]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/futex.c
Merge tag 'at91-ab-4.13-drivers-fixes' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 } __randomize_layout;
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 } __randomize_layout;
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in @key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel so warn for now if this happens.
674 *
675 * We are not calling into get_futex_key_refs() in file-backed
676 * cases, therefore a successful atomic_inc return below will
677 * guarantee that get_futex_key() will still imply smp_mb(); (B).
678 */
679 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680 rcu_read_unlock();
681 put_page(page);
682
683 goto again;
684 }
685
686 /* Should be impossible but lets be paranoid for now */
687 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688 err = -EFAULT;
689 rcu_read_unlock();
690 iput(inode);
691
692 goto out;
693 }
694
695 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696 key->shared.inode = inode;
697 key->shared.pgoff = basepage_index(tail);
698 rcu_read_unlock();
699 }
700
701 out:
702 put_page(page);
703 return err;
704 }
705
706 static inline void put_futex_key(union futex_key *key)
707 {
708 drop_futex_key_refs(key);
709 }
710
711 /**
712 * fault_in_user_writeable() - Fault in user address and verify RW access
713 * @uaddr: pointer to faulting user space address
714 *
715 * Slow path to fixup the fault we just took in the atomic write
716 * access to @uaddr.
717 *
718 * We have no generic implementation of a non-destructive write to the
719 * user address. We know that we faulted in the atomic pagefault
720 * disabled section so we can as well avoid the #PF overhead by
721 * calling get_user_pages() right away.
722 */
723 static int fault_in_user_writeable(u32 __user *uaddr)
724 {
725 struct mm_struct *mm = current->mm;
726 int ret;
727
728 down_read(&mm->mmap_sem);
729 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730 FAULT_FLAG_WRITE, NULL);
731 up_read(&mm->mmap_sem);
732
733 return ret < 0 ? ret : 0;
734 }
735
736 /**
737 * futex_top_waiter() - Return the highest priority waiter on a futex
738 * @hb: the hash bucket the futex_q's reside in
739 * @key: the futex key (to distinguish it from other futex futex_q's)
740 *
741 * Must be called with the hb lock held.
742 */
743 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744 union futex_key *key)
745 {
746 struct futex_q *this;
747
748 plist_for_each_entry(this, &hb->chain, list) {
749 if (match_futex(&this->key, key))
750 return this;
751 }
752 return NULL;
753 }
754
755 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756 u32 uval, u32 newval)
757 {
758 int ret;
759
760 pagefault_disable();
761 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
762 pagefault_enable();
763
764 return ret;
765 }
766
767 static int get_futex_value_locked(u32 *dest, u32 __user *from)
768 {
769 int ret;
770
771 pagefault_disable();
772 ret = __get_user(*dest, from);
773 pagefault_enable();
774
775 return ret ? -EFAULT : 0;
776 }
777
778
779 /*
780 * PI code:
781 */
782 static int refill_pi_state_cache(void)
783 {
784 struct futex_pi_state *pi_state;
785
786 if (likely(current->pi_state_cache))
787 return 0;
788
789 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790
791 if (!pi_state)
792 return -ENOMEM;
793
794 INIT_LIST_HEAD(&pi_state->list);
795 /* pi_mutex gets initialized later */
796 pi_state->owner = NULL;
797 atomic_set(&pi_state->refcount, 1);
798 pi_state->key = FUTEX_KEY_INIT;
799
800 current->pi_state_cache = pi_state;
801
802 return 0;
803 }
804
805 static struct futex_pi_state *alloc_pi_state(void)
806 {
807 struct futex_pi_state *pi_state = current->pi_state_cache;
808
809 WARN_ON(!pi_state);
810 current->pi_state_cache = NULL;
811
812 return pi_state;
813 }
814
815 static void get_pi_state(struct futex_pi_state *pi_state)
816 {
817 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
818 }
819
820 /*
821 * Drops a reference to the pi_state object and frees or caches it
822 * when the last reference is gone.
823 *
824 * Must be called with the hb lock held.
825 */
826 static void put_pi_state(struct futex_pi_state *pi_state)
827 {
828 if (!pi_state)
829 return;
830
831 if (!atomic_dec_and_test(&pi_state->refcount))
832 return;
833
834 /*
835 * If pi_state->owner is NULL, the owner is most probably dying
836 * and has cleaned up the pi_state already
837 */
838 if (pi_state->owner) {
839 raw_spin_lock_irq(&pi_state->owner->pi_lock);
840 list_del_init(&pi_state->list);
841 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
842
843 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
844 }
845
846 if (current->pi_state_cache)
847 kfree(pi_state);
848 else {
849 /*
850 * pi_state->list is already empty.
851 * clear pi_state->owner.
852 * refcount is at 0 - put it back to 1.
853 */
854 pi_state->owner = NULL;
855 atomic_set(&pi_state->refcount, 1);
856 current->pi_state_cache = pi_state;
857 }
858 }
859
860 /*
861 * Look up the task based on what TID userspace gave us.
862 * We dont trust it.
863 */
864 static struct task_struct *futex_find_get_task(pid_t pid)
865 {
866 struct task_struct *p;
867
868 rcu_read_lock();
869 p = find_task_by_vpid(pid);
870 if (p)
871 get_task_struct(p);
872
873 rcu_read_unlock();
874
875 return p;
876 }
877
878 /*
879 * This task is holding PI mutexes at exit time => bad.
880 * Kernel cleans up PI-state, but userspace is likely hosed.
881 * (Robust-futex cleanup is separate and might save the day for userspace.)
882 */
883 void exit_pi_state_list(struct task_struct *curr)
884 {
885 struct list_head *next, *head = &curr->pi_state_list;
886 struct futex_pi_state *pi_state;
887 struct futex_hash_bucket *hb;
888 union futex_key key = FUTEX_KEY_INIT;
889
890 if (!futex_cmpxchg_enabled)
891 return;
892 /*
893 * We are a ZOMBIE and nobody can enqueue itself on
894 * pi_state_list anymore, but we have to be careful
895 * versus waiters unqueueing themselves:
896 */
897 raw_spin_lock_irq(&curr->pi_lock);
898 while (!list_empty(head)) {
899
900 next = head->next;
901 pi_state = list_entry(next, struct futex_pi_state, list);
902 key = pi_state->key;
903 hb = hash_futex(&key);
904 raw_spin_unlock_irq(&curr->pi_lock);
905
906 spin_lock(&hb->lock);
907
908 raw_spin_lock_irq(&curr->pi_lock);
909 /*
910 * We dropped the pi-lock, so re-check whether this
911 * task still owns the PI-state:
912 */
913 if (head->next != next) {
914 spin_unlock(&hb->lock);
915 continue;
916 }
917
918 WARN_ON(pi_state->owner != curr);
919 WARN_ON(list_empty(&pi_state->list));
920 list_del_init(&pi_state->list);
921 pi_state->owner = NULL;
922 raw_spin_unlock_irq(&curr->pi_lock);
923
924 get_pi_state(pi_state);
925 spin_unlock(&hb->lock);
926
927 rt_mutex_futex_unlock(&pi_state->pi_mutex);
928 put_pi_state(pi_state);
929
930 raw_spin_lock_irq(&curr->pi_lock);
931 }
932 raw_spin_unlock_irq(&curr->pi_lock);
933 }
934
935 /*
936 * We need to check the following states:
937 *
938 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
939 *
940 * [1] NULL | --- | --- | 0 | 0/1 | Valid
941 * [2] NULL | --- | --- | >0 | 0/1 | Valid
942 *
943 * [3] Found | NULL | -- | Any | 0/1 | Invalid
944 *
945 * [4] Found | Found | NULL | 0 | 1 | Valid
946 * [5] Found | Found | NULL | >0 | 1 | Invalid
947 *
948 * [6] Found | Found | task | 0 | 1 | Valid
949 *
950 * [7] Found | Found | NULL | Any | 0 | Invalid
951 *
952 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
953 * [9] Found | Found | task | 0 | 0 | Invalid
954 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
955 *
956 * [1] Indicates that the kernel can acquire the futex atomically. We
957 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
958 *
959 * [2] Valid, if TID does not belong to a kernel thread. If no matching
960 * thread is found then it indicates that the owner TID has died.
961 *
962 * [3] Invalid. The waiter is queued on a non PI futex
963 *
964 * [4] Valid state after exit_robust_list(), which sets the user space
965 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
966 *
967 * [5] The user space value got manipulated between exit_robust_list()
968 * and exit_pi_state_list()
969 *
970 * [6] Valid state after exit_pi_state_list() which sets the new owner in
971 * the pi_state but cannot access the user space value.
972 *
973 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
974 *
975 * [8] Owner and user space value match
976 *
977 * [9] There is no transient state which sets the user space TID to 0
978 * except exit_robust_list(), but this is indicated by the
979 * FUTEX_OWNER_DIED bit. See [4]
980 *
981 * [10] There is no transient state which leaves owner and user space
982 * TID out of sync.
983 *
984 *
985 * Serialization and lifetime rules:
986 *
987 * hb->lock:
988 *
989 * hb -> futex_q, relation
990 * futex_q -> pi_state, relation
991 *
992 * (cannot be raw because hb can contain arbitrary amount
993 * of futex_q's)
994 *
995 * pi_mutex->wait_lock:
996 *
997 * {uval, pi_state}
998 *
999 * (and pi_mutex 'obviously')
1000 *
1001 * p->pi_lock:
1002 *
1003 * p->pi_state_list -> pi_state->list, relation
1004 *
1005 * pi_state->refcount:
1006 *
1007 * pi_state lifetime
1008 *
1009 *
1010 * Lock order:
1011 *
1012 * hb->lock
1013 * pi_mutex->wait_lock
1014 * p->pi_lock
1015 *
1016 */
1017
1018 /*
1019 * Validate that the existing waiter has a pi_state and sanity check
1020 * the pi_state against the user space value. If correct, attach to
1021 * it.
1022 */
1023 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1024 struct futex_pi_state *pi_state,
1025 struct futex_pi_state **ps)
1026 {
1027 pid_t pid = uval & FUTEX_TID_MASK;
1028 u32 uval2;
1029 int ret;
1030
1031 /*
1032 * Userspace might have messed up non-PI and PI futexes [3]
1033 */
1034 if (unlikely(!pi_state))
1035 return -EINVAL;
1036
1037 /*
1038 * We get here with hb->lock held, and having found a
1039 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1040 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1041 * which in turn means that futex_lock_pi() still has a reference on
1042 * our pi_state.
1043 *
1044 * The waiter holding a reference on @pi_state also protects against
1045 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1046 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1047 * free pi_state before we can take a reference ourselves.
