]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
futex: Replace PF_EXITPIDONE with a state
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/bootmem.h>
70 #include <linux/fault-inject.h>
71
72 #include <asm/futex.h>
73
74 #include "locking/rtmutex_common.h"
75
76 /*
77 * READ this before attempting to hack on futexes!
78 *
79 * Basic futex operation and ordering guarantees
80 * =============================================
81 *
82 * The waiter reads the futex value in user space and calls
83 * futex_wait(). This function computes the hash bucket and acquires
84 * the hash bucket lock. After that it reads the futex user space value
85 * again and verifies that the data has not changed. If it has not changed
86 * it enqueues itself into the hash bucket, releases the hash bucket lock
87 * and schedules.
88 *
89 * The waker side modifies the user space value of the futex and calls
90 * futex_wake(). This function computes the hash bucket and acquires the
91 * hash bucket lock. Then it looks for waiters on that futex in the hash
92 * bucket and wakes them.
93 *
94 * In futex wake up scenarios where no tasks are blocked on a futex, taking
95 * the hb spinlock can be avoided and simply return. In order for this
96 * optimization to work, ordering guarantees must exist so that the waiter
97 * being added to the list is acknowledged when the list is concurrently being
98 * checked by the waker, avoiding scenarios like the following:
99 *
100 * CPU 0 CPU 1
101 * val = *futex;
102 * sys_futex(WAIT, futex, val);
103 * futex_wait(futex, val);
104 * uval = *futex;
105 * *futex = newval;
106 * sys_futex(WAKE, futex);
107 * futex_wake(futex);
108 * if (queue_empty())
109 * return;
110 * if (uval == val)
111 * lock(hash_bucket(futex));
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule();
115 *
116 * This would cause the waiter on CPU 0 to wait forever because it
117 * missed the transition of the user space value from val to newval
118 * and the waker did not find the waiter in the hash bucket queue.
119 *
120 * The correct serialization ensures that a waiter either observes
121 * the changed user space value before blocking or is woken by a
122 * concurrent waker:
123 *
124 * CPU 0 CPU 1
125 * val = *futex;
126 * sys_futex(WAIT, futex, val);
127 * futex_wait(futex, val);
128 *
129 * waiters++; (a)
130 * smp_mb(); (A) <-- paired with -.
131 * |
132 * lock(hash_bucket(futex)); |
133 * |
134 * uval = *futex; |
135 * | *futex = newval;
136 * | sys_futex(WAKE, futex);
137 * | futex_wake(futex);
138 * |
139 * `--------> smp_mb(); (B)
140 * if (uval == val)
141 * queue();
142 * unlock(hash_bucket(futex));
143 * schedule(); if (waiters)
144 * lock(hash_bucket(futex));
145 * else wake_waiters(futex);
146 * waiters--; (b) unlock(hash_bucket(futex));
147 *
148 * Where (A) orders the waiters increment and the futex value read through
149 * atomic operations (see hb_waiters_inc) and where (B) orders the write
150 * to futex and the waiters read -- this is done by the barriers for both
151 * shared and private futexes in get_futex_key_refs().
152 *
153 * This yields the following case (where X:=waiters, Y:=futex):
154 *
155 * X = Y = 0
156 *
157 * w[X]=1 w[Y]=1
158 * MB MB
159 * r[Y]=y r[X]=x
160 *
161 * Which guarantees that x==0 && y==0 is impossible; which translates back into
162 * the guarantee that we cannot both miss the futex variable change and the
163 * enqueue.
164 *
165 * Note that a new waiter is accounted for in (a) even when it is possible that
166 * the wait call can return error, in which case we backtrack from it in (b).
167 * Refer to the comment in queue_lock().
168 *
169 * Similarly, in order to account for waiters being requeued on another
170 * address we always increment the waiters for the destination bucket before
171 * acquiring the lock. It then decrements them again after releasing it -
172 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173 * will do the additional required waiter count housekeeping. This is done for
174 * double_lock_hb() and double_unlock_hb(), respectively.
175 */
176
177 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178 #define futex_cmpxchg_enabled 1
179 #else
180 static int __read_mostly futex_cmpxchg_enabled;
181 #endif
182
183 /*
184 * Futex flags used to encode options to functions and preserve them across
185 * restarts.
186 */
187 #ifdef CONFIG_MMU
188 # define FLAGS_SHARED 0x01
189 #else
190 /*
191 * NOMMU does not have per process address space. Let the compiler optimize
192 * code away.
193 */
194 # define FLAGS_SHARED 0x00
195 #endif
196 #define FLAGS_CLOCKRT 0x02
197 #define FLAGS_HAS_TIMEOUT 0x04
198
199 /*
200 * Priority Inheritance state:
201 */
202 struct futex_pi_state {
203 /*
204 * list of 'owned' pi_state instances - these have to be
205 * cleaned up in do_exit() if the task exits prematurely:
206 */
207 struct list_head list;
208
209 /*
210 * The PI object:
211 */
212 struct rt_mutex pi_mutex;
213
214 struct task_struct *owner;
215 atomic_t refcount;
216
217 union futex_key key;
218 } __randomize_layout;
219
220 /**
221 * struct futex_q - The hashed futex queue entry, one per waiting task
222 * @list: priority-sorted list of tasks waiting on this futex
223 * @task: the task waiting on the futex
224 * @lock_ptr: the hash bucket lock
225 * @key: the key the futex is hashed on
226 * @pi_state: optional priority inheritance state
227 * @rt_waiter: rt_waiter storage for use with requeue_pi
228 * @requeue_pi_key: the requeue_pi target futex key
229 * @bitset: bitset for the optional bitmasked wakeup
230 *
231 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
232 * we can wake only the relevant ones (hashed queues may be shared).
233 *
234 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
235 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
236 * The order of wakeup is always to make the first condition true, then
237 * the second.
238 *
239 * PI futexes are typically woken before they are removed from the hash list via
240 * the rt_mutex code. See unqueue_me_pi().
241 */
242 struct futex_q {
243 struct plist_node list;
244
245 struct task_struct *task;
246 spinlock_t *lock_ptr;
247 union futex_key key;
248 struct futex_pi_state *pi_state;
249 struct rt_mutex_waiter *rt_waiter;
250 union futex_key *requeue_pi_key;
251 u32 bitset;
252 } __randomize_layout;
253
254 static const struct futex_q futex_q_init = {
255 /* list gets initialized in queue_me()*/
256 .key = FUTEX_KEY_INIT,
257 .bitset = FUTEX_BITSET_MATCH_ANY
258 };
259
260 /*
261 * Hash buckets are shared by all the futex_keys that hash to the same
262 * location. Each key may have multiple futex_q structures, one for each task
263 * waiting on a futex.
264 */
265 struct futex_hash_bucket {
266 atomic_t waiters;
267 spinlock_t lock;
268 struct plist_head chain;
269 } ____cacheline_aligned_in_smp;
270
271 /*
272 * The base of the bucket array and its size are always used together
273 * (after initialization only in hash_futex()), so ensure that they
274 * reside in the same cacheline.
275 */
276 static struct {
277 struct futex_hash_bucket *queues;
278 unsigned long hashsize;
279 } __futex_data __read_mostly __aligned(2*sizeof(long));
280 #define futex_queues (__futex_data.queues)
281 #define futex_hashsize (__futex_data.hashsize)
282
283
284 /*
285 * Fault injections for futexes.
286 */
287 #ifdef CONFIG_FAIL_FUTEX
288
289 static struct {
290 struct fault_attr attr;
291
292 bool ignore_private;
293 } fail_futex = {
294 .attr = FAULT_ATTR_INITIALIZER,
295 .ignore_private = false,
296 };
297
298 static int __init setup_fail_futex(char *str)
299 {
300 return setup_fault_attr(&fail_futex.attr, str);
301 }
302 __setup("fail_futex=", setup_fail_futex);
303
304 static bool should_fail_futex(bool fshared)
305 {
306 if (fail_futex.ignore_private && !fshared)
307 return false;
308
309 return should_fail(&fail_futex.attr, 1);
310 }
311
312 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314 static int __init fail_futex_debugfs(void)
315 {
316 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317 struct dentry *dir;
318
319 dir = fault_create_debugfs_attr("fail_futex", NULL,
320 &fail_futex.attr);
321 if (IS_ERR(dir))
322 return PTR_ERR(dir);
323
324 if (!debugfs_create_bool("ignore-private", mode, dir,
325 &fail_futex.ignore_private)) {
326 debugfs_remove_recursive(dir);
327 return -ENOMEM;
328 }
329
330 return 0;
331 }
332
333 late_initcall(fail_futex_debugfs);
334
335 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337 #else
338 static inline bool should_fail_futex(bool fshared)
339 {
340 return false;
341 }
342 #endif /* CONFIG_FAIL_FUTEX */
343
344 #ifdef CONFIG_COMPAT
345 static void compat_exit_robust_list(struct task_struct *curr);
346 #else
347 static inline void compat_exit_robust_list(struct task_struct *curr) { }
348 #endif
349
350 static inline void futex_get_mm(union futex_key *key)
351 {
352 mmgrab(key->private.mm);
353 /*
354 * Ensure futex_get_mm() implies a full barrier such that
355 * get_futex_key() implies a full barrier. This is relied upon
356 * as smp_mb(); (B), see the ordering comment above.
357 */
358 smp_mb__after_atomic();
359 }
360
361 /*
362 * Reflects a new waiter being added to the waitqueue.
363 */
364 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
365 {
366 #ifdef CONFIG_SMP
367 atomic_inc(&hb->waiters);
368 /*
369 * Full barrier (A), see the ordering comment above.
370 */
371 smp_mb__after_atomic();
372 #endif
373 }
374
375 /*
376 * Reflects a waiter being removed from the waitqueue by wakeup
377 * paths.
378 */
379 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
380 {
381 #ifdef CONFIG_SMP
382 atomic_dec(&hb->waiters);
383 #endif
384 }
385
386 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
387 {
388 #ifdef CONFIG_SMP
389 return atomic_read(&hb->waiters);
390 #else
391 return 1;
392 #endif
393 }
394
395 /**
396 * hash_futex - Return the hash bucket in the global hash
397 * @key: Pointer to the futex key for which the hash is calculated
398 *
399 * We hash on the keys returned from get_futex_key (see below) and return the
400 * corresponding hash bucket in the global hash.
401 */
402 static struct futex_hash_bucket *hash_futex(union futex_key *key)
403 {
404 u32 hash = jhash2((u32*)&key->both.word,
405 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
406 key->both.offset);
407 return &futex_queues[hash & (futex_hashsize - 1)];
408 }
409
410
411 /**
412 * match_futex - Check whether two futex keys are equal
413 * @key1: Pointer to key1
414 * @key2: Pointer to key2
415 *
416 * Return 1 if two futex_keys are equal, 0 otherwise.
417 */
418 static inline int match_futex(union futex_key *key1, union futex_key *key2)
419 {
420 return (key1 && key2
421 && key1->both.word == key2->both.word
422 && key1->both.ptr == key2->both.ptr
423 && key1->both.offset == key2->both.offset);
424 }
425
426 /*
427 * Take a reference to the resource addressed by a key.
428 * Can be called while holding spinlocks.
429 *
430 */
431 static void get_futex_key_refs(union futex_key *key)
432 {
433 if (!key->both.ptr)
434 return;
435
436 /*
437 * On MMU less systems futexes are always "private" as there is no per
438 * process address space. We need the smp wmb nevertheless - yes,
439 * arch/blackfin has MMU less SMP ...
440 */
441 if (!IS_ENABLED(CONFIG_MMU)) {
442 smp_mb(); /* explicit smp_mb(); (B) */
443 return;
444 }
445
446 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
447 case FUT_OFF_INODE:
448 ihold(key->shared.inode); /* implies smp_mb(); (B) */
449 break;
450 case FUT_OFF_MMSHARED:
451 futex_get_mm(key); /* implies smp_mb(); (B) */
452 break;
453 default:
454 /*
455 * Private futexes do not hold reference on an inode or
456 * mm, therefore the only purpose of calling get_futex_key_refs
457 * is because we need the barrier for the lockless waiter check.
458 */
459 smp_mb(); /* explicit smp_mb(); (B) */
460 }
461 }
462
463 /*
464 * Drop a reference to the resource addressed by a key.
465 * The hash bucket spinlock must not be held. This is
466 * a no-op for private futexes, see comment in the get
467 * counterpart.
468 */
469 static void drop_futex_key_refs(union futex_key *key)
470 {
471 if (!key->both.ptr) {
472 /* If we're here then we tried to put a key we failed to get */
473 WARN_ON_ONCE(1);
474 return;
475 }
476
477 if (!IS_ENABLED(CONFIG_MMU))
478 return;
479
480 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
481 case FUT_OFF_INODE:
482 iput(key->shared.inode);
483 break;
484 case FUT_OFF_MMSHARED:
485 mmdrop(key->private.mm);
486 break;
487 }
488 }
489
490 /**
491 * get_futex_key() - Get parameters which are the keys for a futex
492 * @uaddr: virtual address of the futex
493 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
494 * @key: address where result is stored.
495 * @rw: mapping needs to be read/write (values: VERIFY_READ,
496 * VERIFY_WRITE)
497 *
498 * Return: a negative error code or 0
499 *
500 * The key words are stored in @key on success.
501 *
502 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
503 * offset_within_page). For private mappings, it's (uaddr, current->mm).
504 * We can usually work out the index without swapping in the page.
505 *
506 * lock_page() might sleep, the caller should not hold a spinlock.
507 */
508 static int
509 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
510 {
511 unsigned long address = (unsigned long)uaddr;
512 struct mm_struct *mm = current->mm;
513 struct page *page, *tail;
514 struct address_space *mapping;
515 int err, ro = 0;
516
517 /*
518 * The futex address must be "naturally" aligned.
519 */
520 key->both.offset = address % PAGE_SIZE;
521 if (unlikely((address % sizeof(u32)) != 0))
522 return -EINVAL;
523 address -= key->both.offset;
524
525 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
526 return -EFAULT;
527
528 if (unlikely(should_fail_futex(fshared)))
529 return -EFAULT;
530
531 /*
532 * PROCESS_PRIVATE futexes are fast.
533 * As the mm cannot disappear under us and the 'key' only needs
534 * virtual address, we dont even have to find the underlying vma.
535 * Note : We do have to check 'uaddr' is a valid user address,
536 * but access_ok() should be faster than find_vma()
537 */
538 if (!fshared) {
539 key->private.mm = mm;
540 key->private.address = address;
541 get_futex_key_refs(key); /* implies smp_mb(); (B) */
542 return 0;
543 }
544
545 again:
546 /* Ignore any VERIFY_READ mapping (futex common case) */
547 if (unlikely(should_fail_futex(fshared)))
548 return -EFAULT;
549
550 err = get_user_pages_fast(address, 1, 1, &page);
551 /*
552 * If write access is not required (eg. FUTEX_WAIT), try
553 * and get read-only access.
