]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/futex.c
futex: Fix pi_state->owner serialization
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel which is almost certainly an
674 * application bug. In such a case, just retry.
675 *
676 * We are not calling into get_futex_key_refs() in file-backed
677 * cases, therefore a successful atomic_inc return below will
678 * guarantee that get_futex_key() will still imply smp_mb(); (B).
679 */
680 if (!atomic_inc_not_zero(&inode->i_count)) {
681 rcu_read_unlock();
682 put_page(page);
683
684 goto again;
685 }
686
687 /* Should be impossible but lets be paranoid for now */
688 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
689 err = -EFAULT;
690 rcu_read_unlock();
691 iput(inode);
692
693 goto out;
694 }
695
696 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
697 key->shared.inode = inode;
698 key->shared.pgoff = basepage_index(tail);
699 rcu_read_unlock();
700 }
701
702 out:
703 put_page(page);
704 return err;
705 }
706
707 static inline void put_futex_key(union futex_key *key)
708 {
709 drop_futex_key_refs(key);
710 }
711
712 /**
713 * fault_in_user_writeable() - Fault in user address and verify RW access
714 * @uaddr: pointer to faulting user space address
715 *
716 * Slow path to fixup the fault we just took in the atomic write
717 * access to @uaddr.
718 *
719 * We have no generic implementation of a non-destructive write to the
720 * user address. We know that we faulted in the atomic pagefault
721 * disabled section so we can as well avoid the #PF overhead by
722 * calling get_user_pages() right away.
723 */
724 static int fault_in_user_writeable(u32 __user *uaddr)
725 {
726 struct mm_struct *mm = current->mm;
727 int ret;
728
729 down_read(&mm->mmap_sem);
730 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
731 FAULT_FLAG_WRITE, NULL);
732 up_read(&mm->mmap_sem);
733
734 return ret < 0 ? ret : 0;
735 }
736
737 /**
738 * futex_top_waiter() - Return the highest priority waiter on a futex
739 * @hb: the hash bucket the futex_q's reside in
740 * @key: the futex key (to distinguish it from other futex futex_q's)
741 *
742 * Must be called with the hb lock held.
743 */
744 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
745 union futex_key *key)
746 {
747 struct futex_q *this;
748
749 plist_for_each_entry(this, &hb->chain, list) {
750 if (match_futex(&this->key, key))
751 return this;
752 }
753 return NULL;
754 }
755
756 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
757 u32 uval, u32 newval)
758 {
759 int ret;
760
761 pagefault_disable();
762 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
763 pagefault_enable();
764
765 return ret;
766 }
767
768 static int get_futex_value_locked(u32 *dest, u32 __user *from)
769 {
770 int ret;
771
772 pagefault_disable();
773 ret = __get_user(*dest, from);
774 pagefault_enable();
775
776 return ret ? -EFAULT : 0;
777 }
778
779
780 /*
781 * PI code:
782 */
783 static int refill_pi_state_cache(void)
784 {
785 struct futex_pi_state *pi_state;
786
787 if (likely(current->pi_state_cache))
788 return 0;
789
790 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
791
792 if (!pi_state)
793 return -ENOMEM;
794
795 INIT_LIST_HEAD(&pi_state->list);
796 /* pi_mutex gets initialized later */
797 pi_state->owner = NULL;
798 atomic_set(&pi_state->refcount, 1);
799 pi_state->key = FUTEX_KEY_INIT;
800
801 current->pi_state_cache = pi_state;
802
803 return 0;
804 }
805
806 static struct futex_pi_state *alloc_pi_state(void)
807 {
808 struct futex_pi_state *pi_state = current->pi_state_cache;
809
810 WARN_ON(!pi_state);
811 current->pi_state_cache = NULL;
812
813 return pi_state;
814 }
815
816 static void get_pi_state(struct futex_pi_state *pi_state)
817 {
818 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
819 }
820
821 /*
822 * Drops a reference to the pi_state object and frees or caches it
823 * when the last reference is gone.
824 */
825 static void put_pi_state(struct futex_pi_state *pi_state)
826 {
827 if (!pi_state)
828 return;
829
830 if (!atomic_dec_and_test(&pi_state->refcount))
831 return;
832
833 /*
834 * If pi_state->owner is NULL, the owner is most probably dying
835 * and has cleaned up the pi_state already
836 */
837 if (pi_state->owner) {
838 struct task_struct *owner;
839
840 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
841 owner = pi_state->owner;
842 if (owner) {
843 raw_spin_lock(&owner->pi_lock);
844 list_del_init(&pi_state->list);
845 raw_spin_unlock(&owner->pi_lock);
846 }
847 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
848 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
849 }
850
851 if (current->pi_state_cache) {
852 kfree(pi_state);
853 } else {
854 /*
855 * pi_state->list is already empty.
856 * clear pi_state->owner.
857 * refcount is at 0 - put it back to 1.
858 */
859 pi_state->owner = NULL;
860 atomic_set(&pi_state->refcount, 1);
861 current->pi_state_cache = pi_state;
862 }
863 }
864
865 /*
866 * Look up the task based on what TID userspace gave us.
867 * We dont trust it.
868 */
869 static struct task_struct *futex_find_get_task(pid_t pid)
870 {
871 struct task_struct *p;
872
873 rcu_read_lock();
874 p = find_task_by_vpid(pid);
875 if (p)
876 get_task_struct(p);
877
878 rcu_read_unlock();
879
880 return p;
881 }
882
883 /*
884 * This task is holding PI mutexes at exit time => bad.
885 * Kernel cleans up PI-state, but userspace is likely hosed.
886 * (Robust-futex cleanup is separate and might save the day for userspace.)
887 */
888 void exit_pi_state_list(struct task_struct *curr)
889 {
890 struct list_head *next, *head = &curr->pi_state_list;
891 struct futex_pi_state *pi_state;
892 struct futex_hash_bucket *hb;
893 union futex_key key = FUTEX_KEY_INIT;
894
895 if (!futex_cmpxchg_enabled)
896 return;
897 /*
898 * We are a ZOMBIE and nobody can enqueue itself on
899 * pi_state_list anymore, but we have to be careful
900 * versus waiters unqueueing themselves:
901 */
902 raw_spin_lock_irq(&curr->pi_lock);
903 while (!list_empty(head)) {
904
905 next = head->next;
906 pi_state = list_entry(next, struct futex_pi_state, list);
907 key = pi_state->key;
908 hb = hash_futex(&key);
909 raw_spin_unlock_irq(&curr->pi_lock);
910
911 spin_lock(&hb->lock);
912 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
913 raw_spin_lock(&curr->pi_lock);
914 /*
915 * We dropped the pi-lock, so re-check whether this
916 * task still owns the PI-state:
917 */
918 if (head->next != next) {
919 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
920 spin_unlock(&hb->lock);
921 continue;
922 }
923
924 WARN_ON(pi_state->owner != curr);
925 WARN_ON(list_empty(&pi_state->list));
926 list_del_init(&pi_state->list);
927 pi_state->owner = NULL;
928 raw_spin_unlock(&curr->pi_lock);
929
930 get_pi_state(pi_state);
931 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
932 spin_unlock(&hb->lock);
933
934 rt_mutex_futex_unlock(&pi_state->pi_mutex);
935 put_pi_state(pi_state);
936
937 raw_spin_lock_irq(&curr->pi_lock);
938 }
939 raw_spin_unlock_irq(&curr->pi_lock);
940 }
941
942 /*
943 * We need to check the following states:
944 *
945 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
946 *
947 * [1] NULL | --- | --- | 0 | 0/1 | Valid
948 * [2] NULL | --- | --- | >0 | 0/1 | Valid
949 *
950 * [3] Found | NULL | -- | Any | 0/1 | Invalid
951 *
952 * [4] Found | Found | NULL | 0 | 1 | Valid
953 * [5] Found | Found | NULL | >0 | 1 | Invalid
954 *
955 * [6] Found | Found | task | 0 | 1 | Valid
956 *
957 * [7] Found | Found | NULL | Any | 0 | Invalid
958 *
959 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
960 * [9] Found | Found | task | 0 | 0 | Invalid
961 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
962 *
963 * [1] Indicates that the kernel can acquire the futex atomically. We
964 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
965 *
966 * [2] Valid, if TID does not belong to a kernel thread. If no matching
967 * thread is found then it indicates that the owner TID has died.
968 *
969 * [3] Invalid. The waiter is queued on a non PI futex
970 *
971 * [4] Valid state after exit_robust_list(), which sets the user space
972 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
973 *
974 * [5] The user space value got manipulated between exit_robust_list()
975 * and exit_pi_state_list()
976 *
977 * [6] Valid state after exit_pi_state_list() which sets the new owner in
978 * the pi_state but cannot access the user space value.
979 *
980 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
981 *
982 * [8] Owner and user space value match
983 *
984 * [9] There is no transient state which sets the user space TID to 0
985 * except exit_robust_list(), but this is indicated by the
986 * FUTEX_OWNER_DIED bit. See [4]
987 *
988 * [10] There is no transient state which leaves owner and user space
989 * TID out of sync.
990 *
991 *
992 * Serialization and lifetime rules:
993 *
994 * hb->lock:
995 *
996 * hb -> futex_q, relation
997 * futex_q -> pi_state, relation
998 *
999 * (cannot be raw because hb can contain arbitrary amount
1000 * of futex_q's)
1001 *
1002 * pi_mutex->wait_lock:
1003 *
1004 * {uval, pi_state}
1005 *
1006 * (and pi_mutex 'obviously')
1007 *
1008 * p->pi_lock:
1009 *
1010 * p->pi_state_list -> pi_state->list, relation
1011 *
1012 * pi_state->refcount:
1013 *
1014 * pi_state lifetime
1015 *
1016 *
1017 * Lock order:
1018 *
1019 * hb->lock
1020 * pi_mutex->wait_lock
1021 * p->pi_lock
1022 *
1023 */
1024
1025 /*
1026 * Validate that the existing waiter has a pi_state and sanity check
1027 * the pi_state against the user space value. If correct, attach to
1028 * it.
1029 */
1030 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1031 struct futex_pi_state *pi_state,
1032 struct futex_pi_state **ps)
1033 {
1034 pid_t pid = uval & FUTEX_TID_MASK;
1035 u32 uval2;
1036 int ret;
1037
1038 /*
1039 * Userspace might have messed up non-PI and PI futexes [3]
1040 */
1041 if (unlikely(!pi_state))
1042 return -EINVAL;
1043
1044 /*
1045 * We get here with hb->lock held, and having found a
1046 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1047 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1048 * which in turn means that futex_lock_pi() still has a reference on
1049 * our pi_state.
