]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/futex.c
Merge branches 'intel_pstate-fix' and 'cpufreq-x86-fix'
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
700 }
701
702 out:
703 put_page(page);
704 return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709 drop_futex_key_refs(key);
710 }
711
712 /**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
733
734 return ret < 0 ? ret : 0;
735 }
736
737 /**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
741 *
742 * Must be called with the hb lock held.
743 */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746 {
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
758 {
759 int ret;
760
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
764
765 return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 int ret;
771
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
775
776 return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781 * PI code:
782 */
783 static int refill_pi_state_cache(void)
784 {
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792 if (!pi_state)
793 return -ENOMEM;
794
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 *
825 * Must be called with the hb lock held.
826 */
827 static void put_pi_state(struct futex_pi_state *pi_state)
828 {
829 if (!pi_state)
830 return;
831
832 if (!atomic_dec_and_test(&pi_state->refcount))
833 return;
834
835 /*
836 * If pi_state->owner is NULL, the owner is most probably dying
837 * and has cleaned up the pi_state already
838 */
839 if (pi_state->owner) {
840 raw_spin_lock_irq(&pi_state->owner->pi_lock);
841 list_del_init(&pi_state->list);
842 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
843
844 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
845 }
846
847 if (current->pi_state_cache)
848 kfree(pi_state);
849 else {
850 /*
851 * pi_state->list is already empty.
852 * clear pi_state->owner.
853 * refcount is at 0 - put it back to 1.
854 */
855 pi_state->owner = NULL;
856 atomic_set(&pi_state->refcount, 1);
857 current->pi_state_cache = pi_state;
858 }
859 }
860
861 /*
862 * Look up the task based on what TID userspace gave us.
863 * We dont trust it.
864 */
865 static struct task_struct *futex_find_get_task(pid_t pid)
866 {
867 struct task_struct *p;
868
869 rcu_read_lock();
870 p = find_task_by_vpid(pid);
871 if (p)
872 get_task_struct(p);
873
874 rcu_read_unlock();
875
876 return p;
877 }
878
879 /*
880 * This task is holding PI mutexes at exit time => bad.
881 * Kernel cleans up PI-state, but userspace is likely hosed.
882 * (Robust-futex cleanup is separate and might save the day for userspace.)
883 */
884 void exit_pi_state_list(struct task_struct *curr)
885 {
886 struct list_head *next, *head = &curr->pi_state_list;
887 struct futex_pi_state *pi_state;
888 struct futex_hash_bucket *hb;
889 union futex_key key = FUTEX_KEY_INIT;
890
891 if (!futex_cmpxchg_enabled)
892 return;
893 /*
894 * We are a ZOMBIE and nobody can enqueue itself on
895 * pi_state_list anymore, but we have to be careful
896 * versus waiters unqueueing themselves:
897 */
898 raw_spin_lock_irq(&curr->pi_lock);
899 while (!list_empty(head)) {
900
901 next = head->next;
902 pi_state = list_entry(next, struct futex_pi_state, list);
903 key = pi_state->key;
904 hb = hash_futex(&key);
905 raw_spin_unlock_irq(&curr->pi_lock);
906
907 spin_lock(&hb->lock);
908
909 raw_spin_lock_irq(&curr->pi_lock);
910 /*
911 * We dropped the pi-lock, so re-check whether this
912 * task still owns the PI-state:
913 */
914 if (head->next != next) {
915 spin_unlock(&hb->lock);
916 continue;
917 }
918
919 WARN_ON(pi_state->owner != curr);
920 WARN_ON(list_empty(&pi_state->list));
921 list_del_init(&pi_state->list);
922 pi_state->owner = NULL;
923 raw_spin_unlock_irq(&curr->pi_lock);
924
925 get_pi_state(pi_state);
926 spin_unlock(&hb->lock);
927
928 rt_mutex_futex_unlock(&pi_state->pi_mutex);
929 put_pi_state(pi_state);
930
931 raw_spin_lock_irq(&curr->pi_lock);
932 }
933 raw_spin_unlock_irq(&curr->pi_lock);
934 }
935
936 /*
937 * We need to check the following states:
938 *
939 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
940 *
941 * [1] NULL | --- | --- | 0 | 0/1 | Valid
942 * [2] NULL | --- | --- | >0 | 0/1 | Valid
943 *
944 * [3] Found | NULL | -- | Any | 0/1 | Invalid
945 *
946 * [4] Found | Found | NULL | 0 | 1 | Valid
947 * [5] Found | Found | NULL | >0 | 1 | Invalid
948 *
949 * [6] Found | Found | task | 0 | 1 | Valid
950 *
951 * [7] Found | Found | NULL | Any | 0 | Invalid
952 *
953 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
954 * [9] Found | Found | task | 0 | 0 | Invalid
955 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
956 *
957 * [1] Indicates that the kernel can acquire the futex atomically. We
958 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
959 *
960 * [2] Valid, if TID does not belong to a kernel thread. If no matching
961 * thread is found then it indicates that the owner TID has died.
962 *
963 * [3] Invalid. The waiter is queued on a non PI futex
964 *
965 * [4] Valid state after exit_robust_list(), which sets the user space
966 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
967 *
968 * [5] The user space value got manipulated between exit_robust_list()
969 * and exit_pi_state_list()
970 *
971 * [6] Valid state after exit_pi_state_list() which sets the new owner in
972 * the pi_state but cannot access the user space value.
973 *
974 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
975 *
976 * [8] Owner and user space value match
977 *
978 * [9] There is no transient state which sets the user space TID to 0
979 * except exit_robust_list(), but this is indicated by the
980 * FUTEX_OWNER_DIED bit. See [4]
981 *
982 * [10] There is no transient state which leaves owner and user space
983 * TID out of sync.
984 *
985 *
986 * Serialization and lifetime rules:
987 *
988 * hb->lock:
989 *
990 * hb -> futex_q, relation
991 * futex_q -> pi_state, relation
992 *
993 * (cannot be raw because hb can contain arbitrary amount
994 * of futex_q's)
995 *
996 * pi_mutex->wait_lock:
997 *
998 * {uval, pi_state}
999 *
1000 * (and pi_mutex 'obviously')
1001 *
1002 * p->pi_lock:
1003 *
1004 * p->pi_state_list -> pi_state->list, relation
1005 *
1006 * pi_state->refcount:
1007 *
1008 * pi_state lifetime
1009 *
1010 *
1011 * Lock order:
1012 *
1013 * hb->lock
1014 * pi_mutex->wait_lock
1015 * p->pi_lock
1016 *
1017 */
1018
1019 /*
1020 * Validate that the existing waiter has a pi_state and sanity check
1021 * the pi_state against the user space value. If correct, attach to
1022 * it.
1023 */
1024 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1025 struct futex_pi_state *pi_state,
1026 struct futex_pi_state **ps)
1027 {
1028 pid_t pid = uval & FUTEX_TID_MASK;
1029 u32 uval2;
1030 int ret;
1031
1032 /*
1033 * Userspace might have messed up non-PI and PI futexes [3]
1034 */
1035 if (unlikely(!pi_state))
1036 return -EINVAL;
1037
1038 /*
1039 * We get here with hb->lock held, and having found a
1040 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1041 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1042 * which in turn means that futex_lock_pi() still has a reference on
1043 * our pi_state.
1044 *
1045 * The waiter holding a reference on @pi_state also protects against
1046 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1047 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1048 * free pi_state before we can take a reference ourselves.
1049 */
1050 WARN_ON(!atomic_read(&pi_state->refcount));
1051
1052 /*
1053 * Now that we have a pi_state, we can acquire wait_lock
1054 * and do the state validation.
1055 */
1056 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1057
1058 /*
1059 * Since {uval, pi_state} is serialized by wait_lock, and our current
1060 * uval was read without holding it, it can have changed. Verify it
1061 * still is what we expect it to be, otherwise retry the entire
1062 * operation.
1063 */
1064 if (get_futex_value_locked(&uval2, uaddr))
1065 goto out_efault;
1066
1067 if (uval != uval2)
1068 goto out_eagain;
1069
1070 /*
1071 * Handle the owner died case:
1072 */
1073 if (uval & FUTEX_OWNER_DIED) {
1074 /*
1075 * exit_pi_state_list sets owner to NULL and wakes the
1076 * topmost waiter. The task which acquires the
1077 * pi_state->rt_mutex will fixup owner.
1078 */
1079 if (!pi_state->owner) {
1080 /*
1081 * No pi state owner, but the user space TID
1082 * is not 0. Inconsistent state. [5]
1083 */
1084 if (pid)
1085 goto out_einval;
1086 /*
1087 * Take a ref on the state and return success. [4]
1088 */
1089 goto out_attach;
1090 }
1091
1092 /*
1093 * If TID is 0, then either the dying owner has not
1094 * yet executed exit_pi_state_list() or some waiter
1095 * acquired the rtmutex in the pi state, but did not
1096 * yet fixup the TID in user space.
1097 *
1098 * Take a ref on the state and return success. [6]
1099 */
1100 if (!pid)
1101 goto out_attach;
1102 } else {
1103 /*
1104 * If the owner died bit is not set, then the pi_state
1105 * must have an owner. [7]
1106 */
1107 if (!pi_state->owner)
1108 goto out_einval;
1109 }
1110
1111 /*
1112 * Bail out if user space manipulated the futex value. If pi
1113 * state exists then the owner TID must be the same as the
1114 * user space TID. [9/10]
1115 */
1116 if (pid != task_pid_vnr(pi_state->owner))
1117 goto out_einval;
1118
1119 out_attach:
1120 get_pi_state(pi_state);
1121 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1122 *ps = pi_state;
1123 return 0;
1124
1125 out_einval:
1126 ret = -EINVAL;
1127 goto out_error;
1128
1129 out_eagain:
1130 ret = -EAGAIN;
1131 goto out_error;
1132
1133 out_efault:
1134 ret = -EFAULT;
1135 goto out_error;
1136
1137 out_error:
1138 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1139 return ret;
1140 }
1141
1142 /*
1143 * Lookup the task for the TID provided from user space and attach to
1144 * it after doing proper sanity checks.