1048 */
1049 WARN_ON(!atomic_read(&pi_state->refcount));
1050
1051 /*
1052 * Now that we have a pi_state, we can acquire wait_lock
1053 * and do the state validation.
1054 */
1055 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1056
1057 /*
1058 * Since {uval, pi_state} is serialized by wait_lock, and our current
1059 * uval was read without holding it, it can have changed. Verify it
1060 * still is what we expect it to be, otherwise retry the entire
1061 * operation.
1062 */
1063 if (get_futex_value_locked(&uval2, uaddr))
1064 goto out_efault;
1065
1066 if (uval != uval2)
1067 goto out_eagain;
1068
1069 /*
1070 * Handle the owner died case:
1071 */
1072 if (uval & FUTEX_OWNER_DIED) {
1073 /*
1074 * exit_pi_state_list sets owner to NULL and wakes the
1075 * topmost waiter. The task which acquires the
1076 * pi_state->rt_mutex will fixup owner.
1077 */
1078 if (!pi_state->owner) {
1079 /*
1080 * No pi state owner, but the user space TID
1081 * is not 0. Inconsistent state. [5]
1082 */
1083 if (pid)
1084 goto out_einval;
1085 /*
1086 * Take a ref on the state and return success. [4]
1087 */
1088 goto out_attach;
1089 }
1090
1091 /*
1092 * If TID is 0, then either the dying owner has not
1093 * yet executed exit_pi_state_list() or some waiter
1094 * acquired the rtmutex in the pi state, but did not
1095 * yet fixup the TID in user space.
1096 *
1097 * Take a ref on the state and return success. [6]
1098 */
1099 if (!pid)
1100 goto out_attach;
1101 } else {
1102 /*
1103 * If the owner died bit is not set, then the pi_state
1104 * must have an owner. [7]
1105 */
1106 if (!pi_state->owner)
1107 goto out_einval;
1108 }
1109
1110 /*
1111 * Bail out if user space manipulated the futex value. If pi
1112 * state exists then the owner TID must be the same as the
1113 * user space TID. [9/10]
1114 */
1115 if (pid != task_pid_vnr(pi_state->owner))
1116 goto out_einval;
1117
1118 out_attach:
1119 get_pi_state(pi_state);
1120 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1121 *ps = pi_state;
1122 return 0;
1123
1124 out_einval:
1125 ret = -EINVAL;
1126 goto out_error;
1127
1128 out_eagain:
1129 ret = -EAGAIN;
1130 goto out_error;
1131
1132 out_efault:
1133 ret = -EFAULT;
1134 goto out_error;
1135
1136 out_error:
1137 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1138 return ret;
1139 }
1140
1141 /*
1142 * Lookup the task for the TID provided from user space and attach to
1143 * it after doing proper sanity checks.
1144 */
1145 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1146 struct futex_pi_state **ps)
1147 {
1148 pid_t pid = uval & FUTEX_TID_MASK;
1149 struct futex_pi_state *pi_state;
1150 struct task_struct *p;
1151
1152 /*
1153 * We are the first waiter - try to look up the real owner and attach
1154 * the new pi_state to it, but bail out when TID = 0 [1]
1155 */
1156 if (!pid)
1157 return -ESRCH;
1158 p = futex_find_get_task(pid);
1159 if (!p)
1160 return -ESRCH;
1161
1162 if (unlikely(p->flags & PF_KTHREAD)) {
1163 put_task_struct(p);
1164 return -EPERM;
1165 }
1166
1167 /*
1168 * We need to look at the task state flags to figure out,
1169 * whether the task is exiting. To protect against the do_exit
1170 * change of the task flags, we do this protected by
1171 * p->pi_lock:
1172 */
1173 raw_spin_lock_irq(&p->pi_lock);
1174 if (unlikely(p->flags & PF_EXITING)) {
1175 /*
1176 * The task is on the way out. When PF_EXITPIDONE is
1177 * set, we know that the task has finished the
1178 * cleanup:
1179 */
1180 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1181
1182 raw_spin_unlock_irq(&p->pi_lock);
1183 put_task_struct(p);
1184 return ret;
1185 }
1186
1187 /*
1188 * No existing pi state. First waiter. [2]
1189 *
1190 * This creates pi_state, we have hb->lock held, this means nothing can
1191 * observe this state, wait_lock is irrelevant.
1192 */
1193 pi_state = alloc_pi_state();
1194
1195 /*
1196 * Initialize the pi_mutex in locked state and make @p
1197 * the owner of it:
1198 */
1199 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1200
1201 /* Store the key for possible exit cleanups: */
1202 pi_state->key = *key;
1203
1204 WARN_ON(!list_empty(&pi_state->list));
1205 list_add(&pi_state->list, &p->pi_state_list);
1206 pi_state->owner = p;
1207 raw_spin_unlock_irq(&p->pi_lock);
1208
1209 put_task_struct(p);
1210
1211 *ps = pi_state;
1212
1213 return 0;
1214 }
1215
1216 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1217 struct futex_hash_bucket *hb,
1218 union futex_key *key, struct futex_pi_state **ps)
1219 {
1220 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1221
1222 /*
1223 * If there is a waiter on that futex, validate it and
1224 * attach to the pi_state when the validation succeeds.
1225 */
1226 if (top_waiter)
1227 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1228
1229 /*
1230 * We are the first waiter - try to look up the owner based on
1231 * @uval and attach to it.
1232 */
1233 return attach_to_pi_owner(uval, key, ps);
1234 }
1235
1236 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1237 {
1238 u32 uninitialized_var(curval);
1239
1240 if (unlikely(should_fail_futex(true)))
1241 return -EFAULT;
1242
1243 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1244 return -EFAULT;
1245
1246 /* If user space value changed, let the caller retry */
1247 return curval != uval ? -EAGAIN : 0;
1248 }
1249
1250 /**
1251 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1252 * @uaddr: the pi futex user address
1253 * @hb: the pi futex hash bucket
1254 * @key: the futex key associated with uaddr and hb
1255 * @ps: the pi_state pointer where we store the result of the
1256 * lookup
1257 * @task: the task to perform the atomic lock work for. This will
1258 * be "current" except in the case of requeue pi.
1259 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1260 *
1261 * Return:
1262 * - 0 - ready to wait;
1263 * - 1 - acquired the lock;
1264 * - <0 - error
1265 *
1266 * The hb->lock and futex_key refs shall be held by the caller.
1267 */
1268 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1269 union futex_key *key,
1270 struct futex_pi_state **ps,
1271 struct task_struct *task, int set_waiters)
1272 {
1273 u32 uval, newval, vpid = task_pid_vnr(task);
1274 struct futex_q *top_waiter;
1275 int ret;
1276
1277 /*
1278 * Read the user space value first so we can validate a few
1279 * things before proceeding further.
1280 */
1281 if (get_futex_value_locked(&uval, uaddr))
1282 return -EFAULT;
1283
1284 if (unlikely(should_fail_futex(true)))
1285 return -EFAULT;
1286
1287 /*
1288 * Detect deadlocks.
1289 */
1290 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1291 return -EDEADLK;
1292
1293 if ((unlikely(should_fail_futex(true))))
1294 return -EDEADLK;
1295
1296 /*
1297 * Lookup existing state first. If it exists, try to attach to
1298 * its pi_state.
1299 */
1300 top_waiter = futex_top_waiter(hb, key);
1301 if (top_waiter)
1302 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1303
1304 /*
1305 * No waiter and user TID is 0. We are here because the
1306 * waiters or the owner died bit is set or called from
1307 * requeue_cmp_pi or for whatever reason something took the
1308 * syscall.
1309 */
1310 if (!(uval & FUTEX_TID_MASK)) {
1311 /*
1312 * We take over the futex. No other waiters and the user space
1313 * TID is 0. We preserve the owner died bit.
1314 */
1315 newval = uval & FUTEX_OWNER_DIED;
1316 newval |= vpid;
1317
1318 /* The futex requeue_pi code can enforce the waiters bit */
1319 if (set_waiters)
1320 newval |= FUTEX_WAITERS;
1321
1322 ret = lock_pi_update_atomic(uaddr, uval, newval);
1323 /* If the take over worked, return 1 */
1324 return ret < 0 ? ret : 1;
1325 }
1326
1327 /*
1328 * First waiter. Set the waiters bit before attaching ourself to
1329 * the owner. If owner tries to unlock, it will be forced into
1330 * the kernel and blocked on hb->lock.
1331 */
1332 newval = uval | FUTEX_WAITERS;
1333 ret = lock_pi_update_atomic(uaddr, uval, newval);
1334 if (ret)
1335 return ret;
1336 /*
1337 * If the update of the user space value succeeded, we try to
1338 * attach to the owner. If that fails, no harm done, we only
1339 * set the FUTEX_WAITERS bit in the user space variable.
1340 */
1341 return attach_to_pi_owner(uval, key, ps);
1342 }
1343
1344 /**
1345 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1346 * @q: The futex_q to unqueue
1347 *
1348 * The q->lock_ptr must not be NULL and must be held by the caller.
1349 */
1350 static void __unqueue_futex(struct futex_q *q)
1351 {
1352 struct futex_hash_bucket *hb;
1353
1354 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1355 || WARN_ON(plist_node_empty(&q->list)))
1356 return;
1357
1358 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1359 plist_del(&q->list, &hb->chain);
1360 hb_waiters_dec(hb);
1361 }
1362
1363 /*
1364 * The hash bucket lock must be held when this is called.
1365 * Afterwards, the futex_q must not be accessed. Callers
1366 * must ensure to later call wake_up_q() for the actual
1367 * wakeups to occur.
1368 */
1369 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1370 {
1371 struct task_struct *p = q->task;
1372
1373 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1374 return;
1375
1376 /*
1377 * Queue the task for later wakeup for after we've released
1378 * the hb->lock. wake_q_add() grabs reference to p.
1379 */
1380 wake_q_add(wake_q, p);
1381 __unqueue_futex(q);
1382 /*
1383 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1384 * is written, without taking any locks. This is possible in the event
1385 * of a spurious wakeup, for example. A memory barrier is required here
1386 * to prevent the following store to lock_ptr from getting ahead of the
1387 * plist_del in __unqueue_futex().
1388 */
1389 smp_store_release(&q->lock_ptr, NULL);
1390 }
1391
1392 /*
1393 * Caller must hold a reference on @pi_state.
1394 */
1395 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1396 {
1397 u32 uninitialized_var(curval), newval;
1398 struct task_struct *new_owner;
1399 bool postunlock = false;
1400 DEFINE_WAKE_Q(wake_q);
1401 int ret = 0;
1402
1403 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1404 if (WARN_ON_ONCE(!new_owner)) {
1405 /*
1406 * As per the comment in futex_unlock_pi() this should not happen.
