]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - kernel/futex.c
Merge tag 'riscv-for-linus-5.10-rc3' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-hirsute-kernel.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
33 */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/hugetlb.h>
39 #include <linux/freezer.h>
40 #include <linux/memblock.h>
41 #include <linux/fault-inject.h>
42 #include <linux/time_namespace.h>
43
44 #include <asm/futex.h>
45
46 #include "locking/rtmutex_common.h"
47
48 /*
49 * READ this before attempting to hack on futexes!
50 *
51 * Basic futex operation and ordering guarantees
52 * =============================================
53 *
54 * The waiter reads the futex value in user space and calls
55 * futex_wait(). This function computes the hash bucket and acquires
56 * the hash bucket lock. After that it reads the futex user space value
57 * again and verifies that the data has not changed. If it has not changed
58 * it enqueues itself into the hash bucket, releases the hash bucket lock
59 * and schedules.
60 *
61 * The waker side modifies the user space value of the futex and calls
62 * futex_wake(). This function computes the hash bucket and acquires the
63 * hash bucket lock. Then it looks for waiters on that futex in the hash
64 * bucket and wakes them.
65 *
66 * In futex wake up scenarios where no tasks are blocked on a futex, taking
67 * the hb spinlock can be avoided and simply return. In order for this
68 * optimization to work, ordering guarantees must exist so that the waiter
69 * being added to the list is acknowledged when the list is concurrently being
70 * checked by the waker, avoiding scenarios like the following:
71 *
72 * CPU 0 CPU 1
73 * val = *futex;
74 * sys_futex(WAIT, futex, val);
75 * futex_wait(futex, val);
76 * uval = *futex;
77 * *futex = newval;
78 * sys_futex(WAKE, futex);
79 * futex_wake(futex);
80 * if (queue_empty())
81 * return;
82 * if (uval == val)
83 * lock(hash_bucket(futex));
84 * queue();
85 * unlock(hash_bucket(futex));
86 * schedule();
87 *
88 * This would cause the waiter on CPU 0 to wait forever because it
89 * missed the transition of the user space value from val to newval
90 * and the waker did not find the waiter in the hash bucket queue.
91 *
92 * The correct serialization ensures that a waiter either observes
93 * the changed user space value before blocking or is woken by a
94 * concurrent waker:
95 *
96 * CPU 0 CPU 1
97 * val = *futex;
98 * sys_futex(WAIT, futex, val);
99 * futex_wait(futex, val);
100 *
101 * waiters++; (a)
102 * smp_mb(); (A) <-- paired with -.
103 * |
104 * lock(hash_bucket(futex)); |
105 * |
106 * uval = *futex; |
107 * | *futex = newval;
108 * | sys_futex(WAKE, futex);
109 * | futex_wake(futex);
110 * |
111 * `--------> smp_mb(); (B)
112 * if (uval == val)
113 * queue();
114 * unlock(hash_bucket(futex));
115 * schedule(); if (waiters)
116 * lock(hash_bucket(futex));
117 * else wake_waiters(futex);
118 * waiters--; (b) unlock(hash_bucket(futex));
119 *
120 * Where (A) orders the waiters increment and the futex value read through
121 * atomic operations (see hb_waiters_inc) and where (B) orders the write
122 * to futex and the waiters read (see hb_waiters_pending()).
123 *
124 * This yields the following case (where X:=waiters, Y:=futex):
125 *
126 * X = Y = 0
127 *
128 * w[X]=1 w[Y]=1
129 * MB MB
130 * r[Y]=y r[X]=x
131 *
132 * Which guarantees that x==0 && y==0 is impossible; which translates back into
133 * the guarantee that we cannot both miss the futex variable change and the
134 * enqueue.
135 *
136 * Note that a new waiter is accounted for in (a) even when it is possible that
137 * the wait call can return error, in which case we backtrack from it in (b).
138 * Refer to the comment in queue_lock().
139 *
140 * Similarly, in order to account for waiters being requeued on another
141 * address we always increment the waiters for the destination bucket before
142 * acquiring the lock. It then decrements them again after releasing it -
143 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
144 * will do the additional required waiter count housekeeping. This is done for
145 * double_lock_hb() and double_unlock_hb(), respectively.
146 */
147
148 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
149 #define futex_cmpxchg_enabled 1
150 #else
151 static int __read_mostly futex_cmpxchg_enabled;
152 #endif
153
154 /*
155 * Futex flags used to encode options to functions and preserve them across
156 * restarts.
157 */
158 #ifdef CONFIG_MMU
159 # define FLAGS_SHARED 0x01
160 #else
161 /*
162 * NOMMU does not have per process address space. Let the compiler optimize
163 * code away.
164 */
165 # define FLAGS_SHARED 0x00
166 #endif
167 #define FLAGS_CLOCKRT 0x02
168 #define FLAGS_HAS_TIMEOUT 0x04
169
170 /*
171 * Priority Inheritance state:
172 */
173 struct futex_pi_state {
174 /*
175 * list of 'owned' pi_state instances - these have to be
176 * cleaned up in do_exit() if the task exits prematurely:
177 */
178 struct list_head list;
179
180 /*
181 * The PI object:
182 */
183 struct rt_mutex pi_mutex;
184
185 struct task_struct *owner;
186 refcount_t refcount;
187
188 union futex_key key;
189 } __randomize_layout;
190
191 /**
192 * struct futex_q - The hashed futex queue entry, one per waiting task
193 * @list: priority-sorted list of tasks waiting on this futex
194 * @task: the task waiting on the futex
195 * @lock_ptr: the hash bucket lock
196 * @key: the key the futex is hashed on
197 * @pi_state: optional priority inheritance state
198 * @rt_waiter: rt_waiter storage for use with requeue_pi
199 * @requeue_pi_key: the requeue_pi target futex key
200 * @bitset: bitset for the optional bitmasked wakeup
201 *
202 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
203 * we can wake only the relevant ones (hashed queues may be shared).
204 *
205 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
206 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
207 * The order of wakeup is always to make the first condition true, then
208 * the second.
209 *
210 * PI futexes are typically woken before they are removed from the hash list via
211 * the rt_mutex code. See unqueue_me_pi().
212 */
213 struct futex_q {
214 struct plist_node list;
215
216 struct task_struct *task;
217 spinlock_t *lock_ptr;
218 union futex_key key;
219 struct futex_pi_state *pi_state;
220 struct rt_mutex_waiter *rt_waiter;
221 union futex_key *requeue_pi_key;
222 u32 bitset;
223 } __randomize_layout;
224
225 static const struct futex_q futex_q_init = {
226 /* list gets initialized in queue_me()*/
227 .key = FUTEX_KEY_INIT,
228 .bitset = FUTEX_BITSET_MATCH_ANY
229 };
230
231 /*
232 * Hash buckets are shared by all the futex_keys that hash to the same
233 * location. Each key may have multiple futex_q structures, one for each task
234 * waiting on a futex.
235 */
236 struct futex_hash_bucket {
237 atomic_t waiters;
238 spinlock_t lock;
239 struct plist_head chain;
240 } ____cacheline_aligned_in_smp;
241
242 /*
243 * The base of the bucket array and its size are always used together
244 * (after initialization only in hash_futex()), so ensure that they
245 * reside in the same cacheline.
246 */
247 static struct {
248 struct futex_hash_bucket *queues;
249 unsigned long hashsize;
250 } __futex_data __read_mostly __aligned(2*sizeof(long));
251 #define futex_queues (__futex_data.queues)
252 #define futex_hashsize (__futex_data.hashsize)
253
254
255 /*
256 * Fault injections for futexes.
257 */
258 #ifdef CONFIG_FAIL_FUTEX
259
260 static struct {
261 struct fault_attr attr;
262
263 bool ignore_private;
264 } fail_futex = {
265 .attr = FAULT_ATTR_INITIALIZER,
266 .ignore_private = false,
267 };
268
269 static int __init setup_fail_futex(char *str)
270 {
271 return setup_fault_attr(&fail_futex.attr, str);
272 }
273 __setup("fail_futex=", setup_fail_futex);
274
275 static bool should_fail_futex(bool fshared)
276 {
277 if (fail_futex.ignore_private && !fshared)
278 return false;
279
280 return should_fail(&fail_futex.attr, 1);
281 }
282
283 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
284
285 static int __init fail_futex_debugfs(void)
286 {
287 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
288 struct dentry *dir;
289
290 dir = fault_create_debugfs_attr("fail_futex", NULL,
291 &fail_futex.attr);
292 if (IS_ERR(dir))
293 return PTR_ERR(dir);
294
295 debugfs_create_bool("ignore-private", mode, dir,
296 &fail_futex.ignore_private);
297 return 0;
298 }
299
300 late_initcall(fail_futex_debugfs);
301
302 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
303
304 #else
305 static inline bool should_fail_futex(bool fshared)
306 {
307 return false;
308 }
309 #endif /* CONFIG_FAIL_FUTEX */
310
311 #ifdef CONFIG_COMPAT
312 static void compat_exit_robust_list(struct task_struct *curr);
313 #else
314 static inline void compat_exit_robust_list(struct task_struct *curr) { }
315 #endif
316
317 /*
318 * Reflects a new waiter being added to the waitqueue.
319 */
320 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
321 {
322 #ifdef CONFIG_SMP
323 atomic_inc(&hb->waiters);
324 /*
325 * Full barrier (A), see the ordering comment above.
326 */
327 smp_mb__after_atomic();
328 #endif
329 }
330
331 /*
332 * Reflects a waiter being removed from the waitqueue by wakeup
333 * paths.
334 */
335 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
336 {
337 #ifdef CONFIG_SMP
338 atomic_dec(&hb->waiters);
339 #endif
340 }
341
342 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
343 {
344 #ifdef CONFIG_SMP
345 /*
346 * Full barrier (B), see the ordering comment above.
347 */
348 smp_mb();
349 return atomic_read(&hb->waiters);
350 #else
351 return 1;
352 #endif
353 }
354
355 /**
356 * hash_futex - Return the hash bucket in the global hash
357 * @key: Pointer to the futex key for which the hash is calculated
358 *
359 * We hash on the keys returned from get_futex_key (see below) and return the
360 * corresponding hash bucket in the global hash.
361 */
362 static struct futex_hash_bucket *hash_futex(union futex_key *key)
363 {
364 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
365 key->both.offset);
366
367 return &futex_queues[hash & (futex_hashsize - 1)];
368 }
369
370
371 /**
372 * match_futex - Check whether two futex keys are equal
373 * @key1: Pointer to key1
374 * @key2: Pointer to key2
375 *
376 * Return 1 if two futex_keys are equal, 0 otherwise.
377 */
378 static inline int match_futex(union futex_key *key1, union futex_key *key2)
379 {
380 return (key1 && key2
381 && key1->both.word == key2->both.word
382 && key1->both.ptr == key2->both.ptr
383 && key1->both.offset == key2->both.offset);
384 }
385
386 enum futex_access {
387 FUTEX_READ,
388 FUTEX_WRITE
389 };
390
391 /**
392 * futex_setup_timer - set up the sleeping hrtimer.
393 * @time: ptr to the given timeout value
394 * @timeout: the hrtimer_sleeper structure to be set up
395 * @flags: futex flags
396 * @range_ns: optional range in ns
397 *
398 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
399 * value given
400 */
401 static inline struct hrtimer_sleeper *
402 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
403 int flags, u64 range_ns)
404 {
405 if (!time)
406 return NULL;
407
408 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
409 CLOCK_REALTIME : CLOCK_MONOTONIC,
410 HRTIMER_MODE_ABS);
411 /*
412 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
413 * effectively the same as calling hrtimer_set_expires().
414 */
415 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
416
417 return timeout;
418 }
419
420 /*
421 * Generate a machine wide unique identifier for this inode.
422 *
423 * This relies on u64 not wrapping in the life-time of the machine; which with
424 * 1ns resolution means almost 585 years.
425 *
426 * This further relies on the fact that a well formed program will not unmap
427 * the file while it has a (shared) futex waiting on it. This mapping will have
428 * a file reference which pins the mount and inode.
429 *
430 * If for some reason an inode gets evicted and read back in again, it will get
431 * a new sequence number and will _NOT_ match, even though it is the exact same
432 * file.
433 *
434 * It is important that match_futex() will never have a false-positive, esp.
435 * for PI futexes that can mess up the state. The above argues that false-negatives
436 * are only possible for malformed programs.
437 */
438 static u64 get_inode_sequence_number(struct inode *inode)
439 {
440 static atomic64_t i_seq;
441 u64 old;
442
443 /* Does the inode already have a sequence number? */
444 old = atomic64_read(&inode->i_sequence);
445 if (likely(old))
446 return old;
447
448 for (;;) {
449 u64 new = atomic64_add_return(1, &i_seq);
450 if (WARN_ON_ONCE(!new))
451 continue;
452
453 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
454 if (old)
455 return old;
456 return new;
457 }
458 }
459
460 /**
461 * get_futex_key() - Get parameters which are the keys for a futex
462 * @uaddr: virtual address of the futex
463 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
464 * @key: address where result is stored.
465 * @rw: mapping needs to be read/write (values: FUTEX_READ,
466 * FUTEX_WRITE)
467 *
468 * Return: a negative error code or 0
469 *
470 * The key words are stored in @key on success.
471 *
472 * For shared mappings (when @fshared), the key is:
473 *
474 * ( inode->i_sequence, page->index, offset_within_page )
475 *
476 * [ also see get_inode_sequence_number() ]
477 *
478 * For private mappings (or when !@fshared), the key is:
479 *
480 * ( current->mm, address, 0 )
481 *
482 * This allows (cross process, where applicable) identification of the futex
483 * without keeping the page pinned for the duration of the FUTEX_WAIT.
484 *
485 * lock_page() might sleep, the caller should not hold a spinlock.
486 */
487 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
488 enum futex_access rw)
489 {
490 unsigned long address = (unsigned long)uaddr;
491 struct mm_struct *mm = current->mm;
492 struct page *page, *tail;
493 struct address_space *mapping;
494 int err, ro = 0;
495
496 /*
497 * The futex address must be "naturally" aligned.
498 */
499 key->both.offset = address % PAGE_SIZE;
500 if (unlikely((address % sizeof(u32)) != 0))
501 return -EINVAL;
502 address -= key->both.offset;
503
504 if (unlikely(!access_ok(uaddr, sizeof(u32))))
505 return -EFAULT;
506
507 if (unlikely(should_fail_futex(fshared)))
508 return -EFAULT;
509
510 /*
511 * PROCESS_PRIVATE futexes are fast.
512 * As the mm cannot disappear under us and the 'key' only needs
513 * virtual address, we dont even have to find the underlying vma.
514 * Note : We do have to check 'uaddr' is a valid user address,
515 * but access_ok() should be faster than find_vma()
516 */
517 if (!fshared) {
518 key->private.mm = mm;
519 key->private.address = address;
520 return 0;
521 }
522
523 again:
524 /* Ignore any VERIFY_READ mapping (futex common case) */
525 if (unlikely(should_fail_futex(true)))
526 return -EFAULT;
527
528 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
529 /*
530 * If write access is not required (eg. FUTEX_WAIT), try
531 * and get read-only access.
