]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
pstore/ram: Avoid allocation and leak of platform data
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
700 }
701
702 out:
703 put_page(page);
704 return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709 drop_futex_key_refs(key);
710 }
711
712 /**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
733
734 return ret < 0 ? ret : 0;
735 }
736
737 /**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
741 *
742 * Must be called with the hb lock held.
743 */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746 {
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
758 {
759 int ret;
760
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
764
765 return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 int ret;
771
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
775
776 return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781 * PI code:
782 */
783 static int refill_pi_state_cache(void)
784 {
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792 if (!pi_state)
793 return -ENOMEM;
794
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 */
825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827 if (!pi_state)
828 return;
829
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
838 struct task_struct *owner;
839
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 }
850
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863 }
864
865 /*
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
868 */
869 static struct task_struct *futex_find_get_task(pid_t pid)
870 {
871 struct task_struct *p;
872
873 rcu_read_lock();
874 p = find_task_by_vpid(pid);
875 if (p)
876 get_task_struct(p);
877
878 rcu_read_unlock();
879
880 return p;
881 }
882
883 #ifdef CONFIG_FUTEX_PI
884
885 /*
886 * This task is holding PI mutexes at exit time => bad.
887 * Kernel cleans up PI-state, but userspace is likely hosed.
888 * (Robust-futex cleanup is separate and might save the day for userspace.)
889 */
890 void exit_pi_state_list(struct task_struct *curr)
891 {
892 struct list_head *next, *head = &curr->pi_state_list;
893 struct futex_pi_state *pi_state;
894 struct futex_hash_bucket *hb;
895 union futex_key key = FUTEX_KEY_INIT;
896
897 if (!futex_cmpxchg_enabled)
898 return;
899 /*
900 * We are a ZOMBIE and nobody can enqueue itself on
901 * pi_state_list anymore, but we have to be careful
902 * versus waiters unqueueing themselves:
903 */
904 raw_spin_lock_irq(&curr->pi_lock);
905 while (!list_empty(head)) {
906 next = head->next;
907 pi_state = list_entry(next, struct futex_pi_state, list);
908 key = pi_state->key;
909 hb = hash_futex(&key);
910
911 /*
912 * We can race against put_pi_state() removing itself from the
913 * list (a waiter going away). put_pi_state() will first
914 * decrement the reference count and then modify the list, so
915 * its possible to see the list entry but fail this reference
916 * acquire.
917 *
918 * In that case; drop the locks to let put_pi_state() make
919 * progress and retry the loop.
920 */
921 if (!atomic_inc_not_zero(&pi_state->refcount)) {
922 raw_spin_unlock_irq(&curr->pi_lock);
923 cpu_relax();
924 raw_spin_lock_irq(&curr->pi_lock);
925 continue;
926 }
927 raw_spin_unlock_irq(&curr->pi_lock);
928
929 spin_lock(&hb->lock);
930 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
931 raw_spin_lock(&curr->pi_lock);
932 /*
933 * We dropped the pi-lock, so re-check whether this
934 * task still owns the PI-state:
935 */
936 if (head->next != next) {
937 /* retain curr->pi_lock for the loop invariant */
938 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
939 spin_unlock(&hb->lock);
940 put_pi_state(pi_state);
941 continue;
942 }
943
944 WARN_ON(pi_state->owner != curr);
945 WARN_ON(list_empty(&pi_state->list));
946 list_del_init(&pi_state->list);
947 pi_state->owner = NULL;
948
949 raw_spin_unlock(&curr->pi_lock);
950 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
951 spin_unlock(&hb->lock);
952
953 rt_mutex_futex_unlock(&pi_state->pi_mutex);
954 put_pi_state(pi_state);
955
956 raw_spin_lock_irq(&curr->pi_lock);
957 }
958 raw_spin_unlock_irq(&curr->pi_lock);
959 }
960
961 #endif
962
963 /*
964 * We need to check the following states:
965 *
966 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
967 *
968 * [1] NULL | --- | --- | 0 | 0/1 | Valid
969 * [2] NULL | --- | --- | >0 | 0/1 | Valid
970 *
971 * [3] Found | NULL | -- | Any | 0/1 | Invalid
972 *
973 * [4] Found | Found | NULL | 0 | 1 | Valid
974 * [5] Found | Found | NULL | >0 | 1 | Invalid
975 *
976 * [6] Found | Found | task | 0 | 1 | Valid
977 *
978 * [7] Found | Found | NULL | Any | 0 | Invalid
979 *
980 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
981 * [9] Found | Found | task | 0 | 0 | Invalid
982 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
983 *
984 * [1] Indicates that the kernel can acquire the futex atomically. We
985 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
986 *
987 * [2] Valid, if TID does not belong to a kernel thread. If no matching
988 * thread is found then it indicates that the owner TID has died.
989 *
990 * [3] Invalid. The waiter is queued on a non PI futex
991 *
992 * [4] Valid state after exit_robust_list(), which sets the user space
993 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
994 *
995 * [5] The user space value got manipulated between exit_robust_list()
996 * and exit_pi_state_list()
997 *
998 * [6] Valid state after exit_pi_state_list() which sets the new owner in
999 * the pi_state but cannot access the user space value.
1000 *
1001 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1002 *
1003 * [8] Owner and user space value match
1004 *
1005 * [9] There is no transient state which sets the user space TID to 0
1006 * except exit_robust_list(), but this is indicated by the
1007 * FUTEX_OWNER_DIED bit. See [4]
1008 *
1009 * [10] There is no transient state which leaves owner and user space
1010 * TID out of sync.
1011 *
1012 *
1013 * Serialization and lifetime rules:
1014 *
1015 * hb->lock:
1016 *
1017 * hb -> futex_q, relation
1018 * futex_q -> pi_state, relation
1019 *
1020 * (cannot be raw because hb can contain arbitrary amount
1021 * of futex_q's)
1022 *
1023 * pi_mutex->wait_lock:
1024 *
1025 * {uval, pi_state}
1026 *
1027 * (and pi_mutex 'obviously')
1028 *
1029 * p->pi_lock:
1030 *
1031 * p->pi_state_list -> pi_state->list, relation
1032 *
1033 * pi_state->refcount:
1034 *
1035 * pi_state lifetime
1036 *
1037 *
1038 * Lock order:
1039 *
1040 * hb->lock
1041 * pi_mutex->wait_lock
1042 * p->pi_lock
1043 *
1044 */
1045
1046 /*
1047 * Validate that the existing waiter has a pi_state and sanity check
1048 * the pi_state against the user space value. If correct, attach to
1049 * it.
1050 */
1051 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1052 struct futex_pi_state *pi_state,
1053 struct futex_pi_state **ps)
1054 {
1055 pid_t pid = uval & FUTEX_TID_MASK;
1056 u32 uval2;
1057 int ret;
1058
1059 /*
1060 * Userspace might have messed up non-PI and PI futexes [3]
1061 */
1062 if (unlikely(!pi_state))
1063 return -EINVAL;
1064
1065 /*
1066 * We get here with hb->lock held, and having found a
1067 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1068 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1069 * which in turn means that futex_lock_pi() still has a reference on
1070 * our pi_state.
1071 *
1072 * The waiter holding a reference on @pi_state also protects against
1073 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1074 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1075 * free pi_state before we can take a reference ourselves.
1076 */
1077 WARN_ON(!atomic_read(&pi_state->refcount));
1078
1079 /*
1080 * Now that we have a pi_state, we can acquire wait_lock
1081 * and do the state validation.
1082 */
1083 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1084
1085 /*
1086 * Since {uval, pi_state} is serialized by wait_lock, and our current
1087 * uval was read without holding it, it can have changed. Verify it
1088 * still is what we expect it to be, otherwise retry the entire
1089 * operation.
1090 */
1091 if (get_futex_value_locked(&uval2, uaddr))
1092 goto out_efault;
1093
1094 if (uval != uval2)
1095 goto out_eagain;
1096
1097 /*
1098 * Handle the owner died case:
1099 */
1100 if (uval & FUTEX_OWNER_DIED) {
1101 /*
1102 * exit_pi_state_list sets owner to NULL and wakes the
1103 * topmost waiter. The task which acquires the
1104 * pi_state->rt_mutex will fixup owner.
1105 */
1106 if (!pi_state->owner) {
1107 /*
1108 * No pi state owner, but the user space TID
1109 * is not 0. Inconsistent state. [5]
1110 */
1111 if (pid)
1112 goto out_einval;
1113 /*
1114 * Take a ref on the state and return success. [4]
1115 */
1116 goto out_attach;
1117 }
1118
1119 /*
1120 * If TID is 0, then either the dying owner has not
1121 * yet executed exit_pi_state_list() or some waiter
1122 * acquired the rtmutex in the pi state, but did not
1123 * yet fixup the TID in user space.
1124 *
1125 * Take a ref on the state and return success. [6]
1126 */
1127 if (!pid)
1128 goto out_attach;
1129 } else {
1130 /*
1131 * If the owner died bit is not set, then the pi_state
1132 * must have an owner. [7]
1133 */
1134 if (!pi_state->owner)
1135 goto out_einval;
1136 }
1137
1138 /*
1139 * Bail out if user space manipulated the futex value. If pi
1140 * state exists then the owner TID must be the same as the
1141 * user space TID. [9/10]
1142 */
1143 if (pid != task_pid_vnr(pi_state->owner))
1144 goto out_einval;
1145
1146 out_attach:
1147 get_pi_state(pi_state);
1148 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1149 *ps = pi_state;
1150 return 0;
1151
1152 out_einval:
1153 ret = -EINVAL;
1154 goto out_error;
1155
1156 out_eagain:
1157 ret = -EAGAIN;
1158 goto out_error;
1159
1160 out_efault:
1161 ret = -EFAULT;
1162 goto out_error;
1163
1164 out_error:
1165 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1166 return ret;
1167 }
1168
1169 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1170 struct task_struct *tsk)
1171 {
1172 u32 uval2;
1173
1174 /*
1175 * If PF_EXITPIDONE is not yet set, then try again.
1176 */
1177 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1178 return -EAGAIN;
1179
1180 /*
1181 * Reread the user space value to handle the following situation:
1182 *
1183 * CPU0 CPU1
1184 *
1185 * sys_exit() sys_futex()
1186 * do_exit() futex_lock_pi()
1187 * futex_lock_pi_atomic()
1188 * exit_signals(tsk) No waiters:
1189 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1190 * mm_release(tsk) Set waiter bit
1191 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1192 * Set owner died attach_to_pi_owner() {
1193 * *uaddr = 0xC0000000; tsk = get_task(PID);
1194 * } if (!tsk->flags & PF_EXITING) {
1195 * ... attach();
1196 * tsk->flags |= PF_EXITPIDONE; } else {
1197 * if (!(tsk->flags & PF_EXITPIDONE))
1198 * return -EAGAIN;
1199 * return -ESRCH; <--- FAIL
1200 * }
1201 *
1202 * Returning ESRCH unconditionally is wrong here because the
1203 * user space value has been changed by the exiting task.