1407 *
1408 * When this happens, give up our locks and try again, giving
1409 * the futex_lock_pi() instance time to complete, either by
1410 * waiting on the rtmutex or removing itself from the futex
1411 * queue.
1412 */
1413 ret = -EAGAIN;
1414 goto out_unlock;
1415 }
1416
1417 /*
1418 * We pass it to the next owner. The WAITERS bit is always kept
1419 * enabled while there is PI state around. We cleanup the owner
1420 * died bit, because we are the owner.
1421 */
1422 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1423
1424 if (unlikely(should_fail_futex(true)))
1425 ret = -EFAULT;
1426
1427 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1428 ret = -EFAULT;
1429
1430 } else if (curval != uval) {
1431 /*
1432 * If a unconditional UNLOCK_PI operation (user space did not
1433 * try the TID->0 transition) raced with a waiter setting the
1434 * FUTEX_WAITERS flag between get_user() and locking the hash
1435 * bucket lock, retry the operation.
1436 */
1437 if ((FUTEX_TID_MASK & curval) == uval)
1438 ret = -EAGAIN;
1439 else
1440 ret = -EINVAL;
1441 }
1442
1443 if (ret)
1444 goto out_unlock;
1445
1446 /*
1447 * This is a point of no return; once we modify the uval there is no
1448 * going back and subsequent operations must not fail.
1449 */
1450
1451 raw_spin_lock(&pi_state->owner->pi_lock);
1452 WARN_ON(list_empty(&pi_state->list));
1453 list_del_init(&pi_state->list);
1454 raw_spin_unlock(&pi_state->owner->pi_lock);
1455
1456 raw_spin_lock(&new_owner->pi_lock);
1457 WARN_ON(!list_empty(&pi_state->list));
1458 list_add(&pi_state->list, &new_owner->pi_state_list);
1459 pi_state->owner = new_owner;
1460 raw_spin_unlock(&new_owner->pi_lock);
1461
1462 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1463
1464 out_unlock:
1465 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1466
1467 if (postunlock)
1468 rt_mutex_postunlock(&wake_q);
1469
1470 return ret;
1471 }
1472
1473 /*
1474 * Express the locking dependencies for lockdep:
1475 */
1476 static inline void
1477 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1478 {
1479 if (hb1 <= hb2) {
1480 spin_lock(&hb1->lock);
1481 if (hb1 < hb2)
1482 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1483 } else { /* hb1 > hb2 */
1484 spin_lock(&hb2->lock);
1485 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1486 }
1487 }
1488
1489 static inline void
1490 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1491 {
1492 spin_unlock(&hb1->lock);
1493 if (hb1 != hb2)
1494 spin_unlock(&hb2->lock);
1495 }
1496
1497 /*
1498 * Wake up waiters matching bitset queued on this futex (uaddr).
1499 */
1500 static int
1501 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1502 {
1503 struct futex_hash_bucket *hb;
1504 struct futex_q *this, *next;
1505 union futex_key key = FUTEX_KEY_INIT;
1506 int ret;
1507 DEFINE_WAKE_Q(wake_q);
1508
1509 if (!bitset)
1510 return -EINVAL;
1511
1512 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1513 if (unlikely(ret != 0))
1514 goto out;
1515
1516 hb = hash_futex(&key);
1517
1518 /* Make sure we really have tasks to wakeup */
1519 if (!hb_waiters_pending(hb))
1520 goto out_put_key;
1521
1522 spin_lock(&hb->lock);
1523
1524 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1525 if (match_futex (&this->key, &key)) {
1526 if (this->pi_state || this->rt_waiter) {
1527 ret = -EINVAL;
1528 break;
1529 }
1530
1531 /* Check if one of the bits is set in both bitsets */
1532 if (!(this->bitset & bitset))
1533 continue;
1534
1535 mark_wake_futex(&wake_q, this);
1536 if (++ret >= nr_wake)
1537 break;
1538 }
1539 }
1540
1541 spin_unlock(&hb->lock);
1542 wake_up_q(&wake_q);
1543 out_put_key:
1544 put_futex_key(&key);
1545 out:
1546 return ret;
1547 }
1548
1549 /*
1550 * Wake up all waiters hashed on the physical page that is mapped
1551 * to this virtual address:
1552 */
1553 static int
1554 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1555 int nr_wake, int nr_wake2, int op)
1556 {
1557 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1558 struct futex_hash_bucket *hb1, *hb2;
1559 struct futex_q *this, *next;
1560 int ret, op_ret;
1561 DEFINE_WAKE_Q(wake_q);
1562
1563 retry:
1564 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1565 if (unlikely(ret != 0))
1566 goto out;
1567 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1568 if (unlikely(ret != 0))
1569 goto out_put_key1;
1570
1571 hb1 = hash_futex(&key1);
1572 hb2 = hash_futex(&key2);
1573
1574 retry_private:
1575 double_lock_hb(hb1, hb2);
1576 op_ret = futex_atomic_op_inuser(op, uaddr2);
1577 if (unlikely(op_ret < 0)) {
1578
1579 double_unlock_hb(hb1, hb2);
1580
1581 #ifndef CONFIG_MMU
1582 /*
1583 * we don't get EFAULT from MMU faults if we don't have an MMU,
1584 * but we might get them from range checking
1585 */
1586 ret = op_ret;
1587 goto out_put_keys;
1588 #endif
1589
1590 if (unlikely(op_ret != -EFAULT)) {
1591 ret = op_ret;
1592 goto out_put_keys;
1593 }
1594
1595 ret = fault_in_user_writeable(uaddr2);
1596 if (ret)
1597 goto out_put_keys;
1598
1599 if (!(flags & FLAGS_SHARED))
1600 goto retry_private;
1601
1602 put_futex_key(&key2);
1603 put_futex_key(&key1);
1604 goto retry;
1605 }
1606
1607 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1608 if (match_futex (&this->key, &key1)) {
1609 if (this->pi_state || this->rt_waiter) {
1610 ret = -EINVAL;
1611 goto out_unlock;
1612 }
1613 mark_wake_futex(&wake_q, this);
1614 if (++ret >= nr_wake)
1615 break;
1616 }
1617 }
1618
1619 if (op_ret > 0) {
1620 op_ret = 0;
1621 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1622 if (match_futex (&this->key, &key2)) {
1623 if (this->pi_state || this->rt_waiter) {
1624 ret = -EINVAL;
1625 goto out_unlock;
1626 }
1627 mark_wake_futex(&wake_q, this);
1628 if (++op_ret >= nr_wake2)
1629 break;
1630 }
1631 }
1632 ret += op_ret;
1633 }
1634
1635 out_unlock:
1636 double_unlock_hb(hb1, hb2);
1637 wake_up_q(&wake_q);
1638 out_put_keys:
1639 put_futex_key(&key2);
1640 out_put_key1:
1641 put_futex_key(&key1);
1642 out:
1643 return ret;
1644 }
1645
1646 /**
1647 * requeue_futex() - Requeue a futex_q from one hb to another
1648 * @q: the futex_q to requeue
1649 * @hb1: the source hash_bucket
1650 * @hb2: the target hash_bucket
1651 * @key2: the new key for the requeued futex_q
1652 */
1653 static inline
1654 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1655 struct futex_hash_bucket *hb2, union futex_key *key2)
1656 {
1657
1658 /*
1659 * If key1 and key2 hash to the same bucket, no need to
1660 * requeue.
1661 */
1662 if (likely(&hb1->chain != &hb2->chain)) {
1663 plist_del(&q->list, &hb1->chain);
1664 hb_waiters_dec(hb1);
1665 hb_waiters_inc(hb2);
1666 plist_add(&q->list, &hb2->chain);
1667 q->lock_ptr = &hb2->lock;
1668 }
1669 get_futex_key_refs(key2);
1670 q->key = *key2;
1671 }
1672
1673 /**
1674 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1675 * @q: the futex_q
1676 * @key: the key of the requeue target futex
1677 * @hb: the hash_bucket of the requeue target futex
1678 *
1679 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1680 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1681 * to the requeue target futex so the waiter can detect the wakeup on the right
1682 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1683 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1684 * to protect access to the pi_state to fixup the owner later. Must be called
1685 * with both q->lock_ptr and hb->lock held.
1686 */
1687 static inline
1688 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1689 struct futex_hash_bucket *hb)
1690 {
1691 get_futex_key_refs(key);
1692 q->key = *key;
1693
1694 __unqueue_futex(q);
1695
1696 WARN_ON(!q->rt_waiter);
1697 q->rt_waiter = NULL;
1698
1699 q->lock_ptr = &hb->lock;
1700
1701 wake_up_state(q->task, TASK_NORMAL);
1702 }
1703
1704 /**
1705 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1706 * @pifutex: the user address of the to futex
1707 * @hb1: the from futex hash bucket, must be locked by the caller
1708 * @hb2: the to futex hash bucket, must be locked by the caller
1709 * @key1: the from futex key
1710 * @key2: the to futex key
1711 * @ps: address to store the pi_state pointer
1712 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1713 *
1714 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1715 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1716 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1717 * hb1 and hb2 must be held by the caller.
1718 *
1719 * Return:
1720 * - 0 - failed to acquire the lock atomically;
1721 * - >0 - acquired the lock, return value is vpid of the top_waiter
1722 * - <0 - error
1723 */
1724 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1725 struct futex_hash_bucket *hb1,
1726 struct futex_hash_bucket *hb2,
1727 union futex_key *key1, union futex_key *key2,
1728 struct futex_pi_state **ps, int set_waiters)
1729 {
1730 struct futex_q *top_waiter = NULL;
1731 u32 curval;
1732 int ret, vpid;
1733
1734 if (get_futex_value_locked(&curval, pifutex))
1735 return -EFAULT;
1736
1737 if (unlikely(should_fail_futex(true)))
1738 return -EFAULT;
1739
1740 /*
1741 * Find the top_waiter and determine if there are additional waiters.
1742 * If the caller intends to requeue more than 1 waiter to pifutex,
1743 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1744 * as we have means to handle the possible fault. If not, don't set
1745 * the bit unecessarily as it will force the subsequent unlock to enter
1746 * the kernel.
1747 */
1748 top_waiter = futex_top_waiter(hb1, key1);
1749
1750 /* There are no waiters, nothing for us to do. */
1751 if (!top_waiter)
1752 return 0;
1753
1754 /* Ensure we requeue to the expected futex. */
1755 if (!match_futex(top_waiter->requeue_pi_key, key2))
1756 return -EINVAL;
1757
1758 /*
1759 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1760 * the contended case or if set_waiters is 1. The pi_state is returned
1761 * in ps in contended cases.