532 */
533 if (err == -EFAULT && rw == FUTEX_READ) {
534 err = get_user_pages_fast(address, 1, 0, &page);
535 ro = 1;
536 }
537 if (err < 0)
538 return err;
539 else
540 err = 0;
541
542 /*
543 * The treatment of mapping from this point on is critical. The page
544 * lock protects many things but in this context the page lock
545 * stabilizes mapping, prevents inode freeing in the shared
546 * file-backed region case and guards against movement to swap cache.
547 *
548 * Strictly speaking the page lock is not needed in all cases being
549 * considered here and page lock forces unnecessarily serialization
550 * From this point on, mapping will be re-verified if necessary and
551 * page lock will be acquired only if it is unavoidable
552 *
553 * Mapping checks require the head page for any compound page so the
554 * head page and mapping is looked up now. For anonymous pages, it
555 * does not matter if the page splits in the future as the key is
556 * based on the address. For filesystem-backed pages, the tail is
557 * required as the index of the page determines the key. For
558 * base pages, there is no tail page and tail == page.
559 */
560 tail = page;
561 page = compound_head(page);
562 mapping = READ_ONCE(page->mapping);
563
564 /*
565 * If page->mapping is NULL, then it cannot be a PageAnon
566 * page; but it might be the ZERO_PAGE or in the gate area or
567 * in a special mapping (all cases which we are happy to fail);
568 * or it may have been a good file page when get_user_pages_fast
569 * found it, but truncated or holepunched or subjected to
570 * invalidate_complete_page2 before we got the page lock (also
571 * cases which we are happy to fail). And we hold a reference,
572 * so refcount care in invalidate_complete_page's remove_mapping
573 * prevents drop_caches from setting mapping to NULL beneath us.
574 *
575 * The case we do have to guard against is when memory pressure made
576 * shmem_writepage move it from filecache to swapcache beneath us:
577 * an unlikely race, but we do need to retry for page->mapping.
578 */
579 if (unlikely(!mapping)) {
580 int shmem_swizzled;
581
582 /*
583 * Page lock is required to identify which special case above
584 * applies. If this is really a shmem page then the page lock
585 * will prevent unexpected transitions.
586 */
587 lock_page(page);
588 shmem_swizzled = PageSwapCache(page) || page->mapping;
589 unlock_page(page);
590 put_page(page);
591
592 if (shmem_swizzled)
593 goto again;
594
595 return -EFAULT;
596 }
597
598 /*
599 * Private mappings are handled in a simple way.
600 *
601 * If the futex key is stored on an anonymous page, then the associated
602 * object is the mm which is implicitly pinned by the calling process.
603 *
604 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
605 * it's a read-only handle, it's expected that futexes attach to
606 * the object not the particular process.
607 */
608 if (PageAnon(page)) {
609 /*
610 * A RO anonymous page will never change and thus doesn't make
611 * sense for futex operations.
612 */
613 if (unlikely(should_fail_futex(true)) || ro) {
614 err = -EFAULT;
615 goto out;
616 }
617
618 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
619 key->private.mm = mm;
620 key->private.address = address;
621
622 } else {
623 struct inode *inode;
624
625 /*
626 * The associated futex object in this case is the inode and
627 * the page->mapping must be traversed. Ordinarily this should
628 * be stabilised under page lock but it's not strictly
629 * necessary in this case as we just want to pin the inode, not
630 * update the radix tree or anything like that.
631 *
632 * The RCU read lock is taken as the inode is finally freed
633 * under RCU. If the mapping still matches expectations then the
634 * mapping->host can be safely accessed as being a valid inode.
635 */
636 rcu_read_lock();
637
638 if (READ_ONCE(page->mapping) != mapping) {
639 rcu_read_unlock();
640 put_page(page);
641
642 goto again;
643 }
644
645 inode = READ_ONCE(mapping->host);
646 if (!inode) {
647 rcu_read_unlock();
648 put_page(page);
649
650 goto again;
651 }
652
653 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
654 key->shared.i_seq = get_inode_sequence_number(inode);
655 key->shared.pgoff = basepage_index(tail);
656 rcu_read_unlock();
657 }
658
659 out:
660 put_page(page);
661 return err;
662 }
663
664 /**
665 * fault_in_user_writeable() - Fault in user address and verify RW access
666 * @uaddr: pointer to faulting user space address
667 *
668 * Slow path to fixup the fault we just took in the atomic write
669 * access to @uaddr.
670 *
671 * We have no generic implementation of a non-destructive write to the
672 * user address. We know that we faulted in the atomic pagefault
673 * disabled section so we can as well avoid the #PF overhead by
674 * calling get_user_pages() right away.
675 */
676 static int fault_in_user_writeable(u32 __user *uaddr)
677 {
678 struct mm_struct *mm = current->mm;
679 int ret;
680
681 mmap_read_lock(mm);
682 ret = fixup_user_fault(mm, (unsigned long)uaddr,
683 FAULT_FLAG_WRITE, NULL);
684 mmap_read_unlock(mm);
685
686 return ret < 0 ? ret : 0;
687 }
688
689 /**
690 * futex_top_waiter() - Return the highest priority waiter on a futex
691 * @hb: the hash bucket the futex_q's reside in
692 * @key: the futex key (to distinguish it from other futex futex_q's)
693 *
694 * Must be called with the hb lock held.
695 */
696 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
697 union futex_key *key)
698 {
699 struct futex_q *this;
700
701 plist_for_each_entry(this, &hb->chain, list) {
702 if (match_futex(&this->key, key))
703 return this;
704 }
705 return NULL;
706 }
707
708 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
709 u32 uval, u32 newval)
710 {
711 int ret;
712
713 pagefault_disable();
714 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
715 pagefault_enable();
716
717 return ret;
718 }
719
720 static int get_futex_value_locked(u32 *dest, u32 __user *from)
721 {
722 int ret;
723
724 pagefault_disable();
725 ret = __get_user(*dest, from);
726 pagefault_enable();
727
728 return ret ? -EFAULT : 0;
729 }
730
731
732 /*
733 * PI code:
734 */
735 static int refill_pi_state_cache(void)
736 {
737 struct futex_pi_state *pi_state;
738
739 if (likely(current->pi_state_cache))
740 return 0;
741
742 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
743
744 if (!pi_state)
745 return -ENOMEM;
746
747 INIT_LIST_HEAD(&pi_state->list);
748 /* pi_mutex gets initialized later */
749 pi_state->owner = NULL;
750 refcount_set(&pi_state->refcount, 1);
751 pi_state->key = FUTEX_KEY_INIT;
752
753 current->pi_state_cache = pi_state;
754
755 return 0;
756 }
757
758 static struct futex_pi_state *alloc_pi_state(void)
759 {
760 struct futex_pi_state *pi_state = current->pi_state_cache;
761
762 WARN_ON(!pi_state);
763 current->pi_state_cache = NULL;
764
765 return pi_state;
766 }
767
768 static void get_pi_state(struct futex_pi_state *pi_state)
769 {
770 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
771 }
772
773 /*
774 * Drops a reference to the pi_state object and frees or caches it
775 * when the last reference is gone.
776 */
777 static void put_pi_state(struct futex_pi_state *pi_state)
778 {
779 if (!pi_state)
780 return;
781
782 if (!refcount_dec_and_test(&pi_state->refcount))
783 return;
784
785 /*
786 * If pi_state->owner is NULL, the owner is most probably dying
787 * and has cleaned up the pi_state already
788 */
789 if (pi_state->owner) {
790 struct task_struct *owner;
791
792 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
793 owner = pi_state->owner;
794 if (owner) {
795 raw_spin_lock(&owner->pi_lock);
796 list_del_init(&pi_state->list);
797 raw_spin_unlock(&owner->pi_lock);
798 }
799 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
800 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
801 }
802
803 if (current->pi_state_cache) {
804 kfree(pi_state);
805 } else {
806 /*
807 * pi_state->list is already empty.
808 * clear pi_state->owner.
809 * refcount is at 0 - put it back to 1.
810 */
811 pi_state->owner = NULL;
812 refcount_set(&pi_state->refcount, 1);
813 current->pi_state_cache = pi_state;
814 }
815 }
816
817 #ifdef CONFIG_FUTEX_PI
818
819 /*
820 * This task is holding PI mutexes at exit time => bad.
821 * Kernel cleans up PI-state, but userspace is likely hosed.
822 * (Robust-futex cleanup is separate and might save the day for userspace.)
823 */
824 static void exit_pi_state_list(struct task_struct *curr)
825 {
826 struct list_head *next, *head = &curr->pi_state_list;
827 struct futex_pi_state *pi_state;
828 struct futex_hash_bucket *hb;
829 union futex_key key = FUTEX_KEY_INIT;
830
831 if (!futex_cmpxchg_enabled)
832 return;
833 /*
834 * We are a ZOMBIE and nobody can enqueue itself on
835 * pi_state_list anymore, but we have to be careful
836 * versus waiters unqueueing themselves:
837 */
838 raw_spin_lock_irq(&curr->pi_lock);
839 while (!list_empty(head)) {
840 next = head->next;
841 pi_state = list_entry(next, struct futex_pi_state, list);
842 key = pi_state->key;
843 hb = hash_futex(&key);
844
845 /*
846 * We can race against put_pi_state() removing itself from the
847 * list (a waiter going away). put_pi_state() will first
848 * decrement the reference count and then modify the list, so
849 * its possible to see the list entry but fail this reference
850 * acquire.
851 *
852 * In that case; drop the locks to let put_pi_state() make
853 * progress and retry the loop.
854 */
855 if (!refcount_inc_not_zero(&pi_state->refcount)) {
856 raw_spin_unlock_irq(&curr->pi_lock);
857 cpu_relax();
858 raw_spin_lock_irq(&curr->pi_lock);
859 continue;
860 }
861 raw_spin_unlock_irq(&curr->pi_lock);
862
863 spin_lock(&hb->lock);
864 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
865 raw_spin_lock(&curr->pi_lock);
866 /*
867 * We dropped the pi-lock, so re-check whether this
868 * task still owns the PI-state:
869 */
870 if (head->next != next) {
871 /* retain curr->pi_lock for the loop invariant */
872 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
873 spin_unlock(&hb->lock);
874 put_pi_state(pi_state);
875 continue;
876 }
877
878 WARN_ON(pi_state->owner != curr);
879 WARN_ON(list_empty(&pi_state->list));
880 list_del_init(&pi_state->list);
881 pi_state->owner = NULL;
882
883 raw_spin_unlock(&curr->pi_lock);
884 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
885 spin_unlock(&hb->lock);
886
887 rt_mutex_futex_unlock(&pi_state->pi_mutex);
888 put_pi_state(pi_state);
889
890 raw_spin_lock_irq(&curr->pi_lock);
891 }
892 raw_spin_unlock_irq(&curr->pi_lock);
893 }
894 #else
895 static inline void exit_pi_state_list(struct task_struct *curr) { }
896 #endif
897
898 /*
899 * We need to check the following states:
900 *
901 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
902 *
903 * [1] NULL | --- | --- | 0 | 0/1 | Valid
904 * [2] NULL | --- | --- | >0 | 0/1 | Valid
905 *
906 * [3] Found | NULL | -- | Any | 0/1 | Invalid
907 *
908 * [4] Found | Found | NULL | 0 | 1 | Valid
909 * [5] Found | Found | NULL | >0 | 1 | Invalid
910 *
911 * [6] Found | Found | task | 0 | 1 | Valid
912 *
913 * [7] Found | Found | NULL | Any | 0 | Invalid
914 *
915 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
916 * [9] Found | Found | task | 0 | 0 | Invalid
917 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
918 *
919 * [1] Indicates that the kernel can acquire the futex atomically. We
920 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
921 *
922 * [2] Valid, if TID does not belong to a kernel thread. If no matching
923 * thread is found then it indicates that the owner TID has died.
924 *
925 * [3] Invalid. The waiter is queued on a non PI futex
926 *
927 * [4] Valid state after exit_robust_list(), which sets the user space
928 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
929 *
930 * [5] The user space value got manipulated between exit_robust_list()
931 * and exit_pi_state_list()
932 *
933 * [6] Valid state after exit_pi_state_list() which sets the new owner in
934 * the pi_state but cannot access the user space value.
935 *
936 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
937 *
938 * [8] Owner and user space value match
939 *
940 * [9] There is no transient state which sets the user space TID to 0
941 * except exit_robust_list(), but this is indicated by the
942 * FUTEX_OWNER_DIED bit. See [4]
943 *
944 * [10] There is no transient state which leaves owner and user space
945 * TID out of sync.
946 *
947 *
948 * Serialization and lifetime rules:
949 *
950 * hb->lock:
951 *
952 * hb -> futex_q, relation
953 * futex_q -> pi_state, relation
954 *
955 * (cannot be raw because hb can contain arbitrary amount
956 * of futex_q's)
957 *
958 * pi_mutex->wait_lock:
959 *
960 * {uval, pi_state}
961 *
962 * (and pi_mutex 'obviously')
963 *
964 * p->pi_lock:
965 *
966 * p->pi_state_list -> pi_state->list, relation
967 *
968 * pi_state->refcount:
969 *
970 * pi_state lifetime
971 *
972 *
973 * Lock order:
974 *
975 * hb->lock
976 * pi_mutex->wait_lock
977 * p->pi_lock
978 *
979 */
980
981 /*
982 * Validate that the existing waiter has a pi_state and sanity check
983 * the pi_state against the user space value. If correct, attach to
984 * it.
985 */
986 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
987 struct futex_pi_state *pi_state,
988 struct futex_pi_state **ps)
989 {
990 pid_t pid = uval & FUTEX_TID_MASK;
991 u32 uval2;
992 int ret;
993
994 /*
995 * Userspace might have messed up non-PI and PI futexes [3]
996 */
997 if (unlikely(!pi_state))
998 return -EINVAL;
999
1000 /*
1001 * We get here with hb->lock held, and having found a
1002 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1003 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1004 * which in turn means that futex_lock_pi() still has a reference on
1005 * our pi_state.
1006 *
1007 * The waiter holding a reference on @pi_state also protects against
1008 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1009 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1010 * free pi_state before we can take a reference ourselves.
1011 */
1012 WARN_ON(!refcount_read(&pi_state->refcount));
1013
1014 /*
1015 * Now that we have a pi_state, we can acquire wait_lock
1016 * and do the state validation.
1017 */
1018 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1019
1020 /*
1021 * Since {uval, pi_state} is serialized by wait_lock, and our current
1022 * uval was read without holding it, it can have changed. Verify it
1023 * still is what we expect it to be, otherwise retry the entire
1024 * operation.
1025 */
1026 if (get_futex_value_locked(&uval2, uaddr))
1027 goto out_efault;
1028
1029 if (uval != uval2)
1030 goto out_eagain;
1031
1032 /*
1033 * Handle the owner died case:
1034 */
1035 if (uval & FUTEX_OWNER_DIED) {
1036 /*
1037 * exit_pi_state_list sets owner to NULL and wakes the
1038 * topmost waiter. The task which acquires the
1039 * pi_state->rt_mutex will fixup owner.