1050 *
1051 * The waiter holding a reference on @pi_state also protects against
1052 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1053 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1054 * free pi_state before we can take a reference ourselves.
1055 */
1056 WARN_ON(!atomic_read(&pi_state->refcount));
1057
1058 /*
1059 * Now that we have a pi_state, we can acquire wait_lock
1060 * and do the state validation.
1061 */
1062 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1063
1064 /*
1065 * Since {uval, pi_state} is serialized by wait_lock, and our current
1066 * uval was read without holding it, it can have changed. Verify it
1067 * still is what we expect it to be, otherwise retry the entire
1068 * operation.
1069 */
1070 if (get_futex_value_locked(&uval2, uaddr))
1071 goto out_efault;
1072
1073 if (uval != uval2)
1074 goto out_eagain;
1075
1076 /*
1077 * Handle the owner died case:
1078 */
1079 if (uval & FUTEX_OWNER_DIED) {
1080 /*
1081 * exit_pi_state_list sets owner to NULL and wakes the
1082 * topmost waiter. The task which acquires the
1083 * pi_state->rt_mutex will fixup owner.
1084 */
1085 if (!pi_state->owner) {
1086 /*
1087 * No pi state owner, but the user space TID
1088 * is not 0. Inconsistent state. [5]
1089 */
1090 if (pid)
1091 goto out_einval;
1092 /*
1093 * Take a ref on the state and return success. [4]
1094 */
1095 goto out_attach;
1096 }
1097
1098 /*
1099 * If TID is 0, then either the dying owner has not
1100 * yet executed exit_pi_state_list() or some waiter
1101 * acquired the rtmutex in the pi state, but did not
1102 * yet fixup the TID in user space.
1103 *
1104 * Take a ref on the state and return success. [6]
1105 */
1106 if (!pid)
1107 goto out_attach;
1108 } else {
1109 /*
1110 * If the owner died bit is not set, then the pi_state
1111 * must have an owner. [7]
1112 */
1113 if (!pi_state->owner)
1114 goto out_einval;
1115 }
1116
1117 /*
1118 * Bail out if user space manipulated the futex value. If pi
1119 * state exists then the owner TID must be the same as the
1120 * user space TID. [9/10]
1121 */
1122 if (pid != task_pid_vnr(pi_state->owner))
1123 goto out_einval;
1124
1125 out_attach:
1126 get_pi_state(pi_state);
1127 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1128 *ps = pi_state;
1129 return 0;
1130
1131 out_einval:
1132 ret = -EINVAL;
1133 goto out_error;
1134
1135 out_eagain:
1136 ret = -EAGAIN;
1137 goto out_error;
1138
1139 out_efault:
1140 ret = -EFAULT;
1141 goto out_error;
1142
1143 out_error:
1144 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1145 return ret;
1146 }
1147
1148 /*
1149 * Lookup the task for the TID provided from user space and attach to
1150 * it after doing proper sanity checks.
1151 */
1152 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1153 struct futex_pi_state **ps)
1154 {
1155 pid_t pid = uval & FUTEX_TID_MASK;
1156 struct futex_pi_state *pi_state;
1157 struct task_struct *p;
1158
1159 /*
1160 * We are the first waiter - try to look up the real owner and attach
1161 * the new pi_state to it, but bail out when TID = 0 [1]
1162 */
1163 if (!pid)
1164 return -ESRCH;
1165 p = futex_find_get_task(pid);
1166 if (!p)
1167 return -ESRCH;
1168
1169 if (unlikely(p->flags & PF_KTHREAD)) {
1170 put_task_struct(p);
1171 return -EPERM;
1172 }
1173
1174 /*
1175 * We need to look at the task state flags to figure out,
1176 * whether the task is exiting. To protect against the do_exit
1177 * change of the task flags, we do this protected by
1178 * p->pi_lock:
1179 */
1180 raw_spin_lock_irq(&p->pi_lock);
1181 if (unlikely(p->flags & PF_EXITING)) {
1182 /*
1183 * The task is on the way out. When PF_EXITPIDONE is
1184 * set, we know that the task has finished the
1185 * cleanup:
1186 */
1187 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1188
1189 raw_spin_unlock_irq(&p->pi_lock);
1190 put_task_struct(p);
1191 return ret;
1192 }
1193
1194 /*
1195 * No existing pi state. First waiter. [2]
1196 *
1197 * This creates pi_state, we have hb->lock held, this means nothing can
1198 * observe this state, wait_lock is irrelevant.
1199 */
1200 pi_state = alloc_pi_state();
1201
1202 /*
1203 * Initialize the pi_mutex in locked state and make @p
1204 * the owner of it:
1205 */
1206 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1207
1208 /* Store the key for possible exit cleanups: */
1209 pi_state->key = *key;
1210
1211 WARN_ON(!list_empty(&pi_state->list));
1212 list_add(&pi_state->list, &p->pi_state_list);
1213 /*
1214 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1215 * because there is no concurrency as the object is not published yet.
1216 */
1217 pi_state->owner = p;
1218 raw_spin_unlock_irq(&p->pi_lock);
1219
1220 put_task_struct(p);
1221
1222 *ps = pi_state;
1223
1224 return 0;
1225 }
1226
1227 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1228 struct futex_hash_bucket *hb,
1229 union futex_key *key, struct futex_pi_state **ps)
1230 {
1231 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1232
1233 /*
1234 * If there is a waiter on that futex, validate it and
1235 * attach to the pi_state when the validation succeeds.
1236 */
1237 if (top_waiter)
1238 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1239
1240 /*
1241 * We are the first waiter - try to look up the owner based on
1242 * @uval and attach to it.
1243 */
1244 return attach_to_pi_owner(uval, key, ps);
1245 }
1246
1247 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1248 {
1249 u32 uninitialized_var(curval);
1250
1251 if (unlikely(should_fail_futex(true)))
1252 return -EFAULT;
1253
1254 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1255 return -EFAULT;
1256
1257 /* If user space value changed, let the caller retry */
1258 return curval != uval ? -EAGAIN : 0;
1259 }
1260
1261 /**
1262 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1263 * @uaddr: the pi futex user address
1264 * @hb: the pi futex hash bucket
1265 * @key: the futex key associated with uaddr and hb
1266 * @ps: the pi_state pointer where we store the result of the
1267 * lookup
1268 * @task: the task to perform the atomic lock work for. This will
1269 * be "current" except in the case of requeue pi.
1270 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1271 *
1272 * Return:
1273 * - 0 - ready to wait;
1274 * - 1 - acquired the lock;
1275 * - <0 - error
1276 *
1277 * The hb->lock and futex_key refs shall be held by the caller.
1278 */
1279 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1280 union futex_key *key,
1281 struct futex_pi_state **ps,
1282 struct task_struct *task, int set_waiters)
1283 {
1284 u32 uval, newval, vpid = task_pid_vnr(task);
1285 struct futex_q *top_waiter;
1286 int ret;
1287
1288 /*
1289 * Read the user space value first so we can validate a few
1290 * things before proceeding further.
1291 */
1292 if (get_futex_value_locked(&uval, uaddr))
1293 return -EFAULT;
1294
1295 if (unlikely(should_fail_futex(true)))
1296 return -EFAULT;
1297
1298 /*
1299 * Detect deadlocks.
1300 */
1301 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1302 return -EDEADLK;
1303
1304 if ((unlikely(should_fail_futex(true))))
1305 return -EDEADLK;
1306
1307 /*
1308 * Lookup existing state first. If it exists, try to attach to
1309 * its pi_state.
1310 */
1311 top_waiter = futex_top_waiter(hb, key);
1312 if (top_waiter)
1313 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1314
1315 /*
1316 * No waiter and user TID is 0. We are here because the
1317 * waiters or the owner died bit is set or called from
1318 * requeue_cmp_pi or for whatever reason something took the
1319 * syscall.
1320 */
1321 if (!(uval & FUTEX_TID_MASK)) {
1322 /*
1323 * We take over the futex. No other waiters and the user space
1324 * TID is 0. We preserve the owner died bit.
1325 */
1326 newval = uval & FUTEX_OWNER_DIED;
1327 newval |= vpid;
1328
1329 /* The futex requeue_pi code can enforce the waiters bit */
1330 if (set_waiters)
1331 newval |= FUTEX_WAITERS;
1332
1333 ret = lock_pi_update_atomic(uaddr, uval, newval);
1334 /* If the take over worked, return 1 */
1335 return ret < 0 ? ret : 1;
1336 }
1337
1338 /*
1339 * First waiter. Set the waiters bit before attaching ourself to
1340 * the owner. If owner tries to unlock, it will be forced into
1341 * the kernel and blocked on hb->lock.
1342 */
1343 newval = uval | FUTEX_WAITERS;
1344 ret = lock_pi_update_atomic(uaddr, uval, newval);
1345 if (ret)
1346 return ret;
1347 /*
1348 * If the update of the user space value succeeded, we try to
1349 * attach to the owner. If that fails, no harm done, we only
1350 * set the FUTEX_WAITERS bit in the user space variable.
1351 */
1352 return attach_to_pi_owner(uval, key, ps);
1353 }
1354
1355 /**
1356 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1357 * @q: The futex_q to unqueue
1358 *
1359 * The q->lock_ptr must not be NULL and must be held by the caller.
1360 */
1361 static void __unqueue_futex(struct futex_q *q)
1362 {
1363 struct futex_hash_bucket *hb;
1364
1365 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1366 || WARN_ON(plist_node_empty(&q->list)))
1367 return;
1368
1369 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1370 plist_del(&q->list, &hb->chain);
1371 hb_waiters_dec(hb);
1372 }
1373
1374 /*
1375 * The hash bucket lock must be held when this is called.
1376 * Afterwards, the futex_q must not be accessed. Callers
1377 * must ensure to later call wake_up_q() for the actual
1378 * wakeups to occur.
1379 */
1380 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1381 {
1382 struct task_struct *p = q->task;
1383
1384 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1385 return;
1386
1387 /*
1388 * Queue the task for later wakeup for after we've released
1389 * the hb->lock. wake_q_add() grabs reference to p.
1390 */
1391 wake_q_add(wake_q, p);
1392 __unqueue_futex(q);
1393 /*
1394 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1395 * is written, without taking any locks. This is possible in the event
1396 * of a spurious wakeup, for example. A memory barrier is required here
1397 * to prevent the following store to lock_ptr from getting ahead of the
1398 * plist_del in __unqueue_futex().
1399 */
1400 smp_store_release(&q->lock_ptr, NULL);
1401 }
1402
1403 /*
1404 * Caller must hold a reference on @pi_state.