1145 */
1146 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1147 struct futex_pi_state **ps)
1148 {
1149 pid_t pid = uval & FUTEX_TID_MASK;
1150 struct futex_pi_state *pi_state;
1151 struct task_struct *p;
1152
1153 /*
1154 * We are the first waiter - try to look up the real owner and attach
1155 * the new pi_state to it, but bail out when TID = 0 [1]
1156 */
1157 if (!pid)
1158 return -ESRCH;
1159 p = futex_find_get_task(pid);
1160 if (!p)
1161 return -ESRCH;
1162
1163 if (unlikely(p->flags & PF_KTHREAD)) {
1164 put_task_struct(p);
1165 return -EPERM;
1166 }
1167
1168 /*
1169 * We need to look at the task state flags to figure out,
1170 * whether the task is exiting. To protect against the do_exit
1171 * change of the task flags, we do this protected by
1172 * p->pi_lock:
1173 */
1174 raw_spin_lock_irq(&p->pi_lock);
1175 if (unlikely(p->flags & PF_EXITING)) {
1176 /*
1177 * The task is on the way out. When PF_EXITPIDONE is
1178 * set, we know that the task has finished the
1179 * cleanup:
1180 */
1181 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1182
1183 raw_spin_unlock_irq(&p->pi_lock);
1184 put_task_struct(p);
1185 return ret;
1186 }
1187
1188 /*
1189 * No existing pi state. First waiter. [2]
1190 *
1191 * This creates pi_state, we have hb->lock held, this means nothing can
1192 * observe this state, wait_lock is irrelevant.
1193 */
1194 pi_state = alloc_pi_state();
1195
1196 /*
1197 * Initialize the pi_mutex in locked state and make @p
1198 * the owner of it:
1199 */
1200 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1201
1202 /* Store the key for possible exit cleanups: */
1203 pi_state->key = *key;
1204
1205 WARN_ON(!list_empty(&pi_state->list));
1206 list_add(&pi_state->list, &p->pi_state_list);
1207 pi_state->owner = p;
1208 raw_spin_unlock_irq(&p->pi_lock);
1209
1210 put_task_struct(p);
1211
1212 *ps = pi_state;
1213
1214 return 0;
1215 }
1216
1217 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1218 struct futex_hash_bucket *hb,
1219 union futex_key *key, struct futex_pi_state **ps)
1220 {
1221 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1222
1223 /*
1224 * If there is a waiter on that futex, validate it and
1225 * attach to the pi_state when the validation succeeds.
1226 */
1227 if (top_waiter)
1228 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1229
1230 /*
1231 * We are the first waiter - try to look up the owner based on
1232 * @uval and attach to it.
1233 */
1234 return attach_to_pi_owner(uval, key, ps);
1235 }
1236
1237 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1238 {
1239 u32 uninitialized_var(curval);
1240
1241 if (unlikely(should_fail_futex(true)))
1242 return -EFAULT;
1243
1244 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1245 return -EFAULT;
1246
1247 /* If user space value changed, let the caller retry */
1248 return curval != uval ? -EAGAIN : 0;
1249 }
1250
1251 /**
1252 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1253 * @uaddr: the pi futex user address
1254 * @hb: the pi futex hash bucket
1255 * @key: the futex key associated with uaddr and hb
1256 * @ps: the pi_state pointer where we store the result of the
1257 * lookup
1258 * @task: the task to perform the atomic lock work for. This will
1259 * be "current" except in the case of requeue pi.
1260 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1261 *
1262 * Return:
1263 * - 0 - ready to wait;
1264 * - 1 - acquired the lock;
1265 * - <0 - error
1266 *
1267 * The hb->lock and futex_key refs shall be held by the caller.
1268 */
1269 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1270 union futex_key *key,
1271 struct futex_pi_state **ps,
1272 struct task_struct *task, int set_waiters)
1273 {
1274 u32 uval, newval, vpid = task_pid_vnr(task);
1275 struct futex_q *top_waiter;
1276 int ret;
1277
1278 /*
1279 * Read the user space value first so we can validate a few
1280 * things before proceeding further.
1281 */
1282 if (get_futex_value_locked(&uval, uaddr))
1283 return -EFAULT;
1284
1285 if (unlikely(should_fail_futex(true)))
1286 return -EFAULT;
1287
1288 /*
1289 * Detect deadlocks.
1290 */
1291 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1292 return -EDEADLK;
1293
1294 if ((unlikely(should_fail_futex(true))))
1295 return -EDEADLK;
1296
1297 /*
1298 * Lookup existing state first. If it exists, try to attach to
1299 * its pi_state.
1300 */
1301 top_waiter = futex_top_waiter(hb, key);
1302 if (top_waiter)
1303 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1304
1305 /*
1306 * No waiter and user TID is 0. We are here because the
1307 * waiters or the owner died bit is set or called from
1308 * requeue_cmp_pi or for whatever reason something took the
1309 * syscall.
1310 */
1311 if (!(uval & FUTEX_TID_MASK)) {
1312 /*
1313 * We take over the futex. No other waiters and the user space
1314 * TID is 0. We preserve the owner died bit.
1315 */
1316 newval = uval & FUTEX_OWNER_DIED;
1317 newval |= vpid;
1318
1319 /* The futex requeue_pi code can enforce the waiters bit */
1320 if (set_waiters)
1321 newval |= FUTEX_WAITERS;
1322
1323 ret = lock_pi_update_atomic(uaddr, uval, newval);
1324 /* If the take over worked, return 1 */
1325 return ret < 0 ? ret : 1;
1326 }
1327
1328 /*
1329 * First waiter. Set the waiters bit before attaching ourself to
1330 * the owner. If owner tries to unlock, it will be forced into
1331 * the kernel and blocked on hb->lock.
1332 */
1333 newval = uval | FUTEX_WAITERS;
1334 ret = lock_pi_update_atomic(uaddr, uval, newval);
1335 if (ret)
1336 return ret;
1337 /*
1338 * If the update of the user space value succeeded, we try to
1339 * attach to the owner. If that fails, no harm done, we only
1340 * set the FUTEX_WAITERS bit in the user space variable.
1341 */
1342 return attach_to_pi_owner(uval, key, ps);
1343 }
1344
1345 /**
1346 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1347 * @q: The futex_q to unqueue
1348 *
1349 * The q->lock_ptr must not be NULL and must be held by the caller.
1350 */
1351 static void __unqueue_futex(struct futex_q *q)
1352 {
1353 struct futex_hash_bucket *hb;
1354
1355 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1356 || WARN_ON(plist_node_empty(&q->list)))
1357 return;
1358
1359 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1360 plist_del(&q->list, &hb->chain);
1361 hb_waiters_dec(hb);
1362 }
1363
1364 /*
1365 * The hash bucket lock must be held when this is called.
1366 * Afterwards, the futex_q must not be accessed. Callers
1367 * must ensure to later call wake_up_q() for the actual
1368 * wakeups to occur.
1369 */
1370 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1371 {
1372 struct task_struct *p = q->task;
1373
1374 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1375 return;
1376
1377 /*
1378 * Queue the task for later wakeup for after we've released
1379 * the hb->lock. wake_q_add() grabs reference to p.
1380 */
1381 wake_q_add(wake_q, p);
1382 __unqueue_futex(q);
1383 /*
1384 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1385 * is written, without taking any locks. This is possible in the event
1386 * of a spurious wakeup, for example. A memory barrier is required here
1387 * to prevent the following store to lock_ptr from getting ahead of the
1388 * plist_del in __unqueue_futex().
1389 */
1390 smp_store_release(&q->lock_ptr, NULL);
1391 }
1392
1393 /*
1394 * Caller must hold a reference on @pi_state.
1395 */
1396 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1397 {
1398 u32 uninitialized_var(curval), newval;
1399 struct task_struct *new_owner;
1400 bool postunlock = false;
1401 DEFINE_WAKE_Q(wake_q);
1402 int ret = 0;
1403
1404 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1405 if (WARN_ON_ONCE(!new_owner)) {
1406 /*
1407 * As per the comment in futex_unlock_pi() this should not happen.
1408 *
1409 * When this happens, give up our locks and try again, giving
1410 * the futex_lock_pi() instance time to complete, either by
1411 * waiting on the rtmutex or removing itself from the futex
1412 * queue.
1413 */
1414 ret = -EAGAIN;
1415 goto out_unlock;
1416 }
1417
1418 /*
1419 * We pass it to the next owner. The WAITERS bit is always kept
1420 * enabled while there is PI state around. We cleanup the owner
1421 * died bit, because we are the owner.
1422 */
1423 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1424
1425 if (unlikely(should_fail_futex(true)))
1426 ret = -EFAULT;
1427
1428 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1429 ret = -EFAULT;
1430
1431 } else if (curval != uval) {
1432 /*
1433 * If a unconditional UNLOCK_PI operation (user space did not
1434 * try the TID->0 transition) raced with a waiter setting the
1435 * FUTEX_WAITERS flag between get_user() and locking the hash
1436 * bucket lock, retry the operation.
1437 */
1438 if ((FUTEX_TID_MASK & curval) == uval)
1439 ret = -EAGAIN;
1440 else
1441 ret = -EINVAL;
1442 }
1443
1444 if (ret)
1445 goto out_unlock;
1446
1447 /*
1448 * This is a point of no return; once we modify the uval there is no
1449 * going back and subsequent operations must not fail.
1450 */
1451
1452 raw_spin_lock(&pi_state->owner->pi_lock);
1453 WARN_ON(list_empty(&pi_state->list));
1454 list_del_init(&pi_state->list);
1455 raw_spin_unlock(&pi_state->owner->pi_lock);
1456
1457 raw_spin_lock(&new_owner->pi_lock);
1458 WARN_ON(!list_empty(&pi_state->list));
1459 list_add(&pi_state->list, &new_owner->pi_state_list);
1460 pi_state->owner = new_owner;
1461 raw_spin_unlock(&new_owner->pi_lock);
1462
1463 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1464
1465 out_unlock:
1466 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1467
1468 if (postunlock)
1469 rt_mutex_postunlock(&wake_q);
1470
1471 return ret;
1472 }
1473
1474 /*
1475 * Express the locking dependencies for lockdep:
1476 */
1477 static inline void
1478 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1479 {
1480 if (hb1 <= hb2) {
1481 spin_lock(&hb1->lock);
1482 if (hb1 < hb2)
1483 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1484 } else { /* hb1 > hb2 */
1485 spin_lock(&hb2->lock);
1486 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1487 }
1488 }
1489
1490 static inline void
1491 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1492 {
1493 spin_unlock(&hb1->lock);
1494 if (hb1 != hb2)
1495 spin_unlock(&hb2->lock);
1496 }
1497
1498 /*
1499 * Wake up waiters matching bitset queued on this futex (uaddr).