1040 */
1041 if (!pi_state->owner) {
1042 /*
1043 * No pi state owner, but the user space TID
1044 * is not 0. Inconsistent state. [5]
1045 */
1046 if (pid)
1047 goto out_einval;
1048 /*
1049 * Take a ref on the state and return success. [4]
1050 */
1051 goto out_attach;
1052 }
1053
1054 /*
1055 * If TID is 0, then either the dying owner has not
1056 * yet executed exit_pi_state_list() or some waiter
1057 * acquired the rtmutex in the pi state, but did not
1058 * yet fixup the TID in user space.
1059 *
1060 * Take a ref on the state and return success. [6]
1061 */
1062 if (!pid)
1063 goto out_attach;
1064 } else {
1065 /*
1066 * If the owner died bit is not set, then the pi_state
1067 * must have an owner. [7]
1068 */
1069 if (!pi_state->owner)
1070 goto out_einval;
1071 }
1072
1073 /*
1074 * Bail out if user space manipulated the futex value. If pi
1075 * state exists then the owner TID must be the same as the
1076 * user space TID. [9/10]
1077 */
1078 if (pid != task_pid_vnr(pi_state->owner))
1079 goto out_einval;
1080
1081 out_attach:
1082 get_pi_state(pi_state);
1083 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1084 *ps = pi_state;
1085 return 0;
1086
1087 out_einval:
1088 ret = -EINVAL;
1089 goto out_error;
1090
1091 out_eagain:
1092 ret = -EAGAIN;
1093 goto out_error;
1094
1095 out_efault:
1096 ret = -EFAULT;
1097 goto out_error;
1098
1099 out_error:
1100 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1101 return ret;
1102 }
1103
1104 /**
1105 * wait_for_owner_exiting - Block until the owner has exited
1106 * @ret: owner's current futex lock status
1107 * @exiting: Pointer to the exiting task
1108 *
1109 * Caller must hold a refcount on @exiting.
1110 */
1111 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1112 {
1113 if (ret != -EBUSY) {
1114 WARN_ON_ONCE(exiting);
1115 return;
1116 }
1117
1118 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1119 return;
1120
1121 mutex_lock(&exiting->futex_exit_mutex);
1122 /*
1123 * No point in doing state checking here. If the waiter got here
1124 * while the task was in exec()->exec_futex_release() then it can
1125 * have any FUTEX_STATE_* value when the waiter has acquired the
1126 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1127 * already. Highly unlikely and not a problem. Just one more round
1128 * through the futex maze.
1129 */
1130 mutex_unlock(&exiting->futex_exit_mutex);
1131
1132 put_task_struct(exiting);
1133 }
1134
1135 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1136 struct task_struct *tsk)
1137 {
1138 u32 uval2;
1139
1140 /*
1141 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1142 * caller that the alleged owner is busy.
1143 */
1144 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1145 return -EBUSY;
1146
1147 /*
1148 * Reread the user space value to handle the following situation:
1149 *
1150 * CPU0 CPU1
1151 *
1152 * sys_exit() sys_futex()
1153 * do_exit() futex_lock_pi()
1154 * futex_lock_pi_atomic()
1155 * exit_signals(tsk) No waiters:
1156 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1157 * mm_release(tsk) Set waiter bit
1158 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1159 * Set owner died attach_to_pi_owner() {
1160 * *uaddr = 0xC0000000; tsk = get_task(PID);
1161 * } if (!tsk->flags & PF_EXITING) {
1162 * ... attach();
1163 * tsk->futex_state = } else {
1164 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1165 * FUTEX_STATE_DEAD)
1166 * return -EAGAIN;
1167 * return -ESRCH; <--- FAIL
1168 * }
1169 *
1170 * Returning ESRCH unconditionally is wrong here because the
1171 * user space value has been changed by the exiting task.
1172 *
1173 * The same logic applies to the case where the exiting task is
1174 * already gone.
1175 */
1176 if (get_futex_value_locked(&uval2, uaddr))
1177 return -EFAULT;
1178
1179 /* If the user space value has changed, try again. */
1180 if (uval2 != uval)
1181 return -EAGAIN;
1182
1183 /*
1184 * The exiting task did not have a robust list, the robust list was
1185 * corrupted or the user space value in *uaddr is simply bogus.
1186 * Give up and tell user space.
1187 */
1188 return -ESRCH;
1189 }
1190
1191 /*
1192 * Lookup the task for the TID provided from user space and attach to
1193 * it after doing proper sanity checks.
1194 */
1195 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1196 struct futex_pi_state **ps,
1197 struct task_struct **exiting)
1198 {
1199 pid_t pid = uval & FUTEX_TID_MASK;
1200 struct futex_pi_state *pi_state;
1201 struct task_struct *p;
1202
1203 /*
1204 * We are the first waiter - try to look up the real owner and attach
1205 * the new pi_state to it, but bail out when TID = 0 [1]
1206 *
1207 * The !pid check is paranoid. None of the call sites should end up
1208 * with pid == 0, but better safe than sorry. Let the caller retry
1209 */
1210 if (!pid)
1211 return -EAGAIN;
1212 p = find_get_task_by_vpid(pid);
1213 if (!p)
1214 return handle_exit_race(uaddr, uval, NULL);
1215
1216 if (unlikely(p->flags & PF_KTHREAD)) {
1217 put_task_struct(p);
1218 return -EPERM;
1219 }
1220
1221 /*
1222 * We need to look at the task state to figure out, whether the
1223 * task is exiting. To protect against the change of the task state
1224 * in futex_exit_release(), we do this protected by p->pi_lock:
1225 */
1226 raw_spin_lock_irq(&p->pi_lock);
1227 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1228 /*
1229 * The task is on the way out. When the futex state is
1230 * FUTEX_STATE_DEAD, we know that the task has finished
1231 * the cleanup:
1232 */
1233 int ret = handle_exit_race(uaddr, uval, p);
1234
1235 raw_spin_unlock_irq(&p->pi_lock);
1236 /*
1237 * If the owner task is between FUTEX_STATE_EXITING and
1238 * FUTEX_STATE_DEAD then store the task pointer and keep
1239 * the reference on the task struct. The calling code will
1240 * drop all locks, wait for the task to reach
1241 * FUTEX_STATE_DEAD and then drop the refcount. This is
1242 * required to prevent a live lock when the current task
1243 * preempted the exiting task between the two states.
1244 */
1245 if (ret == -EBUSY)
1246 *exiting = p;
1247 else
1248 put_task_struct(p);
1249 return ret;
1250 }
1251
1252 /*
1253 * No existing pi state. First waiter. [2]
1254 *
1255 * This creates pi_state, we have hb->lock held, this means nothing can
1256 * observe this state, wait_lock is irrelevant.
1257 */
1258 pi_state = alloc_pi_state();
1259
1260 /*
1261 * Initialize the pi_mutex in locked state and make @p
1262 * the owner of it:
1263 */
1264 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1265
1266 /* Store the key for possible exit cleanups: */
1267 pi_state->key = *key;
1268
1269 WARN_ON(!list_empty(&pi_state->list));
1270 list_add(&pi_state->list, &p->pi_state_list);
1271 /*
1272 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1273 * because there is no concurrency as the object is not published yet.
1274 */
1275 pi_state->owner = p;
1276 raw_spin_unlock_irq(&p->pi_lock);
1277
1278 put_task_struct(p);
1279
1280 *ps = pi_state;
1281
1282 return 0;
1283 }
1284
1285 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1286 struct futex_hash_bucket *hb,
1287 union futex_key *key, struct futex_pi_state **ps,
1288 struct task_struct **exiting)
1289 {
1290 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1291
1292 /*
1293 * If there is a waiter on that futex, validate it and
1294 * attach to the pi_state when the validation succeeds.
1295 */
1296 if (top_waiter)
1297 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1298
1299 /*
1300 * We are the first waiter - try to look up the owner based on
1301 * @uval and attach to it.
1302 */
1303 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1304 }
1305
1306 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1307 {
1308 int err;
1309 u32 curval;
1310
1311 if (unlikely(should_fail_futex(true)))
1312 return -EFAULT;
1313
1314 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1315 if (unlikely(err))
1316 return err;
1317
1318 /* If user space value changed, let the caller retry */
1319 return curval != uval ? -EAGAIN : 0;
1320 }
1321
1322 /**
1323 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1324 * @uaddr: the pi futex user address
1325 * @hb: the pi futex hash bucket
1326 * @key: the futex key associated with uaddr and hb
1327 * @ps: the pi_state pointer where we store the result of the
1328 * lookup
1329 * @task: the task to perform the atomic lock work for. This will
1330 * be "current" except in the case of requeue pi.
1331 * @exiting: Pointer to store the task pointer of the owner task
1332 * which is in the middle of exiting
1333 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1334 *
1335 * Return:
1336 * - 0 - ready to wait;
1337 * - 1 - acquired the lock;
1338 * - <0 - error
1339 *
1340 * The hb->lock and futex_key refs shall be held by the caller.
1341 *
1342 * @exiting is only set when the return value is -EBUSY. If so, this holds
1343 * a refcount on the exiting task on return and the caller needs to drop it
1344 * after waiting for the exit to complete.
1345 */
1346 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1347 union futex_key *key,
1348 struct futex_pi_state **ps,
1349 struct task_struct *task,
1350 struct task_struct **exiting,
1351 int set_waiters)
1352 {
1353 u32 uval, newval, vpid = task_pid_vnr(task);
1354 struct futex_q *top_waiter;
1355 int ret;
1356
1357 /*
1358 * Read the user space value first so we can validate a few
1359 * things before proceeding further.
1360 */
1361 if (get_futex_value_locked(&uval, uaddr))
1362 return -EFAULT;
1363
1364 if (unlikely(should_fail_futex(true)))
1365 return -EFAULT;
1366
1367 /*
1368 * Detect deadlocks.
1369 */
1370 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1371 return -EDEADLK;
1372
1373 if ((unlikely(should_fail_futex(true))))
1374 return -EDEADLK;
1375
1376 /*
1377 * Lookup existing state first. If it exists, try to attach to
1378 * its pi_state.
1379 */
1380 top_waiter = futex_top_waiter(hb, key);
1381 if (top_waiter)
1382 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1383
1384 /*
1385 * No waiter and user TID is 0. We are here because the
1386 * waiters or the owner died bit is set or called from
1387 * requeue_cmp_pi or for whatever reason something took the
1388 * syscall.
1389 */
1390 if (!(uval & FUTEX_TID_MASK)) {
1391 /*
1392 * We take over the futex. No other waiters and the user space
1393 * TID is 0. We preserve the owner died bit.
1394 */
1395 newval = uval & FUTEX_OWNER_DIED;
1396 newval |= vpid;
1397
1398 /* The futex requeue_pi code can enforce the waiters bit */
1399 if (set_waiters)
1400 newval |= FUTEX_WAITERS;
1401
1402 ret = lock_pi_update_atomic(uaddr, uval, newval);
1403 /* If the take over worked, return 1 */
1404 return ret < 0 ? ret : 1;
1405 }
1406
1407 /*
1408 * First waiter. Set the waiters bit before attaching ourself to
1409 * the owner. If owner tries to unlock, it will be forced into
1410 * the kernel and blocked on hb->lock.
1411 */
1412 newval = uval | FUTEX_WAITERS;
1413 ret = lock_pi_update_atomic(uaddr, uval, newval);
1414 if (ret)
1415 return ret;
1416 /*
1417 * If the update of the user space value succeeded, we try to
1418 * attach to the owner. If that fails, no harm done, we only
1419 * set the FUTEX_WAITERS bit in the user space variable.
1420 */
1421 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1422 }
1423
1424 /**
1425 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1426 * @q: The futex_q to unqueue
1427 *
1428 * The q->lock_ptr must not be NULL and must be held by the caller.
1429 */
1430 static void __unqueue_futex(struct futex_q *q)
1431 {
1432 struct futex_hash_bucket *hb;
1433
1434 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1435 return;
1436 lockdep_assert_held(q->lock_ptr);
1437
1438 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1439 plist_del(&q->list, &hb->chain);
1440 hb_waiters_dec(hb);
1441 }
1442
1443 /*
1444 * The hash bucket lock must be held when this is called.
1445 * Afterwards, the futex_q must not be accessed. Callers
1446 * must ensure to later call wake_up_q() for the actual
1447 * wakeups to occur.
1448 */
1449 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1450 {
1451 struct task_struct *p = q->task;
1452
1453 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1454 return;
1455
1456 get_task_struct(p);
1457 __unqueue_futex(q);
1458 /*
1459 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1460 * is written, without taking any locks. This is possible in the event
1461 * of a spurious wakeup, for example. A memory barrier is required here
1462 * to prevent the following store to lock_ptr from getting ahead of the
1463 * plist_del in __unqueue_futex().
1464 */
1465 smp_store_release(&q->lock_ptr, NULL);
1466
1467 /*
1468 * Queue the task for later wakeup for after we've released
1469 * the hb->lock.
1470 */
1471 wake_q_add_safe(wake_q, p);
1472 }
1473
1474 /*
1475 * Caller must hold a reference on @pi_state.
1476 */
1477 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1478 {
1479 u32 curval, newval;
1480 struct task_struct *new_owner;
1481 bool postunlock = false;
1482 DEFINE_WAKE_Q(wake_q);
1483 int ret = 0;
1484
1485 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1486 if (WARN_ON_ONCE(!new_owner)) {
1487 /*
1488 * As per the comment in futex_unlock_pi() this should not happen.
1489 *
1490 * When this happens, give up our locks and try again, giving
1491 * the futex_lock_pi() instance time to complete, either by
1492 * waiting on the rtmutex or removing itself from the futex
1493 * queue.
1494 */
1495 ret = -EAGAIN;
1496 goto out_unlock;
1497 }
1498
1499 /*
1500 * We pass it to the next owner. The WAITERS bit is always kept
1501 * enabled while there is PI state around. We cleanup the owner
1502 * died bit, because we are the owner.
1503 */
1504 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1505
1506 if (unlikely(should_fail_futex(true))) {
1507 ret = -EFAULT;
1508 goto out_unlock;
1509 }
1510
1511 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1512 if (!ret && (curval != uval)) {
1513 /*
1514 * If a unconditional UNLOCK_PI operation (user space did not
1515 * try the TID->0 transition) raced with a waiter setting the
1516 * FUTEX_WAITERS flag between get_user() and locking the hash
1517 * bucket lock, retry the operation.
1518 */
1519 if ((FUTEX_TID_MASK & curval) == uval)
1520 ret = -EAGAIN;
1521 else
1522 ret = -EINVAL;
1523 }
1524
1525 if (ret)
1526 goto out_unlock;
1527
1528 /*
1529 * This is a point of no return; once we modify the uval there is no
1530 * going back and subsequent operations must not fail.
