this->rt_waiter,
2172 this->task);
2173 if (ret == 1) {
2174 /*
2175 * We got the lock. We do neither drop the
2176 * refcount on pi_state nor clear
2177 * this->pi_state because the waiter needs the
2178 * pi_state for cleaning up the user space
2179 * value. It will drop the refcount after
2180 * doing so.
2181 */
2182 requeue_pi_wake_futex(this, &key2, hb2);
2183 continue;
2184 } else if (ret) {
2185 /*
2186 * rt_mutex_start_proxy_lock() detected a
2187 * potential deadlock when we tried to queue
2188 * that waiter. Drop the pi_state reference
2189 * which we took above and remove the pointer
2190 * to the state from the waiters futex_q
2191 * object.
2192 */
2193 this->pi_state = NULL;
2194 put_pi_state(pi_state);
2195 /*
2196 * We stop queueing more waiters and let user
2197 * space deal with the mess.
2198 */
2199 break;
2200 }
2201 }
2202 requeue_futex(this, hb1, hb2, &key2);
2203 }
2204
2205 /*
2206 * We took an extra initial reference to the pi_state either
2207 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2208 * need to drop it here again.
2209 */
2210 put_pi_state(pi_state);
2211
2212 out_unlock:
2213 double_unlock_hb(hb1, hb2);
2214 wake_up_q(&wake_q);
2215 hb_waiters_dec(hb2);
2216
2217 out_put_keys:
2218 put_futex_key(&key2);
2219 out_put_key1:
2220 put_futex_key(&key1);
2221 out:
2222 return ret ? ret : task_count;
2223 }
2224
2225 /* The key must be already stored in q->key. */
2226 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2227 __acquires(&hb->lock)
2228 {
2229 struct futex_hash_bucket *hb;
2230
2231 hb = hash_futex(&q->key);
2232
2233 /*
2234 * Increment the counter before taking the lock so that
2235 * a potential waker won't miss a to-be-slept task that is
2236 * waiting for the spinlock. This is safe as all queue_lock()
2237 * users end up calling queue_me(). Similarly, for housekeeping,
2238 * decrement the counter at queue_unlock() when some error has
2239 * occurred and we don't end up adding the task to the list.
2240 */
2241 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2242
2243 q->lock_ptr = &hb->lock;
2244
2245 spin_lock(&hb->lock);
2246 return hb;
2247 }
2248
2249 static inline void
2250 queue_unlock(struct futex_hash_bucket *hb)
2251 __releases(&hb->lock)
2252 {
2253 spin_unlock(&hb->lock);
2254 hb_waiters_dec(hb);
2255 }
2256
2257 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2258 {
2259 int prio;
2260
2261 /*
2262 * The priority used to register this element is
2263 * - either the real thread-priority for the real-time threads
2264 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2265 * - or MAX_RT_PRIO for non-RT threads.
2266 * Thus, all RT-threads are woken first in priority order, and
2267 * the others are woken last, in FIFO order.
2268 */
2269 prio = min(current->normal_prio, MAX_RT_PRIO);
2270
2271 plist_node_init(&q->list, prio);
2272 plist_add(&q->list, &hb->chain);
2273 q->task = current;
2274 }
2275
2276 /**
2277 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2278 * @q: The futex_q to enqueue
2279 * @hb: The destination hash bucket
2280 *
2281 * The hb->lock must be held by the caller, and is released here. A call to
2282 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2283 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2284 * or nothing if the unqueue is done as part of the wake process and the unqueue
2285 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2286 * an example).
2287 */
2288 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2289 __releases(&hb->lock)
2290 {
2291 __queue_me(q, hb);
2292 spin_unlock(&hb->lock);
2293 }
2294
2295 /**
2296 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2297 * @q: The futex_q to unqueue
2298 *
2299 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2300 * be paired with exactly one earlier call to queue_me().
2301 *
2302 * Return:
2303 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2304 * - 0 - if the futex_q was already removed by the waking thread
2305 */
2306 static int unqueue_me(struct futex_q *q)
2307 {
2308 spinlock_t *lock_ptr;
2309 int ret = 0;
2310
2311 /* In the common case we don't take the spinlock, which is nice. */
2312 retry:
2313 /*
2314 * q->lock_ptr can change between this read and the following spin_lock.
2315 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2316 * optimizing lock_ptr out of the logic below.
2317 */
2318 lock_ptr = READ_ONCE(q->lock_ptr);
2319 if (lock_ptr != NULL) {
2320 spin_lock(lock_ptr);
2321 /*
2322 * q->lock_ptr can change between reading it and
2323 * spin_lock(), causing us to take the wrong lock. This
2324 * corrects the race condition.
2325 *
2326 * Reasoning goes like this: if we have the wrong lock,
2327 * q->lock_ptr must have changed (maybe several times)
2328 * between reading it and the spin_lock(). It can
2329 * change again after the spin_lock() but only if it was
2330 * already changed before the spin_lock(). It cannot,
2331 * however, change back to the original value. Therefore
2332 * we can detect whether we acquired the correct lock.
2333 */
2334 if (unlikely(lock_ptr != q->lock_ptr)) {
2335 spin_unlock(lock_ptr);
2336 goto retry;
2337 }
2338 __unqueue_futex(q);
2339
2340 BUG_ON(q->pi_state);
2341
2342 spin_unlock(lock_ptr);
2343 ret = 1;
2344 }
2345
2346 return ret;
2347 }
2348
2349 /*
2350 * PI futexes can not be requeued and must remove themself from the
2351 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2352 * and dropped here.
2353 */
2354 static void unqueue_me_pi(struct futex_q *q)
2355 __releases(q->lock_ptr)
2356 {
2357 __unqueue_futex(q);
2358
2359 BUG_ON(!q->pi_state);
2360 put_pi_state(q->pi_state);
2361 q->pi_state = NULL;
2362
2363 spin_unlock(q->lock_ptr);
2364 }
2365
2366 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2367 struct task_struct *argowner)
2368 {
2369 struct futex_pi_state *pi_state = q->pi_state;
2370 u32 uval, uninitialized_var(curval), newval;
2371 struct task_struct *oldowner, *newowner;
2372 u32 newtid;
2373 int ret, err = 0;
2374
2375 lockdep_assert_held(q->lock_ptr);
2376
2377 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2378
2379 oldowner = pi_state->owner;
2380
2381 /*
2382 * We are here because either:
2383 *
2384 * - we stole the lock and pi_state->owner needs updating to reflect
2385 * that (@argowner == current),
2386 *
2387 * or:
2388 *
2389 * - someone stole our lock and we need to fix things to point to the
2390 * new owner (@argowner == NULL).
2391 *
2392 * Either way, we have to replace the TID in the user space variable.
2393 * This must be atomic as we have to preserve the owner died bit here.
2394 *
2395 * Note: We write the user space value _before_ changing the pi_state
2396 * because we can fault here. Imagine swapped out pages or a fork
2397 * that marked all the anonymous memory readonly for cow.
2398 *
2399 * Modifying pi_state _before_ the user space value would leave the
2400 * pi_state in an inconsistent state when we fault here, because we
2401 * need to drop the locks to handle the fault. This might be observed
2402 * in the PID check in lookup_pi_state.
2403 */
2404 retry:
2405 if (!argowner) {
2406 if (oldowner != current) {
2407 /*
2408 * We raced against a concurrent self; things are
2409 * already fixed up. Nothing to do.