1204 *
1205 * The same logic applies to the case where the exiting task is
1206 * already gone.
1207 */
1208 if (get_futex_value_locked(&uval2, uaddr))
1209 return -EFAULT;
1210
1211 /* If the user space value has changed, try again. */
1212 if (uval2 != uval)
1213 return -EAGAIN;
1214
1215 /*
1216 * The exiting task did not have a robust list, the robust list was
1217 * corrupted or the user space value in *uaddr is simply bogus.
1218 * Give up and tell user space.
1219 */
1220 return -ESRCH;
1221 }
1222
1223 /*
1224 * Lookup the task for the TID provided from user space and attach to
1225 * it after doing proper sanity checks.
1226 */
1227 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1228 struct futex_pi_state **ps)
1229 {
1230 pid_t pid = uval & FUTEX_TID_MASK;
1231 struct futex_pi_state *pi_state;
1232 struct task_struct *p;
1233
1234 /*
1235 * We are the first waiter - try to look up the real owner and attach
1236 * the new pi_state to it, but bail out when TID = 0 [1]
1237 *
1238 * The !pid check is paranoid. None of the call sites should end up
1239 * with pid == 0, but better safe than sorry. Let the caller retry
1240 */
1241 if (!pid)
1242 return -EAGAIN;
1243 p = futex_find_get_task(pid);
1244 if (!p)
1245 return handle_exit_race(uaddr, uval, NULL);
1246
1247 if (unlikely(p->flags & PF_KTHREAD)) {
1248 put_task_struct(p);
1249 return -EPERM;
1250 }
1251
1252 /*
1253 * We need to look at the task state flags to figure out,
1254 * whether the task is exiting. To protect against the do_exit
1255 * change of the task flags, we do this protected by
1256 * p->pi_lock:
1257 */
1258 raw_spin_lock_irq(&p->pi_lock);
1259 if (unlikely(p->flags & PF_EXITING)) {
1260 /*
1261 * The task is on the way out. When PF_EXITPIDONE is
1262 * set, we know that the task has finished the
1263 * cleanup:
1264 */
1265 int ret = handle_exit_race(uaddr, uval, p);
1266
1267 raw_spin_unlock_irq(&p->pi_lock);
1268 put_task_struct(p);
1269 return ret;
1270 }
1271
1272 /*
1273 * No existing pi state. First waiter. [2]
1274 *
1275 * This creates pi_state, we have hb->lock held, this means nothing can
1276 * observe this state, wait_lock is irrelevant.
1277 */
1278 pi_state = alloc_pi_state();
1279
1280 /*
1281 * Initialize the pi_mutex in locked state and make @p
1282 * the owner of it:
1283 */
1284 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1285
1286 /* Store the key for possible exit cleanups: */
1287 pi_state->key = *key;
1288
1289 WARN_ON(!list_empty(&pi_state->list));
1290 list_add(&pi_state->list, &p->pi_state_list);
1291 /*
1292 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1293 * because there is no concurrency as the object is not published yet.
1294 */
1295 pi_state->owner = p;
1296 raw_spin_unlock_irq(&p->pi_lock);
1297
1298 put_task_struct(p);
1299
1300 *ps = pi_state;
1301
1302 return 0;
1303 }
1304
1305 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1306 struct futex_hash_bucket *hb,
1307 union futex_key *key, struct futex_pi_state **ps)
1308 {
1309 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1310
1311 /*
1312 * If there is a waiter on that futex, validate it and
1313 * attach to the pi_state when the validation succeeds.
1314 */
1315 if (top_waiter)
1316 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1317
1318 /*
1319 * We are the first waiter - try to look up the owner based on
1320 * @uval and attach to it.
1321 */
1322 return attach_to_pi_owner(uaddr, uval, key, ps);
1323 }
1324
1325 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1326 {
1327 u32 uninitialized_var(curval);
1328
1329 if (unlikely(should_fail_futex(true)))
1330 return -EFAULT;
1331
1332 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1333 return -EFAULT;
1334
1335 /* If user space value changed, let the caller retry */
1336 return curval != uval ? -EAGAIN : 0;
1337 }
1338
1339 /**
1340 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1341 * @uaddr: the pi futex user address
1342 * @hb: the pi futex hash bucket
1343 * @key: the futex key associated with uaddr and hb
1344 * @ps: the pi_state pointer where we store the result of the
1345 * lookup
1346 * @task: the task to perform the atomic lock work for. This will
1347 * be "current" except in the case of requeue pi.
1348 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1349 *
1350 * Return:
1351 * - 0 - ready to wait;
1352 * - 1 - acquired the lock;
1353 * - <0 - error
1354 *
1355 * The hb->lock and futex_key refs shall be held by the caller.
1356 */
1357 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1358 union futex_key *key,
1359 struct futex_pi_state **ps,
1360 struct task_struct *task, int set_waiters)
1361 {
1362 u32 uval, newval, vpid = task_pid_vnr(task);
1363 struct futex_q *top_waiter;
1364 int ret;
1365
1366 /*
1367 * Read the user space value first so we can validate a few
1368 * things before proceeding further.
1369 */
1370 if (get_futex_value_locked(&uval, uaddr))
1371 return -EFAULT;
1372
1373 if (unlikely(should_fail_futex(true)))
1374 return -EFAULT;
1375
1376 /*
1377 * Detect deadlocks.
1378 */
1379 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1380 return -EDEADLK;
1381
1382 if ((unlikely(should_fail_futex(true))))
1383 return -EDEADLK;
1384
1385 /*
1386 * Lookup existing state first. If it exists, try to attach to
1387 * its pi_state.
1388 */
1389 top_waiter = futex_top_waiter(hb, key);
1390 if (top_waiter)
1391 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1392
1393 /*
1394 * No waiter and user TID is 0. We are here because the
1395 * waiters or the owner died bit is set or called from
1396 * requeue_cmp_pi or for whatever reason something took the
1397 * syscall.
1398 */
1399 if (!(uval & FUTEX_TID_MASK)) {
1400 /*
1401 * We take over the futex. No other waiters and the user space
1402 * TID is 0. We preserve the owner died bit.
1403 */
1404 newval = uval & FUTEX_OWNER_DIED;
1405 newval |= vpid;
1406
1407 /* The futex requeue_pi code can enforce the waiters bit */
1408 if (set_waiters)
1409 newval |= FUTEX_WAITERS;
1410
1411 ret = lock_pi_update_atomic(uaddr, uval, newval);
1412 /* If the take over worked, return 1 */
1413 return ret < 0 ? ret : 1;
1414 }
1415
1416 /*
1417 * First waiter. Set the waiters bit before attaching ourself to
1418 * the owner. If owner tries to unlock, it will be forced into
1419 * the kernel and blocked on hb->lock.
1420 */
1421 newval = uval | FUTEX_WAITERS;
1422 ret = lock_pi_update_atomic(uaddr, uval, newval);
1423 if (ret)
1424 return ret;
1425 /*
1426 * If the update of the user space value succeeded, we try to
1427 * attach to the owner. If that fails, no harm done, we only
1428 * set the FUTEX_WAITERS bit in the user space variable.
1429 */
1430 return attach_to_pi_owner(uaddr, newval, key, ps);
1431 }
1432
1433 /**
1434 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1435 * @q: The futex_q to unqueue
1436 *
1437 * The q->lock_ptr must not be NULL and must be held by the caller.
1438 */
1439 static void __unqueue_futex(struct futex_q *q)
1440 {
1441 struct futex_hash_bucket *hb;
1442
1443 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1444 || WARN_ON(plist_node_empty(&q->list)))
1445 return;
1446
1447 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1448 plist_del(&q->list, &hb->chain);
1449 hb_waiters_dec(hb);
1450 }
1451
1452 /*
1453 * The hash bucket lock must be held when this is called.
1454 * Afterwards, the futex_q must not be accessed. Callers
1455 * must ensure to later call wake_up_q() for the actual
1456 * wakeups to occur.
1457 */
1458 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1459 {
1460 struct task_struct *p = q->task;
1461
1462 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1463 return;
1464
1465 /*
1466 * Queue the task for later wakeup for after we've released
1467 * the hb->lock. wake_q_add() grabs reference to p.
1468 */
1469 wake_q_add(wake_q, p);
1470 __unqueue_futex(q);
1471 /*
1472 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1473 * is written, without taking any locks. This is possible in the event
1474 * of a spurious wakeup, for example. A memory barrier is required here
1475 * to prevent the following store to lock_ptr from getting ahead of the
1476 * plist_del in __unqueue_futex().
1477 */
1478 smp_store_release(&q->lock_ptr, NULL);
1479 }
1480
1481 /*
1482 * Caller must hold a reference on @pi_state.
1483 */
1484 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1485 {
1486 u32 uninitialized_var(curval), newval;
1487 struct task_struct *new_owner;
1488 bool postunlock = false;
1489 DEFINE_WAKE_Q(wake_q);
1490 int ret = 0;
1491
1492 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1493 if (WARN_ON_ONCE(!new_owner)) {
1494 /*
1495 * As per the comment in futex_unlock_pi() this should not happen.
1496 *
1497 * When this happens, give up our locks and try again, giving
1498 * the futex_lock_pi() instance time to complete, either by
1499 * waiting on the rtmutex or removing itself from the futex
1500 * queue.
1501 */
1502 ret = -EAGAIN;
1503 goto out_unlock;
1504 }
1505
1506 /*
1507 * We pass it to the next owner. The WAITERS bit is always kept
1508 * enabled while there is PI state around. We cleanup the owner
1509 * died bit, because we are the owner.
1510 */
1511 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1512
1513 if (unlikely(should_fail_futex(true)))
1514 ret = -EFAULT;
1515
1516 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1517 ret = -EFAULT;
1518
1519 } else if (curval != uval) {
1520 /*
1521 * If a unconditional UNLOCK_PI operation (user space did not
1522 * try the TID->0 transition) raced with a waiter setting the
1523 * FUTEX_WAITERS flag between get_user() and locking the hash
1524 * bucket lock, retry the operation.
1525 */
1526 if ((FUTEX_TID_MASK & curval) == uval)
1527 ret = -EAGAIN;
1528 else
1529 ret = -EINVAL;
1530 }
1531
1532 if (ret)
1533 goto out_unlock;
1534
1535 /*
1536 * This is a point of no return; once we modify the uval there is no
1537 * going back and subsequent operations must not fail.