1531 */
1532
1533 raw_spin_lock(&pi_state->owner->pi_lock);
1534 WARN_ON(list_empty(&pi_state->list));
1535 list_del_init(&pi_state->list);
1536 raw_spin_unlock(&pi_state->owner->pi_lock);
1537
1538 raw_spin_lock(&new_owner->pi_lock);
1539 WARN_ON(!list_empty(&pi_state->list));
1540 list_add(&pi_state->list, &new_owner->pi_state_list);
1541 pi_state->owner = new_owner;
1542 raw_spin_unlock(&new_owner->pi_lock);
1543
1544 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1545
1546 out_unlock:
1547 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1548
1549 if (postunlock)
1550 rt_mutex_postunlock(&wake_q);
1551
1552 return ret;
1553 }
1554
1555 /*
1556 * Express the locking dependencies for lockdep:
1557 */
1558 static inline void
1559 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1560 {
1561 if (hb1 <= hb2) {
1562 spin_lock(&hb1->lock);
1563 if (hb1 < hb2)
1564 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1565 } else { /* hb1 > hb2 */
1566 spin_lock(&hb2->lock);
1567 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1568 }
1569 }
1570
1571 static inline void
1572 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1573 {
1574 spin_unlock(&hb1->lock);
1575 if (hb1 != hb2)
1576 spin_unlock(&hb2->lock);
1577 }
1578
1579 /*
1580 * Wake up waiters matching bitset queued on this futex (uaddr).
1581 */
1582 static int
1583 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1584 {
1585 struct futex_hash_bucket *hb;
1586 struct futex_q *this, *next;
1587 union futex_key key = FUTEX_KEY_INIT;
1588 int ret;
1589 DEFINE_WAKE_Q(wake_q);
1590
1591 if (!bitset)
1592 return -EINVAL;
1593
1594 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1595 if (unlikely(ret != 0))
1596 return ret;
1597
1598 hb = hash_futex(&key);
1599
1600 /* Make sure we really have tasks to wakeup */
1601 if (!hb_waiters_pending(hb))
1602 return ret;
1603
1604 spin_lock(&hb->lock);
1605
1606 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1607 if (match_futex (&this->key, &key)) {
1608 if (this->pi_state || this->rt_waiter) {
1609 ret = -EINVAL;
1610 break;
1611 }
1612
1613 /* Check if one of the bits is set in both bitsets */
1614 if (!(this->bitset & bitset))
1615 continue;
1616
1617 mark_wake_futex(&wake_q, this);
1618 if (++ret >= nr_wake)
1619 break;
1620 }
1621 }
1622
1623 spin_unlock(&hb->lock);
1624 wake_up_q(&wake_q);
1625 return ret;
1626 }
1627
1628 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1629 {
1630 unsigned int op = (encoded_op & 0x70000000) >> 28;
1631 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1632 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1633 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1634 int oldval, ret;
1635
1636 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1637 if (oparg < 0 || oparg > 31) {
1638 char comm[sizeof(current->comm)];
1639 /*
1640 * kill this print and return -EINVAL when userspace
1641 * is sane again
1642 */
1643 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1644 get_task_comm(comm, current), oparg);
1645 oparg &= 31;
1646 }
1647 oparg = 1 << oparg;
1648 }
1649
1650 pagefault_disable();
1651 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1652 pagefault_enable();
1653 if (ret)
1654 return ret;
1655
1656 switch (cmp) {
1657 case FUTEX_OP_CMP_EQ:
1658 return oldval == cmparg;
1659 case FUTEX_OP_CMP_NE:
1660 return oldval != cmparg;
1661 case FUTEX_OP_CMP_LT:
1662 return oldval < cmparg;
1663 case FUTEX_OP_CMP_GE:
1664 return oldval >= cmparg;
1665 case FUTEX_OP_CMP_LE:
1666 return oldval <= cmparg;
1667 case FUTEX_OP_CMP_GT:
1668 return oldval > cmparg;
1669 default:
1670 return -ENOSYS;
1671 }
1672 }
1673
1674 /*
1675 * Wake up all waiters hashed on the physical page that is mapped
1676 * to this virtual address:
1677 */
1678 static int
1679 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1680 int nr_wake, int nr_wake2, int op)
1681 {
1682 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1683 struct futex_hash_bucket *hb1, *hb2;
1684 struct futex_q *this, *next;
1685 int ret, op_ret;
1686 DEFINE_WAKE_Q(wake_q);
1687
1688 retry:
1689 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1690 if (unlikely(ret != 0))
1691 return ret;
1692 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1693 if (unlikely(ret != 0))
1694 return ret;
1695
1696 hb1 = hash_futex(&key1);
1697 hb2 = hash_futex(&key2);
1698
1699 retry_private:
1700 double_lock_hb(hb1, hb2);
1701 op_ret = futex_atomic_op_inuser(op, uaddr2);
1702 if (unlikely(op_ret < 0)) {
1703 double_unlock_hb(hb1, hb2);
1704
1705 if (!IS_ENABLED(CONFIG_MMU) ||
1706 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1707 /*
1708 * we don't get EFAULT from MMU faults if we don't have
1709 * an MMU, but we might get them from range checking
1710 */
1711 ret = op_ret;
1712 return ret;
1713 }
1714
1715 if (op_ret == -EFAULT) {
1716 ret = fault_in_user_writeable(uaddr2);
1717 if (ret)
1718 return ret;
1719 }
1720
1721 if (!(flags & FLAGS_SHARED)) {
1722 cond_resched();
1723 goto retry_private;
1724 }
1725
1726 cond_resched();
1727 goto retry;
1728 }
1729
1730 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1731 if (match_futex (&this->key, &key1)) {
1732 if (this->pi_state || this->rt_waiter) {
1733 ret = -EINVAL;
1734 goto out_unlock;
1735 }
1736 mark_wake_futex(&wake_q, this);
1737 if (++ret >= nr_wake)
1738 break;
1739 }
1740 }
1741
1742 if (op_ret > 0) {
1743 op_ret = 0;
1744 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1745 if (match_futex (&this->key, &key2)) {
1746 if (this->pi_state || this->rt_waiter) {
1747 ret = -EINVAL;
1748 goto out_unlock;
1749 }
1750 mark_wake_futex(&wake_q, this);
1751 if (++op_ret >= nr_wake2)
1752 break;
1753 }
1754 }
1755 ret += op_ret;
1756 }
1757
1758 out_unlock:
1759 double_unlock_hb(hb1, hb2);
1760 wake_up_q(&wake_q);
1761 return ret;
1762 }
1763
1764 /**
1765 * requeue_futex() - Requeue a futex_q from one hb to another
1766 * @q: the futex_q to requeue
1767 * @hb1: the source hash_bucket
1768 * @hb2: the target hash_bucket
1769 * @key2: the new key for the requeued futex_q
1770 */
1771 static inline
1772 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1773 struct futex_hash_bucket *hb2, union futex_key *key2)
1774 {
1775
1776 /*
1777 * If key1 and key2 hash to the same bucket, no need to
1778 * requeue.
1779 */
1780 if (likely(&hb1->chain != &hb2->chain)) {
1781 plist_del(&q->list, &hb1->chain);
1782 hb_waiters_dec(hb1);
1783 hb_waiters_inc(hb2);
1784 plist_add(&q->list, &hb2->chain);
1785 q->lock_ptr = &hb2->lock;
1786 }
1787 q->key = *key2;
1788 }
1789
1790 /**
1791 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1792 * @q: the futex_q
1793 * @key: the key of the requeue target futex
1794 * @hb: the hash_bucket of the requeue target futex
1795 *
1796 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1797 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1798 * to the requeue target futex so the waiter can detect the wakeup on the right
1799 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1800 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1801 * to protect access to the pi_state to fixup the owner later. Must be called
1802 * with both q->lock_ptr and hb->lock held.
1803 */
1804 static inline
1805 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1806 struct futex_hash_bucket *hb)
1807 {
1808 q->key = *key;
1809
1810 __unqueue_futex(q);
1811
1812 WARN_ON(!q->rt_waiter);
1813 q->rt_waiter = NULL;
1814
1815 q->lock_ptr = &hb->lock;
1816
1817 wake_up_state(q->task, TASK_NORMAL);
1818 }
1819
1820 /**
1821 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1822 * @pifutex: the user address of the to futex
1823 * @hb1: the from futex hash bucket, must be locked by the caller
1824 * @hb2: the to futex hash bucket, must be locked by the caller
1825 * @key1: the from futex key
1826 * @key2: the to futex key
1827 * @ps: address to store the pi_state pointer
1828 * @exiting: Pointer to store the task pointer of the owner task
1829 * which is in the middle of exiting
1830 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1831 *
1832 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1833 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1834 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1835 * hb1 and hb2 must be held by the caller.
1836 *
1837 * @exiting is only set when the return value is -EBUSY. If so, this holds
1838 * a refcount on the exiting task on return and the caller needs to drop it
1839 * after waiting for the exit to complete.
1840 *
1841 * Return:
1842 * - 0 - failed to acquire the lock atomically;
1843 * - >0 - acquired the lock, return value is vpid of the top_waiter
1844 * - <0 - error
1845 */
1846 static int
1847 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1848 struct futex_hash_bucket *hb2, union futex_key *key1,
1849 union futex_key *key2, struct futex_pi_state **ps,
1850 struct task_struct **exiting, int set_waiters)
1851 {
1852 struct futex_q *top_waiter = NULL;
1853 u32 curval;
1854 int ret, vpid;
1855
1856 if (get_futex_value_locked(&curval, pifutex))
1857 return -EFAULT;
1858
1859 if (unlikely(should_fail_futex(true)))
1860 return -EFAULT;
1861
1862 /*
1863 * Find the top_waiter and determine if there are additional waiters.
1864 * If the caller intends to requeue more than 1 waiter to pifutex,
1865 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1866 * as we have means to handle the possible fault. If not, don't set
1867 * the bit unecessarily as it will force the subsequent unlock to enter
1868 * the kernel.
1869 */
1870 top_waiter = futex_top_waiter(hb1, key1);
1871
1872 /* There are no waiters, nothing for us to do. */
1873 if (!top_waiter)
1874 return 0;
1875
1876 /* Ensure we requeue to the expected futex. */
1877 if (!match_futex(top_waiter->requeue_pi_key, key2))
1878 return -EINVAL;
1879
1880 /*
1881 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1882 * the contended case or if set_waiters is 1. The pi_state is returned
1883 * in ps in contended cases.
1884 */
1885 vpid = task_pid_vnr(top_waiter->task);
1886 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1887 exiting, set_waiters);
1888 if (ret == 1) {
1889 requeue_pi_wake_futex(top_waiter, key2, hb2);
1890 return vpid;
1891 }
1892 return ret;
1893 }
1894
1895 /**
1896 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1897 * @uaddr1: source futex user address
1898 * @flags: futex flags (FLAGS_SHARED, etc.)
1899 * @uaddr2: target futex user address
1900 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1901 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1902 * @cmpval: @uaddr1 expected value (or %NULL)
1903 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1904 * pi futex (pi to pi requeue is not supported)
1905 *
1906 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1907 * uaddr2 atomically on behalf of the top waiter.
1908 *
1909 * Return:
1910 * - >=0 - on success, the number of tasks requeued or woken;
1911 * - <0 - on error
1912 */
1913 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1914 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1915 u32 *cmpval, int requeue_pi)
1916 {
1917 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1918 int task_count = 0, ret;
1919 struct futex_pi_state *pi_state = NULL;
1920 struct futex_hash_bucket *hb1, *hb2;
1921 struct futex_q *this, *next;
1922 DEFINE_WAKE_Q(wake_q);
1923
1924 if (nr_wake < 0 || nr_requeue < 0)
1925 return -EINVAL;
1926
1927 /*
1928 * When PI not supported: return -ENOSYS if requeue_pi is true,
1929 * consequently the compiler knows requeue_pi is always false past
1930 * this point which will optimize away all the conditional code
1931 * further down.
1932 */
1933 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1934 return -ENOSYS;
1935
1936 if (requeue_pi) {
1937 /*
1938 * Requeue PI only works on two distinct uaddrs. This
1939 * check is only valid for private futexes. See below.
1940 */
1941 if (uaddr1 == uaddr2)
1942 return -EINVAL;
1943
1944 /*
1945 * requeue_pi requires a pi_state, try to allocate it now
1946 * without any locks in case it fails.
1947 */
1948 if (refill_pi_state_cache())
1949 return -ENOMEM;
1950 /*
1951 * requeue_pi must wake as many tasks as it can, up to nr_wake
1952 * + nr_requeue, since it acquires the rt_mutex prior to
1953 * returning to userspace, so as to not leave the rt_mutex with
1954 * waiters and no owner. However, second and third wake-ups
1955 * cannot be predicted as they involve race conditions with the
1956 * first wake and a fault while looking up the pi_state. Both
1957 * pthread_cond_signal() and pthread_cond_broadcast() should
1958 * use nr_wake=1.
1959 */
1960 if (nr_wake != 1)
1961 return -EINVAL;
1962 }
1963
1964 retry:
1965 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1966 if (unlikely(ret != 0))
1967 return ret;
1968 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1969 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1970 if (unlikely(ret != 0))
1971 return ret;
1972
1973 /*
1974 * The check above which compares uaddrs is not sufficient for
1975 * shared futexes. We need to compare the keys:
1976 */
1977 if (requeue_pi && match_futex(&key1, &key2))
1978 return -EINVAL;
1979
1980 hb1 = hash_futex(&key1);
1981 hb2 = hash_futex(&key2);
1982
1983 retry_private:
1984 hb_waiters_inc(hb2);
1985 double_lock_hb(hb1, hb2);
1986
1987 if (likely(cmpval != NULL)) {
1988 u32 curval;
1989
1990 ret = get_futex_value_locked(&curval, uaddr1);
1991
1992 if (unlikely(ret)) {
1993 double_unlock_hb(hb1, hb2);
1994 hb_waiters_dec(hb2);
1995
1996 ret = get_user(curval, uaddr1);
1997 if (ret)
1998 return ret;
1999
2000 if (!(flags & FLAGS_SHARED))
2001 goto retry_private;
2002
2003 goto retry;
2004 }
2005 if (curval != *cmpval) {
2006 ret = -EAGAIN;
2007 goto out_unlock;
2008 }
2009 }
2010
2011 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2012 struct task_struct *exiting = NULL;
2013
2014 /*
2015 * Attempt to acquire uaddr2 and wake the top waiter. If we
2016 * intend to requeue waiters, force setting the FUTEX_WAITERS
2017 * bit. We force this here where we are able to easily handle
2018 * faults rather in the requeue loop below.
2019 */
2020 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2021 &key2, &pi_state,
2022 &exiting, nr_requeue);
2023
2024 /*
2025 * At this point the top_waiter has either taken uaddr2 or is
2026 * waiting on it. If the former, then the pi_state will not
2027 * exist yet, look it up one more time to ensure we have a
2028 * reference to it. If the lock was taken, ret contains the
2029 * vpid of the top waiter task.
2030 * If the lock was not taken, we have pi_state and an initial
2031 * refcount on it. In case of an error we have nothing.
2032 */
2033 if (ret > 0) {
2034 WARN_ON(pi_state);
2035 task_count++;
2036 /*
2037 * If we acquired the lock, then the user space value
2038 * of uaddr2 should be vpid. It cannot be changed by
2039 * the top waiter as it is blocked on hb2 lock if it
2040 * tries to do so. If something fiddled with it behind
2041 * our back the pi state lookup might unearth it. So
2042 * we rather use the known value than rereading and
2043 * handing potential crap to lookup_pi_state.