2410 */
2411 ret = 0;
2412 goto out_unlock;
2413 }
2414
2415 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2416 /* We got the lock after all, nothing to fix. */
2417 ret = 0;
2418 goto out_unlock;
2419 }
2420
2421 /*
2422 * Since we just failed the trylock; there must be an owner.
2423 */
2424 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2425 BUG_ON(!newowner);
2426 } else {
2427 WARN_ON_ONCE(argowner != current);
2428 if (oldowner == current) {
2429 /*
2430 * We raced against a concurrent self; things are
2431 * already fixed up. Nothing to do.
2432 */
2433 ret = 0;
2434 goto out_unlock;
2435 }
2436 newowner = argowner;
2437 }
2438
2439 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2440 /* Owner died? */
2441 if (!pi_state->owner)
2442 newtid |= FUTEX_OWNER_DIED;
2443
2444 err = get_futex_value_locked(&uval, uaddr);
2445 if (err)
2446 goto handle_err;
2447
2448 for (;;) {
2449 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2450
2451 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2452 if (err)
2453 goto handle_err;
2454
2455 if (curval == uval)
2456 break;
2457 uval = curval;
2458 }
2459
2460 /*
2461 * We fixed up user space. Now we need to fix the pi_state
2462 * itself.
2463 */
2464 if (pi_state->owner != NULL) {
2465 raw_spin_lock(&pi_state->owner->pi_lock);
2466 WARN_ON(list_empty(&pi_state->list));
2467 list_del_init(&pi_state->list);
2468 raw_spin_unlock(&pi_state->owner->pi_lock);
2469 }
2470
2471 pi_state->owner = newowner;
2472
2473 raw_spin_lock(&newowner->pi_lock);
2474 WARN_ON(!list_empty(&pi_state->list));
2475 list_add(&pi_state->list, &newowner->pi_state_list);
2476 raw_spin_unlock(&newowner->pi_lock);
2477 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2478
2479 return 0;
2480
2481 /*
2482 * In order to reschedule or handle a page fault, we need to drop the
2483 * locks here. In the case of a fault, this gives the other task
2484 * (either the highest priority waiter itself or the task which stole
2485 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2486 * are back from handling the fault we need to check the pi_state after
2487 * reacquiring the locks and before trying to do another fixup. When
2488 * the fixup has been done already we simply return.
2489 *
2490 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2491 * drop hb->lock since the caller owns the hb -> futex_q relation.
2492 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2493 */
2494 handle_err:
2495 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2496 spin_unlock(q->lock_ptr);
2497
2498 switch (err) {
2499 case -EFAULT:
2500 ret = fault_in_user_writeable(uaddr);
2501 break;
2502
2503 case -EAGAIN:
2504 cond_resched();
2505 ret = 0;
2506 break;
2507
2508 default:
2509 WARN_ON_ONCE(1);
2510 ret = err;
2511 break;
2512 }
2513
2514 spin_lock(q->lock_ptr);
2515 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2516
2517 /*
2518 * Check if someone else fixed it for us:
2519 */
2520 if (pi_state->owner != oldowner) {
2521 ret = 0;
2522 goto out_unlock;
2523 }
2524
2525 if (ret)
2526 goto out_unlock;
2527
2528 goto retry;
2529
2530 out_unlock:
2531 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2532 return ret;
2533 }
2534
2535 static long futex_wait_restart(struct restart_block *restart);
2536
2537 /**
2538 * fixup_owner() - Post lock pi_state and corner case management
2539 * @uaddr: user address of the futex
2540 * @q: futex_q (contains pi_state and access to the rt_mutex)
2541 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2542 *
2543 * After attempting to lock an rt_mutex, this function is called to cleanup
2544 * the pi_state owner as well as handle race conditions that may allow us to
2545 * acquire the lock. Must be called with the hb lock held.
2546 *
2547 * Return:
2548 * - 1 - success, lock taken;
2549 * - 0 - success, lock not taken;
2550 * - <0 - on error (-EFAULT)
2551 */
2552 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2553 {
2554 int ret = 0;
2555
2556 if (locked) {
2557 /*
2558 * Got the lock. We might not be the anticipated owner if we
2559 * did a lock-steal - fix up the PI-state in that case:
2560 *
2561 * Speculative pi_state->owner read (we don't hold wait_lock);
2562 * since we own the lock pi_state->owner == current is the
2563 * stable state, anything else needs more attention.
2564 */
2565 if (q->pi_state->owner != current)
2566 ret = fixup_pi_state_owner(uaddr, q, current);
2567 goto out;
2568 }
2569
2570 /*
2571 * If we didn't get the lock; check if anybody stole it from us. In
2572 * that case, we need to fix up the uval to point to them instead of
2573 * us, otherwise bad things happen. [10]
2574 *
2575 * Another speculative read; pi_state->owner == current is unstable
2576 * but needs our attention.
2577 */
2578 if (q->pi_state->owner == current) {
2579 ret = fixup_pi_state_owner(uaddr, q, NULL);
2580 goto out;
2581 }
2582
2583 /*
2584 * Paranoia check. If we did not take the lock, then we should not be
2585 * the owner of the rt_mutex.
2586 */
2587 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2588 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2589 "pi-state %p\n", ret,
2590 q->pi_state->pi_mutex.owner,
2591 q->pi_state->owner);
2592 }
2593
2594 out:
2595 return ret ? ret : locked;
2596 }
2597
2598 /**
2599 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2600 * @hb: the futex hash bucket, must be locked by the caller
2601 * @q: the futex_q to queue up on
2602 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2603 */
2604 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2605 struct hrtimer_sleeper *timeout)
2606 {
2607 /*
2608 * The task state is guaranteed to be set before another task can
2609 * wake it. set_current_state() is implemented using smp_store_mb() and
2610 * queue_me() calls spin_unlock() upon completion, both serializing
2611 * access to the hash list and forcing another memory barrier.
2612 */
2613 set_current_state(TASK_INTERRUPTIBLE);
2614 queue_me(q, hb);
2615
2616 /* Arm the timer */
2617 if (timeout)
2618 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2619
2620 /*
2621 * If we have been removed from the hash list, then another task
2622 * has tried to wake us, and we can skip the call to schedule().
2623 */
2624 if (likely(!plist_node_empty(&q->list))) {
2625 /*
2626 * If the timer has already expired, current will already be
2627 * flagged for rescheduling. Only call schedule if there
2628 * is no timeout, or if it has yet to expire.
2629 */
2630 if (!timeout || timeout->task)
2631 freezable_schedule();
2632 }
2633 __set_current_state(TASK_RUNNING);
2634 }
2635
2636 /**
2637 * futex_wait_setup() - Prepare to wait on a futex
2638 * @uaddr: the futex userspace address
2639 * @val: the expected value
2640 * @flags: futex flags (FLAGS_SHARED, etc.)
2641 * @q: the associated futex_q
2642 * @hb: storage for hash_bucket pointer to be returned to caller
2643 *
2644 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2645 * compare it with the expected value. Handle atomic faults internally.
2646 * Return with the hb lock held and a q.key reference on success, and unlocked
2647 * with no q.key reference on failure.
2648 *
2649 * Return:
2650 * - 0 - uaddr contains val and hb has been locked;
2651 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2652 */
2653 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2654 struct futex_q *q, struct futex_hash_bucket **hb)
2655 {
2656 u32 uval;
2657 int ret;
2658
2659 /*
2660 * Access the page AFTER the hash-bucket is locked.