1538 */
1539
1540 raw_spin_lock(&pi_state->owner->pi_lock);
1541 WARN_ON(list_empty(&pi_state->list));
1542 list_del_init(&pi_state->list);
1543 raw_spin_unlock(&pi_state->owner->pi_lock);
1544
1545 raw_spin_lock(&new_owner->pi_lock);
1546 WARN_ON(!list_empty(&pi_state->list));
1547 list_add(&pi_state->list, &new_owner->pi_state_list);
1548 pi_state->owner = new_owner;
1549 raw_spin_unlock(&new_owner->pi_lock);
1550
1551 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1552
1553 out_unlock:
1554 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1555
1556 if (postunlock)
1557 rt_mutex_postunlock(&wake_q);
1558
1559 return ret;
1560 }
1561
1562 /*
1563 * Express the locking dependencies for lockdep:
1564 */
1565 static inline void
1566 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1567 {
1568 if (hb1 <= hb2) {
1569 spin_lock(&hb1->lock);
1570 if (hb1 < hb2)
1571 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1572 } else { /* hb1 > hb2 */
1573 spin_lock(&hb2->lock);
1574 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1575 }
1576 }
1577
1578 static inline void
1579 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1580 {
1581 spin_unlock(&hb1->lock);
1582 if (hb1 != hb2)
1583 spin_unlock(&hb2->lock);
1584 }
1585
1586 /*
1587 * Wake up waiters matching bitset queued on this futex (uaddr).
1588 */
1589 static int
1590 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1591 {
1592 struct futex_hash_bucket *hb;
1593 struct futex_q *this, *next;
1594 union futex_key key = FUTEX_KEY_INIT;
1595 int ret;
1596 DEFINE_WAKE_Q(wake_q);
1597
1598 if (!bitset)
1599 return -EINVAL;
1600
1601 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1602 if (unlikely(ret != 0))
1603 goto out;
1604
1605 hb = hash_futex(&key);
1606
1607 /* Make sure we really have tasks to wakeup */
1608 if (!hb_waiters_pending(hb))
1609 goto out_put_key;
1610
1611 spin_lock(&hb->lock);
1612
1613 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1614 if (match_futex (&this->key, &key)) {
1615 if (this->pi_state || this->rt_waiter) {
1616 ret = -EINVAL;
1617 break;
1618 }
1619
1620 /* Check if one of the bits is set in both bitsets */
1621 if (!(this->bitset & bitset))
1622 continue;
1623
1624 mark_wake_futex(&wake_q, this);
1625 if (++ret >= nr_wake)
1626 break;
1627 }
1628 }
1629
1630 spin_unlock(&hb->lock);
1631 wake_up_q(&wake_q);
1632 out_put_key:
1633 put_futex_key(&key);
1634 out:
1635 return ret;
1636 }
1637
1638 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1639 {
1640 unsigned int op = (encoded_op & 0x70000000) >> 28;
1641 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1642 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1643 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1644 int oldval, ret;
1645
1646 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1647 if (oparg < 0 || oparg > 31) {
1648 char comm[sizeof(current->comm)];
1649 /*
1650 * kill this print and return -EINVAL when userspace
1651 * is sane again
1652 */
1653 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1654 get_task_comm(comm, current), oparg);
1655 oparg &= 31;
1656 }
1657 oparg = 1 << oparg;
1658 }
1659
1660 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1661 return -EFAULT;
1662
1663 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1664 if (ret)
1665 return ret;
1666
1667 switch (cmp) {
1668 case FUTEX_OP_CMP_EQ:
1669 return oldval == cmparg;
1670 case FUTEX_OP_CMP_NE:
1671 return oldval != cmparg;
1672 case FUTEX_OP_CMP_LT:
1673 return oldval < cmparg;
1674 case FUTEX_OP_CMP_GE:
1675 return oldval >= cmparg;
1676 case FUTEX_OP_CMP_LE:
1677 return oldval <= cmparg;
1678 case FUTEX_OP_CMP_GT:
1679 return oldval > cmparg;
1680 default:
1681 return -ENOSYS;
1682 }
1683 }
1684
1685 /*
1686 * Wake up all waiters hashed on the physical page that is mapped
1687 * to this virtual address:
1688 */
1689 static int
1690 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1691 int nr_wake, int nr_wake2, int op)
1692 {
1693 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1694 struct futex_hash_bucket *hb1, *hb2;
1695 struct futex_q *this, *next;
1696 int ret, op_ret;
1697 DEFINE_WAKE_Q(wake_q);
1698
1699 retry:
1700 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1701 if (unlikely(ret != 0))
1702 goto out;
1703 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1704 if (unlikely(ret != 0))
1705 goto out_put_key1;
1706
1707 hb1 = hash_futex(&key1);
1708 hb2 = hash_futex(&key2);
1709
1710 retry_private:
1711 double_lock_hb(hb1, hb2);
1712 op_ret = futex_atomic_op_inuser(op, uaddr2);
1713 if (unlikely(op_ret < 0)) {
1714
1715 double_unlock_hb(hb1, hb2);
1716
1717 #ifndef CONFIG_MMU
1718 /*
1719 * we don't get EFAULT from MMU faults if we don't have an MMU,
1720 * but we might get them from range checking
1721 */
1722 ret = op_ret;
1723 goto out_put_keys;
1724 #endif
1725
1726 if (unlikely(op_ret != -EFAULT)) {
1727 ret = op_ret;
1728 goto out_put_keys;
1729 }
1730
1731 ret = fault_in_user_writeable(uaddr2);
1732 if (ret)
1733 goto out_put_keys;
1734
1735 if (!(flags & FLAGS_SHARED))
1736 goto retry_private;
1737
1738 put_futex_key(&key2);
1739 put_futex_key(&key1);
1740 goto retry;
1741 }
1742
1743 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1744 if (match_futex (&this->key, &key1)) {
1745 if (this->pi_state || this->rt_waiter) {
1746 ret = -EINVAL;
1747 goto out_unlock;
1748 }
1749 mark_wake_futex(&wake_q, this);
1750 if (++ret >= nr_wake)
1751 break;
1752 }
1753 }
1754
1755 if (op_ret > 0) {
1756 op_ret = 0;
1757 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1758 if (match_futex (&this->key, &key2)) {
1759 if (this->pi_state || this->rt_waiter) {
1760 ret = -EINVAL;
1761 goto out_unlock;
1762 }
1763 mark_wake_futex(&wake_q, this);
1764 if (++op_ret >= nr_wake2)
1765 break;
1766 }
1767 }
1768 ret += op_ret;
1769 }
1770
1771 out_unlock:
1772 double_unlock_hb(hb1, hb2);
1773 wake_up_q(&wake_q);
1774 out_put_keys:
1775 put_futex_key(&key2);
1776 out_put_key1:
1777 put_futex_key(&key1);
1778 out:
1779 return ret;
1780 }
1781
1782 /**
1783 * requeue_futex() - Requeue a futex_q from one hb to another
1784 * @q: the futex_q to requeue
1785 * @hb1: the source hash_bucket
1786 * @hb2: the target hash_bucket
1787 * @key2: the new key for the requeued futex_q
1788 */
1789 static inline
1790 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1791 struct futex_hash_bucket *hb2, union futex_key *key2)
1792 {
1793
1794 /*
1795 * If key1 and key2 hash to the same bucket, no need to
1796 * requeue.
1797 */
1798 if (likely(&hb1->chain != &hb2->chain)) {
1799 plist_del(&q->list, &hb1->chain);
1800 hb_waiters_dec(hb1);
1801 hb_waiters_inc(hb2);
1802 plist_add(&q->list, &hb2->chain);
1803 q->lock_ptr = &hb2->lock;
1804 }
1805 get_futex_key_refs(key2);
1806 q->key = *key2;
1807 }
1808
1809 /**
1810 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1811 * @q: the futex_q
1812 * @key: the key of the requeue target futex
1813 * @hb: the hash_bucket of the requeue target futex
1814 *
1815 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1816 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1817 * to the requeue target futex so the waiter can detect the wakeup on the right
1818 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1819 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1820 * to protect access to the pi_state to fixup the owner later. Must be called
1821 * with both q->lock_ptr and hb->lock held.
1822 */
1823 static inline
1824 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1825 struct futex_hash_bucket *hb)
1826 {
1827 get_futex_key_refs(key);
1828 q->key = *key;
1829
1830 __unqueue_futex(q);
1831
1832 WARN_ON(!q->rt_waiter);
1833 q->rt_waiter = NULL;
1834
1835 q->lock_ptr = &hb->lock;
1836
1837 wake_up_state(q->task, TASK_NORMAL);
1838 }
1839
1840 /**
1841 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1842 * @pifutex: the user address of the to futex
1843 * @hb1: the from futex hash bucket, must be locked by the caller
1844 * @hb2: the to futex hash bucket, must be locked by the caller
1845 * @key1: the from futex key
1846 * @key2: the to futex key
1847 * @ps: address to store the pi_state pointer
1848 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1849 *
1850 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1851 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1852 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1853 * hb1 and hb2 must be held by the caller.
1854 *
1855 * Return:
1856 * - 0 - failed to acquire the lock atomically;
1857 * - >0 - acquired the lock, return value is vpid of the top_waiter
1858 * - <0 - error
1859 */
1860 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1861 struct futex_hash_bucket *hb1,
1862 struct futex_hash_bucket *hb2,
1863 union futex_key *key1, union futex_key *key2,
1864 struct futex_pi_state **ps, int set_waiters)
1865 {
1866 struct futex_q *top_waiter = NULL;
1867 u32 curval;
1868 int ret, vpid;
1869
1870 if (get_futex_value_locked(&curval, pifutex))
1871 return -EFAULT;
1872
1873 if (unlikely(should_fail_futex(true)))
1874 return -EFAULT;
1875
1876 /*
1877 * Find the top_waiter and determine if there are additional waiters.
1878 * If the caller intends to requeue more than 1 waiter to pifutex,
1879 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1880 * as we have means to handle the possible fault. If not, don't set
1881 * the bit unecessarily as it will force the subsequent unlock to enter
1882 * the kernel.
1883 */
1884 top_waiter = futex_top_waiter(hb1, key1);
1885
1886 /* There are no waiters, nothing for us to do. */
1887 if (!top_waiter)
1888 return 0;
1889
1890 /* Ensure we requeue to the expected futex. */
1891 if (!match_futex(top_waiter->requeue_pi_key, key2))
1892 return -EINVAL;
1893
1894 /*
1895 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1896 * the contended case or if set_waiters is 1. The pi_state is returned
1897 * in ps in contended cases.
1898 */
1899 vpid = task_pid_vnr(top_waiter->task);
1900 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1901 set_waiters);
1902 if (ret == 1) {
1903 requeue_pi_wake_futex(top_waiter, key2, hb2);
1904 return vpid;
1905 }
1906 return ret;
1907 }
1908
1909 /**
1910 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1911 * @uaddr1: source futex user address
1912 * @flags: futex flags (FLAGS_SHARED, etc.)
1913 * @uaddr2: target futex user address
1914 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1915 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1916 * @cmpval: @uaddr1 expected value (or %NULL)
1917 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1918 * pi futex (pi to pi requeue is not supported)
1919 *
1920 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1921 * uaddr2 atomically on behalf of the top waiter.