2044 *
2045 * If that call succeeds then we have pi_state and an
2046 * initial refcount on it.
2047 */
2048 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2049 &pi_state, &exiting);
2050 }
2051
2052 switch (ret) {
2053 case 0:
2054 /* We hold a reference on the pi state. */
2055 break;
2056
2057 /* If the above failed, then pi_state is NULL */
2058 case -EFAULT:
2059 double_unlock_hb(hb1, hb2);
2060 hb_waiters_dec(hb2);
2061 ret = fault_in_user_writeable(uaddr2);
2062 if (!ret)
2063 goto retry;
2064 return ret;
2065 case -EBUSY:
2066 case -EAGAIN:
2067 /*
2068 * Two reasons for this:
2069 * - EBUSY: Owner is exiting and we just wait for the
2070 * exit to complete.
2071 * - EAGAIN: The user space value changed.
2072 */
2073 double_unlock_hb(hb1, hb2);
2074 hb_waiters_dec(hb2);
2075 /*
2076 * Handle the case where the owner is in the middle of
2077 * exiting. Wait for the exit to complete otherwise
2078 * this task might loop forever, aka. live lock.
2079 */
2080 wait_for_owner_exiting(ret, exiting);
2081 cond_resched();
2082 goto retry;
2083 default:
2084 goto out_unlock;
2085 }
2086 }
2087
2088 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2089 if (task_count - nr_wake >= nr_requeue)
2090 break;
2091
2092 if (!match_futex(&this->key, &key1))
2093 continue;
2094
2095 /*
2096 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2097 * be paired with each other and no other futex ops.
2098 *
2099 * We should never be requeueing a futex_q with a pi_state,
2100 * which is awaiting a futex_unlock_pi().
2101 */
2102 if ((requeue_pi && !this->rt_waiter) ||
2103 (!requeue_pi && this->rt_waiter) ||
2104 this->pi_state) {
2105 ret = -EINVAL;
2106 break;
2107 }
2108
2109 /*
2110 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2111 * lock, we already woke the top_waiter. If not, it will be
2112 * woken by futex_unlock_pi().
2113 */
2114 if (++task_count <= nr_wake && !requeue_pi) {
2115 mark_wake_futex(&wake_q, this);
2116 continue;
2117 }
2118
2119 /* Ensure we requeue to the expected futex for requeue_pi. */
2120 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2121 ret = -EINVAL;
2122 break;
2123 }
2124
2125 /*
2126 * Requeue nr_requeue waiters and possibly one more in the case
2127 * of requeue_pi if we couldn't acquire the lock atomically.
2128 */
2129 if (requeue_pi) {
2130 /*
2131 * Prepare the waiter to take the rt_mutex. Take a
2132 * refcount on the pi_state and store the pointer in
2133 * the futex_q object of the waiter.
2134 */
2135 get_pi_state(pi_state);
2136 this->pi_state = pi_state;
2137 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2138 this->rt_waiter,
2139 this->task);
2140 if (ret == 1) {
2141 /*
2142 * We got the lock. We do neither drop the
2143 * refcount on pi_state nor clear
2144 * this->pi_state because the waiter needs the
2145 * pi_state for cleaning up the user space
2146 * value. It will drop the refcount after
2147 * doing so.
2148 */
2149 requeue_pi_wake_futex(this, &key2, hb2);
2150 continue;
2151 } else if (ret) {
2152 /*
2153 * rt_mutex_start_proxy_lock() detected a
2154 * potential deadlock when we tried to queue
2155 * that waiter. Drop the pi_state reference
2156 * which we took above and remove the pointer
2157 * to the state from the waiters futex_q
2158 * object.
2159 */
2160 this->pi_state = NULL;
2161 put_pi_state(pi_state);
2162 /*
2163 * We stop queueing more waiters and let user
2164 * space deal with the mess.
2165 */
2166 break;
2167 }
2168 }
2169 requeue_futex(this, hb1, hb2, &key2);
2170 }
2171
2172 /*
2173 * We took an extra initial reference to the pi_state either
2174 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2175 * need to drop it here again.
2176 */
2177 put_pi_state(pi_state);
2178
2179 out_unlock:
2180 double_unlock_hb(hb1, hb2);
2181 wake_up_q(&wake_q);
2182 hb_waiters_dec(hb2);
2183 return ret ? ret : task_count;
2184 }
2185
2186 /* The key must be already stored in q->key. */
2187 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2188 __acquires(&hb->lock)
2189 {
2190 struct futex_hash_bucket *hb;
2191
2192 hb = hash_futex(&q->key);
2193
2194 /*
2195 * Increment the counter before taking the lock so that
2196 * a potential waker won't miss a to-be-slept task that is
2197 * waiting for the spinlock. This is safe as all queue_lock()
2198 * users end up calling queue_me(). Similarly, for housekeeping,
2199 * decrement the counter at queue_unlock() when some error has
2200 * occurred and we don't end up adding the task to the list.
2201 */
2202 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2203
2204 q->lock_ptr = &hb->lock;
2205
2206 spin_lock(&hb->lock);
2207 return hb;
2208 }
2209
2210 static inline void
2211 queue_unlock(struct futex_hash_bucket *hb)
2212 __releases(&hb->lock)
2213 {
2214 spin_unlock(&hb->lock);
2215 hb_waiters_dec(hb);
2216 }
2217
2218 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2219 {
2220 int prio;
2221
2222 /*
2223 * The priority used to register this element is
2224 * - either the real thread-priority for the real-time threads
2225 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2226 * - or MAX_RT_PRIO for non-RT threads.
2227 * Thus, all RT-threads are woken first in priority order, and
2228 * the others are woken last, in FIFO order.
2229 */
2230 prio = min(current->normal_prio, MAX_RT_PRIO);
2231
2232 plist_node_init(&q->list, prio);
2233 plist_add(&q->list, &hb->chain);
2234 q->task = current;
2235 }
2236
2237 /**
2238 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2239 * @q: The futex_q to enqueue
2240 * @hb: The destination hash bucket
2241 *
2242 * The hb->lock must be held by the caller, and is released here. A call to
2243 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2244 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2245 * or nothing if the unqueue is done as part of the wake process and the unqueue
2246 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2247 * an example).
2248 */
2249 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2250 __releases(&hb->lock)
2251 {
2252 __queue_me(q, hb);
2253 spin_unlock(&hb->lock);
2254 }
2255
2256 /**
2257 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2258 * @q: The futex_q to unqueue
2259 *
2260 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2261 * be paired with exactly one earlier call to queue_me().
2262 *
2263 * Return:
2264 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2265 * - 0 - if the futex_q was already removed by the waking thread
2266 */
2267 static int unqueue_me(struct futex_q *q)
2268 {
2269 spinlock_t *lock_ptr;
2270 int ret = 0;
2271
2272 /* In the common case we don't take the spinlock, which is nice. */
2273 retry:
2274 /*
2275 * q->lock_ptr can change between this read and the following spin_lock.
2276 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2277 * optimizing lock_ptr out of the logic below.
2278 */
2279 lock_ptr = READ_ONCE(q->lock_ptr);
2280 if (lock_ptr != NULL) {
2281 spin_lock(lock_ptr);
2282 /*
2283 * q->lock_ptr can change between reading it and
2284 * spin_lock(), causing us to take the wrong lock. This
2285 * corrects the race condition.
2286 *
2287 * Reasoning goes like this: if we have the wrong lock,
2288 * q->lock_ptr must have changed (maybe several times)
2289 * between reading it and the spin_lock(). It can
2290 * change again after the spin_lock() but only if it was
2291 * already changed before the spin_lock(). It cannot,
2292 * however, change back to the original value. Therefore
2293 * we can detect whether we acquired the correct lock.
2294 */
2295 if (unlikely(lock_ptr != q->lock_ptr)) {
2296 spin_unlock(lock_ptr);
2297 goto retry;
2298 }
2299 __unqueue_futex(q);
2300
2301 BUG_ON(q->pi_state);
2302
2303 spin_unlock(lock_ptr);
2304 ret = 1;
2305 }
2306
2307 return ret;
2308 }
2309
2310 /*
2311 * PI futexes can not be requeued and must remove themself from the
2312 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2313 * and dropped here.
2314 */
2315 static void unqueue_me_pi(struct futex_q *q)
2316 __releases(q->lock_ptr)
2317 {
2318 __unqueue_futex(q);
2319
2320 BUG_ON(!q->pi_state);
2321 put_pi_state(q->pi_state);
2322 q->pi_state = NULL;
2323
2324 spin_unlock(q->lock_ptr);
2325 }
2326
2327 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2328 struct task_struct *argowner)
2329 {
2330 struct futex_pi_state *pi_state = q->pi_state;
2331 u32 uval, curval, newval;
2332 struct task_struct *oldowner, *newowner;
2333 u32 newtid;
2334 int ret, err = 0;
2335
2336 lockdep_assert_held(q->lock_ptr);
2337
2338 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2339
2340 oldowner = pi_state->owner;
2341
2342 /*
2343 * We are here because either:
2344 *
2345 * - we stole the lock and pi_state->owner needs updating to reflect
2346 * that (@argowner == current),
2347 *
2348 * or:
2349 *
2350 * - someone stole our lock and we need to fix things to point to the
2351 * new owner (@argowner == NULL).
2352 *
2353 * Either way, we have to replace the TID in the user space variable.
2354 * This must be atomic as we have to preserve the owner died bit here.
2355 *
2356 * Note: We write the user space value _before_ changing the pi_state
2357 * because we can fault here. Imagine swapped out pages or a fork
2358 * that marked all the anonymous memory readonly for cow.
2359 *
2360 * Modifying pi_state _before_ the user space value would leave the
2361 * pi_state in an inconsistent state when we fault here, because we
2362 * need to drop the locks to handle the fault. This might be observed
2363 * in the PID check in lookup_pi_state.
2364 */
2365 retry:
2366 if (!argowner) {
2367 if (oldowner != current) {
2368 /*
2369 * We raced against a concurrent self; things are
2370 * already fixed up. Nothing to do.
2371 */
2372 ret = 0;
2373 goto out_unlock;
2374 }
2375
2376 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2377 /* We got the lock after all, nothing to fix. */
2378 ret = 0;
2379 goto out_unlock;
2380 }
2381
2382 /*
2383 * Since we just failed the trylock; there must be an owner.
2384 */
2385 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2386 BUG_ON(!newowner);
2387 } else {
2388 WARN_ON_ONCE(argowner != current);
2389 if (oldowner == current) {
2390 /*
2391 * We raced against a concurrent self; things are
2392 * already fixed up. Nothing to do.
2393 */
2394 ret = 0;
2395 goto out_unlock;
2396 }
2397 newowner = argowner;
2398 }
2399
2400 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2401 /* Owner died? */
2402 if (!pi_state->owner)
2403 newtid |= FUTEX_OWNER_DIED;
2404
2405 err = get_futex_value_locked(&uval, uaddr);
2406 if (err)
2407 goto handle_err;
2408
2409 for (;;) {
2410 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2411
2412 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2413 if (err)
2414 goto handle_err;
2415
2416 if (curval == uval)
2417 break;
2418 uval = curval;
2419 }
2420
2421 /*
2422 * We fixed up user space. Now we need to fix the pi_state
2423 * itself.
2424 */
2425 if (pi_state->owner != NULL) {
2426 raw_spin_lock(&pi_state->owner->pi_lock);
2427 WARN_ON(list_empty(&pi_state->list));
2428 list_del_init(&pi_state->list);
2429 raw_spin_unlock(&pi_state->owner->pi_lock);
2430 }
2431
2432 pi_state->owner = newowner;
2433
2434 raw_spin_lock(&newowner->pi_lock);
2435 WARN_ON(!list_empty(&pi_state->list));
2436 list_add(&pi_state->list, &newowner->pi_state_list);
2437 raw_spin_unlock(&newowner->pi_lock);
2438 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2439
2440 return 0;
2441
2442 /*
2443 * In order to reschedule or handle a page fault, we need to drop the
2444 * locks here. In the case of a fault, this gives the other task
2445 * (either the highest priority waiter itself or the task which stole
2446 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2447 * are back from handling the fault we need to check the pi_state after
2448 * reacquiring the locks and before trying to do another fixup. When
2449 * the fixup has been done already we simply return.
2450 *
2451 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2452 * drop hb->lock since the caller owns the hb -> futex_q relation.
2453 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2454 */
2455 handle_err:
2456 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2457 spin_unlock(q->lock_ptr);
2458
2459 switch (err) {
2460 case -EFAULT:
2461 ret = fault_in_user_writeable(uaddr);
2462 break;
2463
2464 case -EAGAIN:
2465 cond_resched();
2466 ret = 0;
2467 break;
2468
2469 default:
2470 WARN_ON_ONCE(1);
2471 ret = err;
2472 break;
2473 }
2474
2475 spin_lock(q->lock_ptr);
2476 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2477
2478 /*
2479 * Check if someone else fixed it for us:
2480 */
2481 if (pi_state->owner != oldowner) {
2482 ret = 0;
2483 goto out_unlock;
2484 }
2485
2486 if (ret)
2487 goto out_unlock;
2488
2489 goto retry;
2490
2491 out_unlock:
2492 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2493 return ret;
2494 }
2495
2496 static long futex_wait_restart(struct restart_block *restart);
2497
2498 /**
2499 * fixup_owner() - Post lock pi_state and corner case management
2500 * @uaddr: user address of the futex
2501 * @q: futex_q (contains pi_state and access to the rt_mutex)
2502 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2503 *
2504 * After attempting to lock an rt_mutex, this function is called to cleanup
2505 * the pi_state owner as well as handle race conditions that may allow us to
2506 * acquire the lock. Must be called with the hb lock held.
2507 *
2508 * Return:
2509 * - 1 - success, lock taken;
2510 * - 0 - success, lock not taken;
2511 * - <0 - on error (-EFAULT)
2512 */
2513 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2514 {
2515 int ret = 0;
2516
2517 if (locked) {
2518 /*
2519 * Got the lock. We might not be the anticipated owner if we
2520 * did a lock-steal - fix up the PI-state in that case:
2521 *
2522 * Speculative pi_state->owner read (we don't hold wait_lock);
2523 * since we own the lock pi_state->owner == current is the
2524 * stable state, anything else needs more attention.
2525 */
2526 if (q->pi_state->owner != current)
2527 ret = fixup_pi_state_owner(uaddr, q, current);
2528 return ret ? ret : locked;
2529 }
2530
2531 /*
2532 * If we didn't get the lock; check if anybody stole it from us. In
2533 * that case, we need to fix up the uval to point to them instead of
2534 * us, otherwise bad things happen. [10]
2535 *
2536 * Another speculative read; pi_state->owner == current is unstable
2537 * but needs our attention.
2538 */
2539 if (q->pi_state->owner == current) {
2540 ret = fixup_pi_state_owner(uaddr, q, NULL);
2541 return ret;
2542 }
2543
2544 /*
2545 * Paranoia check. If we did not take the lock, then we should not be
2546 * the owner of the rt_mutex.