2661 * Order is important:
2662 *
2663 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2664 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2665 *
2666 * The basic logical guarantee of a futex is that it blocks ONLY
2667 * if cond(var) is known to be true at the time of blocking, for
2668 * any cond. If we locked the hash-bucket after testing *uaddr, that
2669 * would open a race condition where we could block indefinitely with
2670 * cond(var) false, which would violate the guarantee.
2671 *
2672 * On the other hand, we insert q and release the hash-bucket only
2673 * after testing *uaddr. This guarantees that futex_wait() will NOT
2674 * absorb a wakeup if *uaddr does not match the desired values
2675 * while the syscall executes.
2676 */
2677 retry:
2678 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2679 if (unlikely(ret != 0))
2680 return ret;
2681
2682 retry_private:
2683 *hb = queue_lock(q);
2684
2685 ret = get_futex_value_locked(&uval, uaddr);
2686
2687 if (ret) {
2688 queue_unlock(*hb);
2689
2690 ret = get_user(uval, uaddr);
2691 if (ret)
2692 goto out;
2693
2694 if (!(flags & FLAGS_SHARED))
2695 goto retry_private;
2696
2697 put_futex_key(&q->key);
2698 goto retry;
2699 }
2700
2701 if (uval != val) {
2702 queue_unlock(*hb);
2703 ret = -EWOULDBLOCK;
2704 }
2705
2706 out:
2707 if (ret)
2708 put_futex_key(&q->key);
2709 return ret;
2710 }
2711
2712 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2713 ktime_t *abs_time, u32 bitset)
2714 {
2715 struct hrtimer_sleeper timeout, *to;
2716 struct restart_block *restart;
2717 struct futex_hash_bucket *hb;
2718 struct futex_q q = futex_q_init;
2719 int ret;
2720
2721 if (!bitset)
2722 return -EINVAL;
2723 q.bitset = bitset;
2724
2725 to = futex_setup_timer(abs_time, &timeout, flags,
2726 current->timer_slack_ns);
2727 retry:
2728 /*
2729 * Prepare to wait on uaddr. On success, holds hb lock and increments
2730 * q.key refs.
2731 */
2732 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2733 if (ret)
2734 goto out;
2735
2736 /* queue_me and wait for wakeup, timeout, or a signal. */
2737 futex_wait_queue_me(hb, &q, to);
2738
2739 /* If we were woken (and unqueued), we succeeded, whatever. */
2740 ret = 0;
2741 /* unqueue_me() drops q.key ref */
2742 if (!unqueue_me(&q))
2743 goto out;
2744 ret = -ETIMEDOUT;
2745 if (to && !to->task)
2746 goto out;
2747
2748 /*
2749 * We expect signal_pending(current), but we might be the
2750 * victim of a spurious wakeup as well.
2751 */
2752 if (!signal_pending(current))
2753 goto retry;
2754
2755 ret = -ERESTARTSYS;
2756 if (!abs_time)
2757 goto out;
2758
2759 restart = &current->restart_block;
2760 restart->fn = futex_wait_restart;
2761 restart->futex.uaddr = uaddr;
2762 restart->futex.val = val;
2763 restart->futex.time = *abs_time;
2764 restart->futex.bitset = bitset;
2765 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2766
2767 ret = -ERESTART_RESTARTBLOCK;
2768
2769 out:
2770 if (to) {
2771 hrtimer_cancel(&to->timer);
2772 destroy_hrtimer_on_stack(&to->timer);
2773 }
2774 return ret;
2775 }
2776
2777
2778 static long futex_wait_restart(struct restart_block *restart)
2779 {
2780 u32 __user *uaddr = restart->futex.uaddr;
2781 ktime_t t, *tp = NULL;
2782
2783 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2784 t = restart->futex.time;
2785 tp = &t;
2786 }
2787 restart->fn = do_no_restart_syscall;
2788
2789 return (long)futex_wait(uaddr, restart->futex.flags,
2790 restart->futex.val, tp, restart->futex.bitset);
2791 }
2792
2793
2794 /*
2795 * Userspace tried a 0 -> TID atomic transition of the futex value
2796 * and failed. The kernel side here does the whole locking operation:
2797 * if there are waiters then it will block as a consequence of relying
2798 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2799 * a 0 value of the futex too.).
2800 *
2801 * Also serves as futex trylock_pi()'ing, and due semantics.
2802 */
2803 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2804 ktime_t *time, int trylock)
2805 {
2806 struct hrtimer_sleeper timeout, *to;
2807 struct futex_pi_state *pi_state = NULL;
2808 struct task_struct *exiting = NULL;
2809 struct rt_mutex_waiter rt_waiter;
2810 struct futex_hash_bucket *hb;
2811 struct futex_q q = futex_q_init;
2812 int res, ret;
2813
2814 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2815 return -ENOSYS;
2816
2817 if (refill_pi_state_cache())
2818 return -ENOMEM;
2819
2820 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2821
2822 retry:
2823 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2824 if (unlikely(ret != 0))
2825 goto out;
2826
2827 retry_private:
2828 hb = queue_lock(&q);
2829
2830 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2831 &exiting, 0);
2832 if (unlikely(ret)) {
2833 /*
2834 * Atomic work succeeded and we got the lock,
2835 * or failed. Either way, we do _not_ block.
2836 */
2837 switch (ret) {
2838 case 1:
2839 /* We got the lock. */
2840 ret = 0;
2841 goto out_unlock_put_key;
2842 case -EFAULT:
2843 goto uaddr_faulted;
2844 case -EBUSY:
2845 case -EAGAIN:
2846 /*
2847 * Two reasons for this:
2848 * - EBUSY: Task is exiting and we just wait for the
2849 * exit to complete.
2850 * - EAGAIN: The user space value changed.
2851 */
2852 queue_unlock(hb);
2853 put_futex_key(&q.key);
2854 /*
2855 * Handle the case where the owner is in the middle of
2856 * exiting. Wait for the exit to complete otherwise
2857 * this task might loop forever, aka. live lock.
2858 */
2859 wait_for_owner_exiting(ret, exiting);
2860 cond_resched();
2861 goto retry;
2862 default:
2863 goto out_unlock_put_key;
2864 }
2865 }
2866
2867 WARN_ON(!q.pi_state);
2868
2869 /*
2870 * Only actually queue now that the atomic ops are done:
2871 */
2872 __queue_me(&q, hb);
2873
2874 if (trylock) {
2875 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2876 /* Fixup the trylock return value: */
2877 ret = ret ? 0 : -EWOULDBLOCK;
2878 goto no_block;
2879 }
2880
2881 rt_mutex_init_waiter(&rt_waiter);
2882
2883 /*
2884 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2885 * hold it while doing rt_mutex_start_proxy(), because then it will
2886 * include hb->lock in the blocking chain, even through we'll not in
2887 * fact hold it while blocking. This will lead it to report -EDEADLK
2888 * and BUG when futex_unlock_pi() interleaves with this.
2889 *
2890 * Therefore acquire wait_lock while holding hb->lock, but drop the
2891 * latter before calling __rt_mutex_start_proxy_lock(). This
2892 * interleaves with futex_unlock_pi() -- which does a similar lock
2893 * handoff -- such that the latter can observe the futex_q::pi_state
2894 * before __rt_mutex_start_proxy_lock() is done.