554 */
555 if (err == -EFAULT && rw == VERIFY_READ) {
556 err = get_user_pages_fast(address, 1, 0, &page);
557 ro = 1;
558 }
559 if (err < 0)
560 return err;
561 else
562 err = 0;
563
564 /*
565 * The treatment of mapping from this point on is critical. The page
566 * lock protects many things but in this context the page lock
567 * stabilizes mapping, prevents inode freeing in the shared
568 * file-backed region case and guards against movement to swap cache.
569 *
570 * Strictly speaking the page lock is not needed in all cases being
571 * considered here and page lock forces unnecessarily serialization
572 * From this point on, mapping will be re-verified if necessary and
573 * page lock will be acquired only if it is unavoidable
574 *
575 * Mapping checks require the head page for any compound page so the
576 * head page and mapping is looked up now. For anonymous pages, it
577 * does not matter if the page splits in the future as the key is
578 * based on the address. For filesystem-backed pages, the tail is
579 * required as the index of the page determines the key. For
580 * base pages, there is no tail page and tail == page.
581 */
582 tail = page;
583 page = compound_head(page);
584 mapping = READ_ONCE(page->mapping);
585
586 /*
587 * If page->mapping is NULL, then it cannot be a PageAnon
588 * page; but it might be the ZERO_PAGE or in the gate area or
589 * in a special mapping (all cases which we are happy to fail);
590 * or it may have been a good file page when get_user_pages_fast
591 * found it, but truncated or holepunched or subjected to
592 * invalidate_complete_page2 before we got the page lock (also
593 * cases which we are happy to fail). And we hold a reference,
594 * so refcount care in invalidate_complete_page's remove_mapping
595 * prevents drop_caches from setting mapping to NULL beneath us.
596 *
597 * The case we do have to guard against is when memory pressure made
598 * shmem_writepage move it from filecache to swapcache beneath us:
599 * an unlikely race, but we do need to retry for page->mapping.
600 */
601 if (unlikely(!mapping)) {
602 int shmem_swizzled;
603
604 /*
605 * Page lock is required to identify which special case above
606 * applies. If this is really a shmem page then the page lock
607 * will prevent unexpected transitions.
608 */
609 lock_page(page);
610 shmem_swizzled = PageSwapCache(page) || page->mapping;
611 unlock_page(page);
612 put_page(page);
613
614 if (shmem_swizzled)
615 goto again;
616
617 return -EFAULT;
618 }
619
620 /*
621 * Private mappings are handled in a simple way.
622 *
623 * If the futex key is stored on an anonymous page, then the associated
624 * object is the mm which is implicitly pinned by the calling process.
625 *
626 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
627 * it's a read-only handle, it's expected that futexes attach to
628 * the object not the particular process.
629 */
630 if (PageAnon(page)) {
631 /*
632 * A RO anonymous page will never change and thus doesn't make
633 * sense for futex operations.
634 */
635 if (unlikely(should_fail_futex(fshared)) || ro) {
636 err = -EFAULT;
637 goto out;
638 }
639
640 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
641 key->private.mm = mm;
642 key->private.address = address;
643
644 get_futex_key_refs(key); /* implies smp_mb(); (B) */
645
646 } else {
647 struct inode *inode;
648
649 /*
650 * The associated futex object in this case is the inode and
651 * the page->mapping must be traversed. Ordinarily this should
652 * be stabilised under page lock but it's not strictly
653 * necessary in this case as we just want to pin the inode, not
654 * update the radix tree or anything like that.
655 *
656 * The RCU read lock is taken as the inode is finally freed
657 * under RCU. If the mapping still matches expectations then the
658 * mapping->host can be safely accessed as being a valid inode.
659 */
660 rcu_read_lock();
661
662 if (READ_ONCE(page->mapping) != mapping) {
663 rcu_read_unlock();
664 put_page(page);
665
666 goto again;
667 }
668
669 inode = READ_ONCE(mapping->host);
670 if (!inode) {
671 rcu_read_unlock();
672 put_page(page);
673
674 goto again;
675 }
676
677 /*
678 * Take a reference unless it is about to be freed. Previously
679 * this reference was taken by ihold under the page lock
680 * pinning the inode in place so i_lock was unnecessary. The
681 * only way for this check to fail is if the inode was
682 * truncated in parallel which is almost certainly an
683 * application bug. In such a case, just retry.
684 *
685 * We are not calling into get_futex_key_refs() in file-backed
686 * cases, therefore a successful atomic_inc return below will
687 * guarantee that get_futex_key() will still imply smp_mb(); (B).
688 */
689 if (!atomic_inc_not_zero(&inode->i_count)) {
690 rcu_read_unlock();
691 put_page(page);
692
693 goto again;
694 }
695
696 /* Should be impossible but lets be paranoid for now */
697 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
698 err = -EFAULT;
699 rcu_read_unlock();
700 iput(inode);
701
702 goto out;
703 }
704
705 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
706 key->shared.inode = inode;
707 key->shared.pgoff = basepage_index(tail);
708 rcu_read_unlock();
709 }
710
711 out:
712 put_page(page);
713 return err;
714 }
715
716 static inline void put_futex_key(union futex_key *key)
717 {
718 drop_futex_key_refs(key);
719 }
720
721 /**
722 * fault_in_user_writeable() - Fault in user address and verify RW access
723 * @uaddr: pointer to faulting user space address
724 *
725 * Slow path to fixup the fault we just took in the atomic write
726 * access to @uaddr.
727 *
728 * We have no generic implementation of a non-destructive write to the
729 * user address. We know that we faulted in the atomic pagefault
730 * disabled section so we can as well avoid the #PF overhead by
731 * calling get_user_pages() right away.
732 */
733 static int fault_in_user_writeable(u32 __user *uaddr)
734 {
735 struct mm_struct *mm = current->mm;
736 int ret;
737
738 down_read(&mm->mmap_sem);
739 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
740 FAULT_FLAG_WRITE, NULL);
741 up_read(&mm->mmap_sem);
742
743 return ret < 0 ? ret : 0;
744 }
745
746 /**
747 * futex_top_waiter() - Return the highest priority waiter on a futex
748 * @hb: the hash bucket the futex_q's reside in
749 * @key: the futex key (to distinguish it from other futex futex_q's)
750 *
751 * Must be called with the hb lock held.
752 */
753 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
754 union futex_key *key)
755 {
756 struct futex_q *this;
757
758 plist_for_each_entry(this, &hb->chain, list) {
759 if (match_futex(&this->key, key))
760 return this;
761 }
762 return NULL;
763 }
764
765 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
766 u32 uval, u32 newval)
767 {
768 int ret;
769
770 pagefault_disable();
771 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
772 pagefault_enable();
773
774 return ret;
775 }
776
777 static int get_futex_value_locked(u32 *dest, u32 __user *from)
778 {
779 int ret;
780
781 pagefault_disable();
782 ret = __get_user(*dest, from);
783 pagefault_enable();
784
785 return ret ? -EFAULT : 0;
786 }
787
788
789 /*
790 * PI code:
791 */
792 static int refill_pi_state_cache(void)
793 {
794 struct futex_pi_state *pi_state;
795
796 if (likely(current->pi_state_cache))
797 return 0;
798
799 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
800
801 if (!pi_state)
802 return -ENOMEM;
803
804 INIT_LIST_HEAD(&pi_state->list);
805 /* pi_mutex gets initialized later */
806 pi_state->owner = NULL;
807 atomic_set(&pi_state->refcount, 1);
808 pi_state->key = FUTEX_KEY_INIT;
809
810 current->pi_state_cache = pi_state;
811
812 return 0;
813 }
814
815 static struct futex_pi_state *alloc_pi_state(void)
816 {
817 struct futex_pi_state *pi_state = current->pi_state_cache;
818
819 WARN_ON(!pi_state);
820 current->pi_state_cache = NULL;
821
822 return pi_state;
823 }
824
825 static void get_pi_state(struct futex_pi_state *pi_state)
826 {
827 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
828 }
829
830 /*
831 * Drops a reference to the pi_state object and frees or caches it
832 * when the last reference is gone.
833 */
834 static void put_pi_state(struct futex_pi_state *pi_state)
835 {
836 if (!pi_state)
837 return;
838
839 if (!atomic_dec_and_test(&pi_state->refcount))
840 return;
841
842 /*
843 * If pi_state->owner is NULL, the owner is most probably dying
844 * and has cleaned up the pi_state already
845 */
846 if (pi_state->owner) {
847 struct task_struct *owner;
848
849 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
850 owner = pi_state->owner;
851 if (owner) {
852 raw_spin_lock(&owner->pi_lock);
853 list_del_init(&pi_state->list);
854 raw_spin_unlock(&owner->pi_lock);
855 }
856 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
857 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
858 }
859
860 if (current->pi_state_cache) {
861 kfree(pi_state);
862 } else {
863 /*
864 * pi_state->list is already empty.
865 * clear pi_state->owner.
866 * refcount is at 0 - put it back to 1.
867 */
868 pi_state->owner = NULL;
869 atomic_set(&pi_state->refcount, 1);
870 current->pi_state_cache = pi_state;
871 }
872 }
873
874 /*
875 * Look up the task based on what TID userspace gave us.
876 * We dont trust it.
877 */
878 static struct task_struct *futex_find_get_task(pid_t pid)
879 {
880 struct task_struct *p;
881
882 rcu_read_lock();
883 p = find_task_by_vpid(pid);
884 if (p)
885 get_task_struct(p);
886
887 rcu_read_unlock();
888
889 return p;
890 }
891
892 #ifdef CONFIG_FUTEX_PI
893
894 /*
895 * This task is holding PI mutexes at exit time => bad.
896 * Kernel cleans up PI-state, but userspace is likely hosed.
897 * (Robust-futex cleanup is separate and might save the day for userspace.)
898 */
899 static void exit_pi_state_list(struct task_struct *curr)
900 {
901 struct list_head *next, *head = &curr->pi_state_list;
902 struct futex_pi_state *pi_state;
903 struct futex_hash_bucket *hb;
904 union futex_key key = FUTEX_KEY_INIT;
905
906 if (!futex_cmpxchg_enabled)
907 return;
908 /*
909 * We are a ZOMBIE and nobody can enqueue itself on
910 * pi_state_list anymore, but we have to be careful
911 * versus waiters unqueueing themselves:
912 */
913 raw_spin_lock_irq(&curr->pi_lock);
914 while (!list_empty(head)) {
915 next = head->next;
916 pi_state = list_entry(next, struct futex_pi_state, list);
917 key = pi_state->key;
918 hb = hash_futex(&key);
919
920 /*
921 * We can race against put_pi_state() removing itself from the
922 * list (a waiter going away). put_pi_state() will first
923 * decrement the reference count and then modify the list, so
924 * its possible to see the list entry but fail this reference
925 * acquire.
926 *
927 * In that case; drop the locks to let put_pi_state() make
928 * progress and retry the loop.
929 */
930 if (!atomic_inc_not_zero(&pi_state->refcount)) {
931 raw_spin_unlock_irq(&curr->pi_lock);
932 cpu_relax();
933 raw_spin_lock_irq(&curr->pi_lock);
934 continue;
935 }
936 raw_spin_unlock_irq(&curr->pi_lock);
937
938 spin_lock(&hb->lock);
939 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
940 raw_spin_lock(&curr->pi_lock);
941 /*
942 * We dropped the pi-lock, so re-check whether this
943 * task still owns the PI-state:
944 */
945 if (head->next != next) {
946 /* retain curr->pi_lock for the loop invariant */
947 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
948 spin_unlock(&hb->lock);
949 put_pi_state(pi_state);
950 continue;
951 }
952
953 WARN_ON(pi_state->owner != curr);
954 WARN_ON(list_empty(&pi_state->list));
955 list_del_init(&pi_state->list);
956 pi_state->owner = NULL;
957
958 raw_spin_unlock(&curr->pi_lock);
959 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
960 spin_unlock(&hb->lock);
961
962 rt_mutex_futex_unlock(&pi_state->pi_mutex);
963 put_pi_state(pi_state);
964
965 raw_spin_lock_irq(&curr->pi_lock);
966 }
967 raw_spin_unlock_irq(&curr->pi_lock);
968 }
969 #else
970 static inline void exit_pi_state_list(struct task_struct *curr) { }
971 #endif
972
973 /*
974 * We need to check the following states:
975 *
976 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
977 *
978 * [1] NULL | --- | --- | 0 | 0/1 | Valid
979 * [2] NULL | --- | --- | >0 | 0/1 | Valid
980 *
981 * [3] Found | NULL | -- | Any | 0/1 | Invalid
982 *
983 * [4] Found | Found | NULL | 0 | 1 | Valid
984 * [5] Found | Found | NULL | >0 | 1 | Invalid
985 *
986 * [6] Found | Found | task | 0 | 1 | Valid
987 *
988 * [7] Found | Found | NULL | Any | 0 | Invalid
989 *
990 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
991 * [9] Found | Found | task | 0 | 0 | Invalid
992 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
993 *
994 * [1] Indicates that the kernel can acquire the futex atomically. We
995 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
996 *
997 * [2] Valid, if TID does not belong to a kernel thread. If no matching
998 * thread is found then it indicates that the owner TID has died.
999 *
1000 * [3] Invalid. The waiter is queued on a non PI futex
1001 *
1002 * [4] Valid state after exit_robust_list(), which sets the user space
1003 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004 *
1005 * [5] The user space value got manipulated between exit_robust_list()
1006 * and exit_pi_state_list()
1007 *
1008 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1009 * the pi_state but cannot access the user space value.
1010 *
1011 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012 *
1013 * [8] Owner and user space value match
1014 *
1015 * [9] There is no transient state which sets the user space TID to 0
1016 * except exit_robust_list(), but this is indicated by the
1017 * FUTEX_OWNER_DIED bit. See [4]
1018 *
1019 * [10] There is no transient state which leaves owner and user space
1020 * TID out of sync.
1021 *
1022 *
1023 * Serialization and lifetime rules:
1024 *
1025 * hb->lock:
1026 *
1027 * hb -> futex_q, relation
1028 * futex_q -> pi_state, relation
1029 *
1030 * (cannot be raw because hb can contain arbitrary amount
1031 * of futex_q's)
1032 *
1033 * pi_mutex->wait_lock:
1034 *
1035 * {uval, pi_state}
1036 *
1037 * (and pi_mutex 'obviously')
1038 *
1039 * p->pi_lock:
1040 *
1041 * p->pi_state_list -> pi_state->list, relation
1042 *
1043 * pi_state->refcount:
1044 *
1045 * pi_state lifetime
1046 *
1047 *
1048 * Lock order:
1049 *
1050 * hb->lock
1051 * pi_mutex->wait_lock
1052 * p->pi_lock
1053 *
1054 */
1055
1056 /*
1057 * Validate that the existing waiter has a pi_state and sanity check
1058 * the pi_state against the user space value. If correct, attach to
1059 * it.