2547 */
2548 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2549 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2550 "pi-state %p\n", ret,
2551 q->pi_state->pi_mutex.owner,
2552 q->pi_state->owner);
2553 }
2554
2555 return ret;
2556 }
2557
2558 /**
2559 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2560 * @hb: the futex hash bucket, must be locked by the caller
2561 * @q: the futex_q to queue up on
2562 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2563 */
2564 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2565 struct hrtimer_sleeper *timeout)
2566 {
2567 /*
2568 * The task state is guaranteed to be set before another task can
2569 * wake it. set_current_state() is implemented using smp_store_mb() and
2570 * queue_me() calls spin_unlock() upon completion, both serializing
2571 * access to the hash list and forcing another memory barrier.
2572 */
2573 set_current_state(TASK_INTERRUPTIBLE);
2574 queue_me(q, hb);
2575
2576 /* Arm the timer */
2577 if (timeout)
2578 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2579
2580 /*
2581 * If we have been removed from the hash list, then another task
2582 * has tried to wake us, and we can skip the call to schedule().
2583 */
2584 if (likely(!plist_node_empty(&q->list))) {
2585 /*
2586 * If the timer has already expired, current will already be
2587 * flagged for rescheduling. Only call schedule if there
2588 * is no timeout, or if it has yet to expire.
2589 */
2590 if (!timeout || timeout->task)
2591 freezable_schedule();
2592 }
2593 __set_current_state(TASK_RUNNING);
2594 }
2595
2596 /**
2597 * futex_wait_setup() - Prepare to wait on a futex
2598 * @uaddr: the futex userspace address
2599 * @val: the expected value
2600 * @flags: futex flags (FLAGS_SHARED, etc.)
2601 * @q: the associated futex_q
2602 * @hb: storage for hash_bucket pointer to be returned to caller
2603 *
2604 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2605 * compare it with the expected value. Handle atomic faults internally.
2606 * Return with the hb lock held and a q.key reference on success, and unlocked
2607 * with no q.key reference on failure.
2608 *
2609 * Return:
2610 * - 0 - uaddr contains val and hb has been locked;
2611 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2612 */
2613 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2614 struct futex_q *q, struct futex_hash_bucket **hb)
2615 {
2616 u32 uval;
2617 int ret;
2618
2619 /*
2620 * Access the page AFTER the hash-bucket is locked.
2621 * Order is important:
2622 *
2623 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2624 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2625 *
2626 * The basic logical guarantee of a futex is that it blocks ONLY
2627 * if cond(var) is known to be true at the time of blocking, for
2628 * any cond. If we locked the hash-bucket after testing *uaddr, that
2629 * would open a race condition where we could block indefinitely with
2630 * cond(var) false, which would violate the guarantee.
2631 *
2632 * On the other hand, we insert q and release the hash-bucket only
2633 * after testing *uaddr. This guarantees that futex_wait() will NOT
2634 * absorb a wakeup if *uaddr does not match the desired values
2635 * while the syscall executes.
2636 */
2637 retry:
2638 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2639 if (unlikely(ret != 0))
2640 return ret;
2641
2642 retry_private:
2643 *hb = queue_lock(q);
2644
2645 ret = get_futex_value_locked(&uval, uaddr);
2646
2647 if (ret) {
2648 queue_unlock(*hb);
2649
2650 ret = get_user(uval, uaddr);
2651 if (ret)
2652 return ret;
2653
2654 if (!(flags & FLAGS_SHARED))
2655 goto retry_private;
2656
2657 goto retry;
2658 }
2659
2660 if (uval != val) {
2661 queue_unlock(*hb);
2662 ret = -EWOULDBLOCK;
2663 }
2664
2665 return ret;
2666 }
2667
2668 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2669 ktime_t *abs_time, u32 bitset)
2670 {
2671 struct hrtimer_sleeper timeout, *to;
2672 struct restart_block *restart;
2673 struct futex_hash_bucket *hb;
2674 struct futex_q q = futex_q_init;
2675 int ret;
2676
2677 if (!bitset)
2678 return -EINVAL;
2679 q.bitset = bitset;
2680
2681 to = futex_setup_timer(abs_time, &timeout, flags,
2682 current->timer_slack_ns);
2683 retry:
2684 /*
2685 * Prepare to wait on uaddr. On success, holds hb lock and increments
2686 * q.key refs.
2687 */
2688 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2689 if (ret)
2690 goto out;
2691
2692 /* queue_me and wait for wakeup, timeout, or a signal. */
2693 futex_wait_queue_me(hb, &q, to);
2694
2695 /* If we were woken (and unqueued), we succeeded, whatever. */
2696 ret = 0;
2697 /* unqueue_me() drops q.key ref */
2698 if (!unqueue_me(&q))
2699 goto out;
2700 ret = -ETIMEDOUT;
2701 if (to && !to->task)
2702 goto out;
2703
2704 /*
2705 * We expect signal_pending(current), but we might be the
2706 * victim of a spurious wakeup as well.
2707 */
2708 if (!signal_pending(current))
2709 goto retry;
2710
2711 ret = -ERESTARTSYS;
2712 if (!abs_time)
2713 goto out;
2714
2715 restart = &current->restart_block;
2716 restart->fn = futex_wait_restart;
2717 restart->futex.uaddr = uaddr;
2718 restart->futex.val = val;
2719 restart->futex.time = *abs_time;
2720 restart->futex.bitset = bitset;
2721 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2722
2723 ret = -ERESTART_RESTARTBLOCK;
2724
2725 out:
2726 if (to) {
2727 hrtimer_cancel(&to->timer);
2728 destroy_hrtimer_on_stack(&to->timer);
2729 }
2730 return ret;
2731 }
2732
2733
2734 static long futex_wait_restart(struct restart_block *restart)
2735 {
2736 u32 __user *uaddr = restart->futex.uaddr;
2737 ktime_t t, *tp = NULL;
2738
2739 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2740 t = restart->futex.time;
2741 tp = &t;
2742 }
2743 restart->fn = do_no_restart_syscall;
2744
2745 return (long)futex_wait(uaddr, restart->futex.flags,
2746 restart->futex.val, tp, restart->futex.bitset);
2747 }
2748
2749
2750 /*
2751 * Userspace tried a 0 -> TID atomic transition of the futex value
2752 * and failed. The kernel side here does the whole locking operation:
2753 * if there are waiters then it will block as a consequence of relying
2754 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2755 * a 0 value of the futex too.).
2756 *
2757 * Also serves as futex trylock_pi()'ing, and due semantics.
2758 */
2759 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2760 ktime_t *time, int trylock)
2761 {
2762 struct hrtimer_sleeper timeout, *to;
2763 struct futex_pi_state *pi_state = NULL;
2764 struct task_struct *exiting = NULL;
2765 struct rt_mutex_waiter rt_waiter;
2766 struct futex_hash_bucket *hb;
2767 struct futex_q q = futex_q_init;
2768 int res, ret;
2769
2770 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2771 return -ENOSYS;
2772
2773 if (refill_pi_state_cache())
2774 return -ENOMEM;
2775
2776 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2777
2778 retry:
2779 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2780 if (unlikely(ret != 0))
2781 goto out;
2782
2783 retry_private:
2784 hb = queue_lock(&q);
2785
2786 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2787 &exiting, 0);
2788 if (unlikely(ret)) {
2789 /*
2790 * Atomic work succeeded and we got the lock,
2791 * or failed. Either way, we do _not_ block.
2792 */
2793 switch (ret) {
2794 case 1:
2795 /* We got the lock. */
2796 ret = 0;
2797 goto out_unlock_put_key;
2798 case -EFAULT:
2799 goto uaddr_faulted;
2800 case -EBUSY:
2801 case -EAGAIN:
2802 /*
2803 * Two reasons for this:
2804 * - EBUSY: Task is exiting and we just wait for the
2805 * exit to complete.
2806 * - EAGAIN: The user space value changed.
2807 */
2808 queue_unlock(hb);
2809 /*
2810 * Handle the case where the owner is in the middle of
2811 * exiting. Wait for the exit to complete otherwise
2812 * this task might loop forever, aka. live lock.
2813 */
2814 wait_for_owner_exiting(ret, exiting);
2815 cond_resched();
2816 goto retry;
2817 default:
2818 goto out_unlock_put_key;
2819 }
2820 }
2821
2822 WARN_ON(!q.pi_state);
2823
2824 /*
2825 * Only actually queue now that the atomic ops are done:
2826 */
2827 __queue_me(&q, hb);
2828
2829 if (trylock) {
2830 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2831 /* Fixup the trylock return value: */
2832 ret = ret ? 0 : -EWOULDBLOCK;
2833 goto no_block;
2834 }
2835
2836 rt_mutex_init_waiter(&rt_waiter);
2837
2838 /*
2839 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2840 * hold it while doing rt_mutex_start_proxy(), because then it will
2841 * include hb->lock in the blocking chain, even through we'll not in
2842 * fact hold it while blocking. This will lead it to report -EDEADLK
2843 * and BUG when futex_unlock_pi() interleaves with this.
2844 *
2845 * Therefore acquire wait_lock while holding hb->lock, but drop the
2846 * latter before calling __rt_mutex_start_proxy_lock(). This
2847 * interleaves with futex_unlock_pi() -- which does a similar lock
2848 * handoff -- such that the latter can observe the futex_q::pi_state
2849 * before __rt_mutex_start_proxy_lock() is done.
2850 */
2851 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2852 spin_unlock(q.lock_ptr);
2853 /*
2854 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2855 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2856 * it sees the futex_q::pi_state.
2857 */
2858 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2859 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2860
2861 if (ret) {
2862 if (ret == 1)
2863 ret = 0;
2864 goto cleanup;
2865 }
2866
2867 if (unlikely(to))
2868 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2869
2870 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2871
2872 cleanup:
2873 spin_lock(q.lock_ptr);
2874 /*
2875 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2876 * first acquire the hb->lock before removing the lock from the
2877 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2878 * lists consistent.
2879 *
2880 * In particular; it is important that futex_unlock_pi() can not
2881 * observe this inconsistency.
2882 */
2883 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2884 ret = 0;
2885
2886 no_block:
2887 /*
2888 * Fixup the pi_state owner and possibly acquire the lock if we
2889 * haven't already.
2890 */
2891 res = fixup_owner(uaddr, &q, !ret);
2892 /*
2893 * If fixup_owner() returned an error, proprogate that. If it acquired
2894 * the lock, clear our -ETIMEDOUT or -EINTR.
2895 */
2896 if (res)
2897 ret = (res < 0) ? res : 0;
2898
2899 /*
2900 * If fixup_owner() faulted and was unable to handle the fault, unlock
2901 * it and return the fault to userspace.
2902 */
2903 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2904 pi_state = q.pi_state;
2905 get_pi_state(pi_state);
2906 }
2907
2908 /* Unqueue and drop the lock */
2909 unqueue_me_pi(&q);
2910
2911 if (pi_state) {
2912 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2913 put_pi_state(pi_state);
2914 }
2915
2916 goto out;
2917
2918 out_unlock_put_key:
2919 queue_unlock(hb);
2920
2921 out:
2922 if (to) {
2923 hrtimer_cancel(&to->timer);
2924 destroy_hrtimer_on_stack(&to->timer);
2925 }
2926 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2927
2928 uaddr_faulted:
2929 queue_unlock(hb);
2930
2931 ret = fault_in_user_writeable(uaddr);
2932 if (ret)
2933 goto out;
2934
2935 if (!(flags & FLAGS_SHARED))
2936 goto retry_private;
2937
2938 goto retry;
2939 }
2940
2941 /*
2942 * Userspace attempted a TID -> 0 atomic transition, and failed.
2943 * This is the in-kernel slowpath: we look up the PI state (if any),
2944 * and do the rt-mutex unlock.
2945 */
2946 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2947 {
2948 u32 curval, uval, vpid = task_pid_vnr(current);
2949 union futex_key key = FUTEX_KEY_INIT;
2950 struct futex_hash_bucket *hb;
2951 struct futex_q *top_waiter;
2952 int ret;
2953
2954 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2955 return -ENOSYS;
2956
2957 retry:
2958 if (get_user(uval, uaddr))
2959 return -EFAULT;
2960 /*
2961 * We release only a lock we actually own:
2962 */
2963 if ((uval & FUTEX_TID_MASK) != vpid)
2964 return -EPERM;
2965
2966 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
2967 if (ret)
2968 return ret;
2969
2970 hb = hash_futex(&key);
2971 spin_lock(&hb->lock);
2972
2973 /*
2974 * Check waiters first. We do not trust user space values at
2975 * all and we at least want to know if user space fiddled
2976 * with the futex value instead of blindly unlocking.
2977 */
2978 top_waiter = futex_top_waiter(hb, &key);
2979 if (top_waiter) {
2980 struct futex_pi_state *pi_state = top_waiter->pi_state;
2981
2982 ret = -EINVAL;
2983 if (!pi_state)
2984 goto out_unlock;
2985
2986 /*
2987 * If current does not own the pi_state then the futex is
2988 * inconsistent and user space fiddled with the futex value.
2989 */
2990 if (pi_state->owner != current)
2991 goto out_unlock;
2992
2993 get_pi_state(pi_state);
2994 /*
2995 * By taking wait_lock while still holding hb->lock, we ensure
2996 * there is no point where we hold neither; and therefore
2997 * wake_futex_pi() must observe a state consistent with what we
2998 * observed.
2999 *
3000 * In particular; this forces __rt_mutex_start_proxy() to
3001 * complete such that we're guaranteed to observe the
3002 * rt_waiter. Also see the WARN in wake_futex_pi().
3003 */
3004 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3005 spin_unlock(&hb->lock);
3006
3007 /* drops pi_state->pi_mutex.wait_lock */
3008 ret = wake_futex_pi(uaddr, uval, pi_state);
3009
3010 put_pi_state(pi_state);
3011
3012 /*
3013 * Success, we're done! No tricky corner cases.
3014 */
3015 if (!ret)
3016 goto out_putkey;
3017 /*
3018 * The atomic access to the futex value generated a
3019 * pagefault, so retry the user-access and the wakeup:
3020 */
3021 if (ret == -EFAULT)
3022 goto pi_faulted;
3023 /*
3024 * A unconditional UNLOCK_PI op raced against a waiter
3025 * setting the FUTEX_WAITERS bit. Try again.
3026 */
3027 if (ret == -EAGAIN)
3028 goto pi_retry;
3029 /*
3030 * wake_futex_pi has detected invalid state. Tell user
3031 * space.
3032 */
3033 goto out_putkey;
3034 }
3035
3036 /*
3037 * We have no kernel internal state, i.e. no waiters in the
3038 * kernel. Waiters which are about to queue themselves are stuck
3039 * on hb->lock. So we can safely ignore them. We do neither
3040 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3041 * owner.
3042 */
3043 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3044 spin_unlock(&hb->lock);
3045 switch (ret) {
3046 case -EFAULT:
3047 goto pi_faulted;
3048
3049 case -EAGAIN:
3050 goto pi_retry;
3051
3052 default:
3053 WARN_ON_ONCE(1);
3054 goto out_putkey;
3055 }
3056 }
3057
3058 /*
3059 * If uval has changed, let user space handle it.