2895 */
2896 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2897 spin_unlock(q.lock_ptr);
2898 /*
2899 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2900 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2901 * it sees the futex_q::pi_state.
2902 */
2903 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2904 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2905
2906 if (ret) {
2907 if (ret == 1)
2908 ret = 0;
2909 goto cleanup;
2910 }
2911
2912 if (unlikely(to))
2913 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2914
2915 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2916
2917 cleanup:
2918 spin_lock(q.lock_ptr);
2919 /*
2920 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2921 * first acquire the hb->lock before removing the lock from the
2922 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2923 * lists consistent.
2924 *
2925 * In particular; it is important that futex_unlock_pi() can not
2926 * observe this inconsistency.
2927 */
2928 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2929 ret = 0;
2930
2931 no_block:
2932 /*
2933 * Fixup the pi_state owner and possibly acquire the lock if we
2934 * haven't already.
2935 */
2936 res = fixup_owner(uaddr, &q, !ret);
2937 /*
2938 * If fixup_owner() returned an error, proprogate that. If it acquired
2939 * the lock, clear our -ETIMEDOUT or -EINTR.
2940 */
2941 if (res)
2942 ret = (res < 0) ? res : 0;
2943
2944 /*
2945 * If fixup_owner() faulted and was unable to handle the fault, unlock
2946 * it and return the fault to userspace.
2947 */
2948 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2949 pi_state = q.pi_state;
2950 get_pi_state(pi_state);
2951 }
2952
2953 /* Unqueue and drop the lock */
2954 unqueue_me_pi(&q);
2955
2956 if (pi_state) {
2957 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2958 put_pi_state(pi_state);
2959 }
2960
2961 goto out_put_key;
2962
2963 out_unlock_put_key:
2964 queue_unlock(hb);
2965
2966 out_put_key:
2967 put_futex_key(&q.key);
2968 out:
2969 if (to) {
2970 hrtimer_cancel(&to->timer);
2971 destroy_hrtimer_on_stack(&to->timer);
2972 }
2973 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2974
2975 uaddr_faulted:
2976 queue_unlock(hb);
2977
2978 ret = fault_in_user_writeable(uaddr);
2979 if (ret)
2980 goto out_put_key;
2981
2982 if (!(flags & FLAGS_SHARED))
2983 goto retry_private;
2984
2985 put_futex_key(&q.key);
2986 goto retry;
2987 }
2988
2989 /*
2990 * Userspace attempted a TID -> 0 atomic transition, and failed.
2991 * This is the in-kernel slowpath: we look up the PI state (if any),
2992 * and do the rt-mutex unlock.
2993 */
2994 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2995 {
2996 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2997 union futex_key key = FUTEX_KEY_INIT;
2998 struct futex_hash_bucket *hb;
2999 struct futex_q *top_waiter;
3000 int ret;
3001
3002 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3003 return -ENOSYS;
3004
3005 retry:
3006 if (get_user(uval, uaddr))
3007 return -EFAULT;
3008 /*
3009 * We release only a lock we actually own:
3010 */
3011 if ((uval & FUTEX_TID_MASK) != vpid)
3012 return -EPERM;
3013
3014 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3015 if (ret)
3016 return ret;
3017
3018 hb = hash_futex(&key);
3019 spin_lock(&hb->lock);
3020
3021 /*
3022 * Check waiters first. We do not trust user space values at
3023 * all and we at least want to know if user space fiddled
3024 * with the futex value instead of blindly unlocking.
3025 */
3026 top_waiter = futex_top_waiter(hb, &key);
3027 if (top_waiter) {
3028 struct futex_pi_state *pi_state = top_waiter->pi_state;
3029
3030 ret = -EINVAL;
3031 if (!pi_state)
3032 goto out_unlock;
3033
3034 /*
3035 * If current does not own the pi_state then the futex is
3036 * inconsistent and user space fiddled with the futex value.
3037 */
3038 if (pi_state->owner != current)
3039 goto out_unlock;
3040
3041 get_pi_state(pi_state);
3042 /*
3043 * By taking wait_lock while still holding hb->lock, we ensure
3044 * there is no point where we hold neither; and therefore
3045 * wake_futex_pi() must observe a state consistent with what we
3046 * observed.
3047 *
3048 * In particular; this forces __rt_mutex_start_proxy() to
3049 * complete such that we're guaranteed to observe the
3050 * rt_waiter. Also see the WARN in wake_futex_pi().
3051 */
3052 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3053 spin_unlock(&hb->lock);
3054
3055 /* drops pi_state->pi_mutex.wait_lock */
3056 ret = wake_futex_pi(uaddr, uval, pi_state);
3057
3058 put_pi_state(pi_state);
3059
3060 /*
3061 * Success, we're done! No tricky corner cases.
3062 */
3063 if (!ret)
3064 goto out_putkey;
3065 /*
3066 * The atomic access to the futex value generated a
3067 * pagefault, so retry the user-access and the wakeup:
3068 */
3069 if (ret == -EFAULT)
3070 goto pi_faulted;
3071 /*
3072 * A unconditional UNLOCK_PI op raced against a waiter
3073 * setting the FUTEX_WAITERS bit. Try again.
3074 */
3075 if (ret == -EAGAIN)
3076 goto pi_retry;
3077 /*
3078 * wake_futex_pi has detected invalid state. Tell user
3079 * space.
3080 */
3081 goto out_putkey;
3082 }
3083
3084 /*
3085 * We have no kernel internal state, i.e. no waiters in the
3086 * kernel. Waiters which are about to queue themselves are stuck
3087 * on hb->lock. So we can safely ignore them. We do neither
3088 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3089 * owner.
3090 */
3091 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3092 spin_unlock(&hb->lock);
3093 switch (ret) {
3094 case -EFAULT:
3095 goto pi_faulted;
3096
3097 case -EAGAIN:
3098 goto pi_retry;
3099
3100 default:
3101 WARN_ON_ONCE(1);
3102 goto out_putkey;
3103 }
3104 }
3105
3106 /*
3107 * If uval has changed, let user space handle it.
3108 */
3109 ret = (curval == uval) ? 0 : -EAGAIN;
3110
3111 out_unlock:
3112 spin_unlock(&hb->lock);
3113 out_putkey:
3114 put_futex_key(&key);
3115 return ret;
3116
3117 pi_retry:
3118 put_futex_key(&key);
3119 cond_resched();
3120 goto retry;
3121
3122 pi_faulted:
3123 put_futex_key(&key);
3124
3125 ret = fault_in_user_writeable(uaddr);
3126 if (!ret)
3127 goto retry;
3128
3129 return ret;
3130 }
3131
3132 /**
3133 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3134 * @hb: the hash_bucket futex_q was original enqueued on
3135 * @q: the futex_q woken while waiting to be requeued
3136 * @key2: the futex_key of the requeue target futex
3137 * @timeout: the timeout associated with the wait (NULL if none)
3138 *
3139 * Detect if the task was woken on the initial futex as opposed to the requeue
3140 * target futex. If so, determine if it was a timeout or a signal that caused
3141 * the wakeup and return the appropriate error code to the caller. Must be
3142 * called with the hb lock held.
3143 *
3144 * Return:
3145 * - 0 = no early wakeup detected;
3146 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3147 */
3148 static inline
3149 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3150 struct futex_q *q, union futex_key *key2,
3151 struct hrtimer_sleeper *timeout)
3152 {
3153 int ret = 0;
3154
3155 /*
3156 * With the hb lock held, we avoid races while we process the wakeup.