1405 */
1406 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1407 {
1408 u32 uninitialized_var(curval), newval;
1409 struct task_struct *new_owner;
1410 bool postunlock = false;
1411 DEFINE_WAKE_Q(wake_q);
1412 int ret = 0;
1413
1414 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1415 if (WARN_ON_ONCE(!new_owner)) {
1416 /*
1417 * As per the comment in futex_unlock_pi() this should not happen.
1418 *
1419 * When this happens, give up our locks and try again, giving
1420 * the futex_lock_pi() instance time to complete, either by
1421 * waiting on the rtmutex or removing itself from the futex
1422 * queue.
1423 */
1424 ret = -EAGAIN;
1425 goto out_unlock;
1426 }
1427
1428 /*
1429 * We pass it to the next owner. The WAITERS bit is always kept
1430 * enabled while there is PI state around. We cleanup the owner
1431 * died bit, because we are the owner.
1432 */
1433 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1434
1435 if (unlikely(should_fail_futex(true)))
1436 ret = -EFAULT;
1437
1438 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1439 ret = -EFAULT;
1440
1441 } else if (curval != uval) {
1442 /*
1443 * If a unconditional UNLOCK_PI operation (user space did not
1444 * try the TID->0 transition) raced with a waiter setting the
1445 * FUTEX_WAITERS flag between get_user() and locking the hash
1446 * bucket lock, retry the operation.
1447 */
1448 if ((FUTEX_TID_MASK & curval) == uval)
1449 ret = -EAGAIN;
1450 else
1451 ret = -EINVAL;
1452 }
1453
1454 if (ret)
1455 goto out_unlock;
1456
1457 /*
1458 * This is a point of no return; once we modify the uval there is no
1459 * going back and subsequent operations must not fail.
1460 */
1461
1462 raw_spin_lock(&pi_state->owner->pi_lock);
1463 WARN_ON(list_empty(&pi_state->list));
1464 list_del_init(&pi_state->list);
1465 raw_spin_unlock(&pi_state->owner->pi_lock);
1466
1467 raw_spin_lock(&new_owner->pi_lock);
1468 WARN_ON(!list_empty(&pi_state->list));
1469 list_add(&pi_state->list, &new_owner->pi_state_list);
1470 pi_state->owner = new_owner;
1471 raw_spin_unlock(&new_owner->pi_lock);
1472
1473 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1474
1475 out_unlock:
1476 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1477
1478 if (postunlock)
1479 rt_mutex_postunlock(&wake_q);
1480
1481 return ret;
1482 }
1483
1484 /*
1485 * Express the locking dependencies for lockdep:
1486 */
1487 static inline void
1488 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1489 {
1490 if (hb1 <= hb2) {
1491 spin_lock(&hb1->lock);
1492 if (hb1 < hb2)
1493 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1494 } else { /* hb1 > hb2 */
1495 spin_lock(&hb2->lock);
1496 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1497 }
1498 }
1499
1500 static inline void
1501 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1502 {
1503 spin_unlock(&hb1->lock);
1504 if (hb1 != hb2)
1505 spin_unlock(&hb2->lock);
1506 }
1507
1508 /*
1509 * Wake up waiters matching bitset queued on this futex (uaddr).
1510 */
1511 static int
1512 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1513 {
1514 struct futex_hash_bucket *hb;
1515 struct futex_q *this, *next;
1516 union futex_key key = FUTEX_KEY_INIT;
1517 int ret;
1518 DEFINE_WAKE_Q(wake_q);
1519
1520 if (!bitset)
1521 return -EINVAL;
1522
1523 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1524 if (unlikely(ret != 0))
1525 goto out;
1526
1527 hb = hash_futex(&key);
1528
1529 /* Make sure we really have tasks to wakeup */
1530 if (!hb_waiters_pending(hb))
1531 goto out_put_key;
1532
1533 spin_lock(&hb->lock);
1534
1535 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1536 if (match_futex (&this->key, &key)) {
1537 if (this->pi_state || this->rt_waiter) {
1538 ret = -EINVAL;
1539 break;
1540 }
1541
1542 /* Check if one of the bits is set in both bitsets */
1543 if (!(this->bitset & bitset))
1544 continue;
1545
1546 mark_wake_futex(&wake_q, this);
1547 if (++ret >= nr_wake)
1548 break;
1549 }
1550 }
1551
1552 spin_unlock(&hb->lock);
1553 wake_up_q(&wake_q);
1554 out_put_key:
1555 put_futex_key(&key);
1556 out:
1557 return ret;
1558 }
1559
1560 /*
1561 * Wake up all waiters hashed on the physical page that is mapped
1562 * to this virtual address:
1563 */
1564 static int
1565 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1566 int nr_wake, int nr_wake2, int op)
1567 {
1568 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1569 struct futex_hash_bucket *hb1, *hb2;
1570 struct futex_q *this, *next;
1571 int ret, op_ret;
1572 DEFINE_WAKE_Q(wake_q);
1573
1574 retry:
1575 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1576 if (unlikely(ret != 0))
1577 goto out;
1578 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1579 if (unlikely(ret != 0))
1580 goto out_put_key1;
1581
1582 hb1 = hash_futex(&key1);
1583 hb2 = hash_futex(&key2);
1584
1585 retry_private:
1586 double_lock_hb(hb1, hb2);
1587 op_ret = futex_atomic_op_inuser(op, uaddr2);
1588 if (unlikely(op_ret < 0)) {
1589
1590 double_unlock_hb(hb1, hb2);
1591
1592 #ifndef CONFIG_MMU
1593 /*
1594 * we don't get EFAULT from MMU faults if we don't have an MMU,
1595 * but we might get them from range checking
1596 */
1597 ret = op_ret;
1598 goto out_put_keys;
1599 #endif
1600
1601 if (unlikely(op_ret != -EFAULT)) {
1602 ret = op_ret;
1603 goto out_put_keys;
1604 }
1605
1606 ret = fault_in_user_writeable(uaddr2);
1607 if (ret)
1608 goto out_put_keys;
1609
1610 if (!(flags & FLAGS_SHARED))
1611 goto retry_private;
1612
1613 put_futex_key(&key2);
1614 put_futex_key(&key1);
1615 goto retry;
1616 }
1617
1618 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1619 if (match_futex (&this->key, &key1)) {
1620 if (this->pi_state || this->rt_waiter) {
1621 ret = -EINVAL;
1622 goto out_unlock;
1623 }
1624 mark_wake_futex(&wake_q, this);
1625 if (++ret >= nr_wake)
1626 break;
1627 }
1628 }
1629
1630 if (op_ret > 0) {
1631 op_ret = 0;
1632 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1633 if (match_futex (&this->key, &key2)) {
1634 if (this->pi_state || this->rt_waiter) {
1635 ret = -EINVAL;
1636 goto out_unlock;
1637 }
1638 mark_wake_futex(&wake_q, this);
1639 if (++op_ret >= nr_wake2)
1640 break;
1641 }
1642 }
1643 ret += op_ret;
1644 }
1645
1646 out_unlock:
1647 double_unlock_hb(hb1, hb2);
1648 wake_up_q(&wake_q);
1649 out_put_keys:
1650 put_futex_key(&key2);
1651 out_put_key1:
1652 put_futex_key(&key1);
1653 out:
1654 return ret;
1655 }
1656
1657 /**
1658 * requeue_futex() - Requeue a futex_q from one hb to another
1659 * @q: the futex_q to requeue
1660 * @hb1: the source hash_bucket
1661 * @hb2: the target hash_bucket
1662 * @key2: the new key for the requeued futex_q
1663 */
1664 static inline
1665 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1666 struct futex_hash_bucket *hb2, union futex_key *key2)
1667 {
1668
1669 /*
1670 * If key1 and key2 hash to the same bucket, no need to
1671 * requeue.
1672 */
1673 if (likely(&hb1->chain != &hb2->chain)) {
1674 plist_del(&q->list, &hb1->chain);
1675 hb_waiters_dec(hb1);
1676 hb_waiters_inc(hb2);
1677 plist_add(&q->list, &hb2->chain);
1678 q->lock_ptr = &hb2->lock;
1679 }
1680 get_futex_key_refs(key2);
1681 q->key = *key2;
1682 }
1683
1684 /**
1685 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1686 * @q: the futex_q
1687 * @key: the key of the requeue target futex
1688 * @hb: the hash_bucket of the requeue target futex
1689 *
1690 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1691 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1692 * to the requeue target futex so the waiter can detect the wakeup on the right
1693 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1694 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1695 * to protect access to the pi_state to fixup the owner later. Must be called
1696 * with both q->lock_ptr and hb->lock held.
1697 */
1698 static inline
1699 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1700 struct futex_hash_bucket *hb)
1701 {
1702 get_futex_key_refs(key);
1703 q->key = *key;
1704
1705 __unqueue_futex(q);
1706
1707 WARN_ON(!q->rt_waiter);
1708 q->rt_waiter = NULL;
1709
1710 q->lock_ptr = &hb->lock;
1711
1712 wake_up_state(q->task, TASK_NORMAL);
1713 }
1714
1715 /**
1716 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1717 * @pifutex: the user address of the to futex
1718 * @hb1: the from futex hash bucket, must be locked by the caller
1719 * @hb2: the to futex hash bucket, must be locked by the caller
1720 * @key1: the from futex key
1721 * @key2: the to futex key
1722 * @ps: address to store the pi_state pointer
1723 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1724 *
1725 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1726 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1727 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1728 * hb1 and hb2 must be held by the caller.
1729 *
1730 * Return:
1731 * - 0 - failed to acquire the lock atomically;
1732 * - >0 - acquired the lock, return value is vpid of the top_waiter
1733 * - <0 - error
1734 */
1735 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1736 struct futex_hash_bucket *hb1,
1737 struct futex_hash_bucket *hb2,
1738 union futex_key *key1, union futex_key *key2,
1739 struct futex_pi_state **ps, int set_waiters)
1740 {
1741 struct futex_q *top_waiter = NULL;
1742 u32 curval;
1743 int ret, vpid;
1744
1745 if (get_futex_value_locked(&curval, pifutex))
1746 return -EFAULT;
1747
1748 if (unlikely(should_fail_futex(true)))
1749 return -EFAULT;
1750
1751 /*
1752 * Find the top_waiter and determine if there are additional waiters.
1753 * If the caller intends to requeue more than 1 waiter to pifutex,
1754 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1755 * as we have means to handle the possible fault. If not, don't set
1756 * the bit unecessarily as it will force the subsequent unlock to enter
1757 * the kernel.
1758 */
1759 top_waiter = futex_top_waiter(hb1, key1);
1760
1761 /* There are no waiters, nothing for us to do. */
1762 if (!top_waiter)
1763 return 0;
1764
1765 /* Ensure we requeue to the expected futex. */
1766 if (!match_futex(top_waiter->requeue_pi_key, key2))
1767 return -EINVAL;
1768
1769 /*
1770 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1771 * the contended case or if set_waiters is 1. The pi_state is returned
1772 * in ps in contended cases.