3060 */
3061 ret = (curval == uval) ? 0 : -EAGAIN;
3062
3063 out_unlock:
3064 spin_unlock(&hb->lock);
3065 out_putkey:
3066 return ret;
3067
3068 pi_retry:
3069 cond_resched();
3070 goto retry;
3071
3072 pi_faulted:
3073
3074 ret = fault_in_user_writeable(uaddr);
3075 if (!ret)
3076 goto retry;
3077
3078 return ret;
3079 }
3080
3081 /**
3082 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3083 * @hb: the hash_bucket futex_q was original enqueued on
3084 * @q: the futex_q woken while waiting to be requeued
3085 * @key2: the futex_key of the requeue target futex
3086 * @timeout: the timeout associated with the wait (NULL if none)
3087 *
3088 * Detect if the task was woken on the initial futex as opposed to the requeue
3089 * target futex. If so, determine if it was a timeout or a signal that caused
3090 * the wakeup and return the appropriate error code to the caller. Must be
3091 * called with the hb lock held.
3092 *
3093 * Return:
3094 * - 0 = no early wakeup detected;
3095 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3096 */
3097 static inline
3098 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3099 struct futex_q *q, union futex_key *key2,
3100 struct hrtimer_sleeper *timeout)
3101 {
3102 int ret = 0;
3103
3104 /*
3105 * With the hb lock held, we avoid races while we process the wakeup.
3106 * We only need to hold hb (and not hb2) to ensure atomicity as the
3107 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3108 * It can't be requeued from uaddr2 to something else since we don't
3109 * support a PI aware source futex for requeue.
3110 */
3111 if (!match_futex(&q->key, key2)) {
3112 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3113 /*
3114 * We were woken prior to requeue by a timeout or a signal.
3115 * Unqueue the futex_q and determine which it was.
3116 */
3117 plist_del(&q->list, &hb->chain);
3118 hb_waiters_dec(hb);
3119
3120 /* Handle spurious wakeups gracefully */
3121 ret = -EWOULDBLOCK;
3122 if (timeout && !timeout->task)
3123 ret = -ETIMEDOUT;
3124 else if (signal_pending(current))
3125 ret = -ERESTARTNOINTR;
3126 }
3127 return ret;
3128 }
3129
3130 /**
3131 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3132 * @uaddr: the futex we initially wait on (non-pi)
3133 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3134 * the same type, no requeueing from private to shared, etc.
3135 * @val: the expected value of uaddr
3136 * @abs_time: absolute timeout
3137 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3138 * @uaddr2: the pi futex we will take prior to returning to user-space
3139 *
3140 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3141 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3142 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3143 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3144 * without one, the pi logic would not know which task to boost/deboost, if
3145 * there was a need to.
3146 *
3147 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3148 * via the following--
3149 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3150 * 2) wakeup on uaddr2 after a requeue
3151 * 3) signal
3152 * 4) timeout
3153 *
3154 * If 3, cleanup and return -ERESTARTNOINTR.
3155 *
3156 * If 2, we may then block on trying to take the rt_mutex and return via:
3157 * 5) successful lock
3158 * 6) signal
3159 * 7) timeout
3160 * 8) other lock acquisition failure
3161 *
3162 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3163 *
3164 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3165 *
3166 * Return:
3167 * - 0 - On success;
3168 * - <0 - On error
3169 */
3170 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3171 u32 val, ktime_t *abs_time, u32 bitset,
3172 u32 __user *uaddr2)
3173 {
3174 struct hrtimer_sleeper timeout, *to;
3175 struct futex_pi_state *pi_state = NULL;
3176 struct rt_mutex_waiter rt_waiter;
3177 struct futex_hash_bucket *hb;
3178 union futex_key key2 = FUTEX_KEY_INIT;
3179 struct futex_q q = futex_q_init;
3180 int res, ret;
3181
3182 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3183 return -ENOSYS;
3184
3185 if (uaddr == uaddr2)
3186 return -EINVAL;
3187
3188 if (!bitset)
3189 return -EINVAL;
3190
3191 to = futex_setup_timer(abs_time, &timeout, flags,
3192 current->timer_slack_ns);
3193
3194 /*
3195 * The waiter is allocated on our stack, manipulated by the requeue
3196 * code while we sleep on uaddr.
3197 */
3198 rt_mutex_init_waiter(&rt_waiter);
3199
3200 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3201 if (unlikely(ret != 0))
3202 goto out;
3203
3204 q.bitset = bitset;
3205 q.rt_waiter = &rt_waiter;
3206 q.requeue_pi_key = &key2;
3207
3208 /*
3209 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3210 * count.
3211 */
3212 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3213 if (ret)
3214 goto out;
3215
3216 /*
3217 * The check above which compares uaddrs is not sufficient for
3218 * shared futexes. We need to compare the keys:
3219 */
3220 if (match_futex(&q.key, &key2)) {
3221 queue_unlock(hb);
3222 ret = -EINVAL;
3223 goto out;
3224 }
3225
3226 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3227 futex_wait_queue_me(hb, &q, to);
3228
3229 spin_lock(&hb->lock);
3230 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3231 spin_unlock(&hb->lock);
3232 if (ret)
3233 goto out;
3234
3235 /*
3236 * In order for us to be here, we know our q.key == key2, and since
3237 * we took the hb->lock above, we also know that futex_requeue() has
3238 * completed and we no longer have to concern ourselves with a wakeup
3239 * race with the atomic proxy lock acquisition by the requeue code. The
3240 * futex_requeue dropped our key1 reference and incremented our key2
3241 * reference count.
3242 */
3243
3244 /* Check if the requeue code acquired the second futex for us. */
3245 if (!q.rt_waiter) {
3246 /*
3247 * Got the lock. We might not be the anticipated owner if we
3248 * did a lock-steal - fix up the PI-state in that case.
3249 */
3250 if (q.pi_state && (q.pi_state->owner != current)) {
3251 spin_lock(q.lock_ptr);
3252 ret = fixup_pi_state_owner(uaddr2, &q, current);
3253 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3254 pi_state = q.pi_state;
3255 get_pi_state(pi_state);
3256 }
3257 /*
3258 * Drop the reference to the pi state which
3259 * the requeue_pi() code acquired for us.
3260 */
3261 put_pi_state(q.pi_state);
3262 spin_unlock(q.lock_ptr);
3263 }
3264 } else {
3265 struct rt_mutex *pi_mutex;
3266
3267 /*
3268 * We have been woken up by futex_unlock_pi(), a timeout, or a
3269 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3270 * the pi_state.
3271 */
3272 WARN_ON(!q.pi_state);
3273 pi_mutex = &q.pi_state->pi_mutex;
3274 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3275
3276 spin_lock(q.lock_ptr);
3277 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3278 ret = 0;
3279
3280 debug_rt_mutex_free_waiter(&rt_waiter);
3281 /*
3282 * Fixup the pi_state owner and possibly acquire the lock if we
3283 * haven't already.
3284 */
3285 res = fixup_owner(uaddr2, &q, !ret);
3286 /*
3287 * If fixup_owner() returned an error, proprogate that. If it
3288 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3289 */
3290 if (res)
3291 ret = (res < 0) ? res : 0;
3292
3293 /*
3294 * If fixup_pi_state_owner() faulted and was unable to handle
3295 * the fault, unlock the rt_mutex and return the fault to
3296 * userspace.
3297 */
3298 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3299 pi_state = q.pi_state;
3300 get_pi_state(pi_state);
3301 }
3302
3303 /* Unqueue and drop the lock. */
3304 unqueue_me_pi(&q);
3305 }
3306
3307 if (pi_state) {
3308 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3309 put_pi_state(pi_state);
3310 }
3311
3312 if (ret == -EINTR) {
3313 /*
3314 * We've already been requeued, but cannot restart by calling
3315 * futex_lock_pi() directly. We could restart this syscall, but
3316 * it would detect that the user space "val" changed and return
3317 * -EWOULDBLOCK. Save the overhead of the restart and return
3318 * -EWOULDBLOCK directly.
3319 */
3320 ret = -EWOULDBLOCK;
3321 }
3322
3323 out:
3324 if (to) {
3325 hrtimer_cancel(&to->timer);
3326 destroy_hrtimer_on_stack(&to->timer);
3327 }
3328 return ret;
3329 }
3330
3331 /*
3332 * Support for robust futexes: the kernel cleans up held futexes at
3333 * thread exit time.
3334 *
3335 * Implementation: user-space maintains a per-thread list of locks it
3336 * is holding. Upon do_exit(), the kernel carefully walks this list,
3337 * and marks all locks that are owned by this thread with the
3338 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3339 * always manipulated with the lock held, so the list is private and
3340 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3341 * field, to allow the kernel to clean up if the thread dies after
3342 * acquiring the lock, but just before it could have added itself to
3343 * the list. There can only be one such pending lock.
3344 */
3345
3346 /**
3347 * sys_set_robust_list() - Set the robust-futex list head of a task
3348 * @head: pointer to the list-head
3349 * @len: length of the list-head, as userspace expects
3350 */
3351 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3352 size_t, len)
3353 {
3354 if (!futex_cmpxchg_enabled)
3355 return -ENOSYS;
3356 /*
3357 * The kernel knows only one size for now:
3358 */
3359 if (unlikely(len != sizeof(*head)))
3360 return -EINVAL;
3361
3362 current->robust_list = head;
3363
3364 return 0;
3365 }
3366
3367 /**
3368 * sys_get_robust_list() - Get the robust-futex list head of a task
3369 * @pid: pid of the process [zero for current task]
3370 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3371 * @len_ptr: pointer to a length field, the kernel fills in the header size
3372 */
3373 SYSCALL_DEFINE3(get_robust_list, int, pid,
3374 struct robust_list_head __user * __user *, head_ptr,
3375 size_t __user *, len_ptr)
3376 {
3377 struct robust_list_head __user *head;
3378 unsigned long ret;
3379 struct task_struct *p;
3380
3381 if (!futex_cmpxchg_enabled)
3382 return -ENOSYS;
3383
3384 rcu_read_lock();
3385
3386 ret = -ESRCH;
3387 if (!pid)
3388 p = current;
3389 else {
3390 p = find_task_by_vpid(pid);
3391 if (!p)
3392 goto err_unlock;
3393 }
3394
3395 ret = -EPERM;
3396 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3397 goto err_unlock;
3398
3399 head = p->robust_list;
3400 rcu_read_unlock();
3401
3402 if (put_user(sizeof(*head), len_ptr))
3403 return -EFAULT;
3404 return put_user(head, head_ptr);
3405
3406 err_unlock:
3407 rcu_read_unlock();
3408
3409 return ret;
3410 }
3411
3412 /* Constants for the pending_op argument of handle_futex_death */
3413 #define HANDLE_DEATH_PENDING true
3414 #define HANDLE_DEATH_LIST false
3415
3416 /*
3417 * Process a futex-list entry, check whether it's owned by the
3418 * dying task, and do notification if so:
3419 */
3420 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3421 bool pi, bool pending_op)
3422 {
3423 u32 uval, nval, mval;
3424 int err;
3425
3426 /* Futex address must be 32bit aligned */
3427 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3428 return -1;
3429
3430 retry:
3431 if (get_user(uval, uaddr))
3432 return -1;
3433
3434 /*
3435 * Special case for regular (non PI) futexes. The unlock path in
3436 * user space has two race scenarios:
3437 *
3438 * 1. The unlock path releases the user space futex value and
3439 * before it can execute the futex() syscall to wake up
3440 * waiters it is killed.
3441 *
3442 * 2. A woken up waiter is killed before it can acquire the
3443 * futex in user space.
3444 *
3445 * In both cases the TID validation below prevents a wakeup of
3446 * potential waiters which can cause these waiters to block
3447 * forever.
3448 *
3449 * In both cases the following conditions are met:
3450 *
3451 * 1) task->robust_list->list_op_pending != NULL
3452 * @pending_op == true
3453 * 2) User space futex value == 0
3454 * 3) Regular futex: @pi == false
3455 *
3456 * If these conditions are met, it is safe to attempt waking up a
3457 * potential waiter without touching the user space futex value and
3458 * trying to set the OWNER_DIED bit. The user space futex value is
3459 * uncontended and the rest of the user space mutex state is
3460 * consistent, so a woken waiter will just take over the
3461 * uncontended futex. Setting the OWNER_DIED bit would create
3462 * inconsistent state and malfunction of the user space owner died
3463 * handling.
3464 */
3465 if (pending_op && !pi && !uval) {
3466 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3467 return 0;
3468 }
3469
3470 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3471 return 0;
3472
3473 /*
3474 * Ok, this dying thread is truly holding a futex
3475 * of interest. Set the OWNER_DIED bit atomically
3476 * via cmpxchg, and if the value had FUTEX_WAITERS
3477 * set, wake up a waiter (if any). (We have to do a
3478 * futex_wake() even if OWNER_DIED is already set -
3479 * to handle the rare but possible case of recursive
3480 * thread-death.) The rest of the cleanup is done in
3481 * userspace.
3482 */
3483 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3484
3485 /*
3486 * We are not holding a lock here, but we want to have
3487 * the pagefault_disable/enable() protection because
3488 * we want to handle the fault gracefully. If the
3489 * access fails we try to fault in the futex with R/W
3490 * verification via get_user_pages. get_user() above
3491 * does not guarantee R/W access. If that fails we
3492 * give up and leave the futex locked.
3493 */
3494 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3495 switch (err) {
3496 case -EFAULT:
3497 if (fault_in_user_writeable(uaddr))
3498 return -1;
3499 goto retry;
3500
3501 case -EAGAIN:
3502 cond_resched();
3503 goto retry;
3504
3505 default:
3506 WARN_ON_ONCE(1);
3507 return err;
3508 }
3509 }
3510
3511 if (nval != uval)
3512 goto retry;
3513
3514 /*
3515 * Wake robust non-PI futexes here. The wakeup of
3516 * PI futexes happens in exit_pi_state():
3517 */
3518 if (!pi && (uval & FUTEX_WAITERS))
3519 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3520
3521 return 0;
3522 }
3523
3524 /*
3525 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3526 */
3527 static inline int fetch_robust_entry(struct robust_list __user **entry,
3528 struct robust_list __user * __user *head,
3529 unsigned int *pi)
3530 {
3531 unsigned long uentry;
3532
3533 if (get_user(uentry, (unsigned long __user *)head))
3534 return -EFAULT;
3535
3536 *entry = (void __user *)(uentry & ~1UL);
3537 *pi = uentry & 1;
3538
3539 return 0;
3540 }
3541
3542 /*
3543 * Walk curr->robust_list (very carefully, it's a userspace list!)
3544 * and mark any locks found there dead, and notify any waiters.
3545 *
3546 * We silently return on any sign of list-walking problem.