1060 */
1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062 struct futex_pi_state *pi_state,
1063 struct futex_pi_state **ps)
1064 {
1065 pid_t pid = uval & FUTEX_TID_MASK;
1066 u32 uval2;
1067 int ret;
1068
1069 /*
1070 * Userspace might have messed up non-PI and PI futexes [3]
1071 */
1072 if (unlikely(!pi_state))
1073 return -EINVAL;
1074
1075 /*
1076 * We get here with hb->lock held, and having found a
1077 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079 * which in turn means that futex_lock_pi() still has a reference on
1080 * our pi_state.
1081 *
1082 * The waiter holding a reference on @pi_state also protects against
1083 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085 * free pi_state before we can take a reference ourselves.
1086 */
1087 WARN_ON(!atomic_read(&pi_state->refcount));
1088
1089 /*
1090 * Now that we have a pi_state, we can acquire wait_lock
1091 * and do the state validation.
1092 */
1093 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095 /*
1096 * Since {uval, pi_state} is serialized by wait_lock, and our current
1097 * uval was read without holding it, it can have changed. Verify it
1098 * still is what we expect it to be, otherwise retry the entire
1099 * operation.
1100 */
1101 if (get_futex_value_locked(&uval2, uaddr))
1102 goto out_efault;
1103
1104 if (uval != uval2)
1105 goto out_eagain;
1106
1107 /*
1108 * Handle the owner died case:
1109 */
1110 if (uval & FUTEX_OWNER_DIED) {
1111 /*
1112 * exit_pi_state_list sets owner to NULL and wakes the
1113 * topmost waiter. The task which acquires the
1114 * pi_state->rt_mutex will fixup owner.
1115 */
1116 if (!pi_state->owner) {
1117 /*
1118 * No pi state owner, but the user space TID
1119 * is not 0. Inconsistent state. [5]
1120 */
1121 if (pid)
1122 goto out_einval;
1123 /*
1124 * Take a ref on the state and return success. [4]
1125 */
1126 goto out_attach;
1127 }
1128
1129 /*
1130 * If TID is 0, then either the dying owner has not
1131 * yet executed exit_pi_state_list() or some waiter
1132 * acquired the rtmutex in the pi state, but did not
1133 * yet fixup the TID in user space.
1134 *
1135 * Take a ref on the state and return success. [6]
1136 */
1137 if (!pid)
1138 goto out_attach;
1139 } else {
1140 /*
1141 * If the owner died bit is not set, then the pi_state
1142 * must have an owner. [7]
1143 */
1144 if (!pi_state->owner)
1145 goto out_einval;
1146 }
1147
1148 /*
1149 * Bail out if user space manipulated the futex value. If pi
1150 * state exists then the owner TID must be the same as the
1151 * user space TID. [9/10]
1152 */
1153 if (pid != task_pid_vnr(pi_state->owner))
1154 goto out_einval;
1155
1156 out_attach:
1157 get_pi_state(pi_state);
1158 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159 *ps = pi_state;
1160 return 0;
1161
1162 out_einval:
1163 ret = -EINVAL;
1164 goto out_error;
1165
1166 out_eagain:
1167 ret = -EAGAIN;
1168 goto out_error;
1169
1170 out_efault:
1171 ret = -EFAULT;
1172 goto out_error;
1173
1174 out_error:
1175 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176 return ret;
1177 }
1178
1179 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1180 struct task_struct *tsk)
1181 {
1182 u32 uval2;
1183
1184 /*
1185 * If the futex exit state is not yet FUTEX_STATE_DEAD, wait
1186 * for it to finish.
1187 */
1188 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1189 return -EAGAIN;
1190
1191 /*
1192 * Reread the user space value to handle the following situation:
1193 *
1194 * CPU0 CPU1
1195 *
1196 * sys_exit() sys_futex()
1197 * do_exit() futex_lock_pi()
1198 * futex_lock_pi_atomic()
1199 * exit_signals(tsk) No waiters:
1200 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1201 * mm_release(tsk) Set waiter bit
1202 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1203 * Set owner died attach_to_pi_owner() {
1204 * *uaddr = 0xC0000000; tsk = get_task(PID);
1205 * } if (!tsk->flags & PF_EXITING) {
1206 * ... attach();
1207 * tsk->futex_state = } else {
1208 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1209 * FUTEX_STATE_DEAD)
1210 * return -EAGAIN;
1211 * return -ESRCH; <--- FAIL
1212 * }
1213 *
1214 * Returning ESRCH unconditionally is wrong here because the
1215 * user space value has been changed by the exiting task.
1216 *
1217 * The same logic applies to the case where the exiting task is
1218 * already gone.
1219 */
1220 if (get_futex_value_locked(&uval2, uaddr))
1221 return -EFAULT;
1222
1223 /* If the user space value has changed, try again. */
1224 if (uval2 != uval)
1225 return -EAGAIN;
1226
1227 /*
1228 * The exiting task did not have a robust list, the robust list was
1229 * corrupted or the user space value in *uaddr is simply bogus.
1230 * Give up and tell user space.
1231 */
1232 return -ESRCH;
1233 }
1234
1235 /*
1236 * Lookup the task for the TID provided from user space and attach to
1237 * it after doing proper sanity checks.
1238 */
1239 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1240 struct futex_pi_state **ps)
1241 {
1242 pid_t pid = uval & FUTEX_TID_MASK;
1243 struct futex_pi_state *pi_state;
1244 struct task_struct *p;
1245
1246 /*
1247 * We are the first waiter - try to look up the real owner and attach
1248 * the new pi_state to it, but bail out when TID = 0 [1]
1249 *
1250 * The !pid check is paranoid. None of the call sites should end up
1251 * with pid == 0, but better safe than sorry. Let the caller retry
1252 */
1253 if (!pid)
1254 return -EAGAIN;
1255 p = futex_find_get_task(pid);
1256 if (!p)
1257 return handle_exit_race(uaddr, uval, NULL);
1258
1259 if (unlikely(p->flags & PF_KTHREAD)) {
1260 put_task_struct(p);
1261 return -EPERM;
1262 }
1263
1264 /*
1265 * We need to look at the task state to figure out, whether the
1266 * task is exiting. To protect against the change of the task state
1267 * in futex_exit_release(), we do this protected by p->pi_lock:
1268 */
1269 raw_spin_lock_irq(&p->pi_lock);
1270 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1271 /*
1272 * The task is on the way out. When the futex state is
1273 * FUTEX_STATE_DEAD, we know that the task has finished
1274 * the cleanup:
1275 */
1276 int ret = handle_exit_race(uaddr, uval, p);
1277
1278 raw_spin_unlock_irq(&p->pi_lock);
1279 put_task_struct(p);
1280 return ret;
1281 }
1282
1283 /*
1284 * No existing pi state. First waiter. [2]
1285 *
1286 * This creates pi_state, we have hb->lock held, this means nothing can
1287 * observe this state, wait_lock is irrelevant.
1288 */
1289 pi_state = alloc_pi_state();
1290
1291 /*
1292 * Initialize the pi_mutex in locked state and make @p
1293 * the owner of it:
1294 */
1295 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1296
1297 /* Store the key for possible exit cleanups: */
1298 pi_state->key = *key;
1299
1300 WARN_ON(!list_empty(&pi_state->list));
1301 list_add(&pi_state->list, &p->pi_state_list);
1302 /*
1303 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1304 * because there is no concurrency as the object is not published yet.
1305 */
1306 pi_state->owner = p;
1307 raw_spin_unlock_irq(&p->pi_lock);
1308
1309 put_task_struct(p);
1310
1311 *ps = pi_state;
1312
1313 return 0;
1314 }
1315
1316 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1317 struct futex_hash_bucket *hb,
1318 union futex_key *key, struct futex_pi_state **ps)
1319 {
1320 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1321
1322 /*
1323 * If there is a waiter on that futex, validate it and
1324 * attach to the pi_state when the validation succeeds.
1325 */
1326 if (top_waiter)
1327 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1328
1329 /*
1330 * We are the first waiter - try to look up the owner based on
1331 * @uval and attach to it.
1332 */
1333 return attach_to_pi_owner(uaddr, uval, key, ps);
1334 }
1335
1336 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1337 {
1338 int err;
1339 u32 uninitialized_var(curval);
1340
1341 if (unlikely(should_fail_futex(true)))
1342 return -EFAULT;
1343
1344 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1345 if (unlikely(err))
1346 return err;
1347
1348 /* If user space value changed, let the caller retry */
1349 return curval != uval ? -EAGAIN : 0;
1350 }
1351
1352 /**
1353 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1354 * @uaddr: the pi futex user address
1355 * @hb: the pi futex hash bucket
1356 * @key: the futex key associated with uaddr and hb
1357 * @ps: the pi_state pointer where we store the result of the
1358 * lookup
1359 * @task: the task to perform the atomic lock work for. This will
1360 * be "current" except in the case of requeue pi.
1361 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1362 *
1363 * Return:
1364 * - 0 - ready to wait;
1365 * - 1 - acquired the lock;
1366 * - <0 - error
1367 *
1368 * The hb->lock and futex_key refs shall be held by the caller.
1369 */
1370 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1371 union futex_key *key,
1372 struct futex_pi_state **ps,
1373 struct task_struct *task, int set_waiters)
1374 {
1375 u32 uval, newval, vpid = task_pid_vnr(task);
1376 struct futex_q *top_waiter;
1377 int ret;
1378
1379 /*
1380 * Read the user space value first so we can validate a few
1381 * things before proceeding further.
1382 */
1383 if (get_futex_value_locked(&uval, uaddr))
1384 return -EFAULT;
1385
1386 if (unlikely(should_fail_futex(true)))
1387 return -EFAULT;
1388
1389 /*
1390 * Detect deadlocks.
1391 */
1392 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1393 return -EDEADLK;
1394
1395 if ((unlikely(should_fail_futex(true))))
1396 return -EDEADLK;
1397
1398 /*
1399 * Lookup existing state first. If it exists, try to attach to
1400 * its pi_state.
1401 */
1402 top_waiter = futex_top_waiter(hb, key);
1403 if (top_waiter)
1404 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1405
1406 /*
1407 * No waiter and user TID is 0. We are here because the
1408 * waiters or the owner died bit is set or called from
1409 * requeue_cmp_pi or for whatever reason something took the
1410 * syscall.
1411 */
1412 if (!(uval & FUTEX_TID_MASK)) {
1413 /*
1414 * We take over the futex. No other waiters and the user space
1415 * TID is 0. We preserve the owner died bit.
1416 */
1417 newval = uval & FUTEX_OWNER_DIED;
1418 newval |= vpid;
1419
1420 /* The futex requeue_pi code can enforce the waiters bit */
1421 if (set_waiters)
1422 newval |= FUTEX_WAITERS;
1423
1424 ret = lock_pi_update_atomic(uaddr, uval, newval);
1425 /* If the take over worked, return 1 */
1426 return ret < 0 ? ret : 1;
1427 }
1428
1429 /*
1430 * First waiter. Set the waiters bit before attaching ourself to
1431 * the owner. If owner tries to unlock, it will be forced into
1432 * the kernel and blocked on hb->lock.
1433 */
1434 newval = uval | FUTEX_WAITERS;
1435 ret = lock_pi_update_atomic(uaddr, uval, newval);
1436 if (ret)
1437 return ret;
1438 /*
1439 * If the update of the user space value succeeded, we try to
1440 * attach to the owner. If that fails, no harm done, we only
1441 * set the FUTEX_WAITERS bit in the user space variable.
1442 */
1443 return attach_to_pi_owner(uaddr, newval, key, ps);
1444 }
1445
1446 /**
1447 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1448 * @q: The futex_q to unqueue
1449 *
1450 * The q->lock_ptr must not be NULL and must be held by the caller.
1451 */
1452 static void __unqueue_futex(struct futex_q *q)
1453 {
1454 struct futex_hash_bucket *hb;
1455
1456 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1457 || WARN_ON(plist_node_empty(&q->list)))
1458 return;
1459
1460 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1461 plist_del(&q->list, &hb->chain);
1462 hb_waiters_dec(hb);
1463 }
1464
1465 /*
1466 * The hash bucket lock must be held when this is called.
1467 * Afterwards, the futex_q must not be accessed. Callers
1468 * must ensure to later call wake_up_q() for the actual
1469 * wakeups to occur.
1470 */
1471 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1472 {
1473 struct task_struct *p = q->task;
1474
1475 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1476 return;
1477
1478 get_task_struct(p);
1479 __unqueue_futex(q);
1480 /*
1481 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1482 * is written, without taking any locks. This is possible in the event
1483 * of a spurious wakeup, for example. A memory barrier is required here
1484 * to prevent the following store to lock_ptr from getting ahead of the
1485 * plist_del in __unqueue_futex().
1486 */
1487 smp_store_release(&q->lock_ptr, NULL);
1488
1489 /*
1490 * Queue the task for later wakeup for after we've released
1491 * the hb->lock. wake_q_add() grabs reference to p.
1492 */
1493 wake_q_add(wake_q, p);
1494 put_task_struct(p);
1495 }
1496
1497 /*
1498 * Caller must hold a reference on @pi_state.
1499 */
1500 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1501 {
1502 u32 uninitialized_var(curval), newval;
1503 struct task_struct *new_owner;
1504 bool postunlock = false;
1505 DEFINE_WAKE_Q(wake_q);
1506 int ret = 0;
1507
1508 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1509 if (WARN_ON_ONCE(!new_owner)) {
1510 /*
1511 * As per the comment in futex_unlock_pi() this should not happen.
1512 *
1513 * When this happens, give up our locks and try again, giving
1514 * the futex_lock_pi() instance time to complete, either by
1515 * waiting on the rtmutex or removing itself from the futex
1516 * queue.
1517 */
1518 ret = -EAGAIN;
1519 goto out_unlock;
1520 }
1521
1522 /*
1523 * We pass it to the next owner. The WAITERS bit is always kept
1524 * enabled while there is PI state around. We cleanup the owner
1525 * died bit, because we are the owner.
1526 */
1527 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1528
1529 if (unlikely(should_fail_futex(true)))
1530 ret = -EFAULT;
1531
1532 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1533 if (!ret && (curval != uval)) {
1534 /*
1535 * If a unconditional UNLOCK_PI operation (user space did not
1536 * try the TID->0 transition) raced with a waiter setting the
1537 * FUTEX_WAITERS flag between get_user() and locking the hash
1538 * bucket lock, retry the operation.
1539 */
1540 if ((FUTEX_TID_MASK & curval) == uval)
1541 ret = -EAGAIN;
1542 else
1543 ret = -EINVAL;
1544 }
1545
1546 if (ret)
1547 goto out_unlock;
1548
1549 /*
1550 * This is a point of no return; once we modify the uval there is no
1551 * going back and subsequent operations must not fail.