1773 */
1774 vpid = task_pid_vnr(top_waiter->task);
1775 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1776 set_waiters);
1777 if (ret == 1) {
1778 requeue_pi_wake_futex(top_waiter, key2, hb2);
1779 return vpid;
1780 }
1781 return ret;
1782 }
1783
1784 /**
1785 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1786 * @uaddr1: source futex user address
1787 * @flags: futex flags (FLAGS_SHARED, etc.)
1788 * @uaddr2: target futex user address
1789 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1790 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1791 * @cmpval: @uaddr1 expected value (or %NULL)
1792 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1793 * pi futex (pi to pi requeue is not supported)
1794 *
1795 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1796 * uaddr2 atomically on behalf of the top waiter.
1797 *
1798 * Return:
1799 * - >=0 - on success, the number of tasks requeued or woken;
1800 * - <0 - on error
1801 */
1802 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1803 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1804 u32 *cmpval, int requeue_pi)
1805 {
1806 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1807 int drop_count = 0, task_count = 0, ret;
1808 struct futex_pi_state *pi_state = NULL;
1809 struct futex_hash_bucket *hb1, *hb2;
1810 struct futex_q *this, *next;
1811 DEFINE_WAKE_Q(wake_q);
1812
1813 if (requeue_pi) {
1814 /*
1815 * Requeue PI only works on two distinct uaddrs. This
1816 * check is only valid for private futexes. See below.
1817 */
1818 if (uaddr1 == uaddr2)
1819 return -EINVAL;
1820
1821 /*
1822 * requeue_pi requires a pi_state, try to allocate it now
1823 * without any locks in case it fails.
1824 */
1825 if (refill_pi_state_cache())
1826 return -ENOMEM;
1827 /*
1828 * requeue_pi must wake as many tasks as it can, up to nr_wake
1829 * + nr_requeue, since it acquires the rt_mutex prior to
1830 * returning to userspace, so as to not leave the rt_mutex with
1831 * waiters and no owner. However, second and third wake-ups
1832 * cannot be predicted as they involve race conditions with the
1833 * first wake and a fault while looking up the pi_state. Both
1834 * pthread_cond_signal() and pthread_cond_broadcast() should
1835 * use nr_wake=1.
1836 */
1837 if (nr_wake != 1)
1838 return -EINVAL;
1839 }
1840
1841 retry:
1842 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1843 if (unlikely(ret != 0))
1844 goto out;
1845 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1846 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1847 if (unlikely(ret != 0))
1848 goto out_put_key1;
1849
1850 /*
1851 * The check above which compares uaddrs is not sufficient for
1852 * shared futexes. We need to compare the keys:
1853 */
1854 if (requeue_pi && match_futex(&key1, &key2)) {
1855 ret = -EINVAL;
1856 goto out_put_keys;
1857 }
1858
1859 hb1 = hash_futex(&key1);
1860 hb2 = hash_futex(&key2);
1861
1862 retry_private:
1863 hb_waiters_inc(hb2);
1864 double_lock_hb(hb1, hb2);
1865
1866 if (likely(cmpval != NULL)) {
1867 u32 curval;
1868
1869 ret = get_futex_value_locked(&curval, uaddr1);
1870
1871 if (unlikely(ret)) {
1872 double_unlock_hb(hb1, hb2);
1873 hb_waiters_dec(hb2);
1874
1875 ret = get_user(curval, uaddr1);
1876 if (ret)
1877 goto out_put_keys;
1878
1879 if (!(flags & FLAGS_SHARED))
1880 goto retry_private;
1881
1882 put_futex_key(&key2);
1883 put_futex_key(&key1);
1884 goto retry;
1885 }
1886 if (curval != *cmpval) {
1887 ret = -EAGAIN;
1888 goto out_unlock;
1889 }
1890 }
1891
1892 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1893 /*
1894 * Attempt to acquire uaddr2 and wake the top waiter. If we
1895 * intend to requeue waiters, force setting the FUTEX_WAITERS
1896 * bit. We force this here where we are able to easily handle
1897 * faults rather in the requeue loop below.
1898 */
1899 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1900 &key2, &pi_state, nr_requeue);
1901
1902 /*
1903 * At this point the top_waiter has either taken uaddr2 or is
1904 * waiting on it. If the former, then the pi_state will not
1905 * exist yet, look it up one more time to ensure we have a
1906 * reference to it. If the lock was taken, ret contains the
1907 * vpid of the top waiter task.
1908 * If the lock was not taken, we have pi_state and an initial
1909 * refcount on it. In case of an error we have nothing.
1910 */
1911 if (ret > 0) {
1912 WARN_ON(pi_state);
1913 drop_count++;
1914 task_count++;
1915 /*
1916 * If we acquired the lock, then the user space value
1917 * of uaddr2 should be vpid. It cannot be changed by
1918 * the top waiter as it is blocked on hb2 lock if it
1919 * tries to do so. If something fiddled with it behind
1920 * our back the pi state lookup might unearth it. So
1921 * we rather use the known value than rereading and
1922 * handing potential crap to lookup_pi_state.
1923 *
1924 * If that call succeeds then we have pi_state and an
1925 * initial refcount on it.
1926 */
1927 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1928 }
1929
1930 switch (ret) {
1931 case 0:
1932 /* We hold a reference on the pi state. */
1933 break;
1934
1935 /* If the above failed, then pi_state is NULL */
1936 case -EFAULT:
1937 double_unlock_hb(hb1, hb2);
1938 hb_waiters_dec(hb2);
1939 put_futex_key(&key2);
1940 put_futex_key(&key1);
1941 ret = fault_in_user_writeable(uaddr2);
1942 if (!ret)
1943 goto retry;
1944 goto out;
1945 case -EAGAIN:
1946 /*
1947 * Two reasons for this:
1948 * - Owner is exiting and we just wait for the
1949 * exit to complete.
1950 * - The user space value changed.
1951 */
1952 double_unlock_hb(hb1, hb2);
1953 hb_waiters_dec(hb2);
1954 put_futex_key(&key2);
1955 put_futex_key(&key1);
1956 cond_resched();
1957 goto retry;
1958 default:
1959 goto out_unlock;
1960 }
1961 }
1962
1963 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1964 if (task_count - nr_wake >= nr_requeue)
1965 break;
1966
1967 if (!match_futex(&this->key, &key1))
1968 continue;
1969
1970 /*
1971 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1972 * be paired with each other and no other futex ops.
1973 *
1974 * We should never be requeueing a futex_q with a pi_state,
1975 * which is awaiting a futex_unlock_pi().
1976 */
1977 if ((requeue_pi && !this->rt_waiter) ||
1978 (!requeue_pi && this->rt_waiter) ||
1979 this->pi_state) {
1980 ret = -EINVAL;
1981 break;
1982 }
1983
1984 /*
1985 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1986 * lock, we already woke the top_waiter. If not, it will be
1987 * woken by futex_unlock_pi().
1988 */
1989 if (++task_count <= nr_wake && !requeue_pi) {
1990 mark_wake_futex(&wake_q, this);
1991 continue;
1992 }
1993
1994 /* Ensure we requeue to the expected futex for requeue_pi. */
1995 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1996 ret = -EINVAL;
1997 break;
1998 }
1999
2000 /*
2001 * Requeue nr_requeue waiters and possibly one more in the case
2002 * of requeue_pi if we couldn't acquire the lock atomically.
2003 */
2004 if (requeue_pi) {
2005 /*
2006 * Prepare the waiter to take the rt_mutex. Take a
2007 * refcount on the pi_state and store the pointer in
2008 * the futex_q object of the waiter.
2009 */
2010 get_pi_state(pi_state);
2011 this->pi_state = pi_state;
2012 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2013 this->rt_waiter,
2014 this->task);
2015 if (ret == 1) {
2016 /*
2017 * We got the lock. We do neither drop the
2018 * refcount on pi_state nor clear
2019 * this->pi_state because the waiter needs the
2020 * pi_state for cleaning up the user space
2021 * value. It will drop the refcount after
2022 * doing so.
2023 */
2024 requeue_pi_wake_futex(this, &key2, hb2);
2025 drop_count++;
2026 continue;
2027 } else if (ret) {
2028 /*
2029 * rt_mutex_start_proxy_lock() detected a
2030 * potential deadlock when we tried to queue
2031 * that waiter. Drop the pi_state reference
2032 * which we took above and remove the pointer
2033 * to the state from the waiters futex_q
2034 * object.
2035 */
2036 this->pi_state = NULL;
2037 put_pi_state(pi_state);
2038 /*
2039 * We stop queueing more waiters and let user
2040 * space deal with the mess.
2041 */
2042 break;
2043 }
2044 }
2045 requeue_futex(this, hb1, hb2, &key2);
2046 drop_count++;
2047 }
2048
2049 /*
2050 * We took an extra initial reference to the pi_state either
2051 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2052 * need to drop it here again.
2053 */
2054 put_pi_state(pi_state);
2055
2056 out_unlock:
2057 double_unlock_hb(hb1, hb2);
2058 wake_up_q(&wake_q);
2059 hb_waiters_dec(hb2);
2060
2061 /*
2062 * drop_futex_key_refs() must be called outside the spinlocks. During
2063 * the requeue we moved futex_q's from the hash bucket at key1 to the
2064 * one at key2 and updated their key pointer. We no longer need to
2065 * hold the references to key1.
2066 */
2067 while (--drop_count >= 0)
2068 drop_futex_key_refs(&key1);
2069
2070 out_put_keys:
2071 put_futex_key(&key2);
2072 out_put_key1:
2073 put_futex_key(&key1);
2074 out:
2075 return ret ? ret : task_count;
2076 }
2077
2078 /* The key must be already stored in q->key. */
2079 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2080 __acquires(&hb->lock)
2081 {
2082 struct futex_hash_bucket *hb;
2083
2084 hb = hash_futex(&q->key);
2085
2086 /*
2087 * Increment the counter before taking the lock so that
2088 * a potential waker won't miss a to-be-slept task that is
2089 * waiting for the spinlock. This is safe as all queue_lock()
2090 * users end up calling queue_me(). Similarly, for housekeeping,
2091 * decrement the counter at queue_unlock() when some error has
2092 * occurred and we don't end up adding the task to the list.
2093 */
2094 hb_waiters_inc(hb);
2095
2096 q->lock_ptr = &hb->lock;
2097
2098 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2099 return hb;
2100 }
2101
2102 static inline void
2103 queue_unlock(struct futex_hash_bucket *hb)
2104 __releases(&hb->lock)
2105 {
2106 spin_unlock(&hb->lock);
2107 hb_waiters_dec(hb);
2108 }
2109
2110 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2111 {
2112 int prio;
2113
2114 /*
2115 * The priority used to register this element is
2116 * - either the real thread-priority for the real-time threads
2117 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2118 * - or MAX_RT_PRIO for non-RT threads.