1762 */
1763 vpid = task_pid_vnr(top_waiter->task);
1764 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1765 set_waiters);
1766 if (ret == 1) {
1767 requeue_pi_wake_futex(top_waiter, key2, hb2);
1768 return vpid;
1769 }
1770 return ret;
1771 }
1772
1773 /**
1774 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1775 * @uaddr1: source futex user address
1776 * @flags: futex flags (FLAGS_SHARED, etc.)
1777 * @uaddr2: target futex user address
1778 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1779 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1780 * @cmpval: @uaddr1 expected value (or %NULL)
1781 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1782 * pi futex (pi to pi requeue is not supported)
1783 *
1784 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1785 * uaddr2 atomically on behalf of the top waiter.
1786 *
1787 * Return:
1788 * - >=0 - on success, the number of tasks requeued or woken;
1789 * - <0 - on error
1790 */
1791 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1792 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1793 u32 *cmpval, int requeue_pi)
1794 {
1795 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1796 int drop_count = 0, task_count = 0, ret;
1797 struct futex_pi_state *pi_state = NULL;
1798 struct futex_hash_bucket *hb1, *hb2;
1799 struct futex_q *this, *next;
1800 DEFINE_WAKE_Q(wake_q);
1801
1802 if (requeue_pi) {
1803 /*
1804 * Requeue PI only works on two distinct uaddrs. This
1805 * check is only valid for private futexes. See below.
1806 */
1807 if (uaddr1 == uaddr2)
1808 return -EINVAL;
1809
1810 /*
1811 * requeue_pi requires a pi_state, try to allocate it now
1812 * without any locks in case it fails.
1813 */
1814 if (refill_pi_state_cache())
1815 return -ENOMEM;
1816 /*
1817 * requeue_pi must wake as many tasks as it can, up to nr_wake
1818 * + nr_requeue, since it acquires the rt_mutex prior to
1819 * returning to userspace, so as to not leave the rt_mutex with
1820 * waiters and no owner. However, second and third wake-ups
1821 * cannot be predicted as they involve race conditions with the
1822 * first wake and a fault while looking up the pi_state. Both
1823 * pthread_cond_signal() and pthread_cond_broadcast() should
1824 * use nr_wake=1.
1825 */
1826 if (nr_wake != 1)
1827 return -EINVAL;
1828 }
1829
1830 retry:
1831 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1832 if (unlikely(ret != 0))
1833 goto out;
1834 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1835 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1836 if (unlikely(ret != 0))
1837 goto out_put_key1;
1838
1839 /*
1840 * The check above which compares uaddrs is not sufficient for
1841 * shared futexes. We need to compare the keys:
1842 */
1843 if (requeue_pi && match_futex(&key1, &key2)) {
1844 ret = -EINVAL;
1845 goto out_put_keys;
1846 }
1847
1848 hb1 = hash_futex(&key1);
1849 hb2 = hash_futex(&key2);
1850
1851 retry_private:
1852 hb_waiters_inc(hb2);
1853 double_lock_hb(hb1, hb2);
1854
1855 if (likely(cmpval != NULL)) {
1856 u32 curval;
1857
1858 ret = get_futex_value_locked(&curval, uaddr1);
1859
1860 if (unlikely(ret)) {
1861 double_unlock_hb(hb1, hb2);
1862 hb_waiters_dec(hb2);
1863
1864 ret = get_user(curval, uaddr1);
1865 if (ret)
1866 goto out_put_keys;
1867
1868 if (!(flags & FLAGS_SHARED))
1869 goto retry_private;
1870
1871 put_futex_key(&key2);
1872 put_futex_key(&key1);
1873 goto retry;
1874 }
1875 if (curval != *cmpval) {
1876 ret = -EAGAIN;
1877 goto out_unlock;
1878 }
1879 }
1880
1881 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1882 /*
1883 * Attempt to acquire uaddr2 and wake the top waiter. If we
1884 * intend to requeue waiters, force setting the FUTEX_WAITERS
1885 * bit. We force this here where we are able to easily handle
1886 * faults rather in the requeue loop below.
1887 */
1888 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1889 &key2, &pi_state, nr_requeue);
1890
1891 /*
1892 * At this point the top_waiter has either taken uaddr2 or is
1893 * waiting on it. If the former, then the pi_state will not
1894 * exist yet, look it up one more time to ensure we have a
1895 * reference to it. If the lock was taken, ret contains the
1896 * vpid of the top waiter task.
1897 * If the lock was not taken, we have pi_state and an initial
1898 * refcount on it. In case of an error we have nothing.
1899 */
1900 if (ret > 0) {
1901 WARN_ON(pi_state);
1902 drop_count++;
1903 task_count++;
1904 /*
1905 * If we acquired the lock, then the user space value
1906 * of uaddr2 should be vpid. It cannot be changed by
1907 * the top waiter as it is blocked on hb2 lock if it
1908 * tries to do so. If something fiddled with it behind
1909 * our back the pi state lookup might unearth it. So
1910 * we rather use the known value than rereading and
1911 * handing potential crap to lookup_pi_state.
1912 *
1913 * If that call succeeds then we have pi_state and an
1914 * initial refcount on it.
1915 */
1916 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1917 }
1918
1919 switch (ret) {
1920 case 0:
1921 /* We hold a reference on the pi state. */
1922 break;
1923
1924 /* If the above failed, then pi_state is NULL */
1925 case -EFAULT:
1926 double_unlock_hb(hb1, hb2);
1927 hb_waiters_dec(hb2);
1928 put_futex_key(&key2);
1929 put_futex_key(&key1);
1930 ret = fault_in_user_writeable(uaddr2);
1931 if (!ret)
1932 goto retry;
1933 goto out;
1934 case -EAGAIN:
1935 /*
1936 * Two reasons for this:
1937 * - Owner is exiting and we just wait for the
1938 * exit to complete.
1939 * - The user space value changed.
1940 */
1941 double_unlock_hb(hb1, hb2);
1942 hb_waiters_dec(hb2);
1943 put_futex_key(&key2);
1944 put_futex_key(&key1);
1945 cond_resched();
1946 goto retry;
1947 default:
1948 goto out_unlock;
1949 }
1950 }
1951
1952 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1953 if (task_count - nr_wake >= nr_requeue)
1954 break;
1955
1956 if (!match_futex(&this->key, &key1))
1957 continue;
1958
1959 /*
1960 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1961 * be paired with each other and no other futex ops.
1962 *
1963 * We should never be requeueing a futex_q with a pi_state,
1964 * which is awaiting a futex_unlock_pi().
1965 */
1966 if ((requeue_pi && !this->rt_waiter) ||
1967 (!requeue_pi && this->rt_waiter) ||
1968 this->pi_state) {
1969 ret = -EINVAL;
1970 break;
1971 }
1972
1973 /*
1974 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1975 * lock, we already woke the top_waiter. If not, it will be
1976 * woken by futex_unlock_pi().
1977 */
1978 if (++task_count <= nr_wake && !requeue_pi) {
1979 mark_wake_futex(&wake_q, this);
1980 continue;
1981 }
1982
1983 /* Ensure we requeue to the expected futex for requeue_pi. */
1984 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1985 ret = -EINVAL;
1986 break;
1987 }
1988
1989 /*
1990 * Requeue nr_requeue waiters and possibly one more in the case
1991 * of requeue_pi if we couldn't acquire the lock atomically.
1992 */
1993 if (requeue_pi) {
1994 /*
1995 * Prepare the waiter to take the rt_mutex. Take a
1996 * refcount on the pi_state and store the pointer in
1997 * the futex_q object of the waiter.
1998 */
1999 get_pi_state(pi_state);
2000 this->pi_state = pi_state;
2001 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2002 this->rt_waiter,
2003 this->task);
2004 if (ret == 1) {
2005 /*
2006 * We got the lock. We do neither drop the
2007 * refcount on pi_state nor clear
2008 * this->pi_state because the waiter needs the
2009 * pi_state for cleaning up the user space
2010 * value. It will drop the refcount after
2011 * doing so.
2012 */
2013 requeue_pi_wake_futex(this, &key2, hb2);
2014 drop_count++;
2015 continue;
2016 } else if (ret) {
2017 /*
2018 * rt_mutex_start_proxy_lock() detected a
2019 * potential deadlock when we tried to queue
2020 * that waiter. Drop the pi_state reference
2021 * which we took above and remove the pointer
2022 * to the state from the waiters futex_q
2023 * object.
2024 */
2025 this->pi_state = NULL;
2026 put_pi_state(pi_state);
2027 /*
2028 * We stop queueing more waiters and let user
2029 * space deal with the mess.
2030 */
2031 break;
2032 }
2033 }
2034 requeue_futex(this, hb1, hb2, &key2);
2035 drop_count++;
2036 }
2037
2038 /*
2039 * We took an extra initial reference to the pi_state either
2040 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2041 * need to drop it here again.
2042 */
2043 put_pi_state(pi_state);
2044
2045 out_unlock:
2046 double_unlock_hb(hb1, hb2);
2047 wake_up_q(&wake_q);
2048 hb_waiters_dec(hb2);
2049
2050 /*
2051 * drop_futex_key_refs() must be called outside the spinlocks. During
2052 * the requeue we moved futex_q's from the hash bucket at key1 to the
2053 * one at key2 and updated their key pointer. We no longer need to
2054 * hold the references to key1.
2055 */
2056 while (--drop_count >= 0)
2057 drop_futex_key_refs(&key1);
2058
2059 out_put_keys:
2060 put_futex_key(&key2);
2061 out_put_key1:
2062 put_futex_key(&key1);
2063 out:
2064 return ret ? ret : task_count;
2065 }
2066
2067 /* The key must be already stored in q->key. */
2068 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2069 __acquires(&hb->lock)
2070 {
2071 struct futex_hash_bucket *hb;
2072
2073 hb = hash_futex(&q->key);
2074
2075 /*
2076 * Increment the counter before taking the lock so that
2077 * a potential waker won't miss a to-be-slept task that is
2078 * waiting for the spinlock. This is safe as all queue_lock()
2079 * users end up calling queue_me(). Similarly, for housekeeping,
2080 * decrement the counter at queue_unlock() when some error has
2081 * occurred and we don't end up adding the task to the list.
2082 */
2083 hb_waiters_inc(hb);
2084
2085 q->lock_ptr = &hb->lock;
2086
2087 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2088 return hb;
2089 }
2090
2091 static inline void
2092 queue_unlock(struct futex_hash_bucket *hb)
2093 __releases(&hb->lock)
2094 {
2095 spin_unlock(&hb->lock);
2096 hb_waiters_dec(hb);
2097 }
2098
2099 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2100 {
2101 int prio;
2102
2103 /*
2104 * The priority used to register this element is
2105 * - either the real thread-priority for the real-time threads
2106 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2107 * - or MAX_RT_PRIO for non-RT threads.