1552 */
1553
1554 raw_spin_lock(&pi_state->owner->pi_lock);
1555 WARN_ON(list_empty(&pi_state->list));
1556 list_del_init(&pi_state->list);
1557 raw_spin_unlock(&pi_state->owner->pi_lock);
1558
1559 raw_spin_lock(&new_owner->pi_lock);
1560 WARN_ON(!list_empty(&pi_state->list));
1561 list_add(&pi_state->list, &new_owner->pi_state_list);
1562 pi_state->owner = new_owner;
1563 raw_spin_unlock(&new_owner->pi_lock);
1564
1565 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1566
1567 out_unlock:
1568 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1569
1570 if (postunlock)
1571 rt_mutex_postunlock(&wake_q);
1572
1573 return ret;
1574 }
1575
1576 /*
1577 * Express the locking dependencies for lockdep:
1578 */
1579 static inline void
1580 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1581 {
1582 if (hb1 <= hb2) {
1583 spin_lock(&hb1->lock);
1584 if (hb1 < hb2)
1585 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1586 } else { /* hb1 > hb2 */
1587 spin_lock(&hb2->lock);
1588 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1589 }
1590 }
1591
1592 static inline void
1593 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1594 {
1595 spin_unlock(&hb1->lock);
1596 if (hb1 != hb2)
1597 spin_unlock(&hb2->lock);
1598 }
1599
1600 /*
1601 * Wake up waiters matching bitset queued on this futex (uaddr).
1602 */
1603 static int
1604 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1605 {
1606 struct futex_hash_bucket *hb;
1607 struct futex_q *this, *next;
1608 union futex_key key = FUTEX_KEY_INIT;
1609 int ret;
1610 DEFINE_WAKE_Q(wake_q);
1611
1612 if (!bitset)
1613 return -EINVAL;
1614
1615 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1616 if (unlikely(ret != 0))
1617 goto out;
1618
1619 hb = hash_futex(&key);
1620
1621 /* Make sure we really have tasks to wakeup */
1622 if (!hb_waiters_pending(hb))
1623 goto out_put_key;
1624
1625 spin_lock(&hb->lock);
1626
1627 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1628 if (match_futex (&this->key, &key)) {
1629 if (this->pi_state || this->rt_waiter) {
1630 ret = -EINVAL;
1631 break;
1632 }
1633
1634 /* Check if one of the bits is set in both bitsets */
1635 if (!(this->bitset & bitset))
1636 continue;
1637
1638 mark_wake_futex(&wake_q, this);
1639 if (++ret >= nr_wake)
1640 break;
1641 }
1642 }
1643
1644 spin_unlock(&hb->lock);
1645 wake_up_q(&wake_q);
1646 out_put_key:
1647 put_futex_key(&key);
1648 out:
1649 return ret;
1650 }
1651
1652 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1653 {
1654 unsigned int op = (encoded_op & 0x70000000) >> 28;
1655 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1656 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1657 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1658 int oldval, ret;
1659
1660 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1661 if (oparg < 0 || oparg > 31) {
1662 char comm[sizeof(current->comm)];
1663 /*
1664 * kill this print and return -EINVAL when userspace
1665 * is sane again
1666 */
1667 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1668 get_task_comm(comm, current), oparg);
1669 oparg &= 31;
1670 }
1671 oparg = 1 << oparg;
1672 }
1673
1674 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1675 return -EFAULT;
1676
1677 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1678 if (ret)
1679 return ret;
1680
1681 switch (cmp) {
1682 case FUTEX_OP_CMP_EQ:
1683 return oldval == cmparg;
1684 case FUTEX_OP_CMP_NE:
1685 return oldval != cmparg;
1686 case FUTEX_OP_CMP_LT:
1687 return oldval < cmparg;
1688 case FUTEX_OP_CMP_GE:
1689 return oldval >= cmparg;
1690 case FUTEX_OP_CMP_LE:
1691 return oldval <= cmparg;
1692 case FUTEX_OP_CMP_GT:
1693 return oldval > cmparg;
1694 default:
1695 return -ENOSYS;
1696 }
1697 }
1698
1699 /*
1700 * Wake up all waiters hashed on the physical page that is mapped
1701 * to this virtual address:
1702 */
1703 static int
1704 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1705 int nr_wake, int nr_wake2, int op)
1706 {
1707 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1708 struct futex_hash_bucket *hb1, *hb2;
1709 struct futex_q *this, *next;
1710 int ret, op_ret;
1711 DEFINE_WAKE_Q(wake_q);
1712
1713 retry:
1714 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1715 if (unlikely(ret != 0))
1716 goto out;
1717 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1718 if (unlikely(ret != 0))
1719 goto out_put_key1;
1720
1721 hb1 = hash_futex(&key1);
1722 hb2 = hash_futex(&key2);
1723
1724 retry_private:
1725 double_lock_hb(hb1, hb2);
1726 op_ret = futex_atomic_op_inuser(op, uaddr2);
1727 if (unlikely(op_ret < 0)) {
1728 double_unlock_hb(hb1, hb2);
1729
1730 if (!IS_ENABLED(CONFIG_MMU) ||
1731 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1732 /*
1733 * we don't get EFAULT from MMU faults if we don't have
1734 * an MMU, but we might get them from range checking
1735 */
1736 ret = op_ret;
1737 goto out_put_keys;
1738 }
1739
1740 if (op_ret == -EFAULT) {
1741 ret = fault_in_user_writeable(uaddr2);
1742 if (ret)
1743 goto out_put_keys;
1744 }
1745
1746 if (!(flags & FLAGS_SHARED)) {
1747 cond_resched();
1748 goto retry_private;
1749 }
1750
1751 put_futex_key(&key2);
1752 put_futex_key(&key1);
1753 cond_resched();
1754 goto retry;
1755 }
1756
1757 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1758 if (match_futex (&this->key, &key1)) {
1759 if (this->pi_state || this->rt_waiter) {
1760 ret = -EINVAL;
1761 goto out_unlock;
1762 }
1763 mark_wake_futex(&wake_q, this);
1764 if (++ret >= nr_wake)
1765 break;
1766 }
1767 }
1768
1769 if (op_ret > 0) {
1770 op_ret = 0;
1771 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1772 if (match_futex (&this->key, &key2)) {
1773 if (this->pi_state || this->rt_waiter) {
1774 ret = -EINVAL;
1775 goto out_unlock;
1776 }
1777 mark_wake_futex(&wake_q, this);
1778 if (++op_ret >= nr_wake2)
1779 break;
1780 }
1781 }
1782 ret += op_ret;
1783 }
1784
1785 out_unlock:
1786 double_unlock_hb(hb1, hb2);
1787 wake_up_q(&wake_q);
1788 out_put_keys:
1789 put_futex_key(&key2);
1790 out_put_key1:
1791 put_futex_key(&key1);
1792 out:
1793 return ret;
1794 }
1795
1796 /**
1797 * requeue_futex() - Requeue a futex_q from one hb to another
1798 * @q: the futex_q to requeue
1799 * @hb1: the source hash_bucket
1800 * @hb2: the target hash_bucket
1801 * @key2: the new key for the requeued futex_q
1802 */
1803 static inline
1804 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1805 struct futex_hash_bucket *hb2, union futex_key *key2)
1806 {
1807
1808 /*
1809 * If key1 and key2 hash to the same bucket, no need to
1810 * requeue.
1811 */
1812 if (likely(&hb1->chain != &hb2->chain)) {
1813 plist_del(&q->list, &hb1->chain);
1814 hb_waiters_dec(hb1);
1815 hb_waiters_inc(hb2);
1816 plist_add(&q->list, &hb2->chain);
1817 q->lock_ptr = &hb2->lock;
1818 }
1819 get_futex_key_refs(key2);
1820 q->key = *key2;
1821 }
1822
1823 /**
1824 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1825 * @q: the futex_q
1826 * @key: the key of the requeue target futex
1827 * @hb: the hash_bucket of the requeue target futex
1828 *
1829 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1830 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1831 * to the requeue target futex so the waiter can detect the wakeup on the right
1832 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1833 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1834 * to protect access to the pi_state to fixup the owner later. Must be called
1835 * with both q->lock_ptr and hb->lock held.
1836 */
1837 static inline
1838 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1839 struct futex_hash_bucket *hb)
1840 {
1841 get_futex_key_refs(key);
1842 q->key = *key;
1843
1844 __unqueue_futex(q);
1845
1846 WARN_ON(!q->rt_waiter);
1847 q->rt_waiter = NULL;
1848
1849 q->lock_ptr = &hb->lock;
1850
1851 wake_up_state(q->task, TASK_NORMAL);
1852 }
1853
1854 /**
1855 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1856 * @pifutex: the user address of the to futex
1857 * @hb1: the from futex hash bucket, must be locked by the caller
1858 * @hb2: the to futex hash bucket, must be locked by the caller
1859 * @key1: the from futex key
1860 * @key2: the to futex key
1861 * @ps: address to store the pi_state pointer
1862 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1863 *
1864 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1865 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1866 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1867 * hb1 and hb2 must be held by the caller.
1868 *
1869 * Return:
1870 * - 0 - failed to acquire the lock atomically;
1871 * - >0 - acquired the lock, return value is vpid of the top_waiter
1872 * - <0 - error
1873 */
1874 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1875 struct futex_hash_bucket *hb1,
1876 struct futex_hash_bucket *hb2,
1877 union futex_key *key1, union futex_key *key2,
1878 struct futex_pi_state **ps, int set_waiters)
1879 {
1880 struct futex_q *top_waiter = NULL;
1881 u32 curval;
1882 int ret, vpid;
1883
1884 if (get_futex_value_locked(&curval, pifutex))
1885 return -EFAULT;
1886
1887 if (unlikely(should_fail_futex(true)))
1888 return -EFAULT;
1889
1890 /*
1891 * Find the top_waiter and determine if there are additional waiters.
1892 * If the caller intends to requeue more than 1 waiter to pifutex,
1893 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1894 * as we have means to handle the possible fault. If not, don't set
1895 * the bit unecessarily as it will force the subsequent unlock to enter
1896 * the kernel.
1897 */
1898 top_waiter = futex_top_waiter(hb1, key1);
1899
1900 /* There are no waiters, nothing for us to do. */
1901 if (!top_waiter)
1902 return 0;
1903
1904 /* Ensure we requeue to the expected futex. */
1905 if (!match_futex(top_waiter->requeue_pi_key, key2))
1906 return -EINVAL;
1907
1908 /*
1909 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1910 * the contended case or if set_waiters is 1. The pi_state is returned
1911 * in ps in contended cases.
1912 */
1913 vpid = task_pid_vnr(top_waiter->task);
1914 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1915 set_waiters);
1916 if (ret == 1) {
1917 requeue_pi_wake_futex(top_waiter, key2, hb2);
1918 return vpid;
1919 }
1920 return ret;
1921 }
1922
1923 /**
1924 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1925 * @uaddr1: source futex user address
1926 * @flags: futex flags (FLAGS_SHARED, etc.)
1927 * @uaddr2: target futex user address
1928 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1929 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1930 * @cmpval: @uaddr1 expected value (or %NULL)
1931 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1932 * pi futex (pi to pi requeue is not supported)
1933 *
1934 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1935 * uaddr2 atomically on behalf of the top waiter.
1936 *
1937 * Return:
1938 * - >=0 - on success, the number of tasks requeued or woken;
1939 * - <0 - on error
1940 */
1941 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1942 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1943 u32 *cmpval, int requeue_pi)
1944 {
1945 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1946 int drop_count = 0, task_count = 0, ret;
1947 struct futex_pi_state *pi_state = NULL;
1948 struct futex_hash_bucket *hb1, *hb2;
1949 struct futex_q *this, *next;
1950 DEFINE_WAKE_Q(wake_q);
1951
1952 if (nr_wake < 0 || nr_requeue < 0)
1953 return -EINVAL;
1954
1955 /*
1956 * When PI not supported: return -ENOSYS if requeue_pi is true,
1957 * consequently the compiler knows requeue_pi is always false past
1958 * this point which will optimize away all the conditional code
1959 * further down.
1960 */
1961 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1962 return -ENOSYS;
1963
1964 if (requeue_pi) {
1965 /*
1966 * Requeue PI only works on two distinct uaddrs. This
1967 * check is only valid for private futexes. See below.
1968 */
1969 if (uaddr1 == uaddr2)
1970 return -EINVAL;
1971
1972 /*
1973 * requeue_pi requires a pi_state, try to allocate it now
1974 * without any locks in case it fails.
1975 */
1976 if (refill_pi_state_cache())
1977 return -ENOMEM;
1978 /*
1979 * requeue_pi must wake as many tasks as it can, up to nr_wake
1980 * + nr_requeue, since it acquires the rt_mutex prior to
1981 * returning to userspace, so as to not leave the rt_mutex with
1982 * waiters and no owner. However, second and third wake-ups
1983 * cannot be predicted as they involve race conditions with the
1984 * first wake and a fault while looking up the pi_state. Both
1985 * pthread_cond_signal() and pthread_cond_broadcast() should
1986 * use nr_wake=1.
1987 */
1988 if (nr_wake != 1)
1989 return -EINVAL;
1990 }
1991
1992 retry:
1993 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1994 if (unlikely(ret != 0))
1995 goto out;
1996 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1997 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1998 if (unlikely(ret != 0))
1999 goto out_put_key1;
2000
2001 /*
2002 * The check above which compares uaddrs is not sufficient for
2003 * shared futexes. We need to compare the keys:
2004 */
2005 if (requeue_pi && match_futex(&key1, &key2)) {
2006 ret = -EINVAL;
2007 goto out_put_keys;
2008 }
2009
2010 hb1 = hash_futex(&key1);
2011 hb2 = hash_futex(&key2);
2012
2013 retry_private:
2014 hb_waiters_inc(hb2);
2015 double_lock_hb(hb1, hb2);
2016
2017 if (likely(cmpval != NULL)) {
2018 u32 curval;
2019
2020 ret = get_futex_value_locked(&curval, uaddr1);
2021
2022 if (unlikely(ret)) {
2023 double_unlock_hb(hb1, hb2);
2024 hb_waiters_dec(hb2);
2025
2026 ret = get_user(curval, uaddr1);
2027 if (ret)
2028 goto out_put_keys;
2029
2030 if (!(flags & FLAGS_SHARED))
2031 goto retry_private;
2032
2033 put_futex_key(&key2);
2034 put_futex_key(&key1);
2035 goto retry;
2036 }
2037 if (curval != *cmpval) {
2038 ret = -EAGAIN;
2039 goto out_unlock;
2040 }
2041 }
2042
2043 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2044 /*
2045 * Attempt to acquire uaddr2 and wake the top waiter. If we
2046 * intend to requeue waiters, force setting the FUTEX_WAITERS
2047 * bit. We force this here where we are able to easily handle
2048 * faults rather in the requeue loop below.