2119 * Thus, all RT-threads are woken first in priority order, and
2120 * the others are woken last, in FIFO order.
2121 */
2122 prio = min(current->normal_prio, MAX_RT_PRIO);
2123
2124 plist_node_init(&q->list, prio);
2125 plist_add(&q->list, &hb->chain);
2126 q->task = current;
2127 }
2128
2129 /**
2130 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2131 * @q: The futex_q to enqueue
2132 * @hb: The destination hash bucket
2133 *
2134 * The hb->lock must be held by the caller, and is released here. A call to
2135 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2136 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2137 * or nothing if the unqueue is done as part of the wake process and the unqueue
2138 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2139 * an example).
2140 */
2141 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2142 __releases(&hb->lock)
2143 {
2144 __queue_me(q, hb);
2145 spin_unlock(&hb->lock);
2146 }
2147
2148 /**
2149 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2150 * @q: The futex_q to unqueue
2151 *
2152 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2153 * be paired with exactly one earlier call to queue_me().
2154 *
2155 * Return:
2156 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2157 * - 0 - if the futex_q was already removed by the waking thread
2158 */
2159 static int unqueue_me(struct futex_q *q)
2160 {
2161 spinlock_t *lock_ptr;
2162 int ret = 0;
2163
2164 /* In the common case we don't take the spinlock, which is nice. */
2165 retry:
2166 /*
2167 * q->lock_ptr can change between this read and the following spin_lock.
2168 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2169 * optimizing lock_ptr out of the logic below.
2170 */
2171 lock_ptr = READ_ONCE(q->lock_ptr);
2172 if (lock_ptr != NULL) {
2173 spin_lock(lock_ptr);
2174 /*
2175 * q->lock_ptr can change between reading it and
2176 * spin_lock(), causing us to take the wrong lock. This
2177 * corrects the race condition.
2178 *
2179 * Reasoning goes like this: if we have the wrong lock,
2180 * q->lock_ptr must have changed (maybe several times)
2181 * between reading it and the spin_lock(). It can
2182 * change again after the spin_lock() but only if it was
2183 * already changed before the spin_lock(). It cannot,
2184 * however, change back to the original value. Therefore
2185 * we can detect whether we acquired the correct lock.
2186 */
2187 if (unlikely(lock_ptr != q->lock_ptr)) {
2188 spin_unlock(lock_ptr);
2189 goto retry;
2190 }
2191 __unqueue_futex(q);
2192
2193 BUG_ON(q->pi_state);
2194
2195 spin_unlock(lock_ptr);
2196 ret = 1;
2197 }
2198
2199 drop_futex_key_refs(&q->key);
2200 return ret;
2201 }
2202
2203 /*
2204 * PI futexes can not be requeued and must remove themself from the
2205 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2206 * and dropped here.
2207 */
2208 static void unqueue_me_pi(struct futex_q *q)
2209 __releases(q->lock_ptr)
2210 {
2211 __unqueue_futex(q);
2212
2213 BUG_ON(!q->pi_state);
2214 put_pi_state(q->pi_state);
2215 q->pi_state = NULL;
2216
2217 spin_unlock(q->lock_ptr);
2218 }
2219
2220 /*
2221 * Fixup the pi_state owner with the new owner.
2222 *
2223 * Must be called with hash bucket lock held and mm->sem held for non
2224 * private futexes.
2225 */
2226 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2227 struct task_struct *newowner)
2228 {
2229 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2230 struct futex_pi_state *pi_state = q->pi_state;
2231 u32 uval, uninitialized_var(curval), newval;
2232 struct task_struct *oldowner;
2233 int ret;
2234
2235 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2236
2237 oldowner = pi_state->owner;
2238 /* Owner died? */
2239 if (!pi_state->owner)
2240 newtid |= FUTEX_OWNER_DIED;
2241
2242 /*
2243 * We are here either because we stole the rtmutex from the
2244 * previous highest priority waiter or we are the highest priority
2245 * waiter but have failed to get the rtmutex the first time.
2246 *
2247 * We have to replace the newowner TID in the user space variable.
2248 * This must be atomic as we have to preserve the owner died bit here.
2249 *
2250 * Note: We write the user space value _before_ changing the pi_state
2251 * because we can fault here. Imagine swapped out pages or a fork
2252 * that marked all the anonymous memory readonly for cow.
2253 *
2254 * Modifying pi_state _before_ the user space value would leave the
2255 * pi_state in an inconsistent state when we fault here, because we
2256 * need to drop the locks to handle the fault. This might be observed
2257 * in the PID check in lookup_pi_state.
2258 */
2259 retry:
2260 if (get_futex_value_locked(&uval, uaddr))
2261 goto handle_fault;
2262
2263 for (;;) {
2264 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2265
2266 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2267 goto handle_fault;
2268 if (curval == uval)
2269 break;
2270 uval = curval;
2271 }
2272
2273 /*
2274 * We fixed up user space. Now we need to fix the pi_state
2275 * itself.
2276 */
2277 if (pi_state->owner != NULL) {
2278 raw_spin_lock(&pi_state->owner->pi_lock);
2279 WARN_ON(list_empty(&pi_state->list));
2280 list_del_init(&pi_state->list);
2281 raw_spin_unlock(&pi_state->owner->pi_lock);
2282 }
2283
2284 pi_state->owner = newowner;
2285
2286 raw_spin_lock(&newowner->pi_lock);
2287 WARN_ON(!list_empty(&pi_state->list));
2288 list_add(&pi_state->list, &newowner->pi_state_list);
2289 raw_spin_unlock(&newowner->pi_lock);
2290 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2291
2292 return 0;
2293
2294 /*
2295 * To handle the page fault we need to drop the locks here. That gives
2296 * the other task (either the highest priority waiter itself or the
2297 * task which stole the rtmutex) the chance to try the fixup of the
2298 * pi_state. So once we are back from handling the fault we need to
2299 * check the pi_state after reacquiring the locks and before trying to
2300 * do another fixup. When the fixup has been done already we simply
2301 * return.
2302 *
2303 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2304 * drop hb->lock since the caller owns the hb -> futex_q relation.
2305 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2306 */
2307 handle_fault:
2308 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2309 spin_unlock(q->lock_ptr);
2310
2311 ret = fault_in_user_writeable(uaddr);
2312
2313 spin_lock(q->lock_ptr);
2314 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2315
2316 /*
2317 * Check if someone else fixed it for us:
2318 */
2319 if (pi_state->owner != oldowner) {
2320 ret = 0;
2321 goto out_unlock;
2322 }
2323
2324 if (ret)
2325 goto out_unlock;
2326
2327 goto retry;
2328
2329 out_unlock:
2330 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2331 return ret;
2332 }
2333
2334 static long futex_wait_restart(struct restart_block *restart);
2335
2336 /**
2337 * fixup_owner() - Post lock pi_state and corner case management
2338 * @uaddr: user address of the futex
2339 * @q: futex_q (contains pi_state and access to the rt_mutex)
2340 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2341 *
2342 * After attempting to lock an rt_mutex, this function is called to cleanup
2343 * the pi_state owner as well as handle race conditions that may allow us to
2344 * acquire the lock. Must be called with the hb lock held.
2345 *
2346 * Return:
2347 * - 1 - success, lock taken;
2348 * - 0 - success, lock not taken;
2349 * - <0 - on error (-EFAULT)
2350 */
2351 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2352 {
2353 int ret = 0;
2354
2355 if (locked) {
2356 /*
2357 * Got the lock. We might not be the anticipated owner if we
2358 * did a lock-steal - fix up the PI-state in that case:
2359 *
2360 * We can safely read pi_state->owner without holding wait_lock
2361 * because we now own the rt_mutex, only the owner will attempt
2362 * to change it.
2363 */
2364 if (q->pi_state->owner != current)
2365 ret = fixup_pi_state_owner(uaddr, q, current);
2366 goto out;
2367 }
2368
2369 /*
2370 * Paranoia check. If we did not take the lock, then we should not be
2371 * the owner of the rt_mutex.
2372 */
2373 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2374 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2375 "pi-state %p\n", ret,
2376 q->pi_state->pi_mutex.owner,
2377 q->pi_state->owner);
2378 }
2379
2380 out:
2381 return ret ? ret : locked;
2382 }
2383
2384 /**
2385 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2386 * @hb: the futex hash bucket, must be locked by the caller
2387 * @q: the futex_q to queue up on
2388 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2389 */
2390 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2391 struct hrtimer_sleeper *timeout)
2392 {
2393 /*
2394 * The task state is guaranteed to be set before another task can
2395 * wake it. set_current_state() is implemented using smp_store_mb() and
2396 * queue_me() calls spin_unlock() upon completion, both serializing
2397 * access to the hash list and forcing another memory barrier.
2398 */
2399 set_current_state(TASK_INTERRUPTIBLE);
2400 queue_me(q, hb);
2401
2402 /* Arm the timer */
2403 if (timeout)
2404 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2405
2406 /*
2407 * If we have been removed from the hash list, then another task
2408 * has tried to wake us, and we can skip the call to schedule().
2409 */
2410 if (likely(!plist_node_empty(&q->list))) {
2411 /*
2412 * If the timer has already expired, current will already be
2413 * flagged for rescheduling. Only call schedule if there
2414 * is no timeout, or if it has yet to expire.
2415 */
2416 if (!timeout || timeout->task)
2417 freezable_schedule();
2418 }
2419 __set_current_state(TASK_RUNNING);
2420 }
2421
2422 /**
2423 * futex_wait_setup() - Prepare to wait on a futex
2424 * @uaddr: the futex userspace address
2425 * @val: the expected value
2426 * @flags: futex flags (FLAGS_SHARED, etc.)
2427 * @q: the associated futex_q
2428 * @hb: storage for hash_bucket pointer to be returned to caller
2429 *
2430 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2431 * compare it with the expected value. Handle atomic faults internally.
2432 * Return with the hb lock held and a q.key reference on success, and unlocked
2433 * with no q.key reference on failure.
2434 *
2435 * Return:
2436 * - 0 - uaddr contains val and hb has been locked;
2437 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2438 */
2439 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2440 struct futex_q *q, struct futex_hash_bucket **hb)
2441 {
2442 u32 uval;
2443 int ret;
2444
2445 /*
2446 * Access the page AFTER the hash-bucket is locked.