3547 */
3548 static void exit_robust_list(struct task_struct *curr)
3549 {
3550 struct robust_list_head __user *head = curr->robust_list;
3551 struct robust_list __user *entry, *next_entry, *pending;
3552 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3553 unsigned int next_pi;
3554 unsigned long futex_offset;
3555 int rc;
3556
3557 if (!futex_cmpxchg_enabled)
3558 return;
3559
3560 /*
3561 * Fetch the list head (which was registered earlier, via
3562 * sys_set_robust_list()):
3563 */
3564 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3565 return;
3566 /*
3567 * Fetch the relative futex offset:
3568 */
3569 if (get_user(futex_offset, &head->futex_offset))
3570 return;
3571 /*
3572 * Fetch any possibly pending lock-add first, and handle it
3573 * if it exists:
3574 */
3575 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3576 return;
3577
3578 next_entry = NULL; /* avoid warning with gcc */
3579 while (entry != &head->list) {
3580 /*
3581 * Fetch the next entry in the list before calling
3582 * handle_futex_death:
3583 */
3584 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3585 /*
3586 * A pending lock might already be on the list, so
3587 * don't process it twice:
3588 */
3589 if (entry != pending) {
3590 if (handle_futex_death((void __user *)entry + futex_offset,
3591 curr, pi, HANDLE_DEATH_LIST))
3592 return;
3593 }
3594 if (rc)
3595 return;
3596 entry = next_entry;
3597 pi = next_pi;
3598 /*
3599 * Avoid excessively long or circular lists:
3600 */
3601 if (!--limit)
3602 break;
3603
3604 cond_resched();
3605 }
3606
3607 if (pending) {
3608 handle_futex_death((void __user *)pending + futex_offset,
3609 curr, pip, HANDLE_DEATH_PENDING);
3610 }
3611 }
3612
3613 static void futex_cleanup(struct task_struct *tsk)
3614 {
3615 if (unlikely(tsk->robust_list)) {
3616 exit_robust_list(tsk);
3617 tsk->robust_list = NULL;
3618 }
3619
3620 #ifdef CONFIG_COMPAT
3621 if (unlikely(tsk->compat_robust_list)) {
3622 compat_exit_robust_list(tsk);
3623 tsk->compat_robust_list = NULL;
3624 }
3625 #endif
3626
3627 if (unlikely(!list_empty(&tsk->pi_state_list)))
3628 exit_pi_state_list(tsk);
3629 }
3630
3631 /**
3632 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3633 * @tsk: task to set the state on
3634 *
3635 * Set the futex exit state of the task lockless. The futex waiter code
3636 * observes that state when a task is exiting and loops until the task has
3637 * actually finished the futex cleanup. The worst case for this is that the
3638 * waiter runs through the wait loop until the state becomes visible.
3639 *
3640 * This is called from the recursive fault handling path in do_exit().
3641 *
3642 * This is best effort. Either the futex exit code has run already or
3643 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3644 * take it over. If not, the problem is pushed back to user space. If the
3645 * futex exit code did not run yet, then an already queued waiter might
3646 * block forever, but there is nothing which can be done about that.
3647 */
3648 void futex_exit_recursive(struct task_struct *tsk)
3649 {
3650 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3651 if (tsk->futex_state == FUTEX_STATE_EXITING)
3652 mutex_unlock(&tsk->futex_exit_mutex);
3653 tsk->futex_state = FUTEX_STATE_DEAD;
3654 }
3655
3656 static void futex_cleanup_begin(struct task_struct *tsk)
3657 {
3658 /*
3659 * Prevent various race issues against a concurrent incoming waiter
3660 * including live locks by forcing the waiter to block on
3661 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3662 * attach_to_pi_owner().
3663 */
3664 mutex_lock(&tsk->futex_exit_mutex);
3665
3666 /*
3667 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3668 *
3669 * This ensures that all subsequent checks of tsk->futex_state in
3670 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3671 * tsk->pi_lock held.
3672 *
3673 * It guarantees also that a pi_state which was queued right before
3674 * the state change under tsk->pi_lock by a concurrent waiter must
3675 * be observed in exit_pi_state_list().
3676 */
3677 raw_spin_lock_irq(&tsk->pi_lock);
3678 tsk->futex_state = FUTEX_STATE_EXITING;
3679 raw_spin_unlock_irq(&tsk->pi_lock);
3680 }
3681
3682 static void futex_cleanup_end(struct task_struct *tsk, int state)
3683 {
3684 /*
3685 * Lockless store. The only side effect is that an observer might
3686 * take another loop until it becomes visible.
3687 */
3688 tsk->futex_state = state;
3689 /*
3690 * Drop the exit protection. This unblocks waiters which observed
3691 * FUTEX_STATE_EXITING to reevaluate the state.
3692 */
3693 mutex_unlock(&tsk->futex_exit_mutex);
3694 }
3695
3696 void futex_exec_release(struct task_struct *tsk)
3697 {
3698 /*
3699 * The state handling is done for consistency, but in the case of
3700 * exec() there is no way to prevent futher damage as the PID stays
3701 * the same. But for the unlikely and arguably buggy case that a
3702 * futex is held on exec(), this provides at least as much state
3703 * consistency protection which is possible.
3704 */
3705 futex_cleanup_begin(tsk);
3706 futex_cleanup(tsk);
3707 /*
3708 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3709 * exec a new binary.
3710 */
3711 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3712 }
3713
3714 void futex_exit_release(struct task_struct *tsk)
3715 {
3716 futex_cleanup_begin(tsk);
3717 futex_cleanup(tsk);
3718 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3719 }
3720
3721 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3722 u32 __user *uaddr2, u32 val2, u32 val3)
3723 {
3724 int cmd = op & FUTEX_CMD_MASK;
3725 unsigned int flags = 0;
3726
3727 if (!(op & FUTEX_PRIVATE_FLAG))
3728 flags |= FLAGS_SHARED;
3729
3730 if (op & FUTEX_CLOCK_REALTIME) {
3731 flags |= FLAGS_CLOCKRT;
3732 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3733 cmd != FUTEX_WAIT_REQUEUE_PI)
3734 return -ENOSYS;
3735 }
3736
3737 switch (cmd) {
3738 case FUTEX_LOCK_PI:
3739 case FUTEX_UNLOCK_PI:
3740 case FUTEX_TRYLOCK_PI:
3741 case FUTEX_WAIT_REQUEUE_PI:
3742 case FUTEX_CMP_REQUEUE_PI:
3743 if (!futex_cmpxchg_enabled)
3744 return -ENOSYS;
3745 }
3746
3747 switch (cmd) {
3748 case FUTEX_WAIT:
3749 val3 = FUTEX_BITSET_MATCH_ANY;
3750 fallthrough;
3751 case FUTEX_WAIT_BITSET:
3752 return futex_wait(uaddr, flags, val, timeout, val3);
3753 case FUTEX_WAKE:
3754 val3 = FUTEX_BITSET_MATCH_ANY;
3755 fallthrough;
3756 case FUTEX_WAKE_BITSET:
3757 return futex_wake(uaddr, flags, val, val3);
3758 case FUTEX_REQUEUE:
3759 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3760 case FUTEX_CMP_REQUEUE:
3761 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3762 case FUTEX_WAKE_OP:
3763 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3764 case FUTEX_LOCK_PI:
3765 return futex_lock_pi(uaddr, flags, timeout, 0);
3766 case FUTEX_UNLOCK_PI:
3767 return futex_unlock_pi(uaddr, flags);
3768 case FUTEX_TRYLOCK_PI:
3769 return futex_lock_pi(uaddr, flags, NULL, 1);
3770 case FUTEX_WAIT_REQUEUE_PI:
3771 val3 = FUTEX_BITSET_MATCH_ANY;
3772 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3773 uaddr2);
3774 case FUTEX_CMP_REQUEUE_PI:
3775 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3776 }
3777 return -ENOSYS;
3778 }
3779
3780
3781 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3782 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3783 u32, val3)
3784 {
3785 struct timespec64 ts;
3786 ktime_t t, *tp = NULL;
3787 u32 val2 = 0;
3788 int cmd = op & FUTEX_CMD_MASK;
3789
3790 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3791 cmd == FUTEX_WAIT_BITSET ||
3792 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3793 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3794 return -EFAULT;
3795 if (get_timespec64(&ts, utime))
3796 return -EFAULT;
3797 if (!timespec64_valid(&ts))
3798 return -EINVAL;
3799
3800 t = timespec64_to_ktime(ts);
3801 if (cmd == FUTEX_WAIT)
3802 t = ktime_add_safe(ktime_get(), t);
3803 else if (!(op & FUTEX_CLOCK_REALTIME))
3804 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3805 tp = &t;
3806 }
3807 /*
3808 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3809 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3810 */
3811 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3812 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3813 val2 = (u32) (unsigned long) utime;
3814
3815 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3816 }
3817
3818 #ifdef CONFIG_COMPAT
3819 /*
3820 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3821 */
3822 static inline int
3823 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3824 compat_uptr_t __user *head, unsigned int *pi)
3825 {
3826 if (get_user(*uentry, head))
3827 return -EFAULT;
3828
3829 *entry = compat_ptr((*uentry) & ~1);
3830 *pi = (unsigned int)(*uentry) & 1;
3831
3832 return 0;
3833 }
3834
3835 static void __user *futex_uaddr(struct robust_list __user *entry,
3836 compat_long_t futex_offset)
3837 {
3838 compat_uptr_t base = ptr_to_compat(entry);
3839 void __user *uaddr = compat_ptr(base + futex_offset);
3840
3841 return uaddr;
3842 }
3843
3844 /*
3845 * Walk curr->robust_list (very carefully, it's a userspace list!)
3846 * and mark any locks found there dead, and notify any waiters.
3847 *
3848 * We silently return on any sign of list-walking problem.
3849 */
3850 static void compat_exit_robust_list(struct task_struct *curr)
3851 {
3852 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3853 struct robust_list __user *entry, *next_entry, *pending;
3854 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3855 unsigned int next_pi;
3856 compat_uptr_t uentry, next_uentry, upending;
3857 compat_long_t futex_offset;
3858 int rc;
3859
3860 if (!futex_cmpxchg_enabled)
3861 return;
3862
3863 /*
3864 * Fetch the list head (which was registered earlier, via
3865 * sys_set_robust_list()):
3866 */
3867 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3868 return;
3869 /*
3870 * Fetch the relative futex offset:
3871 */
3872 if (get_user(futex_offset, &head->futex_offset))
3873 return;
3874 /*
3875 * Fetch any possibly pending lock-add first, and handle it
3876 * if it exists:
3877 */
3878 if (compat_fetch_robust_entry(&upending, &pending,
3879 &head->list_op_pending, &pip))
3880 return;
3881
3882 next_entry = NULL; /* avoid warning with gcc */
3883 while (entry != (struct robust_list __user *) &head->list) {
3884 /*
3885 * Fetch the next entry in the list before calling
3886 * handle_futex_death:
3887 */
3888 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3889 (compat_uptr_t __user *)&entry->next, &next_pi);
3890 /*
3891 * A pending lock might already be on the list, so
3892 * dont process it twice:
3893 */
3894 if (entry != pending) {
3895 void __user *uaddr = futex_uaddr(entry, futex_offset);
3896
3897 if (handle_futex_death(uaddr, curr, pi,
3898 HANDLE_DEATH_LIST))
3899 return;
3900 }
3901 if (rc)
3902 return;
3903 uentry = next_uentry;
3904 entry = next_entry;
3905 pi = next_pi;
3906 /*
3907 * Avoid excessively long or circular lists:
3908 */
3909 if (!--limit)
3910 break;
3911
3912 cond_resched();
3913 }
3914 if (pending) {
3915 void __user *uaddr = futex_uaddr(pending, futex_offset);
3916
3917 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3918 }
3919 }
3920
3921 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3922 struct compat_robust_list_head __user *, head,
3923 compat_size_t, len)
3924 {
3925 if (!futex_cmpxchg_enabled)
3926 return -ENOSYS;
3927
3928 if (unlikely(len != sizeof(*head)))
3929 return -EINVAL;
3930
3931 current->compat_robust_list = head;
3932
3933 return 0;
3934 }
3935
3936 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3937 compat_uptr_t __user *, head_ptr,
3938 compat_size_t __user *, len_ptr)
3939 {
3940 struct compat_robust_list_head __user *head;
3941 unsigned long ret;
3942 struct task_struct *p;
3943
3944 if (!futex_cmpxchg_enabled)
3945 return -ENOSYS;
3946
3947 rcu_read_lock();
3948
3949 ret = -ESRCH;
3950 if (!pid)
3951 p = current;
3952 else {
3953 p = find_task_by_vpid(pid);
3954 if (!p)
3955 goto err_unlock;
3956 }
3957
3958 ret = -EPERM;
3959 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3960 goto err_unlock;
3961
3962 head = p->compat_robust_list;
3963 rcu_read_unlock();
3964
3965 if (put_user(sizeof(*head), len_ptr))
3966 return -EFAULT;
3967 return put_user(ptr_to_compat(head), head_ptr);
3968
3969 err_unlock:
3970 rcu_read_unlock();
3971
3972 return ret;
3973 }
3974 #endif /* CONFIG_COMPAT */
3975
3976 #ifdef CONFIG_COMPAT_32BIT_TIME
3977 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
3978 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
3979 u32, val3)
3980 {
3981 struct timespec64 ts;
3982 ktime_t t, *tp = NULL;
3983 int val2 = 0;
3984 int cmd = op & FUTEX_CMD_MASK;
3985
3986 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3987 cmd == FUTEX_WAIT_BITSET ||
3988 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3989 if (get_old_timespec32(&ts, utime))
3990 return -EFAULT;
3991 if (!timespec64_valid(&ts))
3992 return -EINVAL;
3993
3994 t = timespec64_to_ktime(ts);
3995 if (cmd == FUTEX_WAIT)
3996 t = ktime_add_safe(ktime_get(), t);
3997 else if (!(op & FUTEX_CLOCK_REALTIME))
3998 t = timens_ktime_to_host(CLOCK_MONOTONIC, t);
3999 tp = &t;
4000 }
4001 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4002 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4003 val2 = (int) (unsigned long) utime;
4004
4005 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4006 }
4007 #endif /* CONFIG_COMPAT_32BIT_TIME */
4008
4009 static void __init futex_detect_cmpxchg(void)
4010 {
4011 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4012 u32 curval;
4013
4014 /*
4015 * This will fail and we want it. Some arch implementations do
4016 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4017 * functionality. We want to know that before we call in any
4018 * of the complex code paths. Also we want to prevent
4019 * registration of robust lists in that case. NULL is
4020 * guaranteed to fault and we get -EFAULT on functional
4021 * implementation, the non-functional ones will return
4022 * -ENOSYS.
4023 */
4024 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4025 futex_cmpxchg_enabled = 1;
4026 #endif
4027 }
4028
4029 static int __init futex_init(void)
4030 {
4031 unsigned int futex_shift;
4032 unsigned long i;
4033
4034 #if CONFIG_BASE_SMALL
4035 futex_hashsize = 16;
4036 #else
4037 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4038 #endif
4039
4040 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4041 futex_hashsize, 0,
4042 futex_hashsize < 256 ? HASH_SMALL : 0,
4043 &futex_shift, NULL,
4044 futex_hashsize, futex_hashsize);
4045 futex_hashsize = 1UL << futex_shift;
4046
4047 futex_detect_cmpxchg();
4048
4049 for (i = 0; i < futex_hashsize; i++) {
4050 atomic_set(&futex_queues[i].waiters, 0);
4051 plist_head_init(&futex_queues[i].chain);
4052 spin_lock_init(&futex_queues[i].lock);
4053 }
4054
4055 return 0;
4056 }
4057 core_initcall(futex_init);