3157 * We only need to hold hb (and not hb2) to ensure atomicity as the
3158 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3159 * It can't be requeued from uaddr2 to something else since we don't
3160 * support a PI aware source futex for requeue.
3161 */
3162 if (!match_futex(&q->key, key2)) {
3163 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3164 /*
3165 * We were woken prior to requeue by a timeout or a signal.
3166 * Unqueue the futex_q and determine which it was.
3167 */
3168 plist_del(&q->list, &hb->chain);
3169 hb_waiters_dec(hb);
3170
3171 /* Handle spurious wakeups gracefully */
3172 ret = -EWOULDBLOCK;
3173 if (timeout && !timeout->task)
3174 ret = -ETIMEDOUT;
3175 else if (signal_pending(current))
3176 ret = -ERESTARTNOINTR;
3177 }
3178 return ret;
3179 }
3180
3181 /**
3182 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3183 * @uaddr: the futex we initially wait on (non-pi)
3184 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3185 * the same type, no requeueing from private to shared, etc.
3186 * @val: the expected value of uaddr
3187 * @abs_time: absolute timeout
3188 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3189 * @uaddr2: the pi futex we will take prior to returning to user-space
3190 *
3191 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3192 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3193 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3194 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3195 * without one, the pi logic would not know which task to boost/deboost, if
3196 * there was a need to.
3197 *
3198 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3199 * via the following--
3200 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3201 * 2) wakeup on uaddr2 after a requeue
3202 * 3) signal
3203 * 4) timeout
3204 *
3205 * If 3, cleanup and return -ERESTARTNOINTR.
3206 *
3207 * If 2, we may then block on trying to take the rt_mutex and return via:
3208 * 5) successful lock
3209 * 6) signal
3210 * 7) timeout
3211 * 8) other lock acquisition failure
3212 *
3213 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3214 *
3215 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3216 *
3217 * Return:
3218 * - 0 - On success;
3219 * - <0 - On error
3220 */
3221 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3222 u32 val, ktime_t *abs_time, u32 bitset,
3223 u32 __user *uaddr2)
3224 {
3225 struct hrtimer_sleeper timeout, *to;
3226 struct futex_pi_state *pi_state = NULL;
3227 struct rt_mutex_waiter rt_waiter;
3228 struct futex_hash_bucket *hb;
3229 union futex_key key2 = FUTEX_KEY_INIT;
3230 struct futex_q q = futex_q_init;
3231 int res, ret;
3232
3233 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3234 return -ENOSYS;
3235
3236 if (uaddr == uaddr2)
3237 return -EINVAL;
3238
3239 if (!bitset)
3240 return -EINVAL;
3241
3242 to = futex_setup_timer(abs_time, &timeout, flags,
3243 current->timer_slack_ns);
3244
3245 /*
3246 * The waiter is allocated on our stack, manipulated by the requeue
3247 * code while we sleep on uaddr.
3248 */
3249 rt_mutex_init_waiter(&rt_waiter);
3250
3251 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3252 if (unlikely(ret != 0))
3253 goto out;
3254
3255 q.bitset = bitset;
3256 q.rt_waiter = &rt_waiter;
3257 q.requeue_pi_key = &key2;
3258
3259 /*
3260 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3261 * count.
3262 */
3263 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3264 if (ret)
3265 goto out_key2;
3266
3267 /*
3268 * The check above which compares uaddrs is not sufficient for
3269 * shared futexes. We need to compare the keys:
3270 */
3271 if (match_futex(&q.key, &key2)) {
3272 queue_unlock(hb);
3273 ret = -EINVAL;
3274 goto out_put_keys;
3275 }
3276
3277 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3278 futex_wait_queue_me(hb, &q, to);
3279
3280 spin_lock(&hb->lock);
3281 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3282 spin_unlock(&hb->lock);
3283 if (ret)
3284 goto out_put_keys;
3285
3286 /*
3287 * In order for us to be here, we know our q.key == key2, and since
3288 * we took the hb->lock above, we also know that futex_requeue() has
3289 * completed and we no longer have to concern ourselves with a wakeup
3290 * race with the atomic proxy lock acquisition by the requeue code. The
3291 * futex_requeue dropped our key1 reference and incremented our key2
3292 * reference count.
3293 */
3294
3295 /* Check if the requeue code acquired the second futex for us. */
3296 if (!q.rt_waiter) {
3297 /*
3298 * Got the lock. We might not be the anticipated owner if we
3299 * did a lock-steal - fix up the PI-state in that case.
3300 */
3301 if (q.pi_state && (q.pi_state->owner != current)) {
3302 spin_lock(q.lock_ptr);
3303 ret = fixup_pi_state_owner(uaddr2, &q, current);
3304 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3305 pi_state = q.pi_state;
3306 get_pi_state(pi_state);
3307 }
3308 /*
3309 * Drop the reference to the pi state which
3310 * the requeue_pi() code acquired for us.
3311 */
3312 put_pi_state(q.pi_state);
3313 spin_unlock(q.lock_ptr);
3314 }
3315 } else {
3316 struct rt_mutex *pi_mutex;
3317
3318 /*
3319 * We have been woken up by futex_unlock_pi(), a timeout, or a
3320 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3321 * the pi_state.
3322 */
3323 WARN_ON(!q.pi_state);
3324 pi_mutex = &q.pi_state->pi_mutex;
3325 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3326
3327 spin_lock(q.lock_ptr);
3328 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3329 ret = 0;
3330
3331 debug_rt_mutex_free_waiter(&rt_waiter);
3332 /*
3333 * Fixup the pi_state owner and possibly acquire the lock if we
3334 * haven't already.
3335 */
3336 res = fixup_owner(uaddr2, &q, !ret);
3337 /*
3338 * If fixup_owner() returned an error, proprogate that. If it
3339 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3340 */
3341 if (res)
3342 ret = (res < 0) ? res : 0;
3343
3344 /*
3345 * If fixup_pi_state_owner() faulted and was unable to handle
3346 * the fault, unlock the rt_mutex and return the fault to
3347 * userspace.
3348 */
3349 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3350 pi_state = q.pi_state;
3351 get_pi_state(pi_state);
3352 }
3353
3354 /* Unqueue and drop the lock. */
3355 unqueue_me_pi(&q);
3356 }
3357
3358 if (pi_state) {
3359 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3360 put_pi_state(pi_state);
3361 }
3362
3363 if (ret == -EINTR) {
3364 /*
3365 * We've already been requeued, but cannot restart by calling
3366 * futex_lock_pi() directly. We could restart this syscall, but
3367 * it would detect that the user space "val" changed and return
3368 * -EWOULDBLOCK. Save the overhead of the restart and return
3369 * -EWOULDBLOCK directly.
3370 */
3371 ret = -EWOULDBLOCK;
3372 }
3373
3374 out_put_keys:
3375 put_futex_key(&q.key);
3376 out_key2:
3377 put_futex_key(&key2);
3378
3379 out:
3380 if (to) {
3381 hrtimer_cancel(&to->timer);
3382 destroy_hrtimer_on_stack(&to->timer);
3383 }
3384 return ret;
3385 }
3386
3387 /*
3388 * Support for robust futexes: the kernel cleans up held futexes at
3389 * thread exit time.