2108 * Thus, all RT-threads are woken first in priority order, and
2109 * the others are woken last, in FIFO order.
2110 */
2111 prio = min(current->normal_prio, MAX_RT_PRIO);
2112
2113 plist_node_init(&q->list, prio);
2114 plist_add(&q->list, &hb->chain);
2115 q->task = current;
2116 }
2117
2118 /**
2119 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2120 * @q: The futex_q to enqueue
2121 * @hb: The destination hash bucket
2122 *
2123 * The hb->lock must be held by the caller, and is released here. A call to
2124 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2125 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2126 * or nothing if the unqueue is done as part of the wake process and the unqueue
2127 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2128 * an example).
2129 */
2130 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2131 __releases(&hb->lock)
2132 {
2133 __queue_me(q, hb);
2134 spin_unlock(&hb->lock);
2135 }
2136
2137 /**
2138 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2139 * @q: The futex_q to unqueue
2140 *
2141 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2142 * be paired with exactly one earlier call to queue_me().
2143 *
2144 * Return:
2145 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2146 * - 0 - if the futex_q was already removed by the waking thread
2147 */
2148 static int unqueue_me(struct futex_q *q)
2149 {
2150 spinlock_t *lock_ptr;
2151 int ret = 0;
2152
2153 /* In the common case we don't take the spinlock, which is nice. */
2154 retry:
2155 /*
2156 * q->lock_ptr can change between this read and the following spin_lock.
2157 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2158 * optimizing lock_ptr out of the logic below.
2159 */
2160 lock_ptr = READ_ONCE(q->lock_ptr);
2161 if (lock_ptr != NULL) {
2162 spin_lock(lock_ptr);
2163 /*
2164 * q->lock_ptr can change between reading it and
2165 * spin_lock(), causing us to take the wrong lock. This
2166 * corrects the race condition.
2167 *
2168 * Reasoning goes like this: if we have the wrong lock,
2169 * q->lock_ptr must have changed (maybe several times)
2170 * between reading it and the spin_lock(). It can
2171 * change again after the spin_lock() but only if it was
2172 * already changed before the spin_lock(). It cannot,
2173 * however, change back to the original value. Therefore
2174 * we can detect whether we acquired the correct lock.
2175 */
2176 if (unlikely(lock_ptr != q->lock_ptr)) {
2177 spin_unlock(lock_ptr);
2178 goto retry;
2179 }
2180 __unqueue_futex(q);
2181
2182 BUG_ON(q->pi_state);
2183
2184 spin_unlock(lock_ptr);
2185 ret = 1;
2186 }
2187
2188 drop_futex_key_refs(&q->key);
2189 return ret;
2190 }
2191
2192 /*
2193 * PI futexes can not be requeued and must remove themself from the
2194 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2195 * and dropped here.
2196 */
2197 static void unqueue_me_pi(struct futex_q *q)
2198 __releases(q->lock_ptr)
2199 {
2200 __unqueue_futex(q);
2201
2202 BUG_ON(!q->pi_state);
2203 put_pi_state(q->pi_state);
2204 q->pi_state = NULL;
2205
2206 spin_unlock(q->lock_ptr);
2207 }
2208
2209 /*
2210 * Fixup the pi_state owner with the new owner.
2211 *
2212 * Must be called with hash bucket lock held and mm->sem held for non
2213 * private futexes.
2214 */
2215 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2216 struct task_struct *newowner)
2217 {
2218 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2219 struct futex_pi_state *pi_state = q->pi_state;
2220 u32 uval, uninitialized_var(curval), newval;
2221 struct task_struct *oldowner;
2222 int ret;
2223
2224 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2225
2226 oldowner = pi_state->owner;
2227 /* Owner died? */
2228 if (!pi_state->owner)
2229 newtid |= FUTEX_OWNER_DIED;
2230
2231 /*
2232 * We are here either because we stole the rtmutex from the
2233 * previous highest priority waiter or we are the highest priority
2234 * waiter but have failed to get the rtmutex the first time.
2235 *
2236 * We have to replace the newowner TID in the user space variable.
2237 * This must be atomic as we have to preserve the owner died bit here.
2238 *
2239 * Note: We write the user space value _before_ changing the pi_state
2240 * because we can fault here. Imagine swapped out pages or a fork
2241 * that marked all the anonymous memory readonly for cow.
2242 *
2243 * Modifying pi_state _before_ the user space value would leave the
2244 * pi_state in an inconsistent state when we fault here, because we
2245 * need to drop the locks to handle the fault. This might be observed
2246 * in the PID check in lookup_pi_state.
2247 */
2248 retry:
2249 if (get_futex_value_locked(&uval, uaddr))
2250 goto handle_fault;
2251
2252 for (;;) {
2253 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2254
2255 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2256 goto handle_fault;
2257 if (curval == uval)
2258 break;
2259 uval = curval;
2260 }
2261
2262 /*
2263 * We fixed up user space. Now we need to fix the pi_state
2264 * itself.
2265 */
2266 if (pi_state->owner != NULL) {
2267 raw_spin_lock(&pi_state->owner->pi_lock);
2268 WARN_ON(list_empty(&pi_state->list));
2269 list_del_init(&pi_state->list);
2270 raw_spin_unlock(&pi_state->owner->pi_lock);
2271 }
2272
2273 pi_state->owner = newowner;
2274
2275 raw_spin_lock(&newowner->pi_lock);
2276 WARN_ON(!list_empty(&pi_state->list));
2277 list_add(&pi_state->list, &newowner->pi_state_list);
2278 raw_spin_unlock(&newowner->pi_lock);
2279 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2280
2281 return 0;
2282
2283 /*
2284 * To handle the page fault we need to drop the locks here. That gives
2285 * the other task (either the highest priority waiter itself or the
2286 * task which stole the rtmutex) the chance to try the fixup of the
2287 * pi_state. So once we are back from handling the fault we need to
2288 * check the pi_state after reacquiring the locks and before trying to
2289 * do another fixup. When the fixup has been done already we simply
2290 * return.
2291 *
2292 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2293 * drop hb->lock since the caller owns the hb -> futex_q relation.
2294 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2295 */
2296 handle_fault:
2297 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2298 spin_unlock(q->lock_ptr);
2299
2300 ret = fault_in_user_writeable(uaddr);
2301
2302 spin_lock(q->lock_ptr);
2303 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2304
2305 /*
2306 * Check if someone else fixed it for us:
2307 */
2308 if (pi_state->owner != oldowner) {
2309 ret = 0;
2310 goto out_unlock;
2311 }
2312
2313 if (ret)
2314 goto out_unlock;
2315
2316 goto retry;
2317
2318 out_unlock:
2319 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2320 return ret;
2321 }
2322
2323 static long futex_wait_restart(struct restart_block *restart);
2324
2325 /**
2326 * fixup_owner() - Post lock pi_state and corner case management
2327 * @uaddr: user address of the futex
2328 * @q: futex_q (contains pi_state and access to the rt_mutex)
2329 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2330 *
2331 * After attempting to lock an rt_mutex, this function is called to cleanup
2332 * the pi_state owner as well as handle race conditions that may allow us to
2333 * acquire the lock. Must be called with the hb lock held.
2334 *
2335 * Return:
2336 * - 1 - success, lock taken;
2337 * - 0 - success, lock not taken;
2338 * - <0 - on error (-EFAULT)
2339 */
2340 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2341 {
2342 int ret = 0;
2343
2344 if (locked) {
2345 /*
2346 * Got the lock. We might not be the anticipated owner if we
2347 * did a lock-steal - fix up the PI-state in that case:
2348 *
2349 * We can safely read pi_state->owner without holding wait_lock
2350 * because we now own the rt_mutex, only the owner will attempt
2351 * to change it.
2352 */
2353 if (q->pi_state->owner != current)
2354 ret = fixup_pi_state_owner(uaddr, q, current);
2355 goto out;
2356 }
2357
2358 /*
2359 * Paranoia check. If we did not take the lock, then we should not be
2360 * the owner of the rt_mutex.
2361 */
2362 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2363 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2364 "pi-state %p\n", ret,
2365 q->pi_state->pi_mutex.owner,
2366 q->pi_state->owner);
2367 }
2368
2369 out:
2370 return ret ? ret : locked;
2371 }
2372
2373 /**
2374 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2375 * @hb: the futex hash bucket, must be locked by the caller
2376 * @q: the futex_q to queue up on
2377 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2378 */
2379 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2380 struct hrtimer_sleeper *timeout)
2381 {
2382 /*
2383 * The task state is guaranteed to be set before another task can
2384 * wake it. set_current_state() is implemented using smp_store_mb() and
2385 * queue_me() calls spin_unlock() upon completion, both serializing
2386 * access to the hash list and forcing another memory barrier.
2387 */
2388 set_current_state(TASK_INTERRUPTIBLE);
2389 queue_me(q, hb);
2390
2391 /* Arm the timer */
2392 if (timeout)
2393 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2394
2395 /*
2396 * If we have been removed from the hash list, then another task
2397 * has tried to wake us, and we can skip the call to schedule().
2398 */
2399 if (likely(!plist_node_empty(&q->list))) {
2400 /*
2401 * If the timer has already expired, current will already be
2402 * flagged for rescheduling. Only call schedule if there
2403 * is no timeout, or if it has yet to expire.
2404 */
2405 if (!timeout || timeout->task)
2406 freezable_schedule();
2407 }
2408 __set_current_state(TASK_RUNNING);
2409 }
2410
2411 /**
2412 * futex_wait_setup() - Prepare to wait on a futex
2413 * @uaddr: the futex userspace address
2414 * @val: the expected value
2415 * @flags: futex flags (FLAGS_SHARED, etc.)
2416 * @q: the associated futex_q
2417 * @hb: storage for hash_bucket pointer to be returned to caller
2418 *
2419 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2420 * compare it with the expected value. Handle atomic faults internally.
2421 * Return with the hb lock held and a q.key reference on success, and unlocked
2422 * with no q.key reference on failure.
2423 *
2424 * Return:
2425 * - 0 - uaddr contains val and hb has been locked;
2426 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2427 */
2428 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2429 struct futex_q *q, struct futex_hash_bucket **hb)
2430 {
2431 u32 uval;
2432 int ret;
2433
2434 /*
2435 * Access the page AFTER the hash-bucket is locked.
2436 * Order is important:
2437 *
2438 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2439 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2440 *
2441 * The basic logical guarantee of a futex is that it blocks ONLY
2442 * if cond(var) is known to be true at the time of blocking, for
2443 * any cond. If we locked the hash-bucket after testing *uaddr, that
2444 * would open a race condition where we could block indefinitely with
2445 * cond(var) false, which would violate the guarantee.