2049 */
2050 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2051 &key2, &pi_state, nr_requeue);
2052
2053 /*
2054 * At this point the top_waiter has either taken uaddr2 or is
2055 * waiting on it. If the former, then the pi_state will not
2056 * exist yet, look it up one more time to ensure we have a
2057 * reference to it. If the lock was taken, ret contains the
2058 * vpid of the top waiter task.
2059 * If the lock was not taken, we have pi_state and an initial
2060 * refcount on it. In case of an error we have nothing.
2061 */
2062 if (ret > 0) {
2063 WARN_ON(pi_state);
2064 drop_count++;
2065 task_count++;
2066 /*
2067 * If we acquired the lock, then the user space value
2068 * of uaddr2 should be vpid. It cannot be changed by
2069 * the top waiter as it is blocked on hb2 lock if it
2070 * tries to do so. If something fiddled with it behind
2071 * our back the pi state lookup might unearth it. So
2072 * we rather use the known value than rereading and
2073 * handing potential crap to lookup_pi_state.
2074 *
2075 * If that call succeeds then we have pi_state and an
2076 * initial refcount on it.
2077 */
2078 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
2079 }
2080
2081 switch (ret) {
2082 case 0:
2083 /* We hold a reference on the pi state. */
2084 break;
2085
2086 /* If the above failed, then pi_state is NULL */
2087 case -EFAULT:
2088 double_unlock_hb(hb1, hb2);
2089 hb_waiters_dec(hb2);
2090 put_futex_key(&key2);
2091 put_futex_key(&key1);
2092 ret = fault_in_user_writeable(uaddr2);
2093 if (!ret)
2094 goto retry;
2095 goto out;
2096 case -EAGAIN:
2097 /*
2098 * Two reasons for this:
2099 * - Owner is exiting and we just wait for the
2100 * exit to complete.
2101 * - The user space value changed.
2102 */
2103 double_unlock_hb(hb1, hb2);
2104 hb_waiters_dec(hb2);
2105 put_futex_key(&key2);
2106 put_futex_key(&key1);
2107 cond_resched();
2108 goto retry;
2109 default:
2110 goto out_unlock;
2111 }
2112 }
2113
2114 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2115 if (task_count - nr_wake >= nr_requeue)
2116 break;
2117
2118 if (!match_futex(&this->key, &key1))
2119 continue;
2120
2121 /*
2122 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2123 * be paired with each other and no other futex ops.
2124 *
2125 * We should never be requeueing a futex_q with a pi_state,
2126 * which is awaiting a futex_unlock_pi().
2127 */
2128 if ((requeue_pi && !this->rt_waiter) ||
2129 (!requeue_pi && this->rt_waiter) ||
2130 this->pi_state) {
2131 ret = -EINVAL;
2132 break;
2133 }
2134
2135 /*
2136 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2137 * lock, we already woke the top_waiter. If not, it will be
2138 * woken by futex_unlock_pi().
2139 */
2140 if (++task_count <= nr_wake && !requeue_pi) {
2141 mark_wake_futex(&wake_q, this);
2142 continue;
2143 }
2144
2145 /* Ensure we requeue to the expected futex for requeue_pi. */
2146 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2147 ret = -EINVAL;
2148 break;
2149 }
2150
2151 /*
2152 * Requeue nr_requeue waiters and possibly one more in the case
2153 * of requeue_pi if we couldn't acquire the lock atomically.
2154 */
2155 if (requeue_pi) {
2156 /*
2157 * Prepare the waiter to take the rt_mutex. Take a
2158 * refcount on the pi_state and store the pointer in
2159 * the futex_q object of the waiter.
2160 */
2161 get_pi_state(pi_state);
2162 this->pi_state = pi_state;
2163 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2164 this->rt_waiter,
2165 this->task);
2166 if (ret == 1) {
2167 /*
2168 * We got the lock. We do neither drop the
2169 * refcount on pi_state nor clear
2170 * this->pi_state because the waiter needs the
2171 * pi_state for cleaning up the user space
2172 * value. It will drop the refcount after
2173 * doing so.
2174 */
2175 requeue_pi_wake_futex(this, &key2, hb2);
2176 drop_count++;
2177 continue;
2178 } else if (ret) {
2179 /*
2180 * rt_mutex_start_proxy_lock() detected a
2181 * potential deadlock when we tried to queue
2182 * that waiter. Drop the pi_state reference
2183 * which we took above and remove the pointer
2184 * to the state from the waiters futex_q
2185 * object.
2186 */
2187 this->pi_state = NULL;
2188 put_pi_state(pi_state);
2189 /*
2190 * We stop queueing more waiters and let user
2191 * space deal with the mess.
2192 */
2193 break;
2194 }
2195 }
2196 requeue_futex(this, hb1, hb2, &key2);
2197 drop_count++;
2198 }
2199
2200 /*
2201 * We took an extra initial reference to the pi_state either
2202 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2203 * need to drop it here again.
2204 */
2205 put_pi_state(pi_state);
2206
2207 out_unlock:
2208 double_unlock_hb(hb1, hb2);
2209 wake_up_q(&wake_q);
2210 hb_waiters_dec(hb2);
2211
2212 /*
2213 * drop_futex_key_refs() must be called outside the spinlocks. During
2214 * the requeue we moved futex_q's from the hash bucket at key1 to the
2215 * one at key2 and updated their key pointer. We no longer need to
2216 * hold the references to key1.
2217 */
2218 while (--drop_count >= 0)
2219 drop_futex_key_refs(&key1);
2220
2221 out_put_keys:
2222 put_futex_key(&key2);
2223 out_put_key1:
2224 put_futex_key(&key1);
2225 out:
2226 return ret ? ret : task_count;
2227 }
2228
2229 /* The key must be already stored in q->key. */
2230 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2231 __acquires(&hb->lock)
2232 {
2233 struct futex_hash_bucket *hb;
2234
2235 hb = hash_futex(&q->key);
2236
2237 /*
2238 * Increment the counter before taking the lock so that
2239 * a potential waker won't miss a to-be-slept task that is
2240 * waiting for the spinlock. This is safe as all queue_lock()
2241 * users end up calling queue_me(). Similarly, for housekeeping,
2242 * decrement the counter at queue_unlock() when some error has
2243 * occurred and we don't end up adding the task to the list.
2244 */
2245 hb_waiters_inc(hb);
2246
2247 q->lock_ptr = &hb->lock;
2248
2249 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2250 return hb;
2251 }
2252
2253 static inline void
2254 queue_unlock(struct futex_hash_bucket *hb)
2255 __releases(&hb->lock)
2256 {
2257 spin_unlock(&hb->lock);
2258 hb_waiters_dec(hb);
2259 }
2260
2261 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2262 {
2263 int prio;
2264
2265 /*
2266 * The priority used to register this element is
2267 * - either the real thread-priority for the real-time threads
2268 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2269 * - or MAX_RT_PRIO for non-RT threads.
2270 * Thus, all RT-threads are woken first in priority order, and
2271 * the others are woken last, in FIFO order.
2272 */
2273 prio = min(current->normal_prio, MAX_RT_PRIO);
2274
2275 plist_node_init(&q->list, prio);
2276 plist_add(&q->list, &hb->chain);
2277 q->task = current;
2278 }
2279
2280 /**
2281 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2282 * @q: The futex_q to enqueue
2283 * @hb: The destination hash bucket
2284 *
2285 * The hb->lock must be held by the caller, and is released here. A call to
2286 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2287 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2288 * or nothing if the unqueue is done as part of the wake process and the unqueue
2289 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2290 * an example).
2291 */
2292 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2293 __releases(&hb->lock)
2294 {
2295 __queue_me(q, hb);
2296 spin_unlock(&hb->lock);
2297 }
2298
2299 /**
2300 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2301 * @q: The futex_q to unqueue
2302 *
2303 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2304 * be paired with exactly one earlier call to queue_me().
2305 *
2306 * Return:
2307 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2308 * - 0 - if the futex_q was already removed by the waking thread
2309 */
2310 static int unqueue_me(struct futex_q *q)
2311 {
2312 spinlock_t *lock_ptr;
2313 int ret = 0;
2314
2315 /* In the common case we don't take the spinlock, which is nice. */
2316 retry:
2317 /*
2318 * q->lock_ptr can change between this read and the following spin_lock.
2319 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2320 * optimizing lock_ptr out of the logic below.
2321 */
2322 lock_ptr = READ_ONCE(q->lock_ptr);
2323 if (lock_ptr != NULL) {
2324 spin_lock(lock_ptr);
2325 /*
2326 * q->lock_ptr can change between reading it and
2327 * spin_lock(), causing us to take the wrong lock. This
2328 * corrects the race condition.
2329 *
2330 * Reasoning goes like this: if we have the wrong lock,
2331 * q->lock_ptr must have changed (maybe several times)
2332 * between reading it and the spin_lock(). It can
2333 * change again after the spin_lock() but only if it was
2334 * already changed before the spin_lock(). It cannot,
2335 * however, change back to the original value. Therefore
2336 * we can detect whether we acquired the correct lock.
2337 */
2338 if (unlikely(lock_ptr != q->lock_ptr)) {
2339 spin_unlock(lock_ptr);
2340 goto retry;
2341 }
2342 __unqueue_futex(q);
2343
2344 BUG_ON(q->pi_state);
2345
2346 spin_unlock(lock_ptr);
2347 ret = 1;
2348 }
2349
2350 drop_futex_key_refs(&q->key);
2351 return ret;
2352 }
2353
2354 /*
2355 * PI futexes can not be requeued and must remove themself from the
2356 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2357 * and dropped here.
2358 */
2359 static void unqueue_me_pi(struct futex_q *q)
2360 __releases(q->lock_ptr)
2361 {
2362 __unqueue_futex(q);
2363
2364 BUG_ON(!q->pi_state);
2365 put_pi_state(q->pi_state);
2366 q->pi_state = NULL;
2367
2368 spin_unlock(q->lock_ptr);
2369 }
2370
2371 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2372 struct task_struct *argowner)
2373 {
2374 struct futex_pi_state *pi_state = q->pi_state;
2375 u32 uval, uninitialized_var(curval), newval;
2376 struct task_struct *oldowner, *newowner;
2377 u32 newtid;
2378 int ret, err = 0;
2379
2380 lockdep_assert_held(q->lock_ptr);
2381
2382 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2383
2384 oldowner = pi_state->owner;
2385
2386 /*
2387 * We are here because either:
2388 *
2389 * - we stole the lock and pi_state->owner needs updating to reflect
2390 * that (@argowner == current),
2391 *
2392 * or:
2393 *
2394 * - someone stole our lock and we need to fix things to point to the
2395 * new owner (@argowner == NULL).
2396 *
2397 * Either way, we have to replace the TID in the user space variable.
2398 * This must be atomic as we have to preserve the owner died bit here.
2399 *
2400 * Note: We write the user space value _before_ changing the pi_state
2401 * because we can fault here. Imagine swapped out pages or a fork
2402 * that marked all the anonymous memory readonly for cow.
2403 *
2404 * Modifying pi_state _before_ the user space value would leave the
2405 * pi_state in an inconsistent state when we fault here, because we
2406 * need to drop the locks to handle the fault. This might be observed
2407 * in the PID check in lookup_pi_state.
2408 */
2409 retry:
2410 if (!argowner) {
2411 if (oldowner != current) {
2412 /*
2413 * We raced against a concurrent self; things are
2414 * already fixed up. Nothing to do.
2415 */
2416 ret = 0;
2417 goto out_unlock;
2418 }
2419
2420 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2421 /* We got the lock after all, nothing to fix. */
2422 ret = 0;
2423 goto out_unlock;
2424 }
2425
2426 /*
2427 * Since we just failed the trylock; there must be an owner.
2428 */
2429 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2430 BUG_ON(!newowner);
2431 } else {
2432 WARN_ON_ONCE(argowner != current);
2433 if (oldowner == current) {
2434 /*
2435 * We raced against a concurrent self; things are
2436 * already fixed up. Nothing to do.
2437 */
2438 ret = 0;
2439 goto out_unlock;
2440 }
2441 newowner = argowner;
2442 }
2443
2444 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2445 /* Owner died? */
2446 if (!pi_state->owner)
2447 newtid |= FUTEX_OWNER_DIED;
2448
2449 err = get_futex_value_locked(&uval, uaddr);
2450 if (err)
2451 goto handle_err;
2452
2453 for (;;) {
2454 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2455
2456 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2457 if (err)
2458 goto handle_err;
2459
2460 if (curval == uval)
2461 break;
2462 uval = curval;
2463 }
2464
2465 /*
2466 * We fixed up user space. Now we need to fix the pi_state
2467 * itself.
2468 */
2469 if (pi_state->owner != NULL) {
2470 raw_spin_lock(&pi_state->owner->pi_lock);
2471 WARN_ON(list_empty(&pi_state->list));
2472 list_del_init(&pi_state->list);
2473 raw_spin_unlock(&pi_state->owner->pi_lock);
2474 }
2475
2476 pi_state->owner = newowner;
2477
2478 raw_spin_lock(&newowner->pi_lock);
2479 WARN_ON(!list_empty(&pi_state->list));
2480 list_add(&pi_state->list, &newowner->pi_state_list);
2481 raw_spin_unlock(&newowner->pi_lock);
2482 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2483
2484 return 0;
2485
2486 /*
2487 * In order to reschedule or handle a page fault, we need to drop the
2488 * locks here. In the case of a fault, this gives the other task
2489 * (either the highest priority waiter itself or the task which stole
2490 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2491 * are back from handling the fault we need to check the pi_state after
2492 * reacquiring the locks and before trying to do another fixup. When
2493 * the fixup has been done already we simply return.
2494 *
2495 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2496 * drop hb->lock since the caller owns the hb -> futex_q relation.
2497 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2498 */
2499 handle_err:
2500 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2501 spin_unlock(q->lock_ptr);
2502
2503 switch (err) {
2504 case -EFAULT:
2505 ret = fault_in_user_writeable(uaddr);
2506 break;
2507
2508 case -EAGAIN:
2509 cond_resched();
2510 ret = 0;
2511 break;
2512
2513 default:
2514 WARN_ON_ONCE(1);
2515 ret = err;
2516 break;
2517 }
2518
2519 spin_lock(q->lock_ptr);
2520 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2521
2522 /*
2523 * Check if someone else fixed it for us:
2524 */
2525 if (pi_state->owner != oldowner) {
2526 ret = 0;
2527 goto out_unlock;
2528 }
2529
2530 if (ret)
2531 goto out_unlock;
2532
2533 goto retry;
2534
2535 out_unlock:
2536 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2537 return ret;
2538 }
2539
2540 static long futex_wait_restart(struct restart_block *restart);
2541
2542 /**
2543 * fixup_owner() - Post lock pi_state and corner case management
2544 * @uaddr: user address of the futex
2545 * @q: futex_q (contains pi_state and access to the rt_mutex)
2546 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2547 *
2548 * After attempting to lock an rt_mutex, this function is called to cleanup
2549 * the pi_state owner as well as handle race conditions that may allow us to
2550 * acquire the lock. Must be called with the hb lock held.