2447 * Order is important:
2448 *
2449 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2450 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2451 *
2452 * The basic logical guarantee of a futex is that it blocks ONLY
2453 * if cond(var) is known to be true at the time of blocking, for
2454 * any cond. If we locked the hash-bucket after testing *uaddr, that
2455 * would open a race condition where we could block indefinitely with
2456 * cond(var) false, which would violate the guarantee.
2457 *
2458 * On the other hand, we insert q and release the hash-bucket only
2459 * after testing *uaddr. This guarantees that futex_wait() will NOT
2460 * absorb a wakeup if *uaddr does not match the desired values
2461 * while the syscall executes.
2462 */
2463 retry:
2464 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2465 if (unlikely(ret != 0))
2466 return ret;
2467
2468 retry_private:
2469 *hb = queue_lock(q);
2470
2471 ret = get_futex_value_locked(&uval, uaddr);
2472
2473 if (ret) {
2474 queue_unlock(*hb);
2475
2476 ret = get_user(uval, uaddr);
2477 if (ret)
2478 goto out;
2479
2480 if (!(flags & FLAGS_SHARED))
2481 goto retry_private;
2482
2483 put_futex_key(&q->key);
2484 goto retry;
2485 }
2486
2487 if (uval != val) {
2488 queue_unlock(*hb);
2489 ret = -EWOULDBLOCK;
2490 }
2491
2492 out:
2493 if (ret)
2494 put_futex_key(&q->key);
2495 return ret;
2496 }
2497
2498 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2499 ktime_t *abs_time, u32 bitset)
2500 {
2501 struct hrtimer_sleeper timeout, *to = NULL;
2502 struct restart_block *restart;
2503 struct futex_hash_bucket *hb;
2504 struct futex_q q = futex_q_init;
2505 int ret;
2506
2507 if (!bitset)
2508 return -EINVAL;
2509 q.bitset = bitset;
2510
2511 if (abs_time) {
2512 to = &timeout;
2513
2514 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2515 CLOCK_REALTIME : CLOCK_MONOTONIC,
2516 HRTIMER_MODE_ABS);
2517 hrtimer_init_sleeper(to, current);
2518 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2519 current->timer_slack_ns);
2520 }
2521
2522 retry:
2523 /*
2524 * Prepare to wait on uaddr. On success, holds hb lock and increments
2525 * q.key refs.
2526 */
2527 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2528 if (ret)
2529 goto out;
2530
2531 /* queue_me and wait for wakeup, timeout, or a signal. */
2532 futex_wait_queue_me(hb, &q, to);
2533
2534 /* If we were woken (and unqueued), we succeeded, whatever. */
2535 ret = 0;
2536 /* unqueue_me() drops q.key ref */
2537 if (!unqueue_me(&q))
2538 goto out;
2539 ret = -ETIMEDOUT;
2540 if (to && !to->task)
2541 goto out;
2542
2543 /*
2544 * We expect signal_pending(current), but we might be the
2545 * victim of a spurious wakeup as well.
2546 */
2547 if (!signal_pending(current))
2548 goto retry;
2549
2550 ret = -ERESTARTSYS;
2551 if (!abs_time)
2552 goto out;
2553
2554 restart = &current->restart_block;
2555 restart->fn = futex_wait_restart;
2556 restart->futex.uaddr = uaddr;
2557 restart->futex.val = val;
2558 restart->futex.time = *abs_time;
2559 restart->futex.bitset = bitset;
2560 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2561
2562 ret = -ERESTART_RESTARTBLOCK;
2563
2564 out:
2565 if (to) {
2566 hrtimer_cancel(&to->timer);
2567 destroy_hrtimer_on_stack(&to->timer);
2568 }
2569 return ret;
2570 }
2571
2572
2573 static long futex_wait_restart(struct restart_block *restart)
2574 {
2575 u32 __user *uaddr = restart->futex.uaddr;
2576 ktime_t t, *tp = NULL;
2577
2578 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2579 t = restart->futex.time;
2580 tp = &t;
2581 }
2582 restart->fn = do_no_restart_syscall;
2583
2584 return (long)futex_wait(uaddr, restart->futex.flags,
2585 restart->futex.val, tp, restart->futex.bitset);
2586 }
2587
2588
2589 /*
2590 * Userspace tried a 0 -> TID atomic transition of the futex value
2591 * and failed. The kernel side here does the whole locking operation:
2592 * if there are waiters then it will block as a consequence of relying
2593 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2594 * a 0 value of the futex too.).
2595 *
2596 * Also serves as futex trylock_pi()'ing, and due semantics.
2597 */
2598 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2599 ktime_t *time, int trylock)
2600 {
2601 struct hrtimer_sleeper timeout, *to = NULL;
2602 struct futex_pi_state *pi_state = NULL;
2603 struct rt_mutex_waiter rt_waiter;
2604 struct futex_hash_bucket *hb;
2605 struct futex_q q = futex_q_init;
2606 int res, ret;
2607
2608 if (refill_pi_state_cache())
2609 return -ENOMEM;
2610
2611 if (time) {
2612 to = &timeout;
2613 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2614 HRTIMER_MODE_ABS);
2615 hrtimer_init_sleeper(to, current);
2616 hrtimer_set_expires(&to->timer, *time);
2617 }
2618
2619 retry:
2620 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2621 if (unlikely(ret != 0))
2622 goto out;
2623
2624 retry_private:
2625 hb = queue_lock(&q);
2626
2627 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2628 if (unlikely(ret)) {
2629 /*
2630 * Atomic work succeeded and we got the lock,
2631 * or failed. Either way, we do _not_ block.
2632 */
2633 switch (ret) {
2634 case 1:
2635 /* We got the lock. */
2636 ret = 0;
2637 goto out_unlock_put_key;
2638 case -EFAULT:
2639 goto uaddr_faulted;
2640 case -EAGAIN:
2641 /*
2642 * Two reasons for this:
2643 * - Task is exiting and we just wait for the
2644 * exit to complete.
2645 * - The user space value changed.
2646 */
2647 queue_unlock(hb);
2648 put_futex_key(&q.key);
2649 cond_resched();
2650 goto retry;
2651 default:
2652 goto out_unlock_put_key;
2653 }
2654 }
2655
2656 WARN_ON(!q.pi_state);
2657
2658 /*
2659 * Only actually queue now that the atomic ops are done:
2660 */
2661 __queue_me(&q, hb);
2662
2663 if (trylock) {
2664 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2665 /* Fixup the trylock return value: */
2666 ret = ret ? 0 : -EWOULDBLOCK;
2667 goto no_block;
2668 }
2669
2670 rt_mutex_init_waiter(&rt_waiter);
2671
2672 /*
2673 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2674 * hold it while doing rt_mutex_start_proxy(), because then it will
2675 * include hb->lock in the blocking chain, even through we'll not in
2676 * fact hold it while blocking. This will lead it to report -EDEADLK
2677 * and BUG when futex_unlock_pi() interleaves with this.
2678 *
2679 * Therefore acquire wait_lock while holding hb->lock, but drop the
2680 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2681 * serializes against futex_unlock_pi() as that does the exact same
2682 * lock handoff sequence.
2683 */
2684 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2685 spin_unlock(q.lock_ptr);
2686 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2687 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2688
2689 if (ret) {
2690 if (ret == 1)
2691 ret = 0;
2692
2693 spin_lock(q.lock_ptr);
2694 goto no_block;
2695 }
2696
2697
2698 if (unlikely(to))
2699 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2700
2701 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2702
2703 spin_lock(q.lock_ptr);
2704 /*
2705 * If we failed to acquire the lock (signal/timeout), we must
2706 * first acquire the hb->lock before removing the lock from the
2707 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2708 * wait lists consistent.
2709 *
2710 * In particular; it is important that futex_unlock_pi() can not
2711 * observe this inconsistency.
2712 */
2713 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2714 ret = 0;
2715
2716 no_block:
2717 /*
2718 * Fixup the pi_state owner and possibly acquire the lock if we
2719 * haven't already.
2720 */
2721 res = fixup_owner(uaddr, &q, !ret);
2722 /*
2723 * If fixup_owner() returned an error, proprogate that. If it acquired
2724 * the lock, clear our -ETIMEDOUT or -EINTR.
2725 */
2726 if (res)
2727 ret = (res < 0) ? res : 0;
2728
2729 /*
2730 * If fixup_owner() faulted and was unable to handle the fault, unlock
2731 * it and return the fault to userspace.
2732 */
2733 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2734 pi_state = q.pi_state;
2735 get_pi_state(pi_state);
2736 }
2737
2738 /* Unqueue and drop the lock */
2739 unqueue_me_pi(&q);
2740
2741 if (pi_state) {
2742 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2743 put_pi_state(pi_state);
2744 }
2745
2746 goto out_put_key;
2747
2748 out_unlock_put_key:
2749 queue_unlock(hb);
2750
2751 out_put_key:
2752 put_futex_key(&q.key);
2753 out:
2754 if (to) {
2755 hrtimer_cancel(&to->timer);
2756 destroy_hrtimer_on_stack(&to->timer);
2757 }
2758 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2759
2760 uaddr_faulted:
2761 queue_unlock(hb);
2762
2763 ret = fault_in_user_writeable(uaddr);
2764 if (ret)
2765 goto out_put_key;
2766
2767 if (!(flags & FLAGS_SHARED))
2768 goto retry_private;
2769
2770 put_futex_key(&q.key);
2771 goto retry;
2772 }
2773
2774 /*
2775 * Userspace attempted a TID -> 0 atomic transition, and failed.
2776 * This is the in-kernel slowpath: we look up the PI state (if any),
2777 * and do the rt-mutex unlock.
2778 */
2779 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2780 {
2781 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2782 union futex_key key = FUTEX_KEY_INIT;
2783 struct futex_hash_bucket *hb;
2784 struct futex_q *top_waiter;
2785 int ret;
2786
2787 retry:
2788 if (get_user(uval, uaddr))
2789 return -EFAULT;
2790 /*
2791 * We release only a lock we actually own:
2792 */
2793 if ((uval & FUTEX_TID_MASK) != vpid)
2794 return -EPERM;
2795
2796 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2797 if (ret)
2798 return ret;
2799
2800 hb = hash_futex(&key);
2801 spin_lock(&hb->lock);
2802
2803 /*
2804 * Check waiters first. We do not trust user space values at
2805 * all and we at least want to know if user space fiddled
2806 * with the futex value instead of blindly unlocking.
2807 */
2808 top_waiter = futex_top_waiter(hb, &key);
2809 if (top_waiter) {
2810 struct futex_pi_state *pi_state = top_waiter->pi_state;
2811
2812 ret = -EINVAL;
2813 if (!pi_state)
2814 goto out_unlock;
2815
2816 /*
2817 * If current does not own the pi_state then the futex is
2818 * inconsistent and user space fiddled with the futex value.