1500 */
1501 static int
1502 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1503 {
1504 struct futex_hash_bucket *hb;
1505 struct futex_q *this, *next;
1506 union futex_key key = FUTEX_KEY_INIT;
1507 int ret;
1508 DEFINE_WAKE_Q(wake_q);
1509
1510 if (!bitset)
1511 return -EINVAL;
1512
1513 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1514 if (unlikely(ret != 0))
1515 goto out;
1516
1517 hb = hash_futex(&key);
1518
1519 /* Make sure we really have tasks to wakeup */
1520 if (!hb_waiters_pending(hb))
1521 goto out_put_key;
1522
1523 spin_lock(&hb->lock);
1524
1525 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1526 if (match_futex (&this->key, &key)) {
1527 if (this->pi_state || this->rt_waiter) {
1528 ret = -EINVAL;
1529 break;
1530 }
1531
1532 /* Check if one of the bits is set in both bitsets */
1533 if (!(this->bitset & bitset))
1534 continue;
1535
1536 mark_wake_futex(&wake_q, this);
1537 if (++ret >= nr_wake)
1538 break;
1539 }
1540 }
1541
1542 spin_unlock(&hb->lock);
1543 wake_up_q(&wake_q);
1544 out_put_key:
1545 put_futex_key(&key);
1546 out:
1547 return ret;
1548 }
1549
1550 /*
1551 * Wake up all waiters hashed on the physical page that is mapped
1552 * to this virtual address:
1553 */
1554 static int
1555 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1556 int nr_wake, int nr_wake2, int op)
1557 {
1558 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1559 struct futex_hash_bucket *hb1, *hb2;
1560 struct futex_q *this, *next;
1561 int ret, op_ret;
1562 DEFINE_WAKE_Q(wake_q);
1563
1564 retry:
1565 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1566 if (unlikely(ret != 0))
1567 goto out;
1568 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1569 if (unlikely(ret != 0))
1570 goto out_put_key1;
1571
1572 hb1 = hash_futex(&key1);
1573 hb2 = hash_futex(&key2);
1574
1575 retry_private:
1576 double_lock_hb(hb1, hb2);
1577 op_ret = futex_atomic_op_inuser(op, uaddr2);
1578 if (unlikely(op_ret < 0)) {
1579
1580 double_unlock_hb(hb1, hb2);
1581
1582 #ifndef CONFIG_MMU
1583 /*
1584 * we don't get EFAULT from MMU faults if we don't have an MMU,
1585 * but we might get them from range checking
1586 */
1587 ret = op_ret;
1588 goto out_put_keys;
1589 #endif
1590
1591 if (unlikely(op_ret != -EFAULT)) {
1592 ret = op_ret;
1593 goto out_put_keys;
1594 }
1595
1596 ret = fault_in_user_writeable(uaddr2);
1597 if (ret)
1598 goto out_put_keys;
1599
1600 if (!(flags & FLAGS_SHARED))
1601 goto retry_private;
1602
1603 put_futex_key(&key2);
1604 put_futex_key(&key1);
1605 goto retry;
1606 }
1607
1608 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1609 if (match_futex (&this->key, &key1)) {
1610 if (this->pi_state || this->rt_waiter) {
1611 ret = -EINVAL;
1612 goto out_unlock;
1613 }
1614 mark_wake_futex(&wake_q, this);
1615 if (++ret >= nr_wake)
1616 break;
1617 }
1618 }
1619
1620 if (op_ret > 0) {
1621 op_ret = 0;
1622 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1623 if (match_futex (&this->key, &key2)) {
1624 if (this->pi_state || this->rt_waiter) {
1625 ret = -EINVAL;
1626 goto out_unlock;
1627 }
1628 mark_wake_futex(&wake_q, this);
1629 if (++op_ret >= nr_wake2)
1630 break;
1631 }
1632 }
1633 ret += op_ret;
1634 }
1635
1636 out_unlock:
1637 double_unlock_hb(hb1, hb2);
1638 wake_up_q(&wake_q);
1639 out_put_keys:
1640 put_futex_key(&key2);
1641 out_put_key1:
1642 put_futex_key(&key1);
1643 out:
1644 return ret;
1645 }
1646
1647 /**
1648 * requeue_futex() - Requeue a futex_q from one hb to another
1649 * @q: the futex_q to requeue
1650 * @hb1: the source hash_bucket
1651 * @hb2: the target hash_bucket
1652 * @key2: the new key for the requeued futex_q
1653 */
1654 static inline
1655 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1656 struct futex_hash_bucket *hb2, union futex_key *key2)
1657 {
1658
1659 /*
1660 * If key1 and key2 hash to the same bucket, no need to
1661 * requeue.
1662 */
1663 if (likely(&hb1->chain != &hb2->chain)) {
1664 plist_del(&q->list, &hb1->chain);
1665 hb_waiters_dec(hb1);
1666 hb_waiters_inc(hb2);
1667 plist_add(&q->list, &hb2->chain);
1668 q->lock_ptr = &hb2->lock;
1669 }
1670 get_futex_key_refs(key2);
1671 q->key = *key2;
1672 }
1673
1674 /**
1675 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1676 * @q: the futex_q
1677 * @key: the key of the requeue target futex
1678 * @hb: the hash_bucket of the requeue target futex
1679 *
1680 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1681 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1682 * to the requeue target futex so the waiter can detect the wakeup on the right
1683 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1684 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1685 * to protect access to the pi_state to fixup the owner later. Must be called
1686 * with both q->lock_ptr and hb->lock held.
1687 */
1688 static inline
1689 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1690 struct futex_hash_bucket *hb)
1691 {
1692 get_futex_key_refs(key);
1693 q->key = *key;
1694
1695 __unqueue_futex(q);
1696
1697 WARN_ON(!q->rt_waiter);
1698 q->rt_waiter = NULL;
1699
1700 q->lock_ptr = &hb->lock;
1701
1702 wake_up_state(q->task, TASK_NORMAL);
1703 }
1704
1705 /**
1706 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1707 * @pifutex: the user address of the to futex
1708 * @hb1: the from futex hash bucket, must be locked by the caller
1709 * @hb2: the to futex hash bucket, must be locked by the caller
1710 * @key1: the from futex key
1711 * @key2: the to futex key
1712 * @ps: address to store the pi_state pointer
1713 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1714 *
1715 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1716 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1717 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1718 * hb1 and hb2 must be held by the caller.
1719 *
1720 * Return:
1721 * - 0 - failed to acquire the lock atomically;
1722 * - >0 - acquired the lock, return value is vpid of the top_waiter
1723 * - <0 - error
1724 */
1725 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1726 struct futex_hash_bucket *hb1,
1727 struct futex_hash_bucket *hb2,
1728 union futex_key *key1, union futex_key *key2,
1729 struct futex_pi_state **ps, int set_waiters)
1730 {
1731 struct futex_q *top_waiter = NULL;
1732 u32 curval;
1733 int ret, vpid;
1734
1735 if (get_futex_value_locked(&curval, pifutex))
1736 return -EFAULT;
1737
1738 if (unlikely(should_fail_futex(true)))
1739 return -EFAULT;
1740
1741 /*
1742 * Find the top_waiter and determine if there are additional waiters.
1743 * If the caller intends to requeue more than 1 waiter to pifutex,
1744 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1745 * as we have means to handle the possible fault. If not, don't set
1746 * the bit unecessarily as it will force the subsequent unlock to enter
1747 * the kernel.
1748 */
1749 top_waiter = futex_top_waiter(hb1, key1);
1750
1751 /* There are no waiters, nothing for us to do. */
1752 if (!top_waiter)
1753 return 0;
1754
1755 /* Ensure we requeue to the expected futex. */
1756 if (!match_futex(top_waiter->requeue_pi_key, key2))
1757 return -EINVAL;
1758
1759 /*
1760 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1761 * the contended case or if set_waiters is 1. The pi_state is returned
1762 * in ps in contended cases.
1763 */
1764 vpid = task_pid_vnr(top_waiter->task);
1765 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1766 set_waiters);
1767 if (ret == 1) {
1768 requeue_pi_wake_futex(top_waiter, key2, hb2);
1769 return vpid;
1770 }
1771 return ret;
1772 }
1773
1774 /**
1775 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1776 * @uaddr1: source futex user address
1777 * @flags: futex flags (FLAGS_SHARED, etc.)
1778 * @uaddr2: target futex user address
1779 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1780 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1781 * @cmpval: @uaddr1 expected value (or %NULL)
1782 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1783 * pi futex (pi to pi requeue is not supported)
1784 *
1785 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1786 * uaddr2 atomically on behalf of the top waiter.
1787 *
1788 * Return:
1789 * - >=0 - on success, the number of tasks requeued or woken;
1790 * - <0 - on error
1791 */
1792 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1793 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1794 u32 *cmpval, int requeue_pi)
1795 {
1796 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1797 int drop_count = 0, task_count = 0, ret;
1798 struct futex_pi_state *pi_state = NULL;
1799 struct futex_hash_bucket *hb1, *hb2;
1800 struct futex_q *this, *next;
1801 DEFINE_WAKE_Q(wake_q);
1802
1803 if (requeue_pi) {
1804 /*
1805 * Requeue PI only works on two distinct uaddrs. This
1806 * check is only valid for private futexes. See below.
1807 */
1808 if (uaddr1 == uaddr2)
1809 return -EINVAL;
1810
1811 /*
1812 * requeue_pi requires a pi_state, try to allocate it now
1813 * without any locks in case it fails.
1814 */
1815 if (refill_pi_state_cache())
1816 return -ENOMEM;
1817 /*
1818 * requeue_pi must wake as many tasks as it can, up to nr_wake
1819 * + nr_requeue, since it acquires the rt_mutex prior to
1820 * returning to userspace, so as to not leave the rt_mutex with
1821 * waiters and no owner. However, second and third wake-ups
1822 * cannot be predicted as they involve race conditions with the
1823 * first wake and a fault while looking up the pi_state. Both
1824 * pthread_cond_signal() and pthread_cond_broadcast() should
1825 * use nr_wake=1.