2551 *
2552 * Return:
2553 * - 1 - success, lock taken;
2554 * - 0 - success, lock not taken;
2555 * - <0 - on error (-EFAULT)
2556 */
2557 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2558 {
2559 int ret = 0;
2560
2561 if (locked) {
2562 /*
2563 * Got the lock. We might not be the anticipated owner if we
2564 * did a lock-steal - fix up the PI-state in that case:
2565 *
2566 * Speculative pi_state->owner read (we don't hold wait_lock);
2567 * since we own the lock pi_state->owner == current is the
2568 * stable state, anything else needs more attention.
2569 */
2570 if (q->pi_state->owner != current)
2571 ret = fixup_pi_state_owner(uaddr, q, current);
2572 goto out;
2573 }
2574
2575 /*
2576 * If we didn't get the lock; check if anybody stole it from us. In
2577 * that case, we need to fix up the uval to point to them instead of
2578 * us, otherwise bad things happen. [10]
2579 *
2580 * Another speculative read; pi_state->owner == current is unstable
2581 * but needs our attention.
2582 */
2583 if (q->pi_state->owner == current) {
2584 ret = fixup_pi_state_owner(uaddr, q, NULL);
2585 goto out;
2586 }
2587
2588 /*
2589 * Paranoia check. If we did not take the lock, then we should not be
2590 * the owner of the rt_mutex.
2591 */
2592 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2593 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2594 "pi-state %p\n", ret,
2595 q->pi_state->pi_mutex.owner,
2596 q->pi_state->owner);
2597 }
2598
2599 out:
2600 return ret ? ret : locked;
2601 }
2602
2603 /**
2604 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2605 * @hb: the futex hash bucket, must be locked by the caller
2606 * @q: the futex_q to queue up on
2607 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2608 */
2609 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2610 struct hrtimer_sleeper *timeout)
2611 {
2612 /*
2613 * The task state is guaranteed to be set before another task can
2614 * wake it. set_current_state() is implemented using smp_store_mb() and
2615 * queue_me() calls spin_unlock() upon completion, both serializing
2616 * access to the hash list and forcing another memory barrier.
2617 */
2618 set_current_state(TASK_INTERRUPTIBLE);
2619 queue_me(q, hb);
2620
2621 /* Arm the timer */
2622 if (timeout)
2623 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2624
2625 /*
2626 * If we have been removed from the hash list, then another task
2627 * has tried to wake us, and we can skip the call to schedule().
2628 */
2629 if (likely(!plist_node_empty(&q->list))) {
2630 /*
2631 * If the timer has already expired, current will already be
2632 * flagged for rescheduling. Only call schedule if there
2633 * is no timeout, or if it has yet to expire.
2634 */
2635 if (!timeout || timeout->task)
2636 freezable_schedule();
2637 }
2638 __set_current_state(TASK_RUNNING);
2639 }
2640
2641 /**
2642 * futex_wait_setup() - Prepare to wait on a futex
2643 * @uaddr: the futex userspace address
2644 * @val: the expected value
2645 * @flags: futex flags (FLAGS_SHARED, etc.)
2646 * @q: the associated futex_q
2647 * @hb: storage for hash_bucket pointer to be returned to caller
2648 *
2649 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2650 * compare it with the expected value. Handle atomic faults internally.
2651 * Return with the hb lock held and a q.key reference on success, and unlocked
2652 * with no q.key reference on failure.
2653 *
2654 * Return:
2655 * - 0 - uaddr contains val and hb has been locked;
2656 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2657 */
2658 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2659 struct futex_q *q, struct futex_hash_bucket **hb)
2660 {
2661 u32 uval;
2662 int ret;
2663
2664 /*
2665 * Access the page AFTER the hash-bucket is locked.
2666 * Order is important:
2667 *
2668 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2669 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2670 *
2671 * The basic logical guarantee of a futex is that it blocks ONLY
2672 * if cond(var) is known to be true at the time of blocking, for
2673 * any cond. If we locked the hash-bucket after testing *uaddr, that
2674 * would open a race condition where we could block indefinitely with
2675 * cond(var) false, which would violate the guarantee.
2676 *
2677 * On the other hand, we insert q and release the hash-bucket only
2678 * after testing *uaddr. This guarantees that futex_wait() will NOT
2679 * absorb a wakeup if *uaddr does not match the desired values
2680 * while the syscall executes.
2681 */
2682 retry:
2683 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2684 if (unlikely(ret != 0))
2685 return ret;
2686
2687 retry_private:
2688 *hb = queue_lock(q);
2689
2690 ret = get_futex_value_locked(&uval, uaddr);
2691
2692 if (ret) {
2693 queue_unlock(*hb);
2694
2695 ret = get_user(uval, uaddr);
2696 if (ret)
2697 goto out;
2698
2699 if (!(flags & FLAGS_SHARED))
2700 goto retry_private;
2701
2702 put_futex_key(&q->key);
2703 goto retry;
2704 }
2705
2706 if (uval != val) {
2707 queue_unlock(*hb);
2708 ret = -EWOULDBLOCK;
2709 }
2710
2711 out:
2712 if (ret)
2713 put_futex_key(&q->key);
2714 return ret;
2715 }
2716
2717 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2718 ktime_t *abs_time, u32 bitset)
2719 {
2720 struct hrtimer_sleeper timeout, *to = NULL;
2721 struct restart_block *restart;
2722 struct futex_hash_bucket *hb;
2723 struct futex_q q = futex_q_init;
2724 int ret;
2725
2726 if (!bitset)
2727 return -EINVAL;
2728 q.bitset = bitset;
2729
2730 if (abs_time) {
2731 to = &timeout;
2732
2733 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2734 CLOCK_REALTIME : CLOCK_MONOTONIC,
2735 HRTIMER_MODE_ABS);
2736 hrtimer_init_sleeper(to, current);
2737 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2738 current->timer_slack_ns);
2739 }
2740
2741 retry:
2742 /*
2743 * Prepare to wait on uaddr. On success, holds hb lock and increments
2744 * q.key refs.
2745 */
2746 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2747 if (ret)
2748 goto out;
2749
2750 /* queue_me and wait for wakeup, timeout, or a signal. */
2751 futex_wait_queue_me(hb, &q, to);
2752
2753 /* If we were woken (and unqueued), we succeeded, whatever. */
2754 ret = 0;
2755 /* unqueue_me() drops q.key ref */
2756 if (!unqueue_me(&q))
2757 goto out;
2758 ret = -ETIMEDOUT;
2759 if (to && !to->task)
2760 goto out;
2761
2762 /*
2763 * We expect signal_pending(current), but we might be the
2764 * victim of a spurious wakeup as well.
2765 */
2766 if (!signal_pending(current))
2767 goto retry;
2768
2769 ret = -ERESTARTSYS;
2770 if (!abs_time)
2771 goto out;
2772
2773 restart = &current->restart_block;
2774 restart->fn = futex_wait_restart;
2775 restart->futex.uaddr = uaddr;
2776 restart->futex.val = val;
2777 restart->futex.time = *abs_time;
2778 restart->futex.bitset = bitset;
2779 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2780
2781 ret = -ERESTART_RESTARTBLOCK;
2782
2783 out:
2784 if (to) {
2785 hrtimer_cancel(&to->timer);
2786 destroy_hrtimer_on_stack(&to->timer);
2787 }
2788 return ret;
2789 }
2790
2791
2792 static long futex_wait_restart(struct restart_block *restart)
2793 {
2794 u32 __user *uaddr = restart->futex.uaddr;
2795 ktime_t t, *tp = NULL;
2796
2797 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2798 t = restart->futex.time;
2799 tp = &t;
2800 }
2801 restart->fn = do_no_restart_syscall;
2802
2803 return (long)futex_wait(uaddr, restart->futex.flags,
2804 restart->futex.val, tp, restart->futex.bitset);
2805 }
2806
2807
2808 /*
2809 * Userspace tried a 0 -> TID atomic transition of the futex value
2810 * and failed. The kernel side here does the whole locking operation:
2811 * if there are waiters then it will block as a consequence of relying
2812 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2813 * a 0 value of the futex too.).
2814 *
2815 * Also serves as futex trylock_pi()'ing, and due semantics.
2816 */
2817 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2818 ktime_t *time, int trylock)
2819 {
2820 struct hrtimer_sleeper timeout, *to = NULL;
2821 struct futex_pi_state *pi_state = NULL;
2822 struct rt_mutex_waiter rt_waiter;
2823 struct futex_hash_bucket *hb;
2824 struct futex_q q = futex_q_init;
2825 int res, ret;
2826
2827 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2828 return -ENOSYS;
2829
2830 if (refill_pi_state_cache())
2831 return -ENOMEM;
2832
2833 if (time) {
2834 to = &timeout;
2835 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2836 HRTIMER_MODE_ABS);
2837 hrtimer_init_sleeper(to, current);
2838 hrtimer_set_expires(&to->timer, *time);
2839 }
2840
2841 retry:
2842 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2843 if (unlikely(ret != 0))
2844 goto out;
2845
2846 retry_private:
2847 hb = queue_lock(&q);
2848
2849 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2850 if (unlikely(ret)) {
2851 /*
2852 * Atomic work succeeded and we got the lock,
2853 * or failed. Either way, we do _not_ block.
2854 */
2855 switch (ret) {
2856 case 1:
2857 /* We got the lock. */
2858 ret = 0;
2859 goto out_unlock_put_key;
2860 case -EFAULT:
2861 goto uaddr_faulted;
2862 case -EAGAIN:
2863 /*
2864 * Two reasons for this:
2865 * - Task is exiting and we just wait for the
2866 * exit to complete.
2867 * - The user space value changed.
2868 */
2869 queue_unlock(hb);
2870 put_futex_key(&q.key);
2871 cond_resched();
2872 goto retry;
2873 default:
2874 goto out_unlock_put_key;
2875 }
2876 }
2877
2878 WARN_ON(!q.pi_state);
2879
2880 /*
2881 * Only actually queue now that the atomic ops are done:
2882 */
2883 __queue_me(&q, hb);
2884
2885 if (trylock) {
2886 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2887 /* Fixup the trylock return value: */
2888 ret = ret ? 0 : -EWOULDBLOCK;
2889 goto no_block;
2890 }
2891
2892 rt_mutex_init_waiter(&rt_waiter);
2893
2894 /*
2895 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2896 * hold it while doing rt_mutex_start_proxy(), because then it will
2897 * include hb->lock in the blocking chain, even through we'll not in
2898 * fact hold it while blocking. This will lead it to report -EDEADLK
2899 * and BUG when futex_unlock_pi() interleaves with this.
2900 *
2901 * Therefore acquire wait_lock while holding hb->lock, but drop the
2902 * latter before calling __rt_mutex_start_proxy_lock(). This
2903 * interleaves with futex_unlock_pi() -- which does a similar lock
2904 * handoff -- such that the latter can observe the futex_q::pi_state
2905 * before __rt_mutex_start_proxy_lock() is done.
2906 */
2907 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2908 spin_unlock(q.lock_ptr);
2909 /*
2910 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2911 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2912 * it sees the futex_q::pi_state.
2913 */
2914 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2915 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2916
2917 if (ret) {
2918 if (ret == 1)
2919 ret = 0;
2920 goto cleanup;
2921 }
2922
2923 if (unlikely(to))
2924 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2925
2926 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2927
2928 cleanup:
2929 spin_lock(q.lock_ptr);
2930 /*
2931 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2932 * first acquire the hb->lock before removing the lock from the
2933 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2934 * lists consistent.
2935 *
2936 * In particular; it is important that futex_unlock_pi() can not
2937 * observe this inconsistency.
2938 */
2939 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2940 ret = 0;
2941
2942 no_block:
2943 /*
2944 * Fixup the pi_state owner and possibly acquire the lock if we
2945 * haven't already.
2946 */
2947 res = fixup_owner(uaddr, &q, !ret);
2948 /*
2949 * If fixup_owner() returned an error, proprogate that. If it acquired
2950 * the lock, clear our -ETIMEDOUT or -EINTR.
2951 */
2952 if (res)
2953 ret = (res < 0) ? res : 0;
2954
2955 /*
2956 * If fixup_owner() faulted and was unable to handle the fault, unlock
2957 * it and return the fault to userspace.
2958 */
2959 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2960 pi_state = q.pi_state;
2961 get_pi_state(pi_state);
2962 }
2963
2964 /* Unqueue and drop the lock */
2965 unqueue_me_pi(&q);
2966
2967 if (pi_state) {
2968 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2969 put_pi_state(pi_state);
2970 }
2971
2972 goto out_put_key;
2973
2974 out_unlock_put_key:
2975 queue_unlock(hb);
2976
2977 out_put_key:
2978 put_futex_key(&q.key);
2979 out:
2980 if (to) {
2981 hrtimer_cancel(&to->timer);
2982 destroy_hrtimer_on_stack(&to->timer);
2983 }
2984 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2985
2986 uaddr_faulted:
2987 queue_unlock(hb);
2988
2989 ret = fault_in_user_writeable(uaddr);
2990 if (ret)
2991 goto out_put_key;
2992
2993 if (!(flags & FLAGS_SHARED))
2994 goto retry_private;
2995
2996 put_futex_key(&q.key);
2997 goto retry;
2998 }
2999
3000 /*
3001 * Userspace attempted a TID -> 0 atomic transition, and failed.
3002 * This is the in-kernel slowpath: we look up the PI state (if any),
3003 * and do the rt-mutex unlock.
3004 */
3005 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3006 {
3007 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3008 union futex_key key = FUTEX_KEY_INIT;
3009 struct futex_hash_bucket *hb;
3010 struct futex_q *top_waiter;
3011 int ret;
3012
3013 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3014 return -ENOSYS;
3015
3016 retry:
3017 if (get_user(uval, uaddr))
3018 return -EFAULT;
3019 /*
3020 * We release only a lock we actually own:
3021 */
3022 if ((uval & FUTEX_TID_MASK) != vpid)
3023 return -EPERM;
3024
3025 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
3026 if (ret)
3027 return ret;
3028
3029 hb = hash_futex(&key);
3030 spin_lock(&hb->lock);
3031
3032 /*
3033 * Check waiters first. We do not trust user space values at
3034 * all and we at least want to know if user space fiddled
3035 * with the futex value instead of blindly unlocking.
3036 */
3037 top_waiter = futex_top_waiter(hb, &key);
3038 if (top_waiter) {
3039 struct futex_pi_state *pi_state = top_waiter->pi_state;
3040
3041 ret = -EINVAL;
3042 if (!pi_state)
3043 goto out_unlock;
3044
3045 /*
3046 * If current does not own the pi_state then the futex is
3047 * inconsistent and user space fiddled with the futex value.