1922 *
1923 * Return:
1924 * - >=0 - on success, the number of tasks requeued or woken;
1925 * - <0 - on error
1926 */
1927 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1928 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1929 u32 *cmpval, int requeue_pi)
1930 {
1931 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1932 int drop_count = 0, task_count = 0, ret;
1933 struct futex_pi_state *pi_state = NULL;
1934 struct futex_hash_bucket *hb1, *hb2;
1935 struct futex_q *this, *next;
1936 DEFINE_WAKE_Q(wake_q);
1937
1938 if (nr_wake < 0 || nr_requeue < 0)
1939 return -EINVAL;
1940
1941 /*
1942 * When PI not supported: return -ENOSYS if requeue_pi is true,
1943 * consequently the compiler knows requeue_pi is always false past
1944 * this point which will optimize away all the conditional code
1945 * further down.
1946 */
1947 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1948 return -ENOSYS;
1949
1950 if (requeue_pi) {
1951 /*
1952 * Requeue PI only works on two distinct uaddrs. This
1953 * check is only valid for private futexes. See below.
1954 */
1955 if (uaddr1 == uaddr2)
1956 return -EINVAL;
1957
1958 /*
1959 * requeue_pi requires a pi_state, try to allocate it now
1960 * without any locks in case it fails.
1961 */
1962 if (refill_pi_state_cache())
1963 return -ENOMEM;
1964 /*
1965 * requeue_pi must wake as many tasks as it can, up to nr_wake
1966 * + nr_requeue, since it acquires the rt_mutex prior to
1967 * returning to userspace, so as to not leave the rt_mutex with
1968 * waiters and no owner. However, second and third wake-ups
1969 * cannot be predicted as they involve race conditions with the
1970 * first wake and a fault while looking up the pi_state. Both
1971 * pthread_cond_signal() and pthread_cond_broadcast() should
1972 * use nr_wake=1.
1973 */
1974 if (nr_wake != 1)
1975 return -EINVAL;
1976 }
1977
1978 retry:
1979 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1980 if (unlikely(ret != 0))
1981 goto out;
1982 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1983 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1984 if (unlikely(ret != 0))
1985 goto out_put_key1;
1986
1987 /*
1988 * The check above which compares uaddrs is not sufficient for
1989 * shared futexes. We need to compare the keys:
1990 */
1991 if (requeue_pi && match_futex(&key1, &key2)) {
1992 ret = -EINVAL;
1993 goto out_put_keys;
1994 }
1995
1996 hb1 = hash_futex(&key1);
1997 hb2 = hash_futex(&key2);
1998
1999 retry_private:
2000 hb_waiters_inc(hb2);
2001 double_lock_hb(hb1, hb2);
2002
2003 if (likely(cmpval != NULL)) {
2004 u32 curval;
2005
2006 ret = get_futex_value_locked(&curval, uaddr1);
2007
2008 if (unlikely(ret)) {
2009 double_unlock_hb(hb1, hb2);
2010 hb_waiters_dec(hb2);
2011
2012 ret = get_user(curval, uaddr1);
2013 if (ret)
2014 goto out_put_keys;
2015
2016 if (!(flags & FLAGS_SHARED))
2017 goto retry_private;
2018
2019 put_futex_key(&key2);
2020 put_futex_key(&key1);
2021 goto retry;
2022 }
2023 if (curval != *cmpval) {
2024 ret = -EAGAIN;
2025 goto out_unlock;
2026 }
2027 }
2028
2029 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2030 /*
2031 * Attempt to acquire uaddr2 and wake the top waiter. If we
2032 * intend to requeue waiters, force setting the FUTEX_WAITERS
2033 * bit. We force this here where we are able to easily handle
2034 * faults rather in the requeue loop below.
2035 */
2036 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2037 &key2, &pi_state, nr_requeue);
2038
2039 /*
2040 * At this point the top_waiter has either taken uaddr2 or is
2041 * waiting on it. If the former, then the pi_state will not
2042 * exist yet, look it up one more time to ensure we have a
2043 * reference to it. If the lock was taken, ret contains the
2044 * vpid of the top waiter task.
2045 * If the lock was not taken, we have pi_state and an initial
2046 * refcount on it. In case of an error we have nothing.
2047 */
2048 if (ret > 0) {
2049 WARN_ON(pi_state);
2050 drop_count++;
2051 task_count++;
2052 /*
2053 * If we acquired the lock, then the user space value
2054 * of uaddr2 should be vpid. It cannot be changed by
2055 * the top waiter as it is blocked on hb2 lock if it
2056 * tries to do so. If something fiddled with it behind
2057 * our back the pi state lookup might unearth it. So
2058 * we rather use the known value than rereading and
2059 * handing potential crap to lookup_pi_state.
2060 *
2061 * If that call succeeds then we have pi_state and an
2062 * initial refcount on it.
2063 */
2064 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2065 }
2066
2067 switch (ret) {
2068 case 0:
2069 /* We hold a reference on the pi state. */
2070 break;
2071
2072 /* If the above failed, then pi_state is NULL */
2073 case -EFAULT:
2074 double_unlock_hb(hb1, hb2);
2075 hb_waiters_dec(hb2);
2076 put_futex_key(&key2);
2077 put_futex_key(&key1);
2078 ret = fault_in_user_writeable(uaddr2);
2079 if (!ret)
2080 goto retry;
2081 goto out;
2082 case -EAGAIN:
2083 /*
2084 * Two reasons for this:
2085 * - Owner is exiting and we just wait for the
2086 * exit to complete.
2087 * - The user space value changed.
2088 */
2089 double_unlock_hb(hb1, hb2);
2090 hb_waiters_dec(hb2);
2091 put_futex_key(&key2);
2092 put_futex_key(&key1);
2093 cond_resched();
2094 goto retry;
2095 default:
2096 goto out_unlock;
2097 }
2098 }
2099
2100 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2101 if (task_count - nr_wake >= nr_requeue)
2102 break;
2103
2104 if (!match_futex(&this->key, &key1))
2105 continue;
2106
2107 /*
2108 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2109 * be paired with each other and no other futex ops.
2110 *
2111 * We should never be requeueing a futex_q with a pi_state,
2112 * which is awaiting a futex_unlock_pi().
2113 */
2114 if ((requeue_pi && !this->rt_waiter) ||
2115 (!requeue_pi && this->rt_waiter) ||
2116 this->pi_state) {
2117 ret = -EINVAL;
2118 break;
2119 }
2120
2121 /*
2122 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2123 * lock, we already woke the top_waiter. If not, it will be
2124 * woken by futex_unlock_pi().
2125 */
2126 if (++task_count <= nr_wake && !requeue_pi) {
2127 mark_wake_futex(&wake_q, this);
2128 continue;
2129 }
2130
2131 /* Ensure we requeue to the expected futex for requeue_pi. */
2132 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2133 ret = -EINVAL;
2134 break;
2135 }
2136
2137 /*
2138 * Requeue nr_requeue waiters and possibly one more in the case
2139 * of requeue_pi if we couldn't acquire the lock atomically.
2140 */
2141 if (requeue_pi) {
2142 /*
2143 * Prepare the waiter to take the rt_mutex. Take a
2144 * refcount on the pi_state and store the pointer in
2145 * the futex_q object of the waiter.
2146 */
2147 get_pi_state(pi_state);
2148 this->pi_state = pi_state;
2149 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2150 this->rt_waiter,
2151 this->task);
2152 if (ret == 1) {
2153 /*
2154 * We got the lock. We do neither drop the
2155 * refcount on pi_state nor clear
2156 * this->pi_state because the waiter needs the
2157 * pi_state for cleaning up the user space
2158 * value. It will drop the refcount after
2159 * doing so.
2160 */
2161 requeue_pi_wake_futex(this, &key2, hb2);
2162 drop_count++;
2163 continue;
2164 } else if (ret) {
2165 /*
2166 * rt_mutex_start_proxy_lock() detected a
2167 * potential deadlock when we tried to queue
2168 * that waiter. Drop the pi_state reference
2169 * which we took above and remove the pointer
2170 * to the state from the waiters futex_q
2171 * object.
2172 */
2173 this->pi_state = NULL;
2174 put_pi_state(pi_state);
2175 /*
2176 * We stop queueing more waiters and let user
2177 * space deal with the mess.
2178 */
2179 break;
2180 }
2181 }
2182 requeue_futex(this, hb1, hb2, &key2);
2183 drop_count++;
2184 }
2185
2186 /*
2187 * We took an extra initial reference to the pi_state either
2188 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2189 * need to drop it here again.
2190 */
2191 put_pi_state(pi_state);
2192
2193 out_unlock:
2194 double_unlock_hb(hb1, hb2);
2195 wake_up_q(&wake_q);
2196 hb_waiters_dec(hb2);
2197
2198 /*
2199 * drop_futex_key_refs() must be called outside the spinlocks. During
2200 * the requeue we moved futex_q's from the hash bucket at key1 to the
2201 * one at key2 and updated their key pointer. We no longer need to
2202 * hold the references to key1.
2203 */
2204 while (--drop_count >= 0)
2205 drop_futex_key_refs(&key1);
2206
2207 out_put_keys:
2208 put_futex_key(&key2);
2209 out_put_key1:
2210 put_futex_key(&key1);
2211 out:
2212 return ret ? ret : task_count;
2213 }
2214
2215 /* The key must be already stored in q->key. */
2216 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2217 __acquires(&hb->lock)
2218 {
2219 struct futex_hash_bucket *hb;
2220
2221 hb = hash_futex(&q->key);
2222
2223 /*
2224 * Increment the counter before taking the lock so that
2225 * a potential waker won't miss a to-be-slept task that is
2226 * waiting for the spinlock. This is safe as all queue_lock()
2227 * users end up calling queue_me(). Similarly, for housekeeping,
2228 * decrement the counter at queue_unlock() when some error has
2229 * occurred and we don't end up adding the task to the list.
2230 */
2231 hb_waiters_inc(hb);
2232
2233 q->lock_ptr = &hb->lock;
2234
2235 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2236 return hb;
2237 }
2238
2239 static inline void
2240 queue_unlock(struct futex_hash_bucket *hb)
2241 __releases(&hb->lock)
2242 {
2243 spin_unlock(&hb->lock);
2244 hb_waiters_dec(hb);
2245 }
2246
2247 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2248 {
2249 int prio;
2250
2251 /*
2252 * The priority used to register this element is
2253 * - either the real thread-priority for the real-time threads
2254 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2255 * - or MAX_RT_PRIO for non-RT threads.
2256 * Thus, all RT-threads are woken first in priority order, and
2257 * the others are woken last, in FIFO order.
2258 */
2259 prio = min(current->normal_prio, MAX_RT_PRIO);
2260
2261 plist_node_init(&q->list, prio);
2262 plist_add(&q->list, &hb->chain);
2263 q->task = current;
2264 }
2265
2266 /**
2267 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2268 * @q: The futex_q to enqueue
2269 * @hb: The destination hash bucket
2270 *
2271 * The hb->lock must be held by the caller, and is released here. A call to
2272 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2273 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2274 * or nothing if the unqueue is done as part of the wake process and the unqueue
2275 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2276 * an example).