1826 */
1827 if (nr_wake != 1)
1828 return -EINVAL;
1829 }
1830
1831 retry:
1832 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1833 if (unlikely(ret != 0))
1834 goto out;
1835 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1836 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1837 if (unlikely(ret != 0))
1838 goto out_put_key1;
1839
1840 /*
1841 * The check above which compares uaddrs is not sufficient for
1842 * shared futexes. We need to compare the keys:
1843 */
1844 if (requeue_pi && match_futex(&key1, &key2)) {
1845 ret = -EINVAL;
1846 goto out_put_keys;
1847 }
1848
1849 hb1 = hash_futex(&key1);
1850 hb2 = hash_futex(&key2);
1851
1852 retry_private:
1853 hb_waiters_inc(hb2);
1854 double_lock_hb(hb1, hb2);
1855
1856 if (likely(cmpval != NULL)) {
1857 u32 curval;
1858
1859 ret = get_futex_value_locked(&curval, uaddr1);
1860
1861 if (unlikely(ret)) {
1862 double_unlock_hb(hb1, hb2);
1863 hb_waiters_dec(hb2);
1864
1865 ret = get_user(curval, uaddr1);
1866 if (ret)
1867 goto out_put_keys;
1868
1869 if (!(flags & FLAGS_SHARED))
1870 goto retry_private;
1871
1872 put_futex_key(&key2);
1873 put_futex_key(&key1);
1874 goto retry;
1875 }
1876 if (curval != *cmpval) {
1877 ret = -EAGAIN;
1878 goto out_unlock;
1879 }
1880 }
1881
1882 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1883 /*
1884 * Attempt to acquire uaddr2 and wake the top waiter. If we
1885 * intend to requeue waiters, force setting the FUTEX_WAITERS
1886 * bit. We force this here where we are able to easily handle
1887 * faults rather in the requeue loop below.
1888 */
1889 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1890 &key2, &pi_state, nr_requeue);
1891
1892 /*
1893 * At this point the top_waiter has either taken uaddr2 or is
1894 * waiting on it. If the former, then the pi_state will not
1895 * exist yet, look it up one more time to ensure we have a
1896 * reference to it. If the lock was taken, ret contains the
1897 * vpid of the top waiter task.
1898 * If the lock was not taken, we have pi_state and an initial
1899 * refcount on it. In case of an error we have nothing.
1900 */
1901 if (ret > 0) {
1902 WARN_ON(pi_state);
1903 drop_count++;
1904 task_count++;
1905 /*
1906 * If we acquired the lock, then the user space value
1907 * of uaddr2 should be vpid. It cannot be changed by
1908 * the top waiter as it is blocked on hb2 lock if it
1909 * tries to do so. If something fiddled with it behind
1910 * our back the pi state lookup might unearth it. So
1911 * we rather use the known value than rereading and
1912 * handing potential crap to lookup_pi_state.
1913 *
1914 * If that call succeeds then we have pi_state and an
1915 * initial refcount on it.
1916 */
1917 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1918 }
1919
1920 switch (ret) {
1921 case 0:
1922 /* We hold a reference on the pi state. */
1923 break;
1924
1925 /* If the above failed, then pi_state is NULL */
1926 case -EFAULT:
1927 double_unlock_hb(hb1, hb2);
1928 hb_waiters_dec(hb2);
1929 put_futex_key(&key2);
1930 put_futex_key(&key1);
1931 ret = fault_in_user_writeable(uaddr2);
1932 if (!ret)
1933 goto retry;
1934 goto out;
1935 case -EAGAIN:
1936 /*
1937 * Two reasons for this:
1938 * - Owner is exiting and we just wait for the
1939 * exit to complete.
1940 * - The user space value changed.
1941 */
1942 double_unlock_hb(hb1, hb2);
1943 hb_waiters_dec(hb2);
1944 put_futex_key(&key2);
1945 put_futex_key(&key1);
1946 cond_resched();
1947 goto retry;
1948 default:
1949 goto out_unlock;
1950 }
1951 }
1952
1953 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1954 if (task_count - nr_wake >= nr_requeue)
1955 break;
1956
1957 if (!match_futex(&this->key, &key1))
1958 continue;
1959
1960 /*
1961 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1962 * be paired with each other and no other futex ops.
1963 *
1964 * We should never be requeueing a futex_q with a pi_state,
1965 * which is awaiting a futex_unlock_pi().
1966 */
1967 if ((requeue_pi && !this->rt_waiter) ||
1968 (!requeue_pi && this->rt_waiter) ||
1969 this->pi_state) {
1970 ret = -EINVAL;
1971 break;
1972 }
1973
1974 /*
1975 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1976 * lock, we already woke the top_waiter. If not, it will be
1977 * woken by futex_unlock_pi().
1978 */
1979 if (++task_count <= nr_wake && !requeue_pi) {
1980 mark_wake_futex(&wake_q, this);
1981 continue;
1982 }
1983
1984 /* Ensure we requeue to the expected futex for requeue_pi. */
1985 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1986 ret = -EINVAL;
1987 break;
1988 }
1989
1990 /*
1991 * Requeue nr_requeue waiters and possibly one more in the case
1992 * of requeue_pi if we couldn't acquire the lock atomically.
1993 */
1994 if (requeue_pi) {
1995 /*
1996 * Prepare the waiter to take the rt_mutex. Take a
1997 * refcount on the pi_state and store the pointer in
1998 * the futex_q object of the waiter.
1999 */
2000 get_pi_state(pi_state);
2001 this->pi_state = pi_state;
2002 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2003 this->rt_waiter,
2004 this->task);
2005 if (ret == 1) {
2006 /*
2007 * We got the lock. We do neither drop the
2008 * refcount on pi_state nor clear
2009 * this->pi_state because the waiter needs the
2010 * pi_state for cleaning up the user space
2011 * value. It will drop the refcount after
2012 * doing so.
2013 */
2014 requeue_pi_wake_futex(this, &key2, hb2);
2015 drop_count++;
2016 continue;
2017 } else if (ret) {
2018 /*
2019 * rt_mutex_start_proxy_lock() detected a
2020 * potential deadlock when we tried to queue
2021 * that waiter. Drop the pi_state reference
2022 * which we took above and remove the pointer
2023 * to the state from the waiters futex_q
2024 * object.
2025 */
2026 this->pi_state = NULL;
2027 put_pi_state(pi_state);
2028 /*
2029 * We stop queueing more waiters and let user
2030 * space deal with the mess.
2031 */
2032 break;
2033 }
2034 }
2035 requeue_futex(this, hb1, hb2, &key2);
2036 drop_count++;
2037 }
2038
2039 /*
2040 * We took an extra initial reference to the pi_state either
2041 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2042 * need to drop it here again.
2043 */
2044 put_pi_state(pi_state);
2045
2046 out_unlock:
2047 double_unlock_hb(hb1, hb2);
2048 wake_up_q(&wake_q);
2049 hb_waiters_dec(hb2);
2050
2051 /*
2052 * drop_futex_key_refs() must be called outside the spinlocks. During
2053 * the requeue we moved futex_q's from the hash bucket at key1 to the
2054 * one at key2 and updated their key pointer. We no longer need to
2055 * hold the references to key1.
2056 */
2057 while (--drop_count >= 0)
2058 drop_futex_key_refs(&key1);
2059
2060 out_put_keys:
2061 put_futex_key(&key2);
2062 out_put_key1:
2063 put_futex_key(&key1);
2064 out:
2065 return ret ? ret : task_count;
2066 }
2067
2068 /* The key must be already stored in q->key. */
2069 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2070 __acquires(&hb->lock)
2071 {
2072 struct futex_hash_bucket *hb;
2073
2074 hb = hash_futex(&q->key);
2075
2076 /*
2077 * Increment the counter before taking the lock so that
2078 * a potential waker won't miss a to-be-slept task that is
2079 * waiting for the spinlock. This is safe as all queue_lock()
2080 * users end up calling queue_me(). Similarly, for housekeeping,
2081 * decrement the counter at queue_unlock() when some error has
2082 * occurred and we don't end up adding the task to the list.
2083 */
2084 hb_waiters_inc(hb);
2085
2086 q->lock_ptr = &hb->lock;
2087
2088 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2089 return hb;
2090 }
2091
2092 static inline void
2093 queue_unlock(struct futex_hash_bucket *hb)
2094 __releases(&hb->lock)
2095 {
2096 spin_unlock(&hb->lock);
2097 hb_waiters_dec(hb);
2098 }
2099
2100 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2101 {
2102 int prio;
2103
2104 /*
2105 * The priority used to register this element is
2106 * - either the real thread-priority for the real-time threads
2107 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2108 * - or MAX_RT_PRIO for non-RT threads.
2109 * Thus, all RT-threads are woken first in priority order, and
2110 * the others are woken last, in FIFO order.
2111 */
2112 prio = min(current->normal_prio, MAX_RT_PRIO);
2113
2114 plist_node_init(&q->list, prio);
2115 plist_add(&q->list, &hb->chain);
2116 q->task = current;
2117 }
2118
2119 /**
2120 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2121 * @q: The futex_q to enqueue
2122 * @hb: The destination hash bucket
2123 *
2124 * The hb->lock must be held by the caller, and is released here. A call to
2125 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2126 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2127 * or nothing if the unqueue is done as part of the wake process and the unqueue
2128 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2129 * an example).
2130 */
2131 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2132 __releases(&hb->lock)
2133 {
2134 __queue_me(q, hb);
2135 spin_unlock(&hb->lock);
2136 }
2137
2138 /**
2139 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2140 * @q: The futex_q to unqueue
2141 *
2142 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2143 * be paired with exactly one earlier call to queue_me().
2144 *
2145 * Return:
2146 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2147 * - 0 - if the futex_q was already removed by the waking thread
2148 */
2149 static int unqueue_me(struct futex_q *q)
2150 {
2151 spinlock_t *lock_ptr;
2152 int ret = 0;
2153
2154 /* In the common case we don't take the spinlock, which is nice. */
2155 retry:
2156 /*
2157 * q->lock_ptr can change between this read and the following spin_lock.
2158 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2159 * optimizing lock_ptr out of the logic below.