3048 */
3049 if (pi_state->owner != current)
3050 goto out_unlock;
3051
3052 get_pi_state(pi_state);
3053 /*
3054 * By taking wait_lock while still holding hb->lock, we ensure
3055 * there is no point where we hold neither; and therefore
3056 * wake_futex_pi() must observe a state consistent with what we
3057 * observed.
3058 *
3059 * In particular; this forces __rt_mutex_start_proxy() to
3060 * complete such that we're guaranteed to observe the
3061 * rt_waiter. Also see the WARN in wake_futex_pi().
3062 */
3063 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3064 spin_unlock(&hb->lock);
3065
3066 /* drops pi_state->pi_mutex.wait_lock */
3067 ret = wake_futex_pi(uaddr, uval, pi_state);
3068
3069 put_pi_state(pi_state);
3070
3071 /*
3072 * Success, we're done! No tricky corner cases.
3073 */
3074 if (!ret)
3075 goto out_putkey;
3076 /*
3077 * The atomic access to the futex value generated a
3078 * pagefault, so retry the user-access and the wakeup:
3079 */
3080 if (ret == -EFAULT)
3081 goto pi_faulted;
3082 /*
3083 * A unconditional UNLOCK_PI op raced against a waiter
3084 * setting the FUTEX_WAITERS bit. Try again.
3085 */
3086 if (ret == -EAGAIN)
3087 goto pi_retry;
3088 /*
3089 * wake_futex_pi has detected invalid state. Tell user
3090 * space.
3091 */
3092 goto out_putkey;
3093 }
3094
3095 /*
3096 * We have no kernel internal state, i.e. no waiters in the
3097 * kernel. Waiters which are about to queue themselves are stuck
3098 * on hb->lock. So we can safely ignore them. We do neither
3099 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3100 * owner.
3101 */
3102 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3103 spin_unlock(&hb->lock);
3104 switch (ret) {
3105 case -EFAULT:
3106 goto pi_faulted;
3107
3108 case -EAGAIN:
3109 goto pi_retry;
3110
3111 default:
3112 WARN_ON_ONCE(1);
3113 goto out_putkey;
3114 }
3115 }
3116
3117 /*
3118 * If uval has changed, let user space handle it.
3119 */
3120 ret = (curval == uval) ? 0 : -EAGAIN;
3121
3122 out_unlock:
3123 spin_unlock(&hb->lock);
3124 out_putkey:
3125 put_futex_key(&key);
3126 return ret;
3127
3128 pi_retry:
3129 put_futex_key(&key);
3130 cond_resched();
3131 goto retry;
3132
3133 pi_faulted:
3134 put_futex_key(&key);
3135
3136 ret = fault_in_user_writeable(uaddr);
3137 if (!ret)
3138 goto retry;
3139
3140 return ret;
3141 }
3142
3143 /**
3144 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3145 * @hb: the hash_bucket futex_q was original enqueued on
3146 * @q: the futex_q woken while waiting to be requeued
3147 * @key2: the futex_key of the requeue target futex
3148 * @timeout: the timeout associated with the wait (NULL if none)
3149 *
3150 * Detect if the task was woken on the initial futex as opposed to the requeue
3151 * target futex. If so, determine if it was a timeout or a signal that caused
3152 * the wakeup and return the appropriate error code to the caller. Must be
3153 * called with the hb lock held.
3154 *
3155 * Return:
3156 * - 0 = no early wakeup detected;
3157 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3158 */
3159 static inline
3160 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3161 struct futex_q *q, union futex_key *key2,
3162 struct hrtimer_sleeper *timeout)
3163 {
3164 int ret = 0;
3165
3166 /*
3167 * With the hb lock held, we avoid races while we process the wakeup.
3168 * We only need to hold hb (and not hb2) to ensure atomicity as the
3169 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3170 * It can't be requeued from uaddr2 to something else since we don't
3171 * support a PI aware source futex for requeue.
3172 */
3173 if (!match_futex(&q->key, key2)) {
3174 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3175 /*
3176 * We were woken prior to requeue by a timeout or a signal.
3177 * Unqueue the futex_q and determine which it was.
3178 */
3179 plist_del(&q->list, &hb->chain);
3180 hb_waiters_dec(hb);
3181
3182 /* Handle spurious wakeups gracefully */
3183 ret = -EWOULDBLOCK;
3184 if (timeout && !timeout->task)
3185 ret = -ETIMEDOUT;
3186 else if (signal_pending(current))
3187 ret = -ERESTARTNOINTR;
3188 }
3189 return ret;
3190 }
3191
3192 /**
3193 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3194 * @uaddr: the futex we initially wait on (non-pi)
3195 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3196 * the same type, no requeueing from private to shared, etc.
3197 * @val: the expected value of uaddr
3198 * @abs_time: absolute timeout
3199 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3200 * @uaddr2: the pi futex we will take prior to returning to user-space
3201 *
3202 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3203 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3204 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3205 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3206 * without one, the pi logic would not know which task to boost/deboost, if
3207 * there was a need to.
3208 *
3209 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3210 * via the following--
3211 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3212 * 2) wakeup on uaddr2 after a requeue
3213 * 3) signal
3214 * 4) timeout
3215 *
3216 * If 3, cleanup and return -ERESTARTNOINTR.
3217 *
3218 * If 2, we may then block on trying to take the rt_mutex and return via:
3219 * 5) successful lock
3220 * 6) signal
3221 * 7) timeout
3222 * 8) other lock acquisition failure
3223 *
3224 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3225 *
3226 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3227 *
3228 * Return:
3229 * - 0 - On success;
3230 * - <0 - On error
3231 */
3232 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3233 u32 val, ktime_t *abs_time, u32 bitset,
3234 u32 __user *uaddr2)
3235 {
3236 struct hrtimer_sleeper timeout, *to = NULL;
3237 struct futex_pi_state *pi_state = NULL;
3238 struct rt_mutex_waiter rt_waiter;
3239 struct futex_hash_bucket *hb;
3240 union futex_key key2 = FUTEX_KEY_INIT;
3241 struct futex_q q = futex_q_init;
3242 int res, ret;
3243
3244 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3245 return -ENOSYS;
3246
3247 if (uaddr == uaddr2)
3248 return -EINVAL;
3249
3250 if (!bitset)
3251 return -EINVAL;
3252
3253 if (abs_time) {
3254 to = &timeout;
3255 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3256 CLOCK_REALTIME : CLOCK_MONOTONIC,
3257 HRTIMER_MODE_ABS);
3258 hrtimer_init_sleeper(to, current);
3259 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3260 current->timer_slack_ns);
3261 }
3262
3263 /*
3264 * The waiter is allocated on our stack, manipulated by the requeue
3265 * code while we sleep on uaddr.
3266 */
3267 rt_mutex_init_waiter(&rt_waiter);
3268
3269 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3270 if (unlikely(ret != 0))
3271 goto out;
3272
3273 q.bitset = bitset;
3274 q.rt_waiter = &rt_waiter;
3275 q.requeue_pi_key = &key2;
3276
3277 /*
3278 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3279 * count.
3280 */
3281 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3282 if (ret)
3283 goto out_key2;
3284
3285 /*
3286 * The check above which compares uaddrs is not sufficient for
3287 * shared futexes. We need to compare the keys:
3288 */
3289 if (match_futex(&q.key, &key2)) {
3290 queue_unlock(hb);
3291 ret = -EINVAL;
3292 goto out_put_keys;
3293 }
3294
3295 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3296 futex_wait_queue_me(hb, &q, to);
3297
3298 spin_lock(&hb->lock);
3299 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3300 spin_unlock(&hb->lock);
3301 if (ret)
3302 goto out_put_keys;
3303
3304 /*
3305 * In order for us to be here, we know our q.key == key2, and since
3306 * we took the hb->lock above, we also know that futex_requeue() has
3307 * completed and we no longer have to concern ourselves with a wakeup
3308 * race with the atomic proxy lock acquisition by the requeue code. The
3309 * futex_requeue dropped our key1 reference and incremented our key2
3310 * reference count.
3311 */
3312
3313 /* Check if the requeue code acquired the second futex for us. */
3314 if (!q.rt_waiter) {
3315 /*
3316 * Got the lock. We might not be the anticipated owner if we
3317 * did a lock-steal - fix up the PI-state in that case.
3318 */
3319 if (q.pi_state && (q.pi_state->owner != current)) {
3320 spin_lock(q.lock_ptr);
3321 ret = fixup_pi_state_owner(uaddr2, &q, current);
3322 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3323 pi_state = q.pi_state;
3324 get_pi_state(pi_state);
3325 }
3326 /*
3327 * Drop the reference to the pi state which
3328 * the requeue_pi() code acquired for us.
3329 */
3330 put_pi_state(q.pi_state);
3331 spin_unlock(q.lock_ptr);
3332 }
3333 } else {
3334 struct rt_mutex *pi_mutex;
3335
3336 /*
3337 * We have been woken up by futex_unlock_pi(), a timeout, or a
3338 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3339 * the pi_state.
3340 */
3341 WARN_ON(!q.pi_state);
3342 pi_mutex = &q.pi_state->pi_mutex;
3343 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3344
3345 spin_lock(q.lock_ptr);
3346 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3347 ret = 0;
3348
3349 debug_rt_mutex_free_waiter(&rt_waiter);
3350 /*
3351 * Fixup the pi_state owner and possibly acquire the lock if we
3352 * haven't already.
3353 */
3354 res = fixup_owner(uaddr2, &q, !ret);
3355 /*
3356 * If fixup_owner() returned an error, proprogate that. If it
3357 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3358 */
3359 if (res)
3360 ret = (res < 0) ? res : 0;
3361
3362 /*
3363 * If fixup_pi_state_owner() faulted and was unable to handle
3364 * the fault, unlock the rt_mutex and return the fault to
3365 * userspace.
3366 */
3367 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3368 pi_state = q.pi_state;
3369 get_pi_state(pi_state);
3370 }
3371
3372 /* Unqueue and drop the lock. */
3373 unqueue_me_pi(&q);
3374 }
3375
3376 if (pi_state) {
3377 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3378 put_pi_state(pi_state);
3379 }
3380
3381 if (ret == -EINTR) {
3382 /*
3383 * We've already been requeued, but cannot restart by calling
3384 * futex_lock_pi() directly. We could restart this syscall, but
3385 * it would detect that the user space "val" changed and return
3386 * -EWOULDBLOCK. Save the overhead of the restart and return
3387 * -EWOULDBLOCK directly.
3388 */
3389 ret = -EWOULDBLOCK;
3390 }
3391
3392 out_put_keys:
3393 put_futex_key(&q.key);
3394 out_key2:
3395 put_futex_key(&key2);
3396
3397 out:
3398 if (to) {
3399 hrtimer_cancel(&to->timer);
3400 destroy_hrtimer_on_stack(&to->timer);
3401 }
3402 return ret;
3403 }
3404
3405 /*
3406 * Support for robust futexes: the kernel cleans up held futexes at
3407 * thread exit time.
3408 *
3409 * Implementation: user-space maintains a per-thread list of locks it
3410 * is holding. Upon do_exit(), the kernel carefully walks this list,
3411 * and marks all locks that are owned by this thread with the
3412 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3413 * always manipulated with the lock held, so the list is private and
3414 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3415 * field, to allow the kernel to clean up if the thread dies after
3416 * acquiring the lock, but just before it could have added itself to
3417 * the list. There can only be one such pending lock.
3418 */
3419
3420 /**
3421 * sys_set_robust_list() - Set the robust-futex list head of a task
3422 * @head: pointer to the list-head
3423 * @len: length of the list-head, as userspace expects
3424 */
3425 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3426 size_t, len)
3427 {
3428 if (!futex_cmpxchg_enabled)
3429 return -ENOSYS;
3430 /*
3431 * The kernel knows only one size for now:
3432 */
3433 if (unlikely(len != sizeof(*head)))
3434 return -EINVAL;
3435
3436 current->robust_list = head;
3437
3438 return 0;
3439 }
3440
3441 /**
3442 * sys_get_robust_list() - Get the robust-futex list head of a task
3443 * @pid: pid of the process [zero for current task]
3444 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3445 * @len_ptr: pointer to a length field, the kernel fills in the header size
3446 */
3447 SYSCALL_DEFINE3(get_robust_list, int, pid,
3448 struct robust_list_head __user * __user *, head_ptr,
3449 size_t __user *, len_ptr)
3450 {
3451 struct robust_list_head __user *head;
3452 unsigned long ret;
3453 struct task_struct *p;
3454
3455 if (!futex_cmpxchg_enabled)
3456 return -ENOSYS;
3457
3458 rcu_read_lock();
3459
3460 ret = -ESRCH;
3461 if (!pid)
3462 p = current;
3463 else {
3464 p = find_task_by_vpid(pid);
3465 if (!p)
3466 goto err_unlock;
3467 }
3468
3469 ret = -EPERM;
3470 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3471 goto err_unlock;
3472
3473 head = p->robust_list;
3474 rcu_read_unlock();
3475
3476 if (put_user(sizeof(*head), len_ptr))
3477 return -EFAULT;
3478 return put_user(head, head_ptr);
3479
3480 err_unlock:
3481 rcu_read_unlock();
3482
3483 return ret;
3484 }
3485
3486 /* Constants for the pending_op argument of handle_futex_death */
3487 #define HANDLE_DEATH_PENDING true
3488 #define HANDLE_DEATH_LIST false
3489
3490 /*
3491 * Process a futex-list entry, check whether it's owned by the
3492 * dying task, and do notification if so:
3493 */
3494 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3495 bool pi, bool pending_op)
3496 {
3497 u32 uval, uninitialized_var(nval), mval;
3498 int err;
3499
3500 /* Futex address must be 32bit aligned */
3501 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3502 return -1;
3503
3504 retry:
3505 if (get_user(uval, uaddr))
3506 return -1;
3507
3508 /*
3509 * Special case for regular (non PI) futexes. The unlock path in
3510 * user space has two race scenarios:
3511 *
3512 * 1. The unlock path releases the user space futex value and
3513 * before it can execute the futex() syscall to wake up
3514 * waiters it is killed.
3515 *
3516 * 2. A woken up waiter is killed before it can acquire the
3517 * futex in user space.
3518 *
3519 * In both cases the TID validation below prevents a wakeup of
3520 * potential waiters which can cause these waiters to block
3521 * forever.
3522 *
3523 * In both cases the following conditions are met:
3524 *
3525 * 1) task->robust_list->list_op_pending != NULL
3526 * @pending_op == true
3527 * 2) User space futex value == 0
3528 * 3) Regular futex: @pi == false
3529 *
3530 * If these conditions are met, it is safe to attempt waking up a
3531 * potential waiter without touching the user space futex value and
3532 * trying to set the OWNER_DIED bit. The user space futex value is
3533 * uncontended and the rest of the user space mutex state is
3534 * consistent, so a woken waiter will just take over the
3535 * uncontended futex. Setting the OWNER_DIED bit would create
3536 * inconsistent state and malfunction of the user space owner died
3537 * handling.