2277 */
2278 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2279 __releases(&hb->lock)
2280 {
2281 __queue_me(q, hb);
2282 spin_unlock(&hb->lock);
2283 }
2284
2285 /**
2286 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2287 * @q: The futex_q to unqueue
2288 *
2289 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2290 * be paired with exactly one earlier call to queue_me().
2291 *
2292 * Return:
2293 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2294 * - 0 - if the futex_q was already removed by the waking thread
2295 */
2296 static int unqueue_me(struct futex_q *q)
2297 {
2298 spinlock_t *lock_ptr;
2299 int ret = 0;
2300
2301 /* In the common case we don't take the spinlock, which is nice. */
2302 retry:
2303 /*
2304 * q->lock_ptr can change between this read and the following spin_lock.
2305 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2306 * optimizing lock_ptr out of the logic below.
2307 */
2308 lock_ptr = READ_ONCE(q->lock_ptr);
2309 if (lock_ptr != NULL) {
2310 spin_lock(lock_ptr);
2311 /*
2312 * q->lock_ptr can change between reading it and
2313 * spin_lock(), causing us to take the wrong lock. This
2314 * corrects the race condition.
2315 *
2316 * Reasoning goes like this: if we have the wrong lock,
2317 * q->lock_ptr must have changed (maybe several times)
2318 * between reading it and the spin_lock(). It can
2319 * change again after the spin_lock() but only if it was
2320 * already changed before the spin_lock(). It cannot,
2321 * however, change back to the original value. Therefore
2322 * we can detect whether we acquired the correct lock.
2323 */
2324 if (unlikely(lock_ptr != q->lock_ptr)) {
2325 spin_unlock(lock_ptr);
2326 goto retry;
2327 }
2328 __unqueue_futex(q);
2329
2330 BUG_ON(q->pi_state);
2331
2332 spin_unlock(lock_ptr);
2333 ret = 1;
2334 }
2335
2336 drop_futex_key_refs(&q->key);
2337 return ret;
2338 }
2339
2340 /*
2341 * PI futexes can not be requeued and must remove themself from the
2342 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2343 * and dropped here.
2344 */
2345 static void unqueue_me_pi(struct futex_q *q)
2346 __releases(q->lock_ptr)
2347 {
2348 __unqueue_futex(q);
2349
2350 BUG_ON(!q->pi_state);
2351 put_pi_state(q->pi_state);
2352 q->pi_state = NULL;
2353
2354 spin_unlock(q->lock_ptr);
2355 }
2356
2357 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2358 struct task_struct *argowner)
2359 {
2360 struct futex_pi_state *pi_state = q->pi_state;
2361 u32 uval, uninitialized_var(curval), newval;
2362 struct task_struct *oldowner, *newowner;
2363 u32 newtid;
2364 int ret;
2365
2366 lockdep_assert_held(q->lock_ptr);
2367
2368 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2369
2370 oldowner = pi_state->owner;
2371
2372 /*
2373 * We are here because either:
2374 *
2375 * - we stole the lock and pi_state->owner needs updating to reflect
2376 * that (@argowner == current),
2377 *
2378 * or:
2379 *
2380 * - someone stole our lock and we need to fix things to point to the
2381 * new owner (@argowner == NULL).
2382 *
2383 * Either way, we have to replace the TID in the user space variable.
2384 * This must be atomic as we have to preserve the owner died bit here.
2385 *
2386 * Note: We write the user space value _before_ changing the pi_state
2387 * because we can fault here. Imagine swapped out pages or a fork
2388 * that marked all the anonymous memory readonly for cow.
2389 *
2390 * Modifying pi_state _before_ the user space value would leave the
2391 * pi_state in an inconsistent state when we fault here, because we
2392 * need to drop the locks to handle the fault. This might be observed
2393 * in the PID check in lookup_pi_state.
2394 */
2395 retry:
2396 if (!argowner) {
2397 if (oldowner != current) {
2398 /*
2399 * We raced against a concurrent self; things are
2400 * already fixed up. Nothing to do.
2401 */
2402 ret = 0;
2403 goto out_unlock;
2404 }
2405
2406 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2407 /* We got the lock after all, nothing to fix. */
2408 ret = 0;
2409 goto out_unlock;
2410 }
2411
2412 /*
2413 * Since we just failed the trylock; there must be an owner.
2414 */
2415 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2416 BUG_ON(!newowner);
2417 } else {
2418 WARN_ON_ONCE(argowner != current);
2419 if (oldowner == current) {
2420 /*
2421 * We raced against a concurrent self; things are
2422 * already fixed up. Nothing to do.
2423 */
2424 ret = 0;
2425 goto out_unlock;
2426 }
2427 newowner = argowner;
2428 }
2429
2430 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2431 /* Owner died? */
2432 if (!pi_state->owner)
2433 newtid |= FUTEX_OWNER_DIED;
2434
2435 if (get_futex_value_locked(&uval, uaddr))
2436 goto handle_fault;
2437
2438 for (;;) {
2439 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2440
2441 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2442 goto handle_fault;
2443 if (curval == uval)
2444 break;
2445 uval = curval;
2446 }
2447
2448 /*
2449 * We fixed up user space. Now we need to fix the pi_state
2450 * itself.
2451 */
2452 if (pi_state->owner != NULL) {
2453 raw_spin_lock(&pi_state->owner->pi_lock);
2454 WARN_ON(list_empty(&pi_state->list));
2455 list_del_init(&pi_state->list);
2456 raw_spin_unlock(&pi_state->owner->pi_lock);
2457 }
2458
2459 pi_state->owner = newowner;
2460
2461 raw_spin_lock(&newowner->pi_lock);
2462 WARN_ON(!list_empty(&pi_state->list));
2463 list_add(&pi_state->list, &newowner->pi_state_list);
2464 raw_spin_unlock(&newowner->pi_lock);
2465 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2466
2467 return 0;
2468
2469 /*
2470 * To handle the page fault we need to drop the locks here. That gives
2471 * the other task (either the highest priority waiter itself or the
2472 * task which stole the rtmutex) the chance to try the fixup of the
2473 * pi_state. So once we are back from handling the fault we need to
2474 * check the pi_state after reacquiring the locks and before trying to
2475 * do another fixup. When the fixup has been done already we simply
2476 * return.
2477 *
2478 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2479 * drop hb->lock since the caller owns the hb -> futex_q relation.
2480 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2481 */
2482 handle_fault:
2483 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2484 spin_unlock(q->lock_ptr);
2485
2486 ret = fault_in_user_writeable(uaddr);
2487
2488 spin_lock(q->lock_ptr);
2489 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2490
2491 /*
2492 * Check if someone else fixed it for us:
2493 */
2494 if (pi_state->owner != oldowner) {
2495 ret = 0;
2496 goto out_unlock;
2497 }
2498
2499 if (ret)
2500 goto out_unlock;
2501
2502 goto retry;
2503
2504 out_unlock:
2505 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2506 return ret;
2507 }
2508
2509 static long futex_wait_restart(struct restart_block *restart);
2510
2511 /**
2512 * fixup_owner() - Post lock pi_state and corner case management
2513 * @uaddr: user address of the futex
2514 * @q: futex_q (contains pi_state and access to the rt_mutex)
2515 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2516 *
2517 * After attempting to lock an rt_mutex, this function is called to cleanup
2518 * the pi_state owner as well as handle race conditions that may allow us to
2519 * acquire the lock. Must be called with the hb lock held.
2520 *
2521 * Return:
2522 * - 1 - success, lock taken;
2523 * - 0 - success, lock not taken;
2524 * - <0 - on error (-EFAULT)
2525 */
2526 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2527 {
2528 int ret = 0;
2529
2530 if (locked) {
2531 /*
2532 * Got the lock. We might not be the anticipated owner if we
2533 * did a lock-steal - fix up the PI-state in that case:
2534 *
2535 * Speculative pi_state->owner read (we don't hold wait_lock);
2536 * since we own the lock pi_state->owner == current is the
2537 * stable state, anything else needs more attention.
2538 */
2539 if (q->pi_state->owner != current)
2540 ret = fixup_pi_state_owner(uaddr, q, current);
2541 goto out;
2542 }
2543
2544 /*
2545 * If we didn't get the lock; check if anybody stole it from us. In
2546 * that case, we need to fix up the uval to point to them instead of
2547 * us, otherwise bad things happen. [10]
2548 *
2549 * Another speculative read; pi_state->owner == current is unstable
2550 * but needs our attention.
2551 */
2552 if (q->pi_state->owner == current) {
2553 ret = fixup_pi_state_owner(uaddr, q, NULL);
2554 goto out;
2555 }
2556
2557 /*
2558 * Paranoia check. If we did not take the lock, then we should not be
2559 * the owner of the rt_mutex.
2560 */
2561 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2562 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2563 "pi-state %p\n", ret,
2564 q->pi_state->pi_mutex.owner,
2565 q->pi_state->owner);
2566 }
2567
2568 out:
2569 return ret ? ret : locked;
2570 }
2571
2572 /**
2573 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2574 * @hb: the futex hash bucket, must be locked by the caller
2575 * @q: the futex_q to queue up on
2576 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2577 */
2578 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2579 struct hrtimer_sleeper *timeout)
2580 {
2581 /*
2582 * The task state is guaranteed to be set before another task can
2583 * wake it. set_current_state() is implemented using smp_store_mb() and
2584 * queue_me() calls spin_unlock() upon completion, both serializing
2585 * access to the hash list and forcing another memory barrier.
2586 */
2587 set_current_state(TASK_INTERRUPTIBLE);
2588 queue_me(q, hb);
2589
2590 /* Arm the timer */
2591 if (timeout)
2592 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2593
2594 /*
2595 * If we have been removed from the hash list, then another task
2596 * has tried to wake us, and we can skip the call to schedule().
2597 */
2598 if (likely(!plist_node_empty(&q->list))) {
2599 /*
2600 * If the timer has already expired, current will already be
2601 * flagged for rescheduling. Only call schedule if there
2602 * is no timeout, or if it has yet to expire.
2603 */
2604 if (!timeout || timeout->task)
2605 freezable_schedule();
2606 }
2607 __set_current_state(TASK_RUNNING);
2608 }
2609
2610 /**
2611 * futex_wait_setup() - Prepare to wait on a futex
2612 * @uaddr: the futex userspace address
2613 * @val: the expected value
2614 * @flags: futex flags (FLAGS_SHARED, etc.)
2615 * @q: the associated futex_q
2616 * @hb: storage for hash_bucket pointer to be returned to caller
2617 *
2618 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2619 * compare it with the expected value. Handle atomic faults internally.
2620 * Return with the hb lock held and a q.key reference on success, and unlocked
2621 * with no q.key reference on failure.