2160 */
2161 lock_ptr = READ_ONCE(q->lock_ptr);
2162 if (lock_ptr != NULL) {
2163 spin_lock(lock_ptr);
2164 /*
2165 * q->lock_ptr can change between reading it and
2166 * spin_lock(), causing us to take the wrong lock. This
2167 * corrects the race condition.
2168 *
2169 * Reasoning goes like this: if we have the wrong lock,
2170 * q->lock_ptr must have changed (maybe several times)
2171 * between reading it and the spin_lock(). It can
2172 * change again after the spin_lock() but only if it was
2173 * already changed before the spin_lock(). It cannot,
2174 * however, change back to the original value. Therefore
2175 * we can detect whether we acquired the correct lock.
2176 */
2177 if (unlikely(lock_ptr != q->lock_ptr)) {
2178 spin_unlock(lock_ptr);
2179 goto retry;
2180 }
2181 __unqueue_futex(q);
2182
2183 BUG_ON(q->pi_state);
2184
2185 spin_unlock(lock_ptr);
2186 ret = 1;
2187 }
2188
2189 drop_futex_key_refs(&q->key);
2190 return ret;
2191 }
2192
2193 /*
2194 * PI futexes can not be requeued and must remove themself from the
2195 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2196 * and dropped here.
2197 */
2198 static void unqueue_me_pi(struct futex_q *q)
2199 __releases(q->lock_ptr)
2200 {
2201 __unqueue_futex(q);
2202
2203 BUG_ON(!q->pi_state);
2204 put_pi_state(q->pi_state);
2205 q->pi_state = NULL;
2206
2207 spin_unlock(q->lock_ptr);
2208 }
2209
2210 /*
2211 * Fixup the pi_state owner with the new owner.
2212 *
2213 * Must be called with hash bucket lock held and mm->sem held for non
2214 * private futexes.
2215 */
2216 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2217 struct task_struct *newowner)
2218 {
2219 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2220 struct futex_pi_state *pi_state = q->pi_state;
2221 u32 uval, uninitialized_var(curval), newval;
2222 struct task_struct *oldowner;
2223 int ret;
2224
2225 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2226
2227 oldowner = pi_state->owner;
2228 /* Owner died? */
2229 if (!pi_state->owner)
2230 newtid |= FUTEX_OWNER_DIED;
2231
2232 /*
2233 * We are here either because we stole the rtmutex from the
2234 * previous highest priority waiter or we are the highest priority
2235 * waiter but have failed to get the rtmutex the first time.
2236 *
2237 * We have to replace the newowner TID in the user space variable.
2238 * This must be atomic as we have to preserve the owner died bit here.
2239 *
2240 * Note: We write the user space value _before_ changing the pi_state
2241 * because we can fault here. Imagine swapped out pages or a fork
2242 * that marked all the anonymous memory readonly for cow.
2243 *
2244 * Modifying pi_state _before_ the user space value would leave the
2245 * pi_state in an inconsistent state when we fault here, because we
2246 * need to drop the locks to handle the fault. This might be observed
2247 * in the PID check in lookup_pi_state.
2248 */
2249 retry:
2250 if (get_futex_value_locked(&uval, uaddr))
2251 goto handle_fault;
2252
2253 for (;;) {
2254 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2255
2256 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2257 goto handle_fault;
2258 if (curval == uval)
2259 break;
2260 uval = curval;
2261 }
2262
2263 /*
2264 * We fixed up user space. Now we need to fix the pi_state
2265 * itself.
2266 */
2267 if (pi_state->owner != NULL) {
2268 raw_spin_lock(&pi_state->owner->pi_lock);
2269 WARN_ON(list_empty(&pi_state->list));
2270 list_del_init(&pi_state->list);
2271 raw_spin_unlock(&pi_state->owner->pi_lock);
2272 }
2273
2274 pi_state->owner = newowner;
2275
2276 raw_spin_lock(&newowner->pi_lock);
2277 WARN_ON(!list_empty(&pi_state->list));
2278 list_add(&pi_state->list, &newowner->pi_state_list);
2279 raw_spin_unlock(&newowner->pi_lock);
2280 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2281
2282 return 0;
2283
2284 /*
2285 * To handle the page fault we need to drop the locks here. That gives
2286 * the other task (either the highest priority waiter itself or the
2287 * task which stole the rtmutex) the chance to try the fixup of the
2288 * pi_state. So once we are back from handling the fault we need to
2289 * check the pi_state after reacquiring the locks and before trying to
2290 * do another fixup. When the fixup has been done already we simply
2291 * return.
2292 *
2293 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2294 * drop hb->lock since the caller owns the hb -> futex_q relation.
2295 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2296 */
2297 handle_fault:
2298 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2299 spin_unlock(q->lock_ptr);
2300
2301 ret = fault_in_user_writeable(uaddr);
2302
2303 spin_lock(q->lock_ptr);
2304 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2305
2306 /*
2307 * Check if someone else fixed it for us:
2308 */
2309 if (pi_state->owner != oldowner) {
2310 ret = 0;
2311 goto out_unlock;
2312 }
2313
2314 if (ret)
2315 goto out_unlock;
2316
2317 goto retry;
2318
2319 out_unlock:
2320 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2321 return ret;
2322 }
2323
2324 static long futex_wait_restart(struct restart_block *restart);
2325
2326 /**
2327 * fixup_owner() - Post lock pi_state and corner case management
2328 * @uaddr: user address of the futex
2329 * @q: futex_q (contains pi_state and access to the rt_mutex)
2330 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2331 *
2332 * After attempting to lock an rt_mutex, this function is called to cleanup
2333 * the pi_state owner as well as handle race conditions that may allow us to
2334 * acquire the lock. Must be called with the hb lock held.
2335 *
2336 * Return:
2337 * - 1 - success, lock taken;
2338 * - 0 - success, lock not taken;
2339 * - <0 - on error (-EFAULT)
2340 */
2341 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2342 {
2343 int ret = 0;
2344
2345 if (locked) {
2346 /*
2347 * Got the lock. We might not be the anticipated owner if we
2348 * did a lock-steal - fix up the PI-state in that case:
2349 *
2350 * We can safely read pi_state->owner without holding wait_lock
2351 * because we now own the rt_mutex, only the owner will attempt
2352 * to change it.
2353 */
2354 if (q->pi_state->owner != current)
2355 ret = fixup_pi_state_owner(uaddr, q, current);
2356 goto out;
2357 }
2358
2359 /*
2360 * Paranoia check. If we did not take the lock, then we should not be
2361 * the owner of the rt_mutex.
2362 */
2363 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2364 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2365 "pi-state %p\n", ret,
2366 q->pi_state->pi_mutex.owner,
2367 q->pi_state->owner);
2368 }
2369
2370 out:
2371 return ret ? ret : locked;
2372 }
2373
2374 /**
2375 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2376 * @hb: the futex hash bucket, must be locked by the caller
2377 * @q: the futex_q to queue up on
2378 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2379 */
2380 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2381 struct hrtimer_sleeper *timeout)
2382 {
2383 /*
2384 * The task state is guaranteed to be set before another task can
2385 * wake it. set_current_state() is implemented using smp_store_mb() and
2386 * queue_me() calls spin_unlock() upon completion, both serializing
2387 * access to the hash list and forcing another memory barrier.
2388 */
2389 set_current_state(TASK_INTERRUPTIBLE);
2390 queue_me(q, hb);
2391
2392 /* Arm the timer */
2393 if (timeout)
2394 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2395
2396 /*
2397 * If we have been removed from the hash list, then another task
2398 * has tried to wake us, and we can skip the call to schedule().
2399 */
2400 if (likely(!plist_node_empty(&q->list))) {
2401 /*
2402 * If the timer has already expired, current will already be
2403 * flagged for rescheduling. Only call schedule if there
2404 * is no timeout, or if it has yet to expire.
2405 */
2406 if (!timeout || timeout->task)
2407 freezable_schedule();
2408 }
2409 __set_current_state(TASK_RUNNING);
2410 }
2411
2412 /**
2413 * futex_wait_setup() - Prepare to wait on a futex
2414 * @uaddr: the futex userspace address
2415 * @val: the expected value
2416 * @flags: futex flags (FLAGS_SHARED, etc.)
2417 * @q: the associated futex_q
2418 * @hb: storage for hash_bucket pointer to be returned to caller
2419 *
2420 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2421 * compare it with the expected value. Handle atomic faults internally.
2422 * Return with the hb lock held and a q.key reference on success, and unlocked
2423 * with no q.key reference on failure.
2424 *
2425 * Return:
2426 * - 0 - uaddr contains val and hb has been locked;
2427 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2428 */
2429 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2430 struct futex_q *q, struct futex_hash_bucket **hb)
2431 {
2432 u32 uval;
2433 int ret;
2434
2435 /*
2436 * Access the page AFTER the hash-bucket is locked.
2437 * Order is important:
2438 *
2439 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2440 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2441 *
2442 * The basic logical guarantee of a futex is that it blocks ONLY
2443 * if cond(var) is known to be true at the time of blocking, for
2444 * any cond. If we locked the hash-bucket after testing *uaddr, that
2445 * would open a race condition where we could block indefinitely with
2446 * cond(var) false, which would violate the guarantee.
2447 *
2448 * On the other hand, we insert q and release the hash-bucket only
2449 * after testing *uaddr. This guarantees that futex_wait() will NOT
2450 * absorb a wakeup if *uaddr does not match the desired values
2451 * while the syscall executes.