3390 *
3391 * Implementation: user-space maintains a per-thread list of locks it
3392 * is holding. Upon do_exit(), the kernel carefully walks this list,
3393 * and marks all locks that are owned by this thread with the
3394 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3395 * always manipulated with the lock held, so the list is private and
3396 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3397 * field, to allow the kernel to clean up if the thread dies after
3398 * acquiring the lock, but just before it could have added itself to
3399 * the list. There can only be one such pending lock.
3400 */
3401
3402 /**
3403 * sys_set_robust_list() - Set the robust-futex list head of a task
3404 * @head: pointer to the list-head
3405 * @len: length of the list-head, as userspace expects
3406 */
3407 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3408 size_t, len)
3409 {
3410 if (!futex_cmpxchg_enabled)
3411 return -ENOSYS;
3412 /*
3413 * The kernel knows only one size for now:
3414 */
3415 if (unlikely(len != sizeof(*head)))
3416 return -EINVAL;
3417
3418 current->robust_list = head;
3419
3420 return 0;
3421 }
3422
3423 /**
3424 * sys_get_robust_list() - Get the robust-futex list head of a task
3425 * @pid: pid of the process [zero for current task]
3426 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3427 * @len_ptr: pointer to a length field, the kernel fills in the header size
3428 */
3429 SYSCALL_DEFINE3(get_robust_list, int, pid,
3430 struct robust_list_head __user * __user *, head_ptr,
3431 size_t __user *, len_ptr)
3432 {
3433 struct robust_list_head __user *head;
3434 unsigned long ret;
3435 struct task_struct *p;
3436
3437 if (!futex_cmpxchg_enabled)
3438 return -ENOSYS;
3439
3440 rcu_read_lock();
3441
3442 ret = -ESRCH;
3443 if (!pid)
3444 p = current;
3445 else {
3446 p = find_task_by_vpid(pid);
3447 if (!p)
3448 goto err_unlock;
3449 }
3450
3451 ret = -EPERM;
3452 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3453 goto err_unlock;
3454
3455 head = p->robust_list;
3456 rcu_read_unlock();
3457
3458 if (put_user(sizeof(*head), len_ptr))
3459 return -EFAULT;
3460 return put_user(head, head_ptr);
3461
3462 err_unlock:
3463 rcu_read_unlock();
3464
3465 return ret;
3466 }
3467
3468 /* Constants for the pending_op argument of handle_futex_death */
3469 #define HANDLE_DEATH_PENDING true
3470 #define HANDLE_DEATH_LIST false
3471
3472 /*
3473 * Process a futex-list entry, check whether it's owned by the
3474 * dying task, and do notification if so:
3475 */
3476 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3477 bool pi, bool pending_op)
3478 {
3479 u32 uval, uninitialized_var(nval), mval;
3480 int err;
3481
3482 /* Futex address must be 32bit aligned */
3483 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3484 return -1;
3485
3486 retry:
3487 if (get_user(uval, uaddr))
3488 return -1;
3489
3490 /*
3491 * Special case for regular (non PI) futexes. The unlock path in
3492 * user space has two race scenarios:
3493 *
3494 * 1. The unlock path releases the user space futex value and
3495 * before it can execute the futex() syscall to wake up
3496 * waiters it is killed.
3497 *
3498 * 2. A woken up waiter is killed before it can acquire the
3499 * futex in user space.
3500 *
3501 * In both cases the TID validation below prevents a wakeup of
3502 * potential waiters which can cause these waiters to block
3503 * forever.
3504 *
3505 * In both cases the following conditions are met:
3506 *
3507 * 1) task->robust_list->list_op_pending != NULL
3508 * @pending_op == true
3509 * 2) User space futex value == 0
3510 * 3) Regular futex: @pi == false
3511 *
3512 * If these conditions are met, it is safe to attempt waking up a
3513 * potential waiter without touching the user space futex value and
3514 * trying to set the OWNER_DIED bit. The user space futex value is
3515 * uncontended and the rest of the user space mutex state is
3516 * consistent, so a woken waiter will just take over the
3517 * uncontended futex. Setting the OWNER_DIED bit would create
3518 * inconsistent state and malfunction of the user space owner died
3519 * handling.
3520 */
3521 if (pending_op && !pi && !uval) {
3522 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3523 return 0;
3524 }
3525
3526 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3527 return 0;
3528
3529 /*
3530 * Ok, this dying thread is truly holding a futex
3531 * of interest. Set the OWNER_DIED bit atomically
3532 * via cmpxchg, and if the value had FUTEX_WAITERS
3533 * set, wake up a waiter (if any). (We have to do a
3534 * futex_wake() even if OWNER_DIED is already set -
3535 * to handle the rare but possible case of recursive
3536 * thread-death.) The rest of the cleanup is done in
3537 * userspace.
3538 */
3539 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3540
3541 /*
3542 * We are not holding a lock here, but we want to have
3543 * the pagefault_disable/enable() protection because
3544 * we want to handle the fault gracefully. If the
3545 * access fails we try to fault in the futex with R/W
3546 * verification via get_user_pages. get_user() above
3547 * does not guarantee R/W access. If that fails we
3548 * give up and leave the futex locked.
3549 */
3550 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3551 switch (err) {
3552 case -EFAULT:
3553 if (fault_in_user_writeable(uaddr))
3554 return -1;
3555 goto retry;
3556
3557 case -EAGAIN:
3558 cond_resched();
3559 goto retry;
3560
3561 default:
3562 WARN_ON_ONCE(1);
3563 return err;
3564 }
3565 }
3566
3567 if (nval != uval)
3568 goto retry;
3569
3570 /*
3571 * Wake robust non-PI futexes here. The wakeup of
3572 * PI futexes happens in exit_pi_state():
3573 */
3574 if (!pi && (uval & FUTEX_WAITERS))
3575 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3576
3577 return 0;
3578 }
3579
3580 /*
3581 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3582 */
3583 static inline int fetch_robust_entry(struct robust_list __user **entry,
3584 struct robust_list __user * __user *head,
3585 unsigned int *pi)
3586 {
3587 unsigned long uentry;
3588
3589 if (get_user(uentry, (unsigned long __user *)head))
3590 return -EFAULT;
3591
3592 *entry = (void __user *)(uentry & ~1UL);
3593 *pi = uentry & 1;
3594
3595 return 0;
3596 }
3597
3598 /*
3599 * Walk curr->robust_list (very carefully, it's a userspace list!)
3600 * and mark any locks found there dead, and notify any waiters.
3601 *
3602 * We silently return on any sign of list-walking problem.