2622 *
2623 * Return:
2624 * - 0 - uaddr contains val and hb has been locked;
2625 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2626 */
2627 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2628 struct futex_q *q, struct futex_hash_bucket **hb)
2629 {
2630 u32 uval;
2631 int ret;
2632
2633 /*
2634 * Access the page AFTER the hash-bucket is locked.
2635 * Order is important:
2636 *
2637 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2638 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2639 *
2640 * The basic logical guarantee of a futex is that it blocks ONLY
2641 * if cond(var) is known to be true at the time of blocking, for
2642 * any cond. If we locked the hash-bucket after testing *uaddr, that
2643 * would open a race condition where we could block indefinitely with
2644 * cond(var) false, which would violate the guarantee.
2645 *
2646 * On the other hand, we insert q and release the hash-bucket only
2647 * after testing *uaddr. This guarantees that futex_wait() will NOT
2648 * absorb a wakeup if *uaddr does not match the desired values
2649 * while the syscall executes.
2650 */
2651 retry:
2652 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2653 if (unlikely(ret != 0))
2654 return ret;
2655
2656 retry_private:
2657 *hb = queue_lock(q);
2658
2659 ret = get_futex_value_locked(&uval, uaddr);
2660
2661 if (ret) {
2662 queue_unlock(*hb);
2663
2664 ret = get_user(uval, uaddr);
2665 if (ret)
2666 goto out;
2667
2668 if (!(flags & FLAGS_SHARED))
2669 goto retry_private;
2670
2671 put_futex_key(&q->key);
2672 goto retry;
2673 }
2674
2675 if (uval != val) {
2676 queue_unlock(*hb);
2677 ret = -EWOULDBLOCK;
2678 }
2679
2680 out:
2681 if (ret)
2682 put_futex_key(&q->key);
2683 return ret;
2684 }
2685
2686 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2687 ktime_t *abs_time, u32 bitset)
2688 {
2689 struct hrtimer_sleeper timeout, *to = NULL;
2690 struct restart_block *restart;
2691 struct futex_hash_bucket *hb;
2692 struct futex_q q = futex_q_init;
2693 int ret;
2694
2695 if (!bitset)
2696 return -EINVAL;
2697 q.bitset = bitset;
2698
2699 if (abs_time) {
2700 to = &timeout;
2701
2702 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2703 CLOCK_REALTIME : CLOCK_MONOTONIC,
2704 HRTIMER_MODE_ABS);
2705 hrtimer_init_sleeper(to, current);
2706 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2707 current->timer_slack_ns);
2708 }
2709
2710 retry:
2711 /*
2712 * Prepare to wait on uaddr. On success, holds hb lock and increments
2713 * q.key refs.
2714 */
2715 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2716 if (ret)
2717 goto out;
2718
2719 /* queue_me and wait for wakeup, timeout, or a signal. */
2720 futex_wait_queue_me(hb, &q, to);
2721
2722 /* If we were woken (and unqueued), we succeeded, whatever. */
2723 ret = 0;
2724 /* unqueue_me() drops q.key ref */
2725 if (!unqueue_me(&q))
2726 goto out;
2727 ret = -ETIMEDOUT;
2728 if (to && !to->task)
2729 goto out;
2730
2731 /*
2732 * We expect signal_pending(current), but we might be the
2733 * victim of a spurious wakeup as well.
2734 */
2735 if (!signal_pending(current))
2736 goto retry;
2737
2738 ret = -ERESTARTSYS;
2739 if (!abs_time)
2740 goto out;
2741
2742 restart = &current->restart_block;
2743 restart->fn = futex_wait_restart;
2744 restart->futex.uaddr = uaddr;
2745 restart->futex.val = val;
2746 restart->futex.time = *abs_time;
2747 restart->futex.bitset = bitset;
2748 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2749
2750 ret = -ERESTART_RESTARTBLOCK;
2751
2752 out:
2753 if (to) {
2754 hrtimer_cancel(&to->timer);
2755 destroy_hrtimer_on_stack(&to->timer);
2756 }
2757 return ret;
2758 }
2759
2760
2761 static long futex_wait_restart(struct restart_block *restart)
2762 {
2763 u32 __user *uaddr = restart->futex.uaddr;
2764 ktime_t t, *tp = NULL;
2765
2766 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2767 t = restart->futex.time;
2768 tp = &t;
2769 }
2770 restart->fn = do_no_restart_syscall;
2771
2772 return (long)futex_wait(uaddr, restart->futex.flags,
2773 restart->futex.val, tp, restart->futex.bitset);
2774 }
2775
2776
2777 /*
2778 * Userspace tried a 0 -> TID atomic transition of the futex value
2779 * and failed. The kernel side here does the whole locking operation:
2780 * if there are waiters then it will block as a consequence of relying
2781 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2782 * a 0 value of the futex too.).
2783 *
2784 * Also serves as futex trylock_pi()'ing, and due semantics.
2785 */
2786 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2787 ktime_t *time, int trylock)
2788 {
2789 struct hrtimer_sleeper timeout, *to = NULL;
2790 struct futex_pi_state *pi_state = NULL;
2791 struct rt_mutex_waiter rt_waiter;
2792 struct futex_hash_bucket *hb;
2793 struct futex_q q = futex_q_init;
2794 int res, ret;
2795
2796 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2797 return -ENOSYS;
2798
2799 if (refill_pi_state_cache())
2800 return -ENOMEM;
2801
2802 if (time) {
2803 to = &timeout;
2804 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2805 HRTIMER_MODE_ABS);
2806 hrtimer_init_sleeper(to, current);
2807 hrtimer_set_expires(&to->timer, *time);
2808 }
2809
2810 retry:
2811 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2812 if (unlikely(ret != 0))
2813 goto out;
2814
2815 retry_private:
2816 hb = queue_lock(&q);
2817
2818 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2819 if (unlikely(ret)) {
2820 /*
2821 * Atomic work succeeded and we got the lock,
2822 * or failed. Either way, we do _not_ block.
2823 */
2824 switch (ret) {
2825 case 1:
2826 /* We got the lock. */
2827 ret = 0;
2828 goto out_unlock_put_key;
2829 case -EFAULT:
2830 goto uaddr_faulted;
2831 case -EAGAIN:
2832 /*
2833 * Two reasons for this:
2834 * - Task is exiting and we just wait for the
2835 * exit to complete.
2836 * - The user space value changed.
2837 */
2838 queue_unlock(hb);
2839 put_futex_key(&q.key);
2840 cond_resched();
2841 goto retry;
2842 default:
2843 goto out_unlock_put_key;
2844 }
2845 }
2846
2847 WARN_ON(!q.pi_state);
2848
2849 /*
2850 * Only actually queue now that the atomic ops are done:
2851 */
2852 __queue_me(&q, hb);
2853
2854 if (trylock) {
2855 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2856 /* Fixup the trylock return value: */
2857 ret = ret ? 0 : -EWOULDBLOCK;
2858 goto no_block;
2859 }
2860
2861 rt_mutex_init_waiter(&rt_waiter);
2862
2863 /*
2864 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2865 * hold it while doing rt_mutex_start_proxy(), because then it will
2866 * include hb->lock in the blocking chain, even through we'll not in
2867 * fact hold it while blocking. This will lead it to report -EDEADLK
2868 * and BUG when futex_unlock_pi() interleaves with this.
2869 *
2870 * Therefore acquire wait_lock while holding hb->lock, but drop the
2871 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2872 * serializes against futex_unlock_pi() as that does the exact same
2873 * lock handoff sequence.
2874 */
2875 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2876 spin_unlock(q.lock_ptr);
2877 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2878 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2879
2880 if (ret) {
2881 if (ret == 1)
2882 ret = 0;
2883
2884 spin_lock(q.lock_ptr);
2885 goto no_block;
2886 }
2887
2888
2889 if (unlikely(to))
2890 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2891
2892 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2893
2894 spin_lock(q.lock_ptr);
2895 /*
2896 * If we failed to acquire the lock (signal/timeout), we must
2897 * first acquire the hb->lock before removing the lock from the
2898 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2899 * wait lists consistent.
2900 *
2901 * In particular; it is important that futex_unlock_pi() can not
2902 * observe this inconsistency.
2903 */
2904 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2905 ret = 0;
2906
2907 no_block:
2908 /*
2909 * Fixup the pi_state owner and possibly acquire the lock if we
2910 * haven't already.
2911 */
2912 res = fixup_owner(uaddr, &q, !ret);
2913 /*
2914 * If fixup_owner() returned an error, proprogate that. If it acquired
2915 * the lock, clear our -ETIMEDOUT or -EINTR.
2916 */
2917 if (res)
2918 ret = (res < 0) ? res : 0;
2919
2920 /*
2921 * If fixup_owner() faulted and was unable to handle the fault, unlock
2922 * it and return the fault to userspace.
2923 */
2924 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2925 pi_state = q.pi_state;
2926 get_pi_state(pi_state);
2927 }
2928
2929 /* Unqueue and drop the lock */
2930 unqueue_me_pi(&q);
2931
2932 if (pi_state) {
2933 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2934 put_pi_state(pi_state);
2935 }
2936
2937 goto out_put_key;
2938
2939 out_unlock_put_key:
2940 queue_unlock(hb);
2941
2942 out_put_key:
2943 put_futex_key(&q.key);
2944 out:
2945 if (to) {
2946 hrtimer_cancel(&to->timer);
2947 destroy_hrtimer_on_stack(&to->timer);
2948 }
2949 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2950
2951 uaddr_faulted:
2952 queue_unlock(hb);
2953
2954 ret = fault_in_user_writeable(uaddr);
2955 if (ret)
2956 goto out_put_key;
2957
2958 if (!(flags & FLAGS_SHARED))
2959 goto retry_private;
2960
2961 put_futex_key(&q.key);
2962 goto retry;
2963 }
2964
2965 /*
2966 * Userspace attempted a TID -> 0 atomic transition, and failed.
2967 * This is the in-kernel slowpath: we look up the PI state (if any),
2968 * and do the rt-mutex unlock.
2969 */
2970 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2971 {
2972 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2973 union futex_key key = FUTEX_KEY_INIT;
2974 struct futex_hash_bucket *hb;
2975 struct futex_q *top_waiter;
2976 int ret;
2977
2978 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2979 return -ENOSYS;
2980
2981 retry:
2982 if (get_user(uval, uaddr))
2983 return -EFAULT;
2984 /*
2985 * We release only a lock we actually own:
2986 */
2987 if ((uval & FUTEX_TID_MASK) != vpid)
2988 return -EPERM;
2989
2990 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2991 if (ret)
2992 return ret;
2993
2994 hb = hash_futex(&key);
2995 spin_lock(&hb->lock);
2996
2997 /*
2998 * Check waiters first. We do not trust user space values at
2999 * all and we at least want to know if user space fiddled
3000 * with the futex value instead of blindly unlocking.