2452 */
2453 retry:
2454 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2455 if (unlikely(ret != 0))
2456 return ret;
2457
2458 retry_private:
2459 *hb = queue_lock(q);
2460
2461 ret = get_futex_value_locked(&uval, uaddr);
2462
2463 if (ret) {
2464 queue_unlock(*hb);
2465
2466 ret = get_user(uval, uaddr);
2467 if (ret)
2468 goto out;
2469
2470 if (!(flags & FLAGS_SHARED))
2471 goto retry_private;
2472
2473 put_futex_key(&q->key);
2474 goto retry;
2475 }
2476
2477 if (uval != val) {
2478 queue_unlock(*hb);
2479 ret = -EWOULDBLOCK;
2480 }
2481
2482 out:
2483 if (ret)
2484 put_futex_key(&q->key);
2485 return ret;
2486 }
2487
2488 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2489 ktime_t *abs_time, u32 bitset)
2490 {
2491 struct hrtimer_sleeper timeout, *to = NULL;
2492 struct restart_block *restart;
2493 struct futex_hash_bucket *hb;
2494 struct futex_q q = futex_q_init;
2495 int ret;
2496
2497 if (!bitset)
2498 return -EINVAL;
2499 q.bitset = bitset;
2500
2501 if (abs_time) {
2502 to = &timeout;
2503
2504 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2505 CLOCK_REALTIME : CLOCK_MONOTONIC,
2506 HRTIMER_MODE_ABS);
2507 hrtimer_init_sleeper(to, current);
2508 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2509 current->timer_slack_ns);
2510 }
2511
2512 retry:
2513 /*
2514 * Prepare to wait on uaddr. On success, holds hb lock and increments
2515 * q.key refs.
2516 */
2517 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2518 if (ret)
2519 goto out;
2520
2521 /* queue_me and wait for wakeup, timeout, or a signal. */
2522 futex_wait_queue_me(hb, &q, to);
2523
2524 /* If we were woken (and unqueued), we succeeded, whatever. */
2525 ret = 0;
2526 /* unqueue_me() drops q.key ref */
2527 if (!unqueue_me(&q))
2528 goto out;
2529 ret = -ETIMEDOUT;
2530 if (to && !to->task)
2531 goto out;
2532
2533 /*
2534 * We expect signal_pending(current), but we might be the
2535 * victim of a spurious wakeup as well.
2536 */
2537 if (!signal_pending(current))
2538 goto retry;
2539
2540 ret = -ERESTARTSYS;
2541 if (!abs_time)
2542 goto out;
2543
2544 restart = &current->restart_block;
2545 restart->fn = futex_wait_restart;
2546 restart->futex.uaddr = uaddr;
2547 restart->futex.val = val;
2548 restart->futex.time = *abs_time;
2549 restart->futex.bitset = bitset;
2550 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2551
2552 ret = -ERESTART_RESTARTBLOCK;
2553
2554 out:
2555 if (to) {
2556 hrtimer_cancel(&to->timer);
2557 destroy_hrtimer_on_stack(&to->timer);
2558 }
2559 return ret;
2560 }
2561
2562
2563 static long futex_wait_restart(struct restart_block *restart)
2564 {
2565 u32 __user *uaddr = restart->futex.uaddr;
2566 ktime_t t, *tp = NULL;
2567
2568 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2569 t = restart->futex.time;
2570 tp = &t;
2571 }
2572 restart->fn = do_no_restart_syscall;
2573
2574 return (long)futex_wait(uaddr, restart->futex.flags,
2575 restart->futex.val, tp, restart->futex.bitset);
2576 }
2577
2578
2579 /*
2580 * Userspace tried a 0 -> TID atomic transition of the futex value
2581 * and failed. The kernel side here does the whole locking operation:
2582 * if there are waiters then it will block as a consequence of relying
2583 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2584 * a 0 value of the futex too.).
2585 *
2586 * Also serves as futex trylock_pi()'ing, and due semantics.
2587 */
2588 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2589 ktime_t *time, int trylock)
2590 {
2591 struct hrtimer_sleeper timeout, *to = NULL;
2592 struct futex_pi_state *pi_state = NULL;
2593 struct rt_mutex_waiter rt_waiter;
2594 struct futex_hash_bucket *hb;
2595 struct futex_q q = futex_q_init;
2596 int res, ret;
2597
2598 if (refill_pi_state_cache())
2599 return -ENOMEM;
2600
2601 if (time) {
2602 to = &timeout;
2603 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2604 HRTIMER_MODE_ABS);
2605 hrtimer_init_sleeper(to, current);
2606 hrtimer_set_expires(&to->timer, *time);
2607 }
2608
2609 retry:
2610 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2611 if (unlikely(ret != 0))
2612 goto out;
2613
2614 retry_private:
2615 hb = queue_lock(&q);
2616
2617 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2618 if (unlikely(ret)) {
2619 /*
2620 * Atomic work succeeded and we got the lock,
2621 * or failed. Either way, we do _not_ block.
2622 */
2623 switch (ret) {
2624 case 1:
2625 /* We got the lock. */
2626 ret = 0;
2627 goto out_unlock_put_key;
2628 case -EFAULT:
2629 goto uaddr_faulted;
2630 case -EAGAIN:
2631 /*
2632 * Two reasons for this:
2633 * - Task is exiting and we just wait for the
2634 * exit to complete.
2635 * - The user space value changed.
2636 */
2637 queue_unlock(hb);
2638 put_futex_key(&q.key);
2639 cond_resched();
2640 goto retry;
2641 default:
2642 goto out_unlock_put_key;
2643 }
2644 }
2645
2646 WARN_ON(!q.pi_state);
2647
2648 /*
2649 * Only actually queue now that the atomic ops are done:
2650 */
2651 __queue_me(&q, hb);
2652
2653 if (trylock) {
2654 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2655 /* Fixup the trylock return value: */
2656 ret = ret ? 0 : -EWOULDBLOCK;
2657 goto no_block;
2658 }
2659
2660 rt_mutex_init_waiter(&rt_waiter);
2661
2662 /*
2663 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2664 * hold it while doing rt_mutex_start_proxy(), because then it will
2665 * include hb->lock in the blocking chain, even through we'll not in
2666 * fact hold it while blocking. This will lead it to report -EDEADLK
2667 * and BUG when futex_unlock_pi() interleaves with this.
2668 *
2669 * Therefore acquire wait_lock while holding hb->lock, but drop the
2670 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2671 * serializes against futex_unlock_pi() as that does the exact same
2672 * lock handoff sequence.
2673 */
2674 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2675 spin_unlock(q.lock_ptr);
2676 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2677 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2678
2679 if (ret) {
2680 if (ret == 1)
2681 ret = 0;
2682
2683 spin_lock(q.lock_ptr);
2684 goto no_block;
2685 }
2686
2687
2688 if (unlikely(to))
2689 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2690
2691 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2692
2693 spin_lock(q.lock_ptr);
2694 /*
2695 * If we failed to acquire the lock (signal/timeout), we must
2696 * first acquire the hb->lock before removing the lock from the
2697 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2698 * wait lists consistent.
2699 *
2700 * In particular; it is important that futex_unlock_pi() can not
2701 * observe this inconsistency.
2702 */
2703 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2704 ret = 0;
2705
2706 no_block:
2707 /*
2708 * Fixup the pi_state owner and possibly acquire the lock if we
2709 * haven't already.
2710 */
2711 res = fixup_owner(uaddr, &q, !ret);
2712 /*
2713 * If fixup_owner() returned an error, proprogate that. If it acquired
2714 * the lock, clear our -ETIMEDOUT or -EINTR.
2715 */
2716 if (res)
2717 ret = (res < 0) ? res : 0;
2718
2719 /*
2720 * If fixup_owner() faulted and was unable to handle the fault, unlock
2721 * it and return the fault to userspace.
2722 */
2723 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2724 pi_state = q.pi_state;
2725 get_pi_state(pi_state);
2726 }
2727
2728 /* Unqueue and drop the lock */
2729 unqueue_me_pi(&q);
2730
2731 if (pi_state) {
2732 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2733 put_pi_state(pi_state);
2734 }
2735
2736 goto out_put_key;
2737
2738 out_unlock_put_key:
2739 queue_unlock(hb);
2740
2741 out_put_key:
2742 put_futex_key(&q.key);
2743 out:
2744 if (to) {
2745 hrtimer_cancel(&to->timer);
2746 destroy_hrtimer_on_stack(&to->timer);
2747 }
2748 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2749
2750 uaddr_faulted:
2751 queue_unlock(hb);
2752
2753 ret = fault_in_user_writeable(uaddr);
2754 if (ret)
2755 goto out_put_key;
2756
2757 if (!(flags & FLAGS_SHARED))
2758 goto retry_private;
2759
2760 put_futex_key(&q.key);
2761 goto retry;
2762 }
2763
2764 /*
2765 * Userspace attempted a TID -> 0 atomic transition, and failed.
2766 * This is the in-kernel slowpath: we look up the PI state (if any),
2767 * and do the rt-mutex unlock.
2768 */
2769 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2770 {
2771 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2772 union futex_key key = FUTEX_KEY_INIT;
2773 struct futex_hash_bucket *hb;
2774 struct futex_q *top_waiter;
2775 int ret;
2776
2777 retry:
2778 if (get_user(uval, uaddr))
2779 return -EFAULT;
2780 /*
2781 * We release only a lock we actually own:
2782 */
2783 if ((uval & FUTEX_TID_MASK) != vpid)
2784 return -EPERM;
2785
2786 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2787 if (ret)
2788 return ret;
2789
2790 hb = hash_futex(&key);
2791 spin_lock(&hb->lock);
2792
2793 /*
2794 * Check waiters first. We do not trust user space values at
2795 * all and we at least want to know if user space fiddled
2796 * with the futex value instead of blindly unlocking.
2797 */
2798 top_waiter = futex_top_waiter(hb, &key);
2799 if (top_waiter) {
2800 struct futex_pi_state *pi_state = top_waiter->pi_state;
2801
2802 ret = -EINVAL;
2803 if (!pi_state)
2804 goto out_unlock;
2805
2806 /*
2807 * If current does not own the pi_state then the futex is
2808 * inconsistent and user space fiddled with the futex value.
2809 */
2810 if (pi_state->owner != current)
2811 goto out_unlock;
2812
2813 get_pi_state(pi_state);
2814 /*
2815 * By taking wait_lock while still holding hb->lock, we ensure
2816 * there is no point where we hold neither; and therefore
2817 * wake_futex_pi() must observe a state consistent with what we
2818 * observed.
2819 */
2820 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2821 spin_unlock(&hb->lock);
2822
2823 ret = wake_futex_pi(uaddr, uval, pi_state);
2824
2825 put_pi_state(pi_state);
2826
2827 /*
2828 * Success, we're done! No tricky corner cases.
2829 */
2830 if (!ret)
2831 goto out_putkey;
2832 /*
2833 * The atomic access to the futex value generated a
2834 * pagefault, so retry the user-access and the wakeup:
2835 */
2836 if (ret == -EFAULT)
2837 goto pi_faulted;
2838 /*
2839 * A unconditional UNLOCK_PI op raced against a waiter
2840 * setting the FUTEX_WAITERS bit. Try again.