2819 */
2820 if (pi_state->owner != current)
2821 goto out_unlock;
2822
2823 get_pi_state(pi_state);
2824 /*
2825 * By taking wait_lock while still holding hb->lock, we ensure
2826 * there is no point where we hold neither; and therefore
2827 * wake_futex_pi() must observe a state consistent with what we
2828 * observed.
2829 */
2830 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2831 spin_unlock(&hb->lock);
2832
2833 /* drops pi_state->pi_mutex.wait_lock */
2834 ret = wake_futex_pi(uaddr, uval, pi_state);
2835
2836 put_pi_state(pi_state);
2837
2838 /*
2839 * Success, we're done! No tricky corner cases.
2840 */
2841 if (!ret)
2842 goto out_putkey;
2843 /*
2844 * The atomic access to the futex value generated a
2845 * pagefault, so retry the user-access and the wakeup:
2846 */
2847 if (ret == -EFAULT)
2848 goto pi_faulted;
2849 /*
2850 * A unconditional UNLOCK_PI op raced against a waiter
2851 * setting the FUTEX_WAITERS bit. Try again.
2852 */
2853 if (ret == -EAGAIN) {
2854 put_futex_key(&key);
2855 goto retry;
2856 }
2857 /*
2858 * wake_futex_pi has detected invalid state. Tell user
2859 * space.
2860 */
2861 goto out_putkey;
2862 }
2863
2864 /*
2865 * We have no kernel internal state, i.e. no waiters in the
2866 * kernel. Waiters which are about to queue themselves are stuck
2867 * on hb->lock. So we can safely ignore them. We do neither
2868 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2869 * owner.
2870 */
2871 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2872 spin_unlock(&hb->lock);
2873 goto pi_faulted;
2874 }
2875
2876 /*
2877 * If uval has changed, let user space handle it.
2878 */
2879 ret = (curval == uval) ? 0 : -EAGAIN;
2880
2881 out_unlock:
2882 spin_unlock(&hb->lock);
2883 out_putkey:
2884 put_futex_key(&key);
2885 return ret;
2886
2887 pi_faulted:
2888 put_futex_key(&key);
2889
2890 ret = fault_in_user_writeable(uaddr);
2891 if (!ret)
2892 goto retry;
2893
2894 return ret;
2895 }
2896
2897 /**
2898 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2899 * @hb: the hash_bucket futex_q was original enqueued on
2900 * @q: the futex_q woken while waiting to be requeued
2901 * @key2: the futex_key of the requeue target futex
2902 * @timeout: the timeout associated with the wait (NULL if none)
2903 *
2904 * Detect if the task was woken on the initial futex as opposed to the requeue
2905 * target futex. If so, determine if it was a timeout or a signal that caused
2906 * the wakeup and return the appropriate error code to the caller. Must be
2907 * called with the hb lock held.
2908 *
2909 * Return:
2910 * - 0 = no early wakeup detected;
2911 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2912 */
2913 static inline
2914 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2915 struct futex_q *q, union futex_key *key2,
2916 struct hrtimer_sleeper *timeout)
2917 {
2918 int ret = 0;
2919
2920 /*
2921 * With the hb lock held, we avoid races while we process the wakeup.
2922 * We only need to hold hb (and not hb2) to ensure atomicity as the
2923 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2924 * It can't be requeued from uaddr2 to something else since we don't
2925 * support a PI aware source futex for requeue.
2926 */
2927 if (!match_futex(&q->key, key2)) {
2928 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2929 /*
2930 * We were woken prior to requeue by a timeout or a signal.
2931 * Unqueue the futex_q and determine which it was.
2932 */
2933 plist_del(&q->list, &hb->chain);
2934 hb_waiters_dec(hb);
2935
2936 /* Handle spurious wakeups gracefully */
2937 ret = -EWOULDBLOCK;
2938 if (timeout && !timeout->task)
2939 ret = -ETIMEDOUT;
2940 else if (signal_pending(current))
2941 ret = -ERESTARTNOINTR;
2942 }
2943 return ret;
2944 }
2945
2946 /**
2947 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2948 * @uaddr: the futex we initially wait on (non-pi)
2949 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2950 * the same type, no requeueing from private to shared, etc.
2951 * @val: the expected value of uaddr
2952 * @abs_time: absolute timeout
2953 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2954 * @uaddr2: the pi futex we will take prior to returning to user-space
2955 *
2956 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2957 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2958 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2959 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2960 * without one, the pi logic would not know which task to boost/deboost, if
2961 * there was a need to.
2962 *
2963 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2964 * via the following--
2965 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2966 * 2) wakeup on uaddr2 after a requeue
2967 * 3) signal
2968 * 4) timeout
2969 *
2970 * If 3, cleanup and return -ERESTARTNOINTR.
2971 *
2972 * If 2, we may then block on trying to take the rt_mutex and return via:
2973 * 5) successful lock
2974 * 6) signal
2975 * 7) timeout
2976 * 8) other lock acquisition failure
2977 *
2978 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2979 *
2980 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2981 *
2982 * Return:
2983 * - 0 - On success;
2984 * - <0 - On error
2985 */
2986 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2987 u32 val, ktime_t *abs_time, u32 bitset,
2988 u32 __user *uaddr2)
2989 {
2990 struct hrtimer_sleeper timeout, *to = NULL;
2991 struct futex_pi_state *pi_state = NULL;
2992 struct rt_mutex_waiter rt_waiter;
2993 struct futex_hash_bucket *hb;
2994 union futex_key key2 = FUTEX_KEY_INIT;
2995 struct futex_q q = futex_q_init;
2996 int res, ret;
2997
2998 if (uaddr == uaddr2)
2999 return -EINVAL;
3000
3001 if (!bitset)
3002 return -EINVAL;
3003
3004 if (abs_time) {
3005 to = &timeout;
3006 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3007 CLOCK_REALTIME : CLOCK_MONOTONIC,
3008 HRTIMER_MODE_ABS);
3009 hrtimer_init_sleeper(to, current);
3010 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3011 current->timer_slack_ns);
3012 }
3013
3014 /*
3015 * The waiter is allocated on our stack, manipulated by the requeue
3016 * code while we sleep on uaddr.
3017 */
3018 rt_mutex_init_waiter(&rt_waiter);
3019
3020 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3021 if (unlikely(ret != 0))
3022 goto out;
3023
3024 q.bitset = bitset;
3025 q.rt_waiter = &rt_waiter;
3026 q.requeue_pi_key = &key2;
3027
3028 /*
3029 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3030 * count.
3031 */
3032 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3033 if (ret)
3034 goto out_key2;
3035
3036 /*
3037 * The check above which compares uaddrs is not sufficient for
3038 * shared futexes. We need to compare the keys:
3039 */
3040 if (match_futex(&q.key, &key2)) {
3041 queue_unlock(hb);
3042 ret = -EINVAL;
3043 goto out_put_keys;
3044 }
3045
3046 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3047 futex_wait_queue_me(hb, &q, to);
3048
3049 spin_lock(&hb->lock);
3050 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3051 spin_unlock(&hb->lock);
3052 if (ret)
3053 goto out_put_keys;
3054
3055 /*
3056 * In order for us to be here, we know our q.key == key2, and since
3057 * we took the hb->lock above, we also know that futex_requeue() has
3058 * completed and we no longer have to concern ourselves with a wakeup
3059 * race with the atomic proxy lock acquisition by the requeue code. The
3060 * futex_requeue dropped our key1 reference and incremented our key2
3061 * reference count.
3062 */
3063
3064 /* Check if the requeue code acquired the second futex for us. */
3065 if (!q.rt_waiter) {
3066 /*
3067 * Got the lock. We might not be the anticipated owner if we
3068 * did a lock-steal - fix up the PI-state in that case.
3069 */
3070 if (q.pi_state && (q.pi_state->owner != current)) {
3071 spin_lock(q.lock_ptr);
3072 ret = fixup_pi_state_owner(uaddr2, &q, current);
3073 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3074 pi_state = q.pi_state;
3075 get_pi_state(pi_state);
3076 }
3077 /*
3078 * Drop the reference to the pi state which
3079 * the requeue_pi() code acquired for us.
3080 */
3081 put_pi_state(q.pi_state);
3082 spin_unlock(q.lock_ptr);
3083 }
3084 } else {
3085 struct rt_mutex *pi_mutex;
3086
3087 /*
3088 * We have been woken up by futex_unlock_pi(), a timeout, or a
3089 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3090 * the pi_state.
3091 */
3092 WARN_ON(!q.pi_state);
3093 pi_mutex = &q.pi_state->pi_mutex;
3094 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3095
3096 spin_lock(q.lock_ptr);
3097 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3098 ret = 0;
3099
3100 debug_rt_mutex_free_waiter(&rt_waiter);
3101 /*
3102 * Fixup the pi_state owner and possibly acquire the lock if we
3103 * haven't already.
3104 */
3105 res = fixup_owner(uaddr2, &q, !ret);
3106 /*
3107 * If fixup_owner() returned an error, proprogate that. If it
3108 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3109 */
3110 if (res)
3111 ret = (res < 0) ? res : 0;
3112
3113 /*
3114 * If fixup_pi_state_owner() faulted and was unable to handle
3115 * the fault, unlock the rt_mutex and return the fault to
3116 * userspace.
3117 */
3118 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3119 pi_state = q.pi_state;
3120 get_pi_state(pi_state);
3121 }
3122
3123 /* Unqueue and drop the lock. */
3124 unqueue_me_pi(&q);
3125 }
3126
3127 if (pi_state) {
3128 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3129 put_pi_state(pi_state);
3130 }
3131
3132 if (ret == -EINTR) {
3133 /*
3134 * We've already been requeued, but cannot restart by calling
3135 * futex_lock_pi() directly. We could restart this syscall, but
3136 * it would detect that the user space "val" changed and return
3137 * -EWOULDBLOCK. Save the overhead of the restart and return
3138 * -EWOULDBLOCK directly.
3139 */
3140 ret = -EWOULDBLOCK;
3141 }
3142
3143 out_put_keys:
3144 put_futex_key(&q.key);
3145 out_key2:
3146 put_futex_key(&key2);
3147
3148 out:
3149 if (to) {
3150 hrtimer_cancel(&to->timer);
3151 destroy_hrtimer_on_stack(&to->timer);
3152 }
3153 return ret;
3154 }
3155
3156 /*
3157 * Support for robust futexes: the kernel cleans up held futexes at
3158 * thread exit time.
3159 *
3160 * Implementation: user-space maintains a per-thread list of locks it
3161 * is holding. Upon do_exit(), the kernel carefully walks this list,
3162 * and marks all locks that are owned by this thread with the
3163 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3164 * always manipulated with the lock held, so the list is private and
3165 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3166 * field, to allow the kernel to clean up if the thread dies after
3167 * acquiring the lock, but just before it could have added itself to
3168 * the list. There can only be one such pending lock.