3001 */
3002 top_waiter = futex_top_waiter(hb, &key);
3003 if (top_waiter) {
3004 struct futex_pi_state *pi_state = top_waiter->pi_state;
3005
3006 ret = -EINVAL;
3007 if (!pi_state)
3008 goto out_unlock;
3009
3010 /*
3011 * If current does not own the pi_state then the futex is
3012 * inconsistent and user space fiddled with the futex value.
3013 */
3014 if (pi_state->owner != current)
3015 goto out_unlock;
3016
3017 get_pi_state(pi_state);
3018 /*
3019 * By taking wait_lock while still holding hb->lock, we ensure
3020 * there is no point where we hold neither; and therefore
3021 * wake_futex_pi() must observe a state consistent with what we
3022 * observed.
3023 */
3024 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3025 spin_unlock(&hb->lock);
3026
3027 /* drops pi_state->pi_mutex.wait_lock */
3028 ret = wake_futex_pi(uaddr, uval, pi_state);
3029
3030 put_pi_state(pi_state);
3031
3032 /*
3033 * Success, we're done! No tricky corner cases.
3034 */
3035 if (!ret)
3036 goto out_putkey;
3037 /*
3038 * The atomic access to the futex value generated a
3039 * pagefault, so retry the user-access and the wakeup:
3040 */
3041 if (ret == -EFAULT)
3042 goto pi_faulted;
3043 /*
3044 * A unconditional UNLOCK_PI op raced against a waiter
3045 * setting the FUTEX_WAITERS bit. Try again.
3046 */
3047 if (ret == -EAGAIN) {
3048 put_futex_key(&key);
3049 goto retry;
3050 }
3051 /*
3052 * wake_futex_pi has detected invalid state. Tell user
3053 * space.
3054 */
3055 goto out_putkey;
3056 }
3057
3058 /*
3059 * We have no kernel internal state, i.e. no waiters in the
3060 * kernel. Waiters which are about to queue themselves are stuck
3061 * on hb->lock. So we can safely ignore them. We do neither
3062 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3063 * owner.
3064 */
3065 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
3066 spin_unlock(&hb->lock);
3067 goto pi_faulted;
3068 }
3069
3070 /*
3071 * If uval has changed, let user space handle it.
3072 */
3073 ret = (curval == uval) ? 0 : -EAGAIN;
3074
3075 out_unlock:
3076 spin_unlock(&hb->lock);
3077 out_putkey:
3078 put_futex_key(&key);
3079 return ret;
3080
3081 pi_faulted:
3082 put_futex_key(&key);
3083
3084 ret = fault_in_user_writeable(uaddr);
3085 if (!ret)
3086 goto retry;
3087
3088 return ret;
3089 }
3090
3091 /**
3092 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3093 * @hb: the hash_bucket futex_q was original enqueued on
3094 * @q: the futex_q woken while waiting to be requeued
3095 * @key2: the futex_key of the requeue target futex
3096 * @timeout: the timeout associated with the wait (NULL if none)
3097 *
3098 * Detect if the task was woken on the initial futex as opposed to the requeue
3099 * target futex. If so, determine if it was a timeout or a signal that caused
3100 * the wakeup and return the appropriate error code to the caller. Must be
3101 * called with the hb lock held.
3102 *
3103 * Return:
3104 * - 0 = no early wakeup detected;
3105 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3106 */
3107 static inline
3108 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3109 struct futex_q *q, union futex_key *key2,
3110 struct hrtimer_sleeper *timeout)
3111 {
3112 int ret = 0;
3113
3114 /*
3115 * With the hb lock held, we avoid races while we process the wakeup.
3116 * We only need to hold hb (and not hb2) to ensure atomicity as the
3117 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3118 * It can't be requeued from uaddr2 to something else since we don't
3119 * support a PI aware source futex for requeue.
3120 */
3121 if (!match_futex(&q->key, key2)) {
3122 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3123 /*
3124 * We were woken prior to requeue by a timeout or a signal.
3125 * Unqueue the futex_q and determine which it was.
3126 */
3127 plist_del(&q->list, &hb->chain);
3128 hb_waiters_dec(hb);
3129
3130 /* Handle spurious wakeups gracefully */
3131 ret = -EWOULDBLOCK;
3132 if (timeout && !timeout->task)
3133 ret = -ETIMEDOUT;
3134 else if (signal_pending(current))
3135 ret = -ERESTARTNOINTR;
3136 }
3137 return ret;
3138 }
3139
3140 /**
3141 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3142 * @uaddr: the futex we initially wait on (non-pi)
3143 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3144 * the same type, no requeueing from private to shared, etc.
3145 * @val: the expected value of uaddr
3146 * @abs_time: absolute timeout
3147 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3148 * @uaddr2: the pi futex we will take prior to returning to user-space
3149 *
3150 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3151 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3152 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3153 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3154 * without one, the pi logic would not know which task to boost/deboost, if
3155 * there was a need to.
3156 *
3157 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3158 * via the following--
3159 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3160 * 2) wakeup on uaddr2 after a requeue
3161 * 3) signal
3162 * 4) timeout
3163 *
3164 * If 3, cleanup and return -ERESTARTNOINTR.
3165 *
3166 * If 2, we may then block on trying to take the rt_mutex and return via:
3167 * 5) successful lock
3168 * 6) signal
3169 * 7) timeout
3170 * 8) other lock acquisition failure
3171 *
3172 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3173 *
3174 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3175 *
3176 * Return:
3177 * - 0 - On success;
3178 * - <0 - On error
3179 */
3180 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3181 u32 val, ktime_t *abs_time, u32 bitset,
3182 u32 __user *uaddr2)
3183 {
3184 struct hrtimer_sleeper timeout, *to = NULL;
3185 struct futex_pi_state *pi_state = NULL;
3186 struct rt_mutex_waiter rt_waiter;
3187 struct futex_hash_bucket *hb;
3188 union futex_key key2 = FUTEX_KEY_INIT;
3189 struct futex_q q = futex_q_init;
3190 int res, ret;
3191
3192 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3193 return -ENOSYS;
3194
3195 if (uaddr == uaddr2)
3196 return -EINVAL;
3197
3198 if (!bitset)
3199 return -EINVAL;
3200
3201 if (abs_time) {
3202 to = &timeout;
3203 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3204 CLOCK_REALTIME : CLOCK_MONOTONIC,
3205 HRTIMER_MODE_ABS);
3206 hrtimer_init_sleeper(to, current);
3207 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3208 current->timer_slack_ns);
3209 }
3210
3211 /*
3212 * The waiter is allocated on our stack, manipulated by the requeue
3213 * code while we sleep on uaddr.
3214 */
3215 rt_mutex_init_waiter(&rt_waiter);
3216
3217 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3218 if (unlikely(ret != 0))
3219 goto out;
3220
3221 q.bitset = bitset;
3222 q.rt_waiter = &rt_waiter;
3223 q.requeue_pi_key = &key2;
3224
3225 /*
3226 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3227 * count.
3228 */
3229 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3230 if (ret)
3231 goto out_key2;
3232
3233 /*
3234 * The check above which compares uaddrs is not sufficient for
3235 * shared futexes. We need to compare the keys:
3236 */
3237 if (match_futex(&q.key, &key2)) {
3238 queue_unlock(hb);
3239 ret = -EINVAL;
3240 goto out_put_keys;
3241 }
3242
3243 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3244 futex_wait_queue_me(hb, &q, to);
3245
3246 spin_lock(&hb->lock);
3247 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3248 spin_unlock(&hb->lock);
3249 if (ret)
3250 goto out_put_keys;
3251
3252 /*
3253 * In order for us to be here, we know our q.key == key2, and since
3254 * we took the hb->lock above, we also know that futex_requeue() has
3255 * completed and we no longer have to concern ourselves with a wakeup
3256 * race with the atomic proxy lock acquisition by the requeue code. The
3257 * futex_requeue dropped our key1 reference and incremented our key2
3258 * reference count.
3259 */
3260
3261 /* Check if the requeue code acquired the second futex for us. */
3262 if (!q.rt_waiter) {
3263 /*
3264 * Got the lock. We might not be the anticipated owner if we
3265 * did a lock-steal - fix up the PI-state in that case.
3266 */
3267 if (q.pi_state && (q.pi_state->owner != current)) {
3268 spin_lock(q.lock_ptr);
3269 ret = fixup_pi_state_owner(uaddr2, &q, current);
3270 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3271 pi_state = q.pi_state;
3272 get_pi_state(pi_state);
3273 }
3274 /*
3275 * Drop the reference to the pi state which
3276 * the requeue_pi() code acquired for us.
3277 */
3278 put_pi_state(q.pi_state);
3279 spin_unlock(q.lock_ptr);
3280 }
3281 } else {
3282 struct rt_mutex *pi_mutex;
3283
3284 /*
3285 * We have been woken up by futex_unlock_pi(), a timeout, or a
3286 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3287 * the pi_state.
3288 */
3289 WARN_ON(!q.pi_state);
3290 pi_mutex = &q.pi_state->pi_mutex;
3291 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3292
3293 spin_lock(q.lock_ptr);
3294 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3295 ret = 0;
3296
3297 debug_rt_mutex_free_waiter(&rt_waiter);
3298 /*
3299 * Fixup the pi_state owner and possibly acquire the lock if we
3300 * haven't already.
3301 */
3302 res = fixup_owner(uaddr2, &q, !ret);
3303 /*
3304 * If fixup_owner() returned an error, proprogate that. If it
3305 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3306 */
3307 if (res)
3308 ret = (res < 0) ? res : 0;
3309
3310 /*
3311 * If fixup_pi_state_owner() faulted and was unable to handle
3312 * the fault, unlock the rt_mutex and return the fault to
3313 * userspace.
3314 */
3315 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3316 pi_state = q.pi_state;
3317 get_pi_state(pi_state);
3318 }
3319
3320 /* Unqueue and drop the lock. */
3321 unqueue_me_pi(&q);
3322 }
3323
3324 if (pi_state) {
3325 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3326 put_pi_state(pi_state);
3327 }
3328
3329 if (ret == -EINTR) {
3330 /*
3331 * We've already been requeued, but cannot restart by calling
3332 * futex_lock_pi() directly. We could restart this syscall, but
3333 * it would detect that the user space "val" changed and return
3334 * -EWOULDBLOCK. Save the overhead of the restart and return
3335 * -EWOULDBLOCK directly.
3336 */
3337 ret = -EWOULDBLOCK;
3338 }
3339
3340 out_put_keys:
3341 put_futex_key(&q.key);
3342 out_key2:
3343 put_futex_key(&key2);
3344
3345 out:
3346 if (to) {
3347 hrtimer_cancel(&to->timer);
3348 destroy_hrtimer_on_stack(&to->timer);
3349 }
3350 return ret;
3351 }
3352
3353 /*
3354 * Support for robust futexes: the kernel cleans up held futexes at
3355 * thread exit time.