2446 *
2447 * On the other hand, we insert q and release the hash-bucket only
2448 * after testing *uaddr. This guarantees that futex_wait() will NOT
2449 * absorb a wakeup if *uaddr does not match the desired values
2450 * while the syscall executes.
2451 */
2452 retry:
2453 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2454 if (unlikely(ret != 0))
2455 return ret;
2456
2457 retry_private:
2458 *hb = queue_lock(q);
2459
2460 ret = get_futex_value_locked(&uval, uaddr);
2461
2462 if (ret) {
2463 queue_unlock(*hb);
2464
2465 ret = get_user(uval, uaddr);
2466 if (ret)
2467 goto out;
2468
2469 if (!(flags & FLAGS_SHARED))
2470 goto retry_private;
2471
2472 put_futex_key(&q->key);
2473 goto retry;
2474 }
2475
2476 if (uval != val) {
2477 queue_unlock(*hb);
2478 ret = -EWOULDBLOCK;
2479 }
2480
2481 out:
2482 if (ret)
2483 put_futex_key(&q->key);
2484 return ret;
2485 }
2486
2487 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2488 ktime_t *abs_time, u32 bitset)
2489 {
2490 struct hrtimer_sleeper timeout, *to = NULL;
2491 struct restart_block *restart;
2492 struct futex_hash_bucket *hb;
2493 struct futex_q q = futex_q_init;
2494 int ret;
2495
2496 if (!bitset)
2497 return -EINVAL;
2498 q.bitset = bitset;
2499
2500 if (abs_time) {
2501 to = &timeout;
2502
2503 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2504 CLOCK_REALTIME : CLOCK_MONOTONIC,
2505 HRTIMER_MODE_ABS);
2506 hrtimer_init_sleeper(to, current);
2507 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2508 current->timer_slack_ns);
2509 }
2510
2511 retry:
2512 /*
2513 * Prepare to wait on uaddr. On success, holds hb lock and increments
2514 * q.key refs.
2515 */
2516 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2517 if (ret)
2518 goto out;
2519
2520 /* queue_me and wait for wakeup, timeout, or a signal. */
2521 futex_wait_queue_me(hb, &q, to);
2522
2523 /* If we were woken (and unqueued), we succeeded, whatever. */
2524 ret = 0;
2525 /* unqueue_me() drops q.key ref */
2526 if (!unqueue_me(&q))
2527 goto out;
2528 ret = -ETIMEDOUT;
2529 if (to && !to->task)
2530 goto out;
2531
2532 /*
2533 * We expect signal_pending(current), but we might be the
2534 * victim of a spurious wakeup as well.
2535 */
2536 if (!signal_pending(current))
2537 goto retry;
2538
2539 ret = -ERESTARTSYS;
2540 if (!abs_time)
2541 goto out;
2542
2543 restart = &current->restart_block;
2544 restart->fn = futex_wait_restart;
2545 restart->futex.uaddr = uaddr;
2546 restart->futex.val = val;
2547 restart->futex.time = *abs_time;
2548 restart->futex.bitset = bitset;
2549 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2550
2551 ret = -ERESTART_RESTARTBLOCK;
2552
2553 out:
2554 if (to) {
2555 hrtimer_cancel(&to->timer);
2556 destroy_hrtimer_on_stack(&to->timer);
2557 }
2558 return ret;
2559 }
2560
2561
2562 static long futex_wait_restart(struct restart_block *restart)
2563 {
2564 u32 __user *uaddr = restart->futex.uaddr;
2565 ktime_t t, *tp = NULL;
2566
2567 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2568 t = restart->futex.time;
2569 tp = &t;
2570 }
2571 restart->fn = do_no_restart_syscall;
2572
2573 return (long)futex_wait(uaddr, restart->futex.flags,
2574 restart->futex.val, tp, restart->futex.bitset);
2575 }
2576
2577
2578 /*
2579 * Userspace tried a 0 -> TID atomic transition of the futex value
2580 * and failed. The kernel side here does the whole locking operation:
2581 * if there are waiters then it will block as a consequence of relying
2582 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2583 * a 0 value of the futex too.).
2584 *
2585 * Also serves as futex trylock_pi()'ing, and due semantics.
2586 */
2587 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2588 ktime_t *time, int trylock)
2589 {
2590 struct hrtimer_sleeper timeout, *to = NULL;
2591 struct futex_pi_state *pi_state = NULL;
2592 struct rt_mutex_waiter rt_waiter;
2593 struct futex_hash_bucket *hb;
2594 struct futex_q q = futex_q_init;
2595 int res, ret;
2596
2597 if (refill_pi_state_cache())
2598 return -ENOMEM;
2599
2600 if (time) {
2601 to = &timeout;
2602 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2603 HRTIMER_MODE_ABS);
2604 hrtimer_init_sleeper(to, current);
2605 hrtimer_set_expires(&to->timer, *time);
2606 }
2607
2608 retry:
2609 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2610 if (unlikely(ret != 0))
2611 goto out;
2612
2613 retry_private:
2614 hb = queue_lock(&q);
2615
2616 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2617 if (unlikely(ret)) {
2618 /*
2619 * Atomic work succeeded and we got the lock,
2620 * or failed. Either way, we do _not_ block.
2621 */
2622 switch (ret) {
2623 case 1:
2624 /* We got the lock. */
2625 ret = 0;
2626 goto out_unlock_put_key;
2627 case -EFAULT:
2628 goto uaddr_faulted;
2629 case -EAGAIN:
2630 /*
2631 * Two reasons for this:
2632 * - Task is exiting and we just wait for the
2633 * exit to complete.
2634 * - The user space value changed.
2635 */
2636 queue_unlock(hb);
2637 put_futex_key(&q.key);
2638 cond_resched();
2639 goto retry;
2640 default:
2641 goto out_unlock_put_key;
2642 }
2643 }
2644
2645 WARN_ON(!q.pi_state);
2646
2647 /*
2648 * Only actually queue now that the atomic ops are done:
2649 */
2650 __queue_me(&q, hb);
2651
2652 if (trylock) {
2653 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2654 /* Fixup the trylock return value: */
2655 ret = ret ? 0 : -EWOULDBLOCK;
2656 goto no_block;
2657 }
2658
2659 rt_mutex_init_waiter(&rt_waiter);
2660
2661 /*
2662 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2663 * hold it while doing rt_mutex_start_proxy(), because then it will
2664 * include hb->lock in the blocking chain, even through we'll not in
2665 * fact hold it while blocking. This will lead it to report -EDEADLK
2666 * and BUG when futex_unlock_pi() interleaves with this.
2667 *
2668 * Therefore acquire wait_lock while holding hb->lock, but drop the
2669 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2670 * serializes against futex_unlock_pi() as that does the exact same
2671 * lock handoff sequence.
2672 */
2673 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2674 spin_unlock(q.lock_ptr);
2675 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2676 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2677
2678 if (ret) {
2679 if (ret == 1)
2680 ret = 0;
2681
2682 spin_lock(q.lock_ptr);
2683 goto no_block;
2684 }
2685
2686
2687 if (unlikely(to))
2688 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2689
2690 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2691
2692 spin_lock(q.lock_ptr);
2693 /*
2694 * If we failed to acquire the lock (signal/timeout), we must
2695 * first acquire the hb->lock before removing the lock from the
2696 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2697 * wait lists consistent.
2698 *
2699 * In particular; it is important that futex_unlock_pi() can not
2700 * observe this inconsistency.
2701 */
2702 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2703 ret = 0;
2704
2705 no_block:
2706 /*
2707 * Fixup the pi_state owner and possibly acquire the lock if we
2708 * haven't already.
2709 */
2710 res = fixup_owner(uaddr, &q, !ret);
2711 /*
2712 * If fixup_owner() returned an error, proprogate that. If it acquired
2713 * the lock, clear our -ETIMEDOUT or -EINTR.
2714 */
2715 if (res)
2716 ret = (res < 0) ? res : 0;
2717
2718 /*
2719 * If fixup_owner() faulted and was unable to handle the fault, unlock
2720 * it and return the fault to userspace.
2721 */
2722 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2723 pi_state = q.pi_state;
2724 get_pi_state(pi_state);
2725 }
2726
2727 /* Unqueue and drop the lock */
2728 unqueue_me_pi(&q);
2729
2730 if (pi_state) {
2731 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2732 put_pi_state(pi_state);
2733 }
2734
2735 goto out_put_key;
2736
2737 out_unlock_put_key:
2738 queue_unlock(hb);
2739
2740 out_put_key:
2741 put_futex_key(&q.key);
2742 out:
2743 if (to) {
2744 hrtimer_cancel(&to->timer);
2745 destroy_hrtimer_on_stack(&to->timer);
2746 }
2747 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2748
2749 uaddr_faulted:
2750 queue_unlock(hb);
2751
2752 ret = fault_in_user_writeable(uaddr);
2753 if (ret)
2754 goto out_put_key;
2755
2756 if (!(flags & FLAGS_SHARED))
2757 goto retry_private;
2758
2759 put_futex_key(&q.key);
2760 goto retry;
2761 }
2762
2763 /*
2764 * Userspace attempted a TID -> 0 atomic transition, and failed.
2765 * This is the in-kernel slowpath: we look up the PI state (if any),
2766 * and do the rt-mutex unlock.
2767 */
2768 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2769 {
2770 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2771 union futex_key key = FUTEX_KEY_INIT;
2772 struct futex_hash_bucket *hb;
2773 struct futex_q *top_waiter;
2774 int ret;
2775
2776 retry:
2777 if (get_user(uval, uaddr))
2778 return -EFAULT;
2779 /*
2780 * We release only a lock we actually own:
2781 */
2782 if ((uval & FUTEX_TID_MASK) != vpid)
2783 return -EPERM;
2784
2785 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2786 if (ret)
2787 return ret;
2788
2789 hb = hash_futex(&key);
2790 spin_lock(&hb->lock);
2791
2792 /*
2793 * Check waiters first. We do not trust user space values at
2794 * all and we at least want to know if user space fiddled
2795 * with the futex value instead of blindly unlocking.
2796 */
2797 top_waiter = futex_top_waiter(hb, &key);
2798 if (top_waiter) {
2799 struct futex_pi_state *pi_state = top_waiter->pi_state;
2800
2801 ret = -EINVAL;
2802 if (!pi_state)
2803 goto out_unlock;
2804
2805 /*
2806 * If current does not own the pi_state then the futex is
2807 * inconsistent and user space fiddled with the futex value.