3603 */
3604 static void exit_robust_list(struct task_struct *curr)
3605 {
3606 struct robust_list_head __user *head = curr->robust_list;
3607 struct robust_list __user *entry, *next_entry, *pending;
3608 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3609 unsigned int uninitialized_var(next_pi);
3610 unsigned long futex_offset;
3611 int rc;
3612
3613 if (!futex_cmpxchg_enabled)
3614 return;
3615
3616 /*
3617 * Fetch the list head (which was registered earlier, via
3618 * sys_set_robust_list()):
3619 */
3620 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3621 return;
3622 /*
3623 * Fetch the relative futex offset:
3624 */
3625 if (get_user(futex_offset, &head->futex_offset))
3626 return;
3627 /*
3628 * Fetch any possibly pending lock-add first, and handle it
3629 * if it exists:
3630 */
3631 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3632 return;
3633
3634 next_entry = NULL; /* avoid warning with gcc */
3635 while (entry != &head->list) {
3636 /*
3637 * Fetch the next entry in the list before calling
3638 * handle_futex_death:
3639 */
3640 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3641 /*
3642 * A pending lock might already be on the list, so
3643 * don't process it twice:
3644 */
3645 if (entry != pending) {
3646 if (handle_futex_death((void __user *)entry + futex_offset,
3647 curr, pi, HANDLE_DEATH_LIST))
3648 return;
3649 }
3650 if (rc)
3651 return;
3652 entry = next_entry;
3653 pi = next_pi;
3654 /*
3655 * Avoid excessively long or circular lists:
3656 */
3657 if (!--limit)
3658 break;
3659
3660 cond_resched();
3661 }
3662
3663 if (pending) {
3664 handle_futex_death((void __user *)pending + futex_offset,
3665 curr, pip, HANDLE_DEATH_PENDING);
3666 }
3667 }
3668
3669 static void futex_cleanup(struct task_struct *tsk)
3670 {
3671 if (unlikely(tsk->robust_list)) {
3672 exit_robust_list(tsk);
3673 tsk->robust_list = NULL;
3674 }
3675
3676 #ifdef CONFIG_COMPAT
3677 if (unlikely(tsk->compat_robust_list)) {
3678 compat_exit_robust_list(tsk);
3679 tsk->compat_robust_list = NULL;
3680 }
3681 #endif
3682
3683 if (unlikely(!list_empty(&tsk->pi_state_list)))
3684 exit_pi_state_list(tsk);
3685 }
3686
3687 /**
3688 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3689 * @tsk: task to set the state on
3690 *
3691 * Set the futex exit state of the task lockless. The futex waiter code
3692 * observes that state when a task is exiting and loops until the task has
3693 * actually finished the futex cleanup. The worst case for this is that the
3694 * waiter runs through the wait loop until the state becomes visible.
3695 *
3696 * This is called from the recursive fault handling path in do_exit().
3697 *
3698 * This is best effort. Either the futex exit code has run already or
3699 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3700 * take it over. If not, the problem is pushed back to user space. If the
3701 * futex exit code did not run yet, then an already queued waiter might
3702 * block forever, but there is nothing which can be done about that.
3703 */
3704 void futex_exit_recursive(struct task_struct *tsk)
3705 {
3706 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3707 if (tsk->futex_state == FUTEX_STATE_EXITING)
3708 mutex_unlock(&tsk->futex_exit_mutex);
3709 tsk->futex_state = FUTEX_STATE_DEAD;
3710 }
3711
3712 static void futex_cleanup_begin(struct task_struct *tsk)
3713 {
3714 /*
3715 * Prevent various race issues against a concurrent incoming waiter
3716 * including live locks by forcing the waiter to block on
3717 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3718 * attach_to_pi_owner().
3719 */
3720 mutex_lock(&tsk->futex_exit_mutex);
3721
3722 /*
3723 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3724 *
3725 * This ensures that all subsequent checks of tsk->futex_state in
3726 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3727 * tsk->pi_lock held.
3728 *
3729 * It guarantees also that a pi_state which was queued right before
3730 * the state change under tsk->pi_lock by a concurrent waiter must
3731 * be observed in exit_pi_state_list().
3732 */
3733 raw_spin_lock_irq(&tsk->pi_lock);
3734 tsk->futex_state = FUTEX_STATE_EXITING;
3735 raw_spin_unlock_irq(&tsk->pi_lock);
3736 }
3737
3738 static void futex_cleanup_end(struct task_struct *tsk, int state)
3739 {
3740 /*
3741 * Lockless store. The only side effect is that an observer might
3742 * take another loop until it becomes visible.
3743 */
3744 tsk->futex_state = state;
3745 /*
3746 * Drop the exit protection. This unblocks waiters which observed
3747 * FUTEX_STATE_EXITING to reevaluate the state.
3748 */
3749 mutex_unlock(&tsk->futex_exit_mutex);
3750 }
3751
3752 void futex_exec_release(struct task_struct *tsk)
3753 {
3754 /*
3755 * The state handling is done for consistency, but in the case of
3756 * exec() there is no way to prevent futher damage as the PID stays
3757 * the same. But for the unlikely and arguably buggy case that a
3758 * futex is held on exec(), this provides at least as much state
3759 * consistency protection which is possible.
3760 */
3761 futex_cleanup_begin(tsk);
3762 futex_cleanup(tsk);
3763 /*
3764 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3765 * exec a new binary.
3766 */
3767 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3768 }
3769
3770 void futex_exit_release(struct task_struct *tsk)
3771 {
3772 futex_cleanup_begin(tsk);
3773 futex_cleanup(tsk);
3774 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3775 }
3776
3777 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3778 u32 __user *uaddr2, u32 val2, u32 val3)
3779 {
3780 int cmd = op & FUTEX_CMD_MASK;
3781 unsigned int flags = 0;
3782
3783 if (!(op & FUTEX_PRIVATE_FLAG))
3784 flags |= FLAGS_SHARED;
3785
3786 if (op & FUTEX_CLOCK_REALTIME) {
3787 flags |= FLAGS_CLOCKRT;
3788 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3789 cmd != FUTEX_WAIT_REQUEUE_PI)
3790 return -ENOSYS;
3791 }
3792
3793 switch (cmd) {
3794 case FUTEX_LOCK_PI:
3795 case FUTEX_UNLOCK_PI:
3796 case FUTEX_TRYLOCK_PI:
3797 case FUTEX_WAIT_REQUEUE_PI:
3798 case FUTEX_CMP_REQUEUE_PI:
3799 if (!futex_cmpxchg_enabled)
3800 return -ENOSYS;
3801 }
3802
3803 switch (cmd) {
3804 case FUTEX_WAIT:
3805 val3 = FUTEX_BITSET_MATCH_ANY;
3806 /* fall through */
3807 case FUTEX_WAIT_BITSET:
3808 return futex_wait(uaddr, flags, val, timeout, val3);
3809 case FUTEX_WAKE:
3810 val3 = FUTEX_BITSET_MATCH_ANY;
3811 /* fall through */
3812 case FUTEX_WAKE_BITSET:
3813 return futex_wake(uaddr, flags, val, val3);
3814 case FUTEX_REQUEUE:
3815 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3816 case FUTEX_CMP_REQUEUE:
3817 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3818 case FUTEX_WAKE_OP:
3819 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3820 case FUTEX_LOCK_PI:
3821 return futex_lock_pi(uaddr, flags, timeout, 0);
3822 case FUTEX_UNLOCK_PI:
3823 return futex_unlock_pi(uaddr, flags);
3824 case FUTEX_TRYLOCK_PI:
3825 return futex_lock_pi(uaddr, flags, NULL, 1);
3826 case FUTEX_WAIT_REQUEUE_PI:
3827 val3 = FUTEX_BITSET_MATCH_ANY;
3828 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3829 uaddr2);
3830 case FUTEX_CMP_REQUEUE_PI:
3831 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3832 }
3833 return -ENOSYS;
3834 }
3835
3836
3837 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3838 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3839 u32, val3)
3840 {
3841 struct timespec64 ts;
3842 ktime_t t, *tp = NULL;
3843 u32 val2 = 0;
3844 int cmd = op & FUTEX_CMD_MASK;
3845
3846 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3847 cmd == FUTEX_WAIT_BITSET ||
3848 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3849 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3850 return -EFAULT;
3851 if (get_timespec64(&ts, utime))
3852 return -EFAULT;
3853 if (!timespec64_valid(&ts))
3854 return -EINVAL;
3855
3856 t = timespec64_to_ktime(ts);
3857 if (cmd == FUTEX_WAIT)
3858 t = ktime_add_safe(ktime_get(), t);
3859 tp = &t;
3860 }
3861 /*
3862 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3863 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3864 */
3865 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3866 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3867 val2 = (u32) (unsigned long) utime;
3868
3869 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3870 }
3871
3872 #ifdef CONFIG_COMPAT
3873 /*
3874 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3875 */
3876 static inline int
3877 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3878 compat_uptr_t __user *head, unsigned int *pi)
3879 {
3880 if (get_user(*uentry, head))
3881 return -EFAULT;
3882
3883 *entry = compat_ptr((*uentry) & ~1);
3884 *pi = (unsigned int)(*uentry) & 1;
3885
3886 return 0;
3887 }
3888
3889 static void __user *futex_uaddr(struct robust_list __user *entry,
3890 compat_long_t futex_offset)
3891 {
3892 compat_uptr_t base = ptr_to_compat(entry);
3893 void __user *uaddr = compat_ptr(base + futex_offset);
3894
3895 return uaddr;
3896 }
3897
3898 /*
3899 * Walk curr->robust_list (very carefully, it's a userspace list!)