3538 */
3539 if (pending_op && !pi && !uval) {
3540 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3541 return 0;
3542 }
3543
3544 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3545 return 0;
3546
3547 /*
3548 * Ok, this dying thread is truly holding a futex
3549 * of interest. Set the OWNER_DIED bit atomically
3550 * via cmpxchg, and if the value had FUTEX_WAITERS
3551 * set, wake up a waiter (if any). (We have to do a
3552 * futex_wake() even if OWNER_DIED is already set -
3553 * to handle the rare but possible case of recursive
3554 * thread-death.) The rest of the cleanup is done in
3555 * userspace.
3556 */
3557 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3558
3559 /*
3560 * We are not holding a lock here, but we want to have
3561 * the pagefault_disable/enable() protection because
3562 * we want to handle the fault gracefully. If the
3563 * access fails we try to fault in the futex with R/W
3564 * verification via get_user_pages. get_user() above
3565 * does not guarantee R/W access. If that fails we
3566 * give up and leave the futex locked.
3567 */
3568 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3569 switch (err) {
3570 case -EFAULT:
3571 if (fault_in_user_writeable(uaddr))
3572 return -1;
3573 goto retry;
3574
3575 case -EAGAIN:
3576 cond_resched();
3577 goto retry;
3578
3579 default:
3580 WARN_ON_ONCE(1);
3581 return err;
3582 }
3583 }
3584
3585 if (nval != uval)
3586 goto retry;
3587
3588 /*
3589 * Wake robust non-PI futexes here. The wakeup of
3590 * PI futexes happens in exit_pi_state():
3591 */
3592 if (!pi && (uval & FUTEX_WAITERS))
3593 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3594
3595 return 0;
3596 }
3597
3598 /*
3599 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3600 */
3601 static inline int fetch_robust_entry(struct robust_list __user **entry,
3602 struct robust_list __user * __user *head,
3603 unsigned int *pi)
3604 {
3605 unsigned long uentry;
3606
3607 if (get_user(uentry, (unsigned long __user *)head))
3608 return -EFAULT;
3609
3610 *entry = (void __user *)(uentry & ~1UL);
3611 *pi = uentry & 1;
3612
3613 return 0;
3614 }
3615
3616 /*
3617 * Walk curr->robust_list (very carefully, it's a userspace list!)
3618 * and mark any locks found there dead, and notify any waiters.
3619 *
3620 * We silently return on any sign of list-walking problem.
3621 */
3622 static void exit_robust_list(struct task_struct *curr)
3623 {
3624 struct robust_list_head __user *head = curr->robust_list;
3625 struct robust_list __user *entry, *next_entry, *pending;
3626 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3627 unsigned int uninitialized_var(next_pi);
3628 unsigned long futex_offset;
3629 int rc;
3630
3631 if (!futex_cmpxchg_enabled)
3632 return;
3633
3634 /*
3635 * Fetch the list head (which was registered earlier, via
3636 * sys_set_robust_list()):
3637 */
3638 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3639 return;
3640 /*
3641 * Fetch the relative futex offset:
3642 */
3643 if (get_user(futex_offset, &head->futex_offset))
3644 return;
3645 /*
3646 * Fetch any possibly pending lock-add first, and handle it
3647 * if it exists:
3648 */
3649 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3650 return;
3651
3652 next_entry = NULL; /* avoid warning with gcc */
3653 while (entry != &head->list) {
3654 /*
3655 * Fetch the next entry in the list before calling
3656 * handle_futex_death:
3657 */
3658 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3659 /*
3660 * A pending lock might already be on the list, so
3661 * don't process it twice:
3662 */
3663 if (entry != pending) {
3664 if (handle_futex_death((void __user *)entry + futex_offset,
3665 curr, pi, HANDLE_DEATH_LIST))
3666 return;
3667 }
3668 if (rc)
3669 return;
3670 entry = next_entry;
3671 pi = next_pi;
3672 /*
3673 * Avoid excessively long or circular lists:
3674 */
3675 if (!--limit)
3676 break;
3677
3678 cond_resched();
3679 }
3680
3681 if (pending) {
3682 handle_futex_death((void __user *)pending + futex_offset,
3683 curr, pip, HANDLE_DEATH_PENDING);
3684 }
3685 }
3686
3687 void futex_mm_release(struct task_struct *tsk)
3688 {
3689 if (unlikely(tsk->robust_list)) {
3690 exit_robust_list(tsk);
3691 tsk->robust_list = NULL;
3692 }
3693
3694 #ifdef CONFIG_COMPAT
3695 if (unlikely(tsk->compat_robust_list)) {
3696 compat_exit_robust_list(tsk);
3697 tsk->compat_robust_list = NULL;
3698 }
3699 #endif
3700
3701 if (unlikely(!list_empty(&tsk->pi_state_list)))
3702 exit_pi_state_list(tsk);
3703 }
3704
3705 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3706 u32 __user *uaddr2, u32 val2, u32 val3)
3707 {
3708 int cmd = op & FUTEX_CMD_MASK;
3709 unsigned int flags = 0;
3710
3711 if (!(op & FUTEX_PRIVATE_FLAG))
3712 flags |= FLAGS_SHARED;
3713
3714 if (op & FUTEX_CLOCK_REALTIME) {
3715 flags |= FLAGS_CLOCKRT;
3716 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3717 cmd != FUTEX_WAIT_REQUEUE_PI)
3718 return -ENOSYS;
3719 }
3720
3721 switch (cmd) {
3722 case FUTEX_LOCK_PI:
3723 case FUTEX_UNLOCK_PI:
3724 case FUTEX_TRYLOCK_PI:
3725 case FUTEX_WAIT_REQUEUE_PI:
3726 case FUTEX_CMP_REQUEUE_PI:
3727 if (!futex_cmpxchg_enabled)
3728 return -ENOSYS;
3729 }
3730
3731 switch (cmd) {
3732 case FUTEX_WAIT:
3733 val3 = FUTEX_BITSET_MATCH_ANY;
3734 case FUTEX_WAIT_BITSET:
3735 return futex_wait(uaddr, flags, val, timeout, val3);
3736 case FUTEX_WAKE:
3737 val3 = FUTEX_BITSET_MATCH_ANY;
3738 case FUTEX_WAKE_BITSET:
3739 return futex_wake(uaddr, flags, val, val3);
3740 case FUTEX_REQUEUE:
3741 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3742 case FUTEX_CMP_REQUEUE:
3743 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3744 case FUTEX_WAKE_OP:
3745 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3746 case FUTEX_LOCK_PI:
3747 return futex_lock_pi(uaddr, flags, timeout, 0);
3748 case FUTEX_UNLOCK_PI:
3749 return futex_unlock_pi(uaddr, flags);
3750 case FUTEX_TRYLOCK_PI:
3751 return futex_lock_pi(uaddr, flags, NULL, 1);
3752 case FUTEX_WAIT_REQUEUE_PI:
3753 val3 = FUTEX_BITSET_MATCH_ANY;
3754 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3755 uaddr2);
3756 case FUTEX_CMP_REQUEUE_PI:
3757 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3758 }
3759 return -ENOSYS;
3760 }
3761
3762
3763 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3764 struct timespec __user *, utime, u32 __user *, uaddr2,
3765 u32, val3)
3766 {
3767 struct timespec ts;
3768 ktime_t t, *tp = NULL;
3769 u32 val2 = 0;
3770 int cmd = op & FUTEX_CMD_MASK;
3771
3772 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3773 cmd == FUTEX_WAIT_BITSET ||
3774 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3775 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3776 return -EFAULT;
3777 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3778 return -EFAULT;
3779 if (!timespec_valid(&ts))
3780 return -EINVAL;
3781
3782 t = timespec_to_ktime(ts);
3783 if (cmd == FUTEX_WAIT)
3784 t = ktime_add_safe(ktime_get(), t);
3785 tp = &t;
3786 }
3787 /*
3788 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3789 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3790 */
3791 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3792 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3793 val2 = (u32) (unsigned long) utime;
3794
3795 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3796 }
3797
3798 #ifdef CONFIG_COMPAT
3799 /*
3800 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3801 */
3802 static inline int
3803 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3804 compat_uptr_t __user *head, unsigned int *pi)
3805 {
3806 if (get_user(*uentry, head))
3807 return -EFAULT;
3808
3809 *entry = compat_ptr((*uentry) & ~1);
3810 *pi = (unsigned int)(*uentry) & 1;
3811
3812 return 0;
3813 }
3814
3815 static void __user *futex_uaddr(struct robust_list __user *entry,
3816 compat_long_t futex_offset)
3817 {
3818 compat_uptr_t base = ptr_to_compat(entry);
3819 void __user *uaddr = compat_ptr(base + futex_offset);
3820
3821 return uaddr;
3822 }
3823
3824 /*
3825 * Walk curr->robust_list (very carefully, it's a userspace list!)
3826 * and mark any locks found there dead, and notify any waiters.
3827 *
3828 * We silently return on any sign of list-walking problem.
3829 */
3830 static void compat_exit_robust_list(struct task_struct *curr)
3831 {
3832 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3833 struct robust_list __user *entry, *next_entry, *pending;
3834 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3835 unsigned int uninitialized_var(next_pi);
3836 compat_uptr_t uentry, next_uentry, upending;
3837 compat_long_t futex_offset;
3838 int rc;
3839
3840 if (!futex_cmpxchg_enabled)
3841 return;
3842
3843 /*
3844 * Fetch the list head (which was registered earlier, via
3845 * sys_set_robust_list()):
3846 */
3847 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3848 return;
3849 /*
3850 * Fetch the relative futex offset:
3851 */
3852 if (get_user(futex_offset, &head->futex_offset))
3853 return;
3854 /*
3855 * Fetch any possibly pending lock-add first, and handle it
3856 * if it exists:
3857 */
3858 if (compat_fetch_robust_entry(&upending, &pending,
3859 &head->list_op_pending, &pip))
3860 return;
3861
3862 next_entry = NULL; /* avoid warning with gcc */
3863 while (entry != (struct robust_list __user *) &head->list) {
3864 /*
3865 * Fetch the next entry in the list before calling
3866 * handle_futex_death:
3867 */
3868 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3869 (compat_uptr_t __user *)&entry->next, &next_pi);
3870 /*
3871 * A pending lock might already be on the list, so
3872 * dont process it twice:
3873 */
3874 if (entry != pending) {
3875 void __user *uaddr = futex_uaddr(entry, futex_offset);
3876
3877 if (handle_futex_death(uaddr, curr, pi,
3878 HANDLE_DEATH_LIST))
3879 return;
3880 }
3881 if (rc)
3882 return;
3883 uentry = next_uentry;
3884 entry = next_entry;
3885 pi = next_pi;
3886 /*
3887 * Avoid excessively long or circular lists:
3888 */
3889 if (!--limit)
3890 break;
3891
3892 cond_resched();
3893 }
3894 if (pending) {
3895 void __user *uaddr = futex_uaddr(pending, futex_offset);
3896
3897 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3898 }
3899 }
3900
3901 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3902 struct compat_robust_list_head __user *, head,
3903 compat_size_t, len)
3904 {
3905 if (!futex_cmpxchg_enabled)
3906 return -ENOSYS;
3907
3908 if (unlikely(len != sizeof(*head)))
3909 return -EINVAL;
3910
3911 current->compat_robust_list = head;
3912
3913 return 0;
3914 }
3915
3916 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3917 compat_uptr_t __user *, head_ptr,
3918 compat_size_t __user *, len_ptr)
3919 {
3920 struct compat_robust_list_head __user *head;
3921 unsigned long ret;
3922 struct task_struct *p;
3923
3924 if (!futex_cmpxchg_enabled)
3925 return -ENOSYS;
3926
3927 rcu_read_lock();
3928
3929 ret = -ESRCH;
3930 if (!pid)
3931 p = current;
3932 else {
3933 p = find_task_by_vpid(pid);
3934 if (!p)
3935 goto err_unlock;
3936 }
3937
3938 ret = -EPERM;
3939 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3940 goto err_unlock;
3941
3942 head = p->compat_robust_list;
3943 rcu_read_unlock();
3944
3945 if (put_user(sizeof(*head), len_ptr))
3946 return -EFAULT;
3947 return put_user(ptr_to_compat(head), head_ptr);
3948
3949 err_unlock:
3950 rcu_read_unlock();
3951
3952 return ret;
3953 }
3954
3955 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3956 struct compat_timespec __user *, utime, u32 __user *, uaddr2,
3957 u32, val3)
3958 {
3959 struct timespec ts;
3960 ktime_t t, *tp = NULL;
3961 int val2 = 0;
3962 int cmd = op & FUTEX_CMD_MASK;
3963
3964 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3965 cmd == FUTEX_WAIT_BITSET ||
3966 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3967 if (compat_get_timespec(&ts, utime))
3968 return -EFAULT;
3969 if (!timespec_valid(&ts))
3970 return -EINVAL;
3971
3972 t = timespec_to_ktime(ts);
3973 if (cmd == FUTEX_WAIT)
3974 t = ktime_add_safe(ktime_get(), t);
3975 tp = &t;
3976 }
3977 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3978 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3979 val2 = (int) (unsigned long) utime;
3980
3981 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3982 }
3983 #endif /* CONFIG_COMPAT */
3984
3985 static void __init futex_detect_cmpxchg(void)
3986 {
3987 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3988 u32 curval;
3989
3990 /*
3991 * This will fail and we want it. Some arch implementations do
3992 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3993 * functionality. We want to know that before we call in any
3994 * of the complex code paths. Also we want to prevent
3995 * registration of robust lists in that case. NULL is
3996 * guaranteed to fault and we get -EFAULT on functional
3997 * implementation, the non-functional ones will return
3998 * -ENOSYS.
3999 */
4000 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4001 futex_cmpxchg_enabled = 1;
4002 #endif
4003 }
4004
4005 static int __init futex_init(void)
4006 {
4007 unsigned int futex_shift;
4008 unsigned long i;
4009
4010 #if CONFIG_BASE_SMALL
4011 futex_hashsize = 16;
4012 #else
4013 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4014 #endif
4015
4016 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4017 futex_hashsize, 0,
4018 futex_hashsize < 256 ? HASH_SMALL : 0,
4019 &futex_shift, NULL,
4020 futex_hashsize, futex_hashsize);
4021 futex_hashsize = 1UL << futex_shift;
4022
4023 futex_detect_cmpxchg();
4024
4025 for (i = 0; i < futex_hashsize; i++) {
4026 atomic_set(&futex_queues[i].waiters, 0);
4027 plist_head_init(&futex_queues[i].chain);
4028 spin_lock_init(&futex_queues[i].lock);
4029 }
4030
4031 return 0;
4032 }
4033 core_initcall(futex_init);