3169 */
3170
3171 /**
3172 * sys_set_robust_list() - Set the robust-futex list head of a task
3173 * @head: pointer to the list-head
3174 * @len: length of the list-head, as userspace expects
3175 */
3176 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3177 size_t, len)
3178 {
3179 if (!futex_cmpxchg_enabled)
3180 return -ENOSYS;
3181 /*
3182 * The kernel knows only one size for now:
3183 */
3184 if (unlikely(len != sizeof(*head)))
3185 return -EINVAL;
3186
3187 current->robust_list = head;
3188
3189 return 0;
3190 }
3191
3192 /**
3193 * sys_get_robust_list() - Get the robust-futex list head of a task
3194 * @pid: pid of the process [zero for current task]
3195 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3196 * @len_ptr: pointer to a length field, the kernel fills in the header size
3197 */
3198 SYSCALL_DEFINE3(get_robust_list, int, pid,
3199 struct robust_list_head __user * __user *, head_ptr,
3200 size_t __user *, len_ptr)
3201 {
3202 struct robust_list_head __user *head;
3203 unsigned long ret;
3204 struct task_struct *p;
3205
3206 if (!futex_cmpxchg_enabled)
3207 return -ENOSYS;
3208
3209 rcu_read_lock();
3210
3211 ret = -ESRCH;
3212 if (!pid)
3213 p = current;
3214 else {
3215 p = find_task_by_vpid(pid);
3216 if (!p)
3217 goto err_unlock;
3218 }
3219
3220 ret = -EPERM;
3221 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3222 goto err_unlock;
3223
3224 head = p->robust_list;
3225 rcu_read_unlock();
3226
3227 if (put_user(sizeof(*head), len_ptr))
3228 return -EFAULT;
3229 return put_user(head, head_ptr);
3230
3231 err_unlock:
3232 rcu_read_unlock();
3233
3234 return ret;
3235 }
3236
3237 /*
3238 * Process a futex-list entry, check whether it's owned by the
3239 * dying task, and do notification if so:
3240 */
3241 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3242 {
3243 u32 uval, uninitialized_var(nval), mval;
3244
3245 retry:
3246 if (get_user(uval, uaddr))
3247 return -1;
3248
3249 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3250 /*
3251 * Ok, this dying thread is truly holding a futex
3252 * of interest. Set the OWNER_DIED bit atomically
3253 * via cmpxchg, and if the value had FUTEX_WAITERS
3254 * set, wake up a waiter (if any). (We have to do a
3255 * futex_wake() even if OWNER_DIED is already set -
3256 * to handle the rare but possible case of recursive
3257 * thread-death.) The rest of the cleanup is done in
3258 * userspace.
3259 */
3260 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3261 /*
3262 * We are not holding a lock here, but we want to have
3263 * the pagefault_disable/enable() protection because
3264 * we want to handle the fault gracefully. If the
3265 * access fails we try to fault in the futex with R/W
3266 * verification via get_user_pages. get_user() above
3267 * does not guarantee R/W access. If that fails we
3268 * give up and leave the futex locked.
3269 */
3270 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3271 if (fault_in_user_writeable(uaddr))
3272 return -1;
3273 goto retry;
3274 }
3275 if (nval != uval)
3276 goto retry;
3277
3278 /*
3279 * Wake robust non-PI futexes here. The wakeup of
3280 * PI futexes happens in exit_pi_state():
3281 */
3282 if (!pi && (uval & FUTEX_WAITERS))
3283 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3284 }
3285 return 0;
3286 }
3287
3288 /*
3289 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3290 */
3291 static inline int fetch_robust_entry(struct robust_list __user **entry,
3292 struct robust_list __user * __user *head,
3293 unsigned int *pi)
3294 {
3295 unsigned long uentry;
3296
3297 if (get_user(uentry, (unsigned long __user *)head))
3298 return -EFAULT;
3299
3300 *entry = (void __user *)(uentry & ~1UL);
3301 *pi = uentry & 1;
3302
3303 return 0;
3304 }
3305
3306 /*
3307 * Walk curr->robust_list (very carefully, it's a userspace list!)
3308 * and mark any locks found there dead, and notify any waiters.
3309 *
3310 * We silently return on any sign of list-walking problem.
3311 */
3312 void exit_robust_list(struct task_struct *curr)
3313 {
3314 struct robust_list_head __user *head = curr->robust_list;
3315 struct robust_list __user *entry, *next_entry, *pending;
3316 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3317 unsigned int uninitialized_var(next_pi);
3318 unsigned long futex_offset;
3319 int rc;
3320
3321 if (!futex_cmpxchg_enabled)
3322 return;
3323
3324 /*
3325 * Fetch the list head (which was registered earlier, via
3326 * sys_set_robust_list()):
3327 */
3328 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3329 return;
3330 /*
3331 * Fetch the relative futex offset:
3332 */
3333 if (get_user(futex_offset, &head->futex_offset))
3334 return;
3335 /*
3336 * Fetch any possibly pending lock-add first, and handle it
3337 * if it exists:
3338 */
3339 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3340 return;
3341
3342 next_entry = NULL; /* avoid warning with gcc */
3343 while (entry != &head->list) {
3344 /*
3345 * Fetch the next entry in the list before calling
3346 * handle_futex_death:
3347 */
3348 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3349 /*
3350 * A pending lock might already be on the list, so
3351 * don't process it twice:
3352 */
3353 if (entry != pending)
3354 if (handle_futex_death((void __user *)entry + futex_offset,
3355 curr, pi))
3356 return;
3357 if (rc)
3358 return;
3359 entry = next_entry;
3360 pi = next_pi;
3361 /*
3362 * Avoid excessively long or circular lists:
3363 */
3364 if (!--limit)
3365 break;
3366
3367 cond_resched();
3368 }
3369
3370 if (pending)
3371 handle_futex_death((void __user *)pending + futex_offset,
3372 curr, pip);
3373 }
3374
3375 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3376 u32 __user *uaddr2, u32 val2, u32 val3)
3377 {
3378 int cmd = op & FUTEX_CMD_MASK;
3379 unsigned int flags = 0;
3380
3381 if (!(op & FUTEX_PRIVATE_FLAG))
3382 flags |= FLAGS_SHARED;
3383
3384 if (op & FUTEX_CLOCK_REALTIME) {
3385 flags |= FLAGS_CLOCKRT;
3386 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3387 cmd != FUTEX_WAIT_REQUEUE_PI)
3388 return -ENOSYS;
3389 }
3390
3391 switch (cmd) {
3392 case FUTEX_LOCK_PI:
3393 case FUTEX_UNLOCK_PI:
3394 case FUTEX_TRYLOCK_PI:
3395 case FUTEX_WAIT_REQUEUE_PI:
3396 case FUTEX_CMP_REQUEUE_PI:
3397 if (!futex_cmpxchg_enabled)
3398 return -ENOSYS;
3399 }
3400
3401 switch (cmd) {
3402 case FUTEX_WAIT:
3403 val3 = FUTEX_BITSET_MATCH_ANY;
3404 case FUTEX_WAIT_BITSET:
3405 return futex_wait(uaddr, flags, val, timeout, val3);
3406 case FUTEX_WAKE:
3407 val3 = FUTEX_BITSET_MATCH_ANY;
3408 case FUTEX_WAKE_BITSET:
3409 return futex_wake(uaddr, flags, val, val3);
3410 case FUTEX_REQUEUE:
3411 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3412 case FUTEX_CMP_REQUEUE:
3413 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3414 case FUTEX_WAKE_OP:
3415 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3416 case FUTEX_LOCK_PI:
3417 return futex_lock_pi(uaddr, flags, timeout, 0);
3418 case FUTEX_UNLOCK_PI:
3419 return futex_unlock_pi(uaddr, flags);
3420 case FUTEX_TRYLOCK_PI:
3421 return futex_lock_pi(uaddr, flags, NULL, 1);
3422 case FUTEX_WAIT_REQUEUE_PI:
3423 val3 = FUTEX_BITSET_MATCH_ANY;
3424 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3425 uaddr2);
3426 case FUTEX_CMP_REQUEUE_PI:
3427 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3428 }
3429 return -ENOSYS;
3430 }
3431
3432
3433 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3434 struct timespec __user *, utime, u32 __user *, uaddr2,
3435 u32, val3)
3436 {
3437 struct timespec ts;
3438 ktime_t t, *tp = NULL;
3439 u32 val2 = 0;
3440 int cmd = op & FUTEX_CMD_MASK;
3441
3442 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3443 cmd == FUTEX_WAIT_BITSET ||
3444 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3445 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3446 return -EFAULT;
3447 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3448 return -EFAULT;
3449 if (!timespec_valid(&ts))
3450 return -EINVAL;
3451
3452 t = timespec_to_ktime(ts);
3453 if (cmd == FUTEX_WAIT)
3454 t = ktime_add_safe(ktime_get(), t);
3455 tp = &t;
3456 }
3457 /*
3458 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3459 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3460 */
3461 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3462 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3463 val2 = (u32) (unsigned long) utime;
3464
3465 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3466 }
3467
3468 static void __init futex_detect_cmpxchg(void)
3469 {
3470 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3471 u32 curval;
3472
3473 /*
3474 * This will fail and we want it. Some arch implementations do
3475 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3476 * functionality. We want to know that before we call in any
3477 * of the complex code paths. Also we want to prevent
3478 * registration of robust lists in that case. NULL is
3479 * guaranteed to fault and we get -EFAULT on functional
3480 * implementation, the non-functional ones will return
3481 * -ENOSYS.
3482 */
3483 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3484 futex_cmpxchg_enabled = 1;
3485 #endif
3486 }
3487
3488 static int __init futex_init(void)
3489 {
3490 unsigned int futex_shift;
3491 unsigned long i;
3492
3493 #if CONFIG_BASE_SMALL
3494 futex_hashsize = 16;
3495 #else
3496 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3497 #endif
3498
3499 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3500 futex_hashsize, 0,
3501 futex_hashsize < 256 ? HASH_SMALL : 0,
3502 &futex_shift, NULL,
3503 futex_hashsize, futex_hashsize);
3504 futex_hashsize = 1UL << futex_shift;
3505
3506 futex_detect_cmpxchg();
3507
3508 for (i = 0; i < futex_hashsize; i++) {
3509 atomic_set(&futex_queues[i].waiters, 0);
3510 plist_head_init(&futex_queues[i].chain);
3511 spin_lock_init(&futex_queues[i].lock);
3512 }
3513
3514 return 0;
3515 }
3516 core_initcall(futex_init);