3356 *
3357 * Implementation: user-space maintains a per-thread list of locks it
3358 * is holding. Upon do_exit(), the kernel carefully walks this list,
3359 * and marks all locks that are owned by this thread with the
3360 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3361 * always manipulated with the lock held, so the list is private and
3362 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3363 * field, to allow the kernel to clean up if the thread dies after
3364 * acquiring the lock, but just before it could have added itself to
3365 * the list. There can only be one such pending lock.
3366 */
3367
3368 /**
3369 * sys_set_robust_list() - Set the robust-futex list head of a task
3370 * @head: pointer to the list-head
3371 * @len: length of the list-head, as userspace expects
3372 */
3373 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3374 size_t, len)
3375 {
3376 if (!futex_cmpxchg_enabled)
3377 return -ENOSYS;
3378 /*
3379 * The kernel knows only one size for now:
3380 */
3381 if (unlikely(len != sizeof(*head)))
3382 return -EINVAL;
3383
3384 current->robust_list = head;
3385
3386 return 0;
3387 }
3388
3389 /**
3390 * sys_get_robust_list() - Get the robust-futex list head of a task
3391 * @pid: pid of the process [zero for current task]
3392 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3393 * @len_ptr: pointer to a length field, the kernel fills in the header size
3394 */
3395 SYSCALL_DEFINE3(get_robust_list, int, pid,
3396 struct robust_list_head __user * __user *, head_ptr,
3397 size_t __user *, len_ptr)
3398 {
3399 struct robust_list_head __user *head;
3400 unsigned long ret;
3401 struct task_struct *p;
3402
3403 if (!futex_cmpxchg_enabled)
3404 return -ENOSYS;
3405
3406 rcu_read_lock();
3407
3408 ret = -ESRCH;
3409 if (!pid)
3410 p = current;
3411 else {
3412 p = find_task_by_vpid(pid);
3413 if (!p)
3414 goto err_unlock;
3415 }
3416
3417 ret = -EPERM;
3418 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3419 goto err_unlock;
3420
3421 head = p->robust_list;
3422 rcu_read_unlock();
3423
3424 if (put_user(sizeof(*head), len_ptr))
3425 return -EFAULT;
3426 return put_user(head, head_ptr);
3427
3428 err_unlock:
3429 rcu_read_unlock();
3430
3431 return ret;
3432 }
3433
3434 /*
3435 * Process a futex-list entry, check whether it's owned by the
3436 * dying task, and do notification if so:
3437 */
3438 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3439 {
3440 u32 uval, uninitialized_var(nval), mval;
3441
3442 retry:
3443 if (get_user(uval, uaddr))
3444 return -1;
3445
3446 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3447 /*
3448 * Ok, this dying thread is truly holding a futex
3449 * of interest. Set the OWNER_DIED bit atomically
3450 * via cmpxchg, and if the value had FUTEX_WAITERS
3451 * set, wake up a waiter (if any). (We have to do a
3452 * futex_wake() even if OWNER_DIED is already set -
3453 * to handle the rare but possible case of recursive
3454 * thread-death.) The rest of the cleanup is done in
3455 * userspace.
3456 */
3457 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3458 /*
3459 * We are not holding a lock here, but we want to have
3460 * the pagefault_disable/enable() protection because
3461 * we want to handle the fault gracefully. If the
3462 * access fails we try to fault in the futex with R/W
3463 * verification via get_user_pages. get_user() above
3464 * does not guarantee R/W access. If that fails we
3465 * give up and leave the futex locked.
3466 */
3467 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3468 if (fault_in_user_writeable(uaddr))
3469 return -1;
3470 goto retry;
3471 }
3472 if (nval != uval)
3473 goto retry;
3474
3475 /*
3476 * Wake robust non-PI futexes here. The wakeup of
3477 * PI futexes happens in exit_pi_state():
3478 */
3479 if (!pi && (uval & FUTEX_WAITERS))
3480 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3481 }
3482 return 0;
3483 }
3484
3485 /*
3486 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3487 */
3488 static inline int fetch_robust_entry(struct robust_list __user **entry,
3489 struct robust_list __user * __user *head,
3490 unsigned int *pi)
3491 {
3492 unsigned long uentry;
3493
3494 if (get_user(uentry, (unsigned long __user *)head))
3495 return -EFAULT;
3496
3497 *entry = (void __user *)(uentry & ~1UL);
3498 *pi = uentry & 1;
3499
3500 return 0;
3501 }
3502
3503 /*
3504 * Walk curr->robust_list (very carefully, it's a userspace list!)
3505 * and mark any locks found there dead, and notify any waiters.
3506 *
3507 * We silently return on any sign of list-walking problem.
3508 */
3509 void exit_robust_list(struct task_struct *curr)
3510 {
3511 struct robust_list_head __user *head = curr->robust_list;
3512 struct robust_list __user *entry, *next_entry, *pending;
3513 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3514 unsigned int uninitialized_var(next_pi);
3515 unsigned long futex_offset;
3516 int rc;
3517
3518 if (!futex_cmpxchg_enabled)
3519 return;
3520
3521 /*
3522 * Fetch the list head (which was registered earlier, via
3523 * sys_set_robust_list()):
3524 */
3525 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3526 return;
3527 /*
3528 * Fetch the relative futex offset:
3529 */
3530 if (get_user(futex_offset, &head->futex_offset))
3531 return;
3532 /*
3533 * Fetch any possibly pending lock-add first, and handle it
3534 * if it exists:
3535 */
3536 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3537 return;
3538
3539 next_entry = NULL; /* avoid warning with gcc */
3540 while (entry != &head->list) {
3541 /*
3542 * Fetch the next entry in the list before calling
3543 * handle_futex_death:
3544 */
3545 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3546 /*
3547 * A pending lock might already be on the list, so
3548 * don't process it twice:
3549 */
3550 if (entry != pending)
3551 if (handle_futex_death((void __user *)entry + futex_offset,
3552 curr, pi))
3553 return;
3554 if (rc)
3555 return;
3556 entry = next_entry;
3557 pi = next_pi;
3558 /*
3559 * Avoid excessively long or circular lists:
3560 */
3561 if (!--limit)
3562 break;
3563
3564 cond_resched();
3565 }
3566
3567 if (pending)
3568 handle_futex_death((void __user *)pending + futex_offset,
3569 curr, pip);
3570 }
3571
3572 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3573 u32 __user *uaddr2, u32 val2, u32 val3)
3574 {
3575 int cmd = op & FUTEX_CMD_MASK;
3576 unsigned int flags = 0;
3577
3578 if (!(op & FUTEX_PRIVATE_FLAG))
3579 flags |= FLAGS_SHARED;
3580
3581 if (op & FUTEX_CLOCK_REALTIME) {
3582 flags |= FLAGS_CLOCKRT;
3583 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3584 cmd != FUTEX_WAIT_REQUEUE_PI)
3585 return -ENOSYS;
3586 }
3587
3588 switch (cmd) {
3589 case FUTEX_LOCK_PI:
3590 case FUTEX_UNLOCK_PI:
3591 case FUTEX_TRYLOCK_PI:
3592 case FUTEX_WAIT_REQUEUE_PI:
3593 case FUTEX_CMP_REQUEUE_PI:
3594 if (!futex_cmpxchg_enabled)
3595 return -ENOSYS;
3596 }
3597
3598 switch (cmd) {
3599 case FUTEX_WAIT:
3600 val3 = FUTEX_BITSET_MATCH_ANY;
3601 case FUTEX_WAIT_BITSET:
3602 return futex_wait(uaddr, flags, val, timeout, val3);
3603 case FUTEX_WAKE:
3604 val3 = FUTEX_BITSET_MATCH_ANY;
3605 case FUTEX_WAKE_BITSET:
3606 return futex_wake(uaddr, flags, val, val3);
3607 case FUTEX_REQUEUE:
3608 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3609 case FUTEX_CMP_REQUEUE:
3610 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3611 case FUTEX_WAKE_OP:
3612 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3613 case FUTEX_LOCK_PI:
3614 return futex_lock_pi(uaddr, flags, timeout, 0);
3615 case FUTEX_UNLOCK_PI:
3616 return futex_unlock_pi(uaddr, flags);
3617 case FUTEX_TRYLOCK_PI:
3618 return futex_lock_pi(uaddr, flags, NULL, 1);
3619 case FUTEX_WAIT_REQUEUE_PI:
3620 val3 = FUTEX_BITSET_MATCH_ANY;
3621 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3622 uaddr2);
3623 case FUTEX_CMP_REQUEUE_PI:
3624 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3625 }
3626 return -ENOSYS;
3627 }
3628
3629
3630 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3631 struct timespec __user *, utime, u32 __user *, uaddr2,
3632 u32, val3)
3633 {
3634 struct timespec ts;
3635 ktime_t t, *tp = NULL;
3636 u32 val2 = 0;
3637 int cmd = op & FUTEX_CMD_MASK;
3638
3639 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3640 cmd == FUTEX_WAIT_BITSET ||
3641 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3642 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3643 return -EFAULT;
3644 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3645 return -EFAULT;
3646 if (!timespec_valid(&ts))
3647 return -EINVAL;
3648
3649 t = timespec_to_ktime(ts);
3650 if (cmd == FUTEX_WAIT)
3651 t = ktime_add_safe(ktime_get(), t);
3652 tp = &t;
3653 }
3654 /*
3655 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3656 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3657 */
3658 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3659 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3660 val2 = (u32) (unsigned long) utime;
3661
3662 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3663 }
3664
3665 static void __init futex_detect_cmpxchg(void)
3666 {
3667 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3668 u32 curval;
3669
3670 /*
3671 * This will fail and we want it. Some arch implementations do
3672 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3673 * functionality. We want to know that before we call in any
3674 * of the complex code paths. Also we want to prevent
3675 * registration of robust lists in that case. NULL is
3676 * guaranteed to fault and we get -EFAULT on functional
3677 * implementation, the non-functional ones will return
3678 * -ENOSYS.
3679 */
3680 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3681 futex_cmpxchg_enabled = 1;
3682 #endif
3683 }
3684
3685 static int __init futex_init(void)
3686 {
3687 unsigned int futex_shift;
3688 unsigned long i;
3689
3690 #if CONFIG_BASE_SMALL
3691 futex_hashsize = 16;
3692 #else
3693 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3694 #endif
3695
3696 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3697 futex_hashsize, 0,
3698 futex_hashsize < 256 ? HASH_SMALL : 0,
3699 &futex_shift, NULL,
3700 futex_hashsize, futex_hashsize);
3701 futex_hashsize = 1UL << futex_shift;
3702
3703 futex_detect_cmpxchg();
3704
3705 for (i = 0; i < futex_hashsize; i++) {
3706 atomic_set(&futex_queues[i].waiters, 0);
3707 plist_head_init(&futex_queues[i].chain);
3708 spin_lock_init(&futex_queues[i].lock);
3709 }
3710
3711 return 0;
3712 }
3713 core_initcall(futex_init);