2808 */
2809 if (pi_state->owner != current)
2810 goto out_unlock;
2811
2812 get_pi_state(pi_state);
2813 /*
2814 * By taking wait_lock while still holding hb->lock, we ensure
2815 * there is no point where we hold neither; and therefore
2816 * wake_futex_pi() must observe a state consistent with what we
2817 * observed.
2818 */
2819 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2820 spin_unlock(&hb->lock);
2821
2822 ret = wake_futex_pi(uaddr, uval, pi_state);
2823
2824 put_pi_state(pi_state);
2825
2826 /*
2827 * Success, we're done! No tricky corner cases.
2828 */
2829 if (!ret)
2830 goto out_putkey;
2831 /*
2832 * The atomic access to the futex value generated a
2833 * pagefault, so retry the user-access and the wakeup:
2834 */
2835 if (ret == -EFAULT)
2836 goto pi_faulted;
2837 /*
2838 * A unconditional UNLOCK_PI op raced against a waiter
2839 * setting the FUTEX_WAITERS bit. Try again.
2840 */
2841 if (ret == -EAGAIN) {
2842 put_futex_key(&key);
2843 goto retry;
2844 }
2845 /*
2846 * wake_futex_pi has detected invalid state. Tell user
2847 * space.
2848 */
2849 goto out_putkey;
2850 }
2851
2852 /*
2853 * We have no kernel internal state, i.e. no waiters in the
2854 * kernel. Waiters which are about to queue themselves are stuck
2855 * on hb->lock. So we can safely ignore them. We do neither
2856 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2857 * owner.
2858 */
2859 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2860 spin_unlock(&hb->lock);
2861 goto pi_faulted;
2862 }
2863
2864 /*
2865 * If uval has changed, let user space handle it.
2866 */
2867 ret = (curval == uval) ? 0 : -EAGAIN;
2868
2869 out_unlock:
2870 spin_unlock(&hb->lock);
2871 out_putkey:
2872 put_futex_key(&key);
2873 return ret;
2874
2875 pi_faulted:
2876 put_futex_key(&key);
2877
2878 ret = fault_in_user_writeable(uaddr);
2879 if (!ret)
2880 goto retry;
2881
2882 return ret;
2883 }
2884
2885 /**
2886 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2887 * @hb: the hash_bucket futex_q was original enqueued on
2888 * @q: the futex_q woken while waiting to be requeued
2889 * @key2: the futex_key of the requeue target futex
2890 * @timeout: the timeout associated with the wait (NULL if none)
2891 *
2892 * Detect if the task was woken on the initial futex as opposed to the requeue
2893 * target futex. If so, determine if it was a timeout or a signal that caused
2894 * the wakeup and return the appropriate error code to the caller. Must be
2895 * called with the hb lock held.
2896 *
2897 * Return:
2898 * - 0 = no early wakeup detected;
2899 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
2900 */
2901 static inline
2902 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2903 struct futex_q *q, union futex_key *key2,
2904 struct hrtimer_sleeper *timeout)
2905 {
2906 int ret = 0;
2907
2908 /*
2909 * With the hb lock held, we avoid races while we process the wakeup.
2910 * We only need to hold hb (and not hb2) to ensure atomicity as the
2911 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2912 * It can't be requeued from uaddr2 to something else since we don't
2913 * support a PI aware source futex for requeue.
2914 */
2915 if (!match_futex(&q->key, key2)) {
2916 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2917 /*
2918 * We were woken prior to requeue by a timeout or a signal.
2919 * Unqueue the futex_q and determine which it was.
2920 */
2921 plist_del(&q->list, &hb->chain);
2922 hb_waiters_dec(hb);
2923
2924 /* Handle spurious wakeups gracefully */
2925 ret = -EWOULDBLOCK;
2926 if (timeout && !timeout->task)
2927 ret = -ETIMEDOUT;
2928 else if (signal_pending(current))
2929 ret = -ERESTARTNOINTR;
2930 }
2931 return ret;
2932 }
2933
2934 /**
2935 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2936 * @uaddr: the futex we initially wait on (non-pi)
2937 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2938 * the same type, no requeueing from private to shared, etc.
2939 * @val: the expected value of uaddr
2940 * @abs_time: absolute timeout
2941 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2942 * @uaddr2: the pi futex we will take prior to returning to user-space
2943 *
2944 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2945 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2946 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2947 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2948 * without one, the pi logic would not know which task to boost/deboost, if
2949 * there was a need to.
2950 *
2951 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2952 * via the following--
2953 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2954 * 2) wakeup on uaddr2 after a requeue
2955 * 3) signal
2956 * 4) timeout
2957 *
2958 * If 3, cleanup and return -ERESTARTNOINTR.
2959 *
2960 * If 2, we may then block on trying to take the rt_mutex and return via:
2961 * 5) successful lock
2962 * 6) signal
2963 * 7) timeout
2964 * 8) other lock acquisition failure
2965 *
2966 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2967 *
2968 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2969 *
2970 * Return:
2971 * - 0 - On success;
2972 * - <0 - On error
2973 */
2974 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2975 u32 val, ktime_t *abs_time, u32 bitset,
2976 u32 __user *uaddr2)
2977 {
2978 struct hrtimer_sleeper timeout, *to = NULL;
2979 struct futex_pi_state *pi_state = NULL;
2980 struct rt_mutex_waiter rt_waiter;
2981 struct futex_hash_bucket *hb;
2982 union futex_key key2 = FUTEX_KEY_INIT;
2983 struct futex_q q = futex_q_init;
2984 int res, ret;
2985
2986 if (uaddr == uaddr2)
2987 return -EINVAL;
2988
2989 if (!bitset)
2990 return -EINVAL;
2991
2992 if (abs_time) {
2993 to = &timeout;
2994 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2995 CLOCK_REALTIME : CLOCK_MONOTONIC,
2996 HRTIMER_MODE_ABS);
2997 hrtimer_init_sleeper(to, current);
2998 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2999 current->timer_slack_ns);
3000 }
3001
3002 /*
3003 * The waiter is allocated on our stack, manipulated by the requeue
3004 * code while we sleep on uaddr.
3005 */
3006 rt_mutex_init_waiter(&rt_waiter);
3007
3008 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3009 if (unlikely(ret != 0))
3010 goto out;
3011
3012 q.bitset = bitset;
3013 q.rt_waiter = &rt_waiter;
3014 q.requeue_pi_key = &key2;
3015
3016 /*
3017 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3018 * count.
3019 */
3020 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3021 if (ret)
3022 goto out_key2;
3023
3024 /*
3025 * The check above which compares uaddrs is not sufficient for
3026 * shared futexes. We need to compare the keys:
3027 */
3028 if (match_futex(&q.key, &key2)) {
3029 queue_unlock(hb);
3030 ret = -EINVAL;
3031 goto out_put_keys;
3032 }
3033
3034 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3035 futex_wait_queue_me(hb, &q, to);
3036
3037 spin_lock(&hb->lock);
3038 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3039 spin_unlock(&hb->lock);
3040 if (ret)
3041 goto out_put_keys;
3042
3043 /*
3044 * In order for us to be here, we know our q.key == key2, and since
3045 * we took the hb->lock above, we also know that futex_requeue() has
3046 * completed and we no longer have to concern ourselves with a wakeup
3047 * race with the atomic proxy lock acquisition by the requeue code. The
3048 * futex_requeue dropped our key1 reference and incremented our key2
3049 * reference count.
3050 */
3051
3052 /* Check if the requeue code acquired the second futex for us. */
3053 if (!q.rt_waiter) {
3054 /*
3055 * Got the lock. We might not be the anticipated owner if we
3056 * did a lock-steal - fix up the PI-state in that case.
3057 */
3058 if (q.pi_state && (q.pi_state->owner != current)) {
3059 spin_lock(q.lock_ptr);
3060 ret = fixup_pi_state_owner(uaddr2, &q, current);
3061 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3062 pi_state = q.pi_state;
3063 get_pi_state(pi_state);
3064 }
3065 /*
3066 * Drop the reference to the pi state which
3067 * the requeue_pi() code acquired for us.
3068 */
3069 put_pi_state(q.pi_state);
3070 spin_unlock(q.lock_ptr);
3071 }
3072 } else {
3073 struct rt_mutex *pi_mutex;
3074
3075 /*
3076 * We have been woken up by futex_unlock_pi(), a timeout, or a
3077 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3078 * the pi_state.
3079 */
3080 WARN_ON(!q.pi_state);
3081 pi_mutex = &q.pi_state->pi_mutex;
3082 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3083
3084 spin_lock(q.lock_ptr);
3085 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3086 ret = 0;
3087
3088 debug_rt_mutex_free_waiter(&rt_waiter);
3089 /*
3090 * Fixup the pi_state owner and possibly acquire the lock if we
3091 * haven't already.
3092 */
3093 res = fixup_owner(uaddr2, &q, !ret);
3094 /*
3095 * If fixup_owner() returned an error, proprogate that. If it
3096 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3097 */
3098 if (res)
3099 ret = (res < 0) ? res : 0;
3100
3101 /*
3102 * If fixup_pi_state_owner() faulted and was unable to handle
3103 * the fault, unlock the rt_mutex and return the fault to
3104 * userspace.
3105 */
3106 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3107 pi_state = q.pi_state;
3108 get_pi_state(pi_state);
3109 }
3110
3111 /* Unqueue and drop the lock. */
3112 unqueue_me_pi(&q);
3113 }
3114
3115 if (pi_state) {
3116 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3117 put_pi_state(pi_state);
3118 }
3119
3120 if (ret == -EINTR) {
3121 /*
3122 * We've already been requeued, but cannot restart by calling
3123 * futex_lock_pi() directly. We could restart this syscall, but
3124 * it would detect that the user space "val" changed and return
3125 * -EWOULDBLOCK. Save the overhead of the restart and return
3126 * -EWOULDBLOCK directly.
3127 */
3128 ret = -EWOULDBLOCK;
3129 }
3130
3131 out_put_keys:
3132 put_futex_key(&q.key);
3133 out_key2:
3134 put_futex_key(&key2);
3135
3136 out:
3137 if (to) {
3138 hrtimer_cancel(&to->timer);
3139 destroy_hrtimer_on_stack(&to->timer);
3140 }
3141 return ret;
3142 }
3143
3144 /*
3145 * Support for robust futexes: the kernel cleans up held futexes at
3146 * thread exit time.
3147 *
3148 * Implementation: user-space maintains a per-thread list of locks it
3149 * is holding. Upon do_exit(), the kernel carefully walks this list,
3150 * and marks all locks that are owned by this thread with the
3151 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3152 * always manipulated with the lock held, so the list is private and
3153 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3154 * field, to allow the kernel to clean up if the thread dies after
3155 * acquiring the lock, but just before it could have added itself to
3156 * the list. There can only be one such pending lock.