2841 */
2842 if (ret == -EAGAIN) {
2843 put_futex_key(&key);
2844 goto retry;
2845 }
2846 /*
2847 * wake_futex_pi has detected invalid state. Tell user
2848 * space.
2849 */
2850 goto out_putkey;
2851 }
2852
2853 /*
2854 * We have no kernel internal state, i.e. no waiters in the
2855 * kernel. Waiters which are about to queue themselves are stuck
2856 * on hb->lock. So we can safely ignore them. We do neither
2857 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2858 * owner.
2859 */
2860 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2861 spin_unlock(&hb->lock);
2862 goto pi_faulted;
2863 }
2864
2865 /*
2866 * If uval has changed, let user space handle it.
2867 */
2868 ret = (curval == uval) ? 0 : -EAGAIN;
2869
2870 out_unlock:
2871 spin_unlock(&hb->lock);
2872 out_putkey:
2873 put_futex_key(&key);
2874 return ret;
2875
2876 pi_faulted:
2877 put_futex_key(&key);
2878
2879 ret = fault_in_user_writeable(uaddr);
2880 if (!ret)
2881 goto retry;
2882
2883 return ret;
2884 }
2885
2886 /**
2887 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2888 * @hb: the hash_bucket futex_q was original enqueued on
2889 * @q: the futex_q woken while waiting to be requeued
2890 * @key2: the futex_key of the requeue target futex
2891 * @timeout: the timeout associated with the wait (NULL if none)
2892 *
2893 * Detect if the task was woken on the initial futex as opposed to the requeue
2894 * target futex. If so, determine if it was a timeout or a signal that caused
2895 * the wakeup and return the appropriate error code to the caller. Must be
2896 * called with the hb lock held.
2897 *
2898 * Return:
2899 * - 0 = no early wakeup detected;
2900 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2901 */
2902 static inline
2903 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2904 struct futex_q *q, union futex_key *key2,
2905 struct hrtimer_sleeper *timeout)
2906 {
2907 int ret = 0;
2908
2909 /*
2910 * With the hb lock held, we avoid races while we process the wakeup.
2911 * We only need to hold hb (and not hb2) to ensure atomicity as the
2912 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2913 * It can't be requeued from uaddr2 to something else since we don't
2914 * support a PI aware source futex for requeue.
2915 */
2916 if (!match_futex(&q->key, key2)) {
2917 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2918 /*
2919 * We were woken prior to requeue by a timeout or a signal.
2920 * Unqueue the futex_q and determine which it was.
2921 */
2922 plist_del(&q->list, &hb->chain);
2923 hb_waiters_dec(hb);
2924
2925 /* Handle spurious wakeups gracefully */
2926 ret = -EWOULDBLOCK;
2927 if (timeout && !timeout->task)
2928 ret = -ETIMEDOUT;
2929 else if (signal_pending(current))
2930 ret = -ERESTARTNOINTR;
2931 }
2932 return ret;
2933 }
2934
2935 /**
2936 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2937 * @uaddr: the futex we initially wait on (non-pi)
2938 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2939 * the same type, no requeueing from private to shared, etc.
2940 * @val: the expected value of uaddr
2941 * @abs_time: absolute timeout
2942 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2943 * @uaddr2: the pi futex we will take prior to returning to user-space
2944 *
2945 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2946 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2947 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2948 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2949 * without one, the pi logic would not know which task to boost/deboost, if
2950 * there was a need to.
2951 *
2952 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2953 * via the following--
2954 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2955 * 2) wakeup on uaddr2 after a requeue
2956 * 3) signal
2957 * 4) timeout
2958 *
2959 * If 3, cleanup and return -ERESTARTNOINTR.
2960 *
2961 * If 2, we may then block on trying to take the rt_mutex and return via:
2962 * 5) successful lock
2963 * 6) signal
2964 * 7) timeout
2965 * 8) other lock acquisition failure
2966 *
2967 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2968 *
2969 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2970 *
2971 * Return:
2972 * - 0 - On success;
2973 * - <0 - On error
2974 */
2975 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2976 u32 val, ktime_t *abs_time, u32 bitset,
2977 u32 __user *uaddr2)
2978 {
2979 struct hrtimer_sleeper timeout, *to = NULL;
2980 struct futex_pi_state *pi_state = NULL;
2981 struct rt_mutex_waiter rt_waiter;
2982 struct futex_hash_bucket *hb;
2983 union futex_key key2 = FUTEX_KEY_INIT;
2984 struct futex_q q = futex_q_init;
2985 int res, ret;
2986
2987 if (uaddr == uaddr2)
2988 return -EINVAL;
2989
2990 if (!bitset)
2991 return -EINVAL;
2992
2993 if (abs_time) {
2994 to = &timeout;
2995 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2996 CLOCK_REALTIME : CLOCK_MONOTONIC,
2997 HRTIMER_MODE_ABS);
2998 hrtimer_init_sleeper(to, current);
2999 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3000 current->timer_slack_ns);
3001 }
3002
3003 /*
3004 * The waiter is allocated on our stack, manipulated by the requeue
3005 * code while we sleep on uaddr.
3006 */
3007 rt_mutex_init_waiter(&rt_waiter);
3008
3009 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3010 if (unlikely(ret != 0))
3011 goto out;
3012
3013 q.bitset = bitset;
3014 q.rt_waiter = &rt_waiter;
3015 q.requeue_pi_key = &key2;
3016
3017 /*
3018 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3019 * count.
3020 */
3021 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3022 if (ret)
3023 goto out_key2;
3024
3025 /*
3026 * The check above which compares uaddrs is not sufficient for
3027 * shared futexes. We need to compare the keys:
3028 */
3029 if (match_futex(&q.key, &key2)) {
3030 queue_unlock(hb);
3031 ret = -EINVAL;
3032 goto out_put_keys;
3033 }
3034
3035 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3036 futex_wait_queue_me(hb, &q, to);
3037
3038 spin_lock(&hb->lock);
3039 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3040 spin_unlock(&hb->lock);
3041 if (ret)
3042 goto out_put_keys;
3043
3044 /*
3045 * In order for us to be here, we know our q.key == key2, and since
3046 * we took the hb->lock above, we also know that futex_requeue() has
3047 * completed and we no longer have to concern ourselves with a wakeup
3048 * race with the atomic proxy lock acquisition by the requeue code. The
3049 * futex_requeue dropped our key1 reference and incremented our key2
3050 * reference count.
3051 */
3052
3053 /* Check if the requeue code acquired the second futex for us. */
3054 if (!q.rt_waiter) {
3055 /*
3056 * Got the lock. We might not be the anticipated owner if we
3057 * did a lock-steal - fix up the PI-state in that case.
3058 */
3059 if (q.pi_state && (q.pi_state->owner != current)) {
3060 spin_lock(q.lock_ptr);
3061 ret = fixup_pi_state_owner(uaddr2, &q, current);
3062 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3063 pi_state = q.pi_state;
3064 get_pi_state(pi_state);
3065 }
3066 /*
3067 * Drop the reference to the pi state which
3068 * the requeue_pi() code acquired for us.
3069 */
3070 put_pi_state(q.pi_state);
3071 spin_unlock(q.lock_ptr);
3072 }
3073 } else {
3074 struct rt_mutex *pi_mutex;
3075
3076 /*
3077 * We have been woken up by futex_unlock_pi(), a timeout, or a
3078 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3079 * the pi_state.
3080 */
3081 WARN_ON(!q.pi_state);
3082 pi_mutex = &q.pi_state->pi_mutex;
3083 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3084
3085 spin_lock(q.lock_ptr);
3086 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3087 ret = 0;
3088
3089 debug_rt_mutex_free_waiter(&rt_waiter);
3090 /*
3091 * Fixup the pi_state owner and possibly acquire the lock if we
3092 * haven't already.
3093 */
3094 res = fixup_owner(uaddr2, &q, !ret);
3095 /*
3096 * If fixup_owner() returned an error, proprogate that. If it
3097 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3098 */
3099 if (res)
3100 ret = (res < 0) ? res : 0;
3101
3102 /*
3103 * If fixup_pi_state_owner() faulted and was unable to handle
3104 * the fault, unlock the rt_mutex and return the fault to
3105 * userspace.
3106 */
3107 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3108 pi_state = q.pi_state;
3109 get_pi_state(pi_state);
3110 }
3111
3112 /* Unqueue and drop the lock. */
3113 unqueue_me_pi(&q);
3114 }
3115
3116 if (pi_state) {
3117 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3118 put_pi_state(pi_state);
3119 }
3120
3121 if (ret == -EINTR) {
3122 /*
3123 * We've already been requeued, but cannot restart by calling
3124 * futex_lock_pi() directly. We could restart this syscall, but
3125 * it would detect that the user space "val" changed and return
3126 * -EWOULDBLOCK. Save the overhead of the restart and return
3127 * -EWOULDBLOCK directly.
3128 */
3129 ret = -EWOULDBLOCK;
3130 }
3131
3132 out_put_keys:
3133 put_futex_key(&q.key);
3134 out_key2:
3135 put_futex_key(&key2);
3136
3137 out:
3138 if (to) {
3139 hrtimer_cancel(&to->timer);
3140 destroy_hrtimer_on_stack(&to->timer);
3141 }
3142 return ret;
3143 }
3144
3145 /*
3146 * Support for robust futexes: the kernel cleans up held futexes at
3147 * thread exit time.
3148 *
3149 * Implementation: user-space maintains a per-thread list of locks it
3150 * is holding. Upon do_exit(), the kernel carefully walks this list,
3151 * and marks all locks that are owned by this thread with the
3152 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3153 * always manipulated with the lock held, so the list is private and
3154 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3155 * field, to allow the kernel to clean up if the thread dies after
3156 * acquiring the lock, but just before it could have added itself to
3157 * the list. There can only be one such pending lock.