3900 * and mark any locks found there dead, and notify any waiters.
3901 *
3902 * We silently return on any sign of list-walking problem.
3903 */
3904 static void compat_exit_robust_list(struct task_struct *curr)
3905 {
3906 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3907 struct robust_list __user *entry, *next_entry, *pending;
3908 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3909 unsigned int uninitialized_var(next_pi);
3910 compat_uptr_t uentry, next_uentry, upending;
3911 compat_long_t futex_offset;
3912 int rc;
3913
3914 if (!futex_cmpxchg_enabled)
3915 return;
3916
3917 /*
3918 * Fetch the list head (which was registered earlier, via
3919 * sys_set_robust_list()):
3920 */
3921 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3922 return;
3923 /*
3924 * Fetch the relative futex offset:
3925 */
3926 if (get_user(futex_offset, &head->futex_offset))
3927 return;
3928 /*
3929 * Fetch any possibly pending lock-add first, and handle it
3930 * if it exists:
3931 */
3932 if (compat_fetch_robust_entry(&upending, &pending,
3933 &head->list_op_pending, &pip))
3934 return;
3935
3936 next_entry = NULL; /* avoid warning with gcc */
3937 while (entry != (struct robust_list __user *) &head->list) {
3938 /*
3939 * Fetch the next entry in the list before calling
3940 * handle_futex_death:
3941 */
3942 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3943 (compat_uptr_t __user *)&entry->next, &next_pi);
3944 /*
3945 * A pending lock might already be on the list, so
3946 * dont process it twice:
3947 */
3948 if (entry != pending) {
3949 void __user *uaddr = futex_uaddr(entry, futex_offset);
3950
3951 if (handle_futex_death(uaddr, curr, pi,
3952 HANDLE_DEATH_LIST))
3953 return;
3954 }
3955 if (rc)
3956 return;
3957 uentry = next_uentry;
3958 entry = next_entry;
3959 pi = next_pi;
3960 /*
3961 * Avoid excessively long or circular lists:
3962 */
3963 if (!--limit)
3964 break;
3965
3966 cond_resched();
3967 }
3968 if (pending) {
3969 void __user *uaddr = futex_uaddr(pending, futex_offset);
3970
3971 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3972 }
3973 }
3974
3975 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3976 struct compat_robust_list_head __user *, head,
3977 compat_size_t, len)
3978 {
3979 if (!futex_cmpxchg_enabled)
3980 return -ENOSYS;
3981
3982 if (unlikely(len != sizeof(*head)))
3983 return -EINVAL;
3984
3985 current->compat_robust_list = head;
3986
3987 return 0;
3988 }
3989
3990 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3991 compat_uptr_t __user *, head_ptr,
3992 compat_size_t __user *, len_ptr)
3993 {
3994 struct compat_robust_list_head __user *head;
3995 unsigned long ret;
3996 struct task_struct *p;
3997
3998 if (!futex_cmpxchg_enabled)
3999 return -ENOSYS;
4000
4001 rcu_read_lock();
4002
4003 ret = -ESRCH;
4004 if (!pid)
4005 p = current;
4006 else {
4007 p = find_task_by_vpid(pid);
4008 if (!p)
4009 goto err_unlock;
4010 }
4011
4012 ret = -EPERM;
4013 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4014 goto err_unlock;
4015
4016 head = p->compat_robust_list;
4017 rcu_read_unlock();
4018
4019 if (put_user(sizeof(*head), len_ptr))
4020 return -EFAULT;
4021 return put_user(ptr_to_compat(head), head_ptr);
4022
4023 err_unlock:
4024 rcu_read_unlock();
4025
4026 return ret;
4027 }
4028 #endif /* CONFIG_COMPAT */
4029
4030 #ifdef CONFIG_COMPAT_32BIT_TIME
4031 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4032 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4033 u32, val3)
4034 {
4035 struct timespec64 ts;
4036 ktime_t t, *tp = NULL;
4037 int val2 = 0;
4038 int cmd = op & FUTEX_CMD_MASK;
4039
4040 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4041 cmd == FUTEX_WAIT_BITSET ||
4042 cmd == FUTEX_WAIT_REQUEUE_PI)) {
4043 if (get_old_timespec32(&ts, utime))
4044 return -EFAULT;
4045 if (!timespec64_valid(&ts))
4046 return -EINVAL;
4047
4048 t = timespec64_to_ktime(ts);
4049 if (cmd == FUTEX_WAIT)
4050 t = ktime_add_safe(ktime_get(), t);
4051 tp = &t;
4052 }
4053 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4054 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4055 val2 = (int) (unsigned long) utime;
4056
4057 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4058 }
4059 #endif /* CONFIG_COMPAT_32BIT_TIME */
4060
4061 static void __init futex_detect_cmpxchg(void)
4062 {
4063 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4064 u32 curval;
4065
4066 /*
4067 * This will fail and we want it. Some arch implementations do
4068 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4069 * functionality. We want to know that before we call in any
4070 * of the complex code paths. Also we want to prevent
4071 * registration of robust lists in that case. NULL is
4072 * guaranteed to fault and we get -EFAULT on functional
4073 * implementation, the non-functional ones will return
4074 * -ENOSYS.
4075 */
4076 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4077 futex_cmpxchg_enabled = 1;
4078 #endif
4079 }
4080
4081 static int __init futex_init(void)
4082 {
4083 unsigned int futex_shift;
4084 unsigned long i;
4085
4086 #if CONFIG_BASE_SMALL
4087 futex_hashsize = 16;
4088 #else
4089 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4090 #endif
4091
4092 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4093 futex_hashsize, 0,
4094 futex_hashsize < 256 ? HASH_SMALL : 0,
4095 &futex_shift, NULL,
4096 futex_hashsize, futex_hashsize);
4097 futex_hashsize = 1UL << futex_shift;
4098
4099 futex_detect_cmpxchg();
4100
4101 for (i = 0; i < futex_hashsize; i++) {
4102 atomic_set(&futex_queues[i].waiters, 0);
4103 plist_head_init(&futex_queues[i].chain);
4104 spin_lock_init(&futex_queues[i].lock);
4105 }
4106
4107 return 0;
4108 }
4109 core_initcall(futex_init);