3157 */
3158
3159 /**
3160 * sys_set_robust_list() - Set the robust-futex list head of a task
3161 * @head: pointer to the list-head
3162 * @len: length of the list-head, as userspace expects
3163 */
3164 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3165 size_t, len)
3166 {
3167 if (!futex_cmpxchg_enabled)
3168 return -ENOSYS;
3169 /*
3170 * The kernel knows only one size for now:
3171 */
3172 if (unlikely(len != sizeof(*head)))
3173 return -EINVAL;
3174
3175 current->robust_list = head;
3176
3177 return 0;
3178 }
3179
3180 /**
3181 * sys_get_robust_list() - Get the robust-futex list head of a task
3182 * @pid: pid of the process [zero for current task]
3183 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3184 * @len_ptr: pointer to a length field, the kernel fills in the header size
3185 */
3186 SYSCALL_DEFINE3(get_robust_list, int, pid,
3187 struct robust_list_head __user * __user *, head_ptr,
3188 size_t __user *, len_ptr)
3189 {
3190 struct robust_list_head __user *head;
3191 unsigned long ret;
3192 struct task_struct *p;
3193
3194 if (!futex_cmpxchg_enabled)
3195 return -ENOSYS;
3196
3197 rcu_read_lock();
3198
3199 ret = -ESRCH;
3200 if (!pid)
3201 p = current;
3202 else {
3203 p = find_task_by_vpid(pid);
3204 if (!p)
3205 goto err_unlock;
3206 }
3207
3208 ret = -EPERM;
3209 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3210 goto err_unlock;
3211
3212 head = p->robust_list;
3213 rcu_read_unlock();
3214
3215 if (put_user(sizeof(*head), len_ptr))
3216 return -EFAULT;
3217 return put_user(head, head_ptr);
3218
3219 err_unlock:
3220 rcu_read_unlock();
3221
3222 return ret;
3223 }
3224
3225 /*
3226 * Process a futex-list entry, check whether it's owned by the
3227 * dying task, and do notification if so:
3228 */
3229 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3230 {
3231 u32 uval, uninitialized_var(nval), mval;
3232
3233 retry:
3234 if (get_user(uval, uaddr))
3235 return -1;
3236
3237 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3238 /*
3239 * Ok, this dying thread is truly holding a futex
3240 * of interest. Set the OWNER_DIED bit atomically
3241 * via cmpxchg, and if the value had FUTEX_WAITERS
3242 * set, wake up a waiter (if any). (We have to do a
3243 * futex_wake() even if OWNER_DIED is already set -
3244 * to handle the rare but possible case of recursive
3245 * thread-death.) The rest of the cleanup is done in
3246 * userspace.
3247 */
3248 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3249 /*
3250 * We are not holding a lock here, but we want to have
3251 * the pagefault_disable/enable() protection because
3252 * we want to handle the fault gracefully. If the
3253 * access fails we try to fault in the futex with R/W
3254 * verification via get_user_pages. get_user() above
3255 * does not guarantee R/W access. If that fails we
3256 * give up and leave the futex locked.
3257 */
3258 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3259 if (fault_in_user_writeable(uaddr))
3260 return -1;
3261 goto retry;
3262 }
3263 if (nval != uval)
3264 goto retry;
3265
3266 /*
3267 * Wake robust non-PI futexes here. The wakeup of
3268 * PI futexes happens in exit_pi_state():
3269 */
3270 if (!pi && (uval & FUTEX_WAITERS))
3271 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3272 }
3273 return 0;
3274 }
3275
3276 /*
3277 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3278 */
3279 static inline int fetch_robust_entry(struct robust_list __user **entry,
3280 struct robust_list __user * __user *head,
3281 unsigned int *pi)
3282 {
3283 unsigned long uentry;
3284
3285 if (get_user(uentry, (unsigned long __user *)head))
3286 return -EFAULT;
3287
3288 *entry = (void __user *)(uentry & ~1UL);
3289 *pi = uentry & 1;
3290
3291 return 0;
3292 }
3293
3294 /*
3295 * Walk curr->robust_list (very carefully, it's a userspace list!)
3296 * and mark any locks found there dead, and notify any waiters.
3297 *
3298 * We silently return on any sign of list-walking problem.
3299 */
3300 void exit_robust_list(struct task_struct *curr)
3301 {
3302 struct robust_list_head __user *head = curr->robust_list;
3303 struct robust_list __user *entry, *next_entry, *pending;
3304 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3305 unsigned int uninitialized_var(next_pi);
3306 unsigned long futex_offset;
3307 int rc;
3308
3309 if (!futex_cmpxchg_enabled)
3310 return;
3311
3312 /*
3313 * Fetch the list head (which was registered earlier, via
3314 * sys_set_robust_list()):
3315 */
3316 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3317 return;
3318 /*
3319 * Fetch the relative futex offset:
3320 */
3321 if (get_user(futex_offset, &head->futex_offset))
3322 return;
3323 /*
3324 * Fetch any possibly pending lock-add first, and handle it
3325 * if it exists:
3326 */
3327 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3328 return;
3329
3330 next_entry = NULL; /* avoid warning with gcc */
3331 while (entry != &head->list) {
3332 /*
3333 * Fetch the next entry in the list before calling
3334 * handle_futex_death:
3335 */
3336 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3337 /*
3338 * A pending lock might already be on the list, so
3339 * don't process it twice:
3340 */
3341 if (entry != pending)
3342 if (handle_futex_death((void __user *)entry + futex_offset,
3343 curr, pi))
3344 return;
3345 if (rc)
3346 return;
3347 entry = next_entry;
3348 pi = next_pi;
3349 /*
3350 * Avoid excessively long or circular lists:
3351 */
3352 if (!--limit)
3353 break;
3354
3355 cond_resched();
3356 }
3357
3358 if (pending)
3359 handle_futex_death((void __user *)pending + futex_offset,
3360 curr, pip);
3361 }
3362
3363 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3364 u32 __user *uaddr2, u32 val2, u32 val3)
3365 {
3366 int cmd = op & FUTEX_CMD_MASK;
3367 unsigned int flags = 0;
3368
3369 if (!(op & FUTEX_PRIVATE_FLAG))
3370 flags |= FLAGS_SHARED;
3371
3372 if (op & FUTEX_CLOCK_REALTIME) {
3373 flags |= FLAGS_CLOCKRT;
3374 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3375 cmd != FUTEX_WAIT_REQUEUE_PI)
3376 return -ENOSYS;
3377 }
3378
3379 switch (cmd) {
3380 case FUTEX_LOCK_PI:
3381 case FUTEX_UNLOCK_PI:
3382 case FUTEX_TRYLOCK_PI:
3383 case FUTEX_WAIT_REQUEUE_PI:
3384 case FUTEX_CMP_REQUEUE_PI:
3385 if (!futex_cmpxchg_enabled)
3386 return -ENOSYS;
3387 }
3388
3389 switch (cmd) {
3390 case FUTEX_WAIT:
3391 val3 = FUTEX_BITSET_MATCH_ANY;
3392 case FUTEX_WAIT_BITSET:
3393 return futex_wait(uaddr, flags, val, timeout, val3);
3394 case FUTEX_WAKE:
3395 val3 = FUTEX_BITSET_MATCH_ANY;
3396 case FUTEX_WAKE_BITSET:
3397 return futex_wake(uaddr, flags, val, val3);
3398 case FUTEX_REQUEUE:
3399 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3400 case FUTEX_CMP_REQUEUE:
3401 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3402 case FUTEX_WAKE_OP:
3403 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3404 case FUTEX_LOCK_PI:
3405 return futex_lock_pi(uaddr, flags, timeout, 0);
3406 case FUTEX_UNLOCK_PI:
3407 return futex_unlock_pi(uaddr, flags);
3408 case FUTEX_TRYLOCK_PI:
3409 return futex_lock_pi(uaddr, flags, NULL, 1);
3410 case FUTEX_WAIT_REQUEUE_PI:
3411 val3 = FUTEX_BITSET_MATCH_ANY;
3412 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3413 uaddr2);
3414 case FUTEX_CMP_REQUEUE_PI:
3415 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3416 }
3417 return -ENOSYS;
3418 }
3419
3420
3421 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3422 struct timespec __user *, utime, u32 __user *, uaddr2,
3423 u32, val3)
3424 {
3425 struct timespec ts;
3426 ktime_t t, *tp = NULL;
3427 u32 val2 = 0;
3428 int cmd = op & FUTEX_CMD_MASK;
3429
3430 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3431 cmd == FUTEX_WAIT_BITSET ||
3432 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3433 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3434 return -EFAULT;
3435 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3436 return -EFAULT;
3437 if (!timespec_valid(&ts))
3438 return -EINVAL;
3439
3440 t = timespec_to_ktime(ts);
3441 if (cmd == FUTEX_WAIT)
3442 t = ktime_add_safe(ktime_get(), t);
3443 tp = &t;
3444 }
3445 /*
3446 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3447 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3448 */
3449 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3450 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3451 val2 = (u32) (unsigned long) utime;
3452
3453 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3454 }
3455
3456 static void __init futex_detect_cmpxchg(void)
3457 {
3458 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3459 u32 curval;
3460
3461 /*
3462 * This will fail and we want it. Some arch implementations do
3463 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3464 * functionality. We want to know that before we call in any
3465 * of the complex code paths. Also we want to prevent
3466 * registration of robust lists in that case. NULL is
3467 * guaranteed to fault and we get -EFAULT on functional
3468 * implementation, the non-functional ones will return
3469 * -ENOSYS.
3470 */
3471 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3472 futex_cmpxchg_enabled = 1;
3473 #endif
3474 }
3475
3476 static int __init futex_init(void)
3477 {
3478 unsigned int futex_shift;
3479 unsigned long i;
3480
3481 #if CONFIG_BASE_SMALL
3482 futex_hashsize = 16;
3483 #else
3484 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3485 #endif
3486
3487 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3488 futex_hashsize, 0,
3489 futex_hashsize < 256 ? HASH_SMALL : 0,
3490 &futex_shift, NULL,
3491 futex_hashsize, futex_hashsize);
3492 futex_hashsize = 1UL << futex_shift;
3493
3494 futex_detect_cmpxchg();
3495
3496 for (i = 0; i < futex_hashsize; i++) {
3497 atomic_set(&futex_queues[i].waiters, 0);
3498 plist_head_init(&futex_queues[i].chain);
3499 spin_lock_init(&futex_queues[i].lock);
3500 }
3501
3502 return 0;
3503 }
3504 core_initcall(futex_init);