3158 */
3159
3160 /**
3161 * sys_set_robust_list() - Set the robust-futex list head of a task
3162 * @head: pointer to the list-head
3163 * @len: length of the list-head, as userspace expects
3164 */
3165 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3166 size_t, len)
3167 {
3168 if (!futex_cmpxchg_enabled)
3169 return -ENOSYS;
3170 /*
3171 * The kernel knows only one size for now:
3172 */
3173 if (unlikely(len != sizeof(*head)))
3174 return -EINVAL;
3175
3176 current->robust_list = head;
3177
3178 return 0;
3179 }
3180
3181 /**
3182 * sys_get_robust_list() - Get the robust-futex list head of a task
3183 * @pid: pid of the process [zero for current task]
3184 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3185 * @len_ptr: pointer to a length field, the kernel fills in the header size
3186 */
3187 SYSCALL_DEFINE3(get_robust_list, int, pid,
3188 struct robust_list_head __user * __user *, head_ptr,
3189 size_t __user *, len_ptr)
3190 {
3191 struct robust_list_head __user *head;
3192 unsigned long ret;
3193 struct task_struct *p;
3194
3195 if (!futex_cmpxchg_enabled)
3196 return -ENOSYS;
3197
3198 rcu_read_lock();
3199
3200 ret = -ESRCH;
3201 if (!pid)
3202 p = current;
3203 else {
3204 p = find_task_by_vpid(pid);
3205 if (!p)
3206 goto err_unlock;
3207 }
3208
3209 ret = -EPERM;
3210 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3211 goto err_unlock;
3212
3213 head = p->robust_list;
3214 rcu_read_unlock();
3215
3216 if (put_user(sizeof(*head), len_ptr))
3217 return -EFAULT;
3218 return put_user(head, head_ptr);
3219
3220 err_unlock:
3221 rcu_read_unlock();
3222
3223 return ret;
3224 }
3225
3226 /*
3227 * Process a futex-list entry, check whether it's owned by the
3228 * dying task, and do notification if so:
3229 */
3230 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3231 {
3232 u32 uval, uninitialized_var(nval), mval;
3233
3234 retry:
3235 if (get_user(uval, uaddr))
3236 return -1;
3237
3238 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3239 /*
3240 * Ok, this dying thread is truly holding a futex
3241 * of interest. Set the OWNER_DIED bit atomically
3242 * via cmpxchg, and if the value had FUTEX_WAITERS
3243 * set, wake up a waiter (if any). (We have to do a
3244 * futex_wake() even if OWNER_DIED is already set -
3245 * to handle the rare but possible case of recursive
3246 * thread-death.) The rest of the cleanup is done in
3247 * userspace.
3248 */
3249 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3250 /*
3251 * We are not holding a lock here, but we want to have
3252 * the pagefault_disable/enable() protection because
3253 * we want to handle the fault gracefully. If the
3254 * access fails we try to fault in the futex with R/W
3255 * verification via get_user_pages. get_user() above
3256 * does not guarantee R/W access. If that fails we
3257 * give up and leave the futex locked.
3258 */
3259 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3260 if (fault_in_user_writeable(uaddr))
3261 return -1;
3262 goto retry;
3263 }
3264 if (nval != uval)
3265 goto retry;
3266
3267 /*
3268 * Wake robust non-PI futexes here. The wakeup of
3269 * PI futexes happens in exit_pi_state():
3270 */
3271 if (!pi && (uval & FUTEX_WAITERS))
3272 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3273 }
3274 return 0;
3275 }
3276
3277 /*
3278 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3279 */
3280 static inline int fetch_robust_entry(struct robust_list __user **entry,
3281 struct robust_list __user * __user *head,
3282 unsigned int *pi)
3283 {
3284 unsigned long uentry;
3285
3286 if (get_user(uentry, (unsigned long __user *)head))
3287 return -EFAULT;
3288
3289 *entry = (void __user *)(uentry & ~1UL);
3290 *pi = uentry & 1;
3291
3292 return 0;
3293 }
3294
3295 /*
3296 * Walk curr->robust_list (very carefully, it's a userspace list!)
3297 * and mark any locks found there dead, and notify any waiters.
3298 *
3299 * We silently return on any sign of list-walking problem.
3300 */
3301 void exit_robust_list(struct task_struct *curr)
3302 {
3303 struct robust_list_head __user *head = curr->robust_list;
3304 struct robust_list __user *entry, *next_entry, *pending;
3305 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3306 unsigned int uninitialized_var(next_pi);
3307 unsigned long futex_offset;
3308 int rc;
3309
3310 if (!futex_cmpxchg_enabled)
3311 return;
3312
3313 /*
3314 * Fetch the list head (which was registered earlier, via
3315 * sys_set_robust_list()):
3316 */
3317 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3318 return;
3319 /*
3320 * Fetch the relative futex offset:
3321 */
3322 if (get_user(futex_offset, &head->futex_offset))
3323 return;
3324 /*
3325 * Fetch any possibly pending lock-add first, and handle it
3326 * if it exists:
3327 */
3328 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3329 return;
3330
3331 next_entry = NULL; /* avoid warning with gcc */
3332 while (entry != &head->list) {
3333 /*
3334 * Fetch the next entry in the list before calling
3335 * handle_futex_death:
3336 */
3337 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3338 /*
3339 * A pending lock might already be on the list, so
3340 * don't process it twice:
3341 */
3342 if (entry != pending)
3343 if (handle_futex_death((void __user *)entry + futex_offset,
3344 curr, pi))
3345 return;
3346 if (rc)
3347 return;
3348 entry = next_entry;
3349 pi = next_pi;
3350 /*
3351 * Avoid excessively long or circular lists:
3352 */
3353 if (!--limit)
3354 break;
3355
3356 cond_resched();
3357 }
3358
3359 if (pending)
3360 handle_futex_death((void __user *)pending + futex_offset,
3361 curr, pip);
3362 }
3363
3364 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3365 u32 __user *uaddr2, u32 val2, u32 val3)
3366 {
3367 int cmd = op & FUTEX_CMD_MASK;
3368 unsigned int flags = 0;
3369
3370 if (!(op & FUTEX_PRIVATE_FLAG))
3371 flags |= FLAGS_SHARED;
3372
3373 if (op & FUTEX_CLOCK_REALTIME) {
3374 flags |= FLAGS_CLOCKRT;
3375 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3376 cmd != FUTEX_WAIT_REQUEUE_PI)
3377 return -ENOSYS;
3378 }
3379
3380 switch (cmd) {
3381 case FUTEX_LOCK_PI:
3382 case FUTEX_UNLOCK_PI:
3383 case FUTEX_TRYLOCK_PI:
3384 case FUTEX_WAIT_REQUEUE_PI:
3385 case FUTEX_CMP_REQUEUE_PI:
3386 if (!futex_cmpxchg_enabled)
3387 return -ENOSYS;
3388 }
3389
3390 switch (cmd) {
3391 case FUTEX_WAIT:
3392 val3 = FUTEX_BITSET_MATCH_ANY;
3393 case FUTEX_WAIT_BITSET:
3394 return futex_wait(uaddr, flags, val, timeout, val3);
3395 case FUTEX_WAKE:
3396 val3 = FUTEX_BITSET_MATCH_ANY;
3397 case FUTEX_WAKE_BITSET:
3398 return futex_wake(uaddr, flags, val, val3);
3399 case FUTEX_REQUEUE:
3400 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3401 case FUTEX_CMP_REQUEUE:
3402 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3403 case FUTEX_WAKE_OP:
3404 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3405 case FUTEX_LOCK_PI:
3406 return futex_lock_pi(uaddr, flags, timeout, 0);
3407 case FUTEX_UNLOCK_PI:
3408 return futex_unlock_pi(uaddr, flags);
3409 case FUTEX_TRYLOCK_PI:
3410 return futex_lock_pi(uaddr, flags, NULL, 1);
3411 case FUTEX_WAIT_REQUEUE_PI:
3412 val3 = FUTEX_BITSET_MATCH_ANY;
3413 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3414 uaddr2);
3415 case FUTEX_CMP_REQUEUE_PI:
3416 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3417 }
3418 return -ENOSYS;
3419 }
3420
3421
3422 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3423 struct timespec __user *, utime, u32 __user *, uaddr2,
3424 u32, val3)
3425 {
3426 struct timespec ts;
3427 ktime_t t, *tp = NULL;
3428 u32 val2 = 0;
3429 int cmd = op & FUTEX_CMD_MASK;
3430
3431 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3432 cmd == FUTEX_WAIT_BITSET ||
3433 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3434 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3435 return -EFAULT;
3436 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3437 return -EFAULT;
3438 if (!timespec_valid(&ts))
3439 return -EINVAL;
3440
3441 t = timespec_to_ktime(ts);
3442 if (cmd == FUTEX_WAIT)
3443 t = ktime_add_safe(ktime_get(), t);
3444 tp = &t;
3445 }
3446 /*
3447 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3448 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3449 */
3450 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3451 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3452 val2 = (u32) (unsigned long) utime;
3453
3454 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3455 }
3456
3457 static void __init futex_detect_cmpxchg(void)
3458 {
3459 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3460 u32 curval;
3461
3462 /*
3463 * This will fail and we want it. Some arch implementations do
3464 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3465 * functionality. We want to know that before we call in any
3466 * of the complex code paths. Also we want to prevent
3467 * registration of robust lists in that case. NULL is
3468 * guaranteed to fault and we get -EFAULT on functional
3469 * implementation, the non-functional ones will return
3470 * -ENOSYS.
3471 */
3472 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3473 futex_cmpxchg_enabled = 1;
3474 #endif
3475 }
3476
3477 static int __init futex_init(void)
3478 {
3479 unsigned int futex_shift;
3480 unsigned long i;
3481
3482 #if CONFIG_BASE_SMALL
3483 futex_hashsize = 16;
3484 #else
3485 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3486 #endif
3487
3488 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3489 futex_hashsize, 0,
3490 futex_hashsize < 256 ? HASH_SMALL : 0,
3491 &futex_shift, NULL,
3492 futex_hashsize, futex_hashsize);
3493 futex_hashsize = 1UL << futex_shift;
3494
3495 futex_detect_cmpxchg();
3496
3497 for (i = 0; i < futex_hashsize; i++) {
3498 atomic_set(&futex_queues[i].waiters, 0);
3499 plist_head_init(&futex_queues[i].chain);
3500 spin_lock_init(&futex_queues[i].lock);
3501 }
3502
3503 return 0;
3504 }
3505 core_initcall(futex_init);