]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/futex.c
futex: add requeue_pi functionality
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/module.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62
63 #include <asm/futex.h>
64
65 #include "rtmutex_common.h"
66
67 int __read_mostly futex_cmpxchg_enabled;
68
69 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
70
71 /*
72 * Priority Inheritance state:
73 */
74 struct futex_pi_state {
75 /*
76 * list of 'owned' pi_state instances - these have to be
77 * cleaned up in do_exit() if the task exits prematurely:
78 */
79 struct list_head list;
80
81 /*
82 * The PI object:
83 */
84 struct rt_mutex pi_mutex;
85
86 struct task_struct *owner;
87 atomic_t refcount;
88
89 union futex_key key;
90 };
91
92 /*
93 * We use this hashed waitqueue instead of a normal wait_queue_t, so
94 * we can wake only the relevant ones (hashed queues may be shared).
95 *
96 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
97 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
98 * The order of wakup is always to make the first condition true, then
99 * wake up q->waiter, then make the second condition true.
100 */
101 struct futex_q {
102 struct plist_node list;
103 /* There can only be a single waiter */
104 wait_queue_head_t waiter;
105
106 /* Which hash list lock to use: */
107 spinlock_t *lock_ptr;
108
109 /* Key which the futex is hashed on: */
110 union futex_key key;
111
112 /* Optional priority inheritance state: */
113 struct futex_pi_state *pi_state;
114 struct task_struct *task;
115
116 /* rt_waiter storage for requeue_pi: */
117 struct rt_mutex_waiter *rt_waiter;
118
119 /* Bitset for the optional bitmasked wakeup */
120 u32 bitset;
121 };
122
123 /*
124 * Hash buckets are shared by all the futex_keys that hash to the same
125 * location. Each key may have multiple futex_q structures, one for each task
126 * waiting on a futex.
127 */
128 struct futex_hash_bucket {
129 spinlock_t lock;
130 struct plist_head chain;
131 };
132
133 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
134
135 /*
136 * We hash on the keys returned from get_futex_key (see below).
137 */
138 static struct futex_hash_bucket *hash_futex(union futex_key *key)
139 {
140 u32 hash = jhash2((u32*)&key->both.word,
141 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
142 key->both.offset);
143 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
144 }
145
146 /*
147 * Return 1 if two futex_keys are equal, 0 otherwise.
148 */
149 static inline int match_futex(union futex_key *key1, union futex_key *key2)
150 {
151 return (key1->both.word == key2->both.word
152 && key1->both.ptr == key2->both.ptr
153 && key1->both.offset == key2->both.offset);
154 }
155
156 /*
157 * Take a reference to the resource addressed by a key.
158 * Can be called while holding spinlocks.
159 *
160 */
161 static void get_futex_key_refs(union futex_key *key)
162 {
163 if (!key->both.ptr)
164 return;
165
166 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
167 case FUT_OFF_INODE:
168 atomic_inc(&key->shared.inode->i_count);
169 break;
170 case FUT_OFF_MMSHARED:
171 atomic_inc(&key->private.mm->mm_count);
172 break;
173 }
174 }
175
176 /*
177 * Drop a reference to the resource addressed by a key.
178 * The hash bucket spinlock must not be held.
179 */
180 static void drop_futex_key_refs(union futex_key *key)
181 {
182 if (!key->both.ptr) {
183 /* If we're here then we tried to put a key we failed to get */
184 WARN_ON_ONCE(1);
185 return;
186 }
187
188 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
189 case FUT_OFF_INODE:
190 iput(key->shared.inode);
191 break;
192 case FUT_OFF_MMSHARED:
193 mmdrop(key->private.mm);
194 break;
195 }
196 }
197
198 /**
199 * get_futex_key - Get parameters which are the keys for a futex.
200 * @uaddr: virtual address of the futex
201 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
202 * @key: address where result is stored.
203 *
204 * Returns a negative error code or 0
205 * The key words are stored in *key on success.
206 *
207 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
208 * offset_within_page). For private mappings, it's (uaddr, current->mm).
209 * We can usually work out the index without swapping in the page.
210 *
211 * lock_page() might sleep, the caller should not hold a spinlock.
212 */
213 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
214 {
215 unsigned long address = (unsigned long)uaddr;
216 struct mm_struct *mm = current->mm;
217 struct page *page;
218 int err;
219
220 /*
221 * The futex address must be "naturally" aligned.
222 */
223 key->both.offset = address % PAGE_SIZE;
224 if (unlikely((address % sizeof(u32)) != 0))
225 return -EINVAL;
226 address -= key->both.offset;
227
228 /*
229 * PROCESS_PRIVATE futexes are fast.
230 * As the mm cannot disappear under us and the 'key' only needs
231 * virtual address, we dont even have to find the underlying vma.
232 * Note : We do have to check 'uaddr' is a valid user address,
233 * but access_ok() should be faster than find_vma()
234 */
235 if (!fshared) {
236 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
237 return -EFAULT;
238 key->private.mm = mm;
239 key->private.address = address;
240 get_futex_key_refs(key);
241 return 0;
242 }
243
244 again:
245 err = get_user_pages_fast(address, 1, 0, &page);
246 if (err < 0)
247 return err;
248
249 lock_page(page);
250 if (!page->mapping) {
251 unlock_page(page);
252 put_page(page);
253 goto again;
254 }
255
256 /*
257 * Private mappings are handled in a simple way.
258 *
259 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
260 * it's a read-only handle, it's expected that futexes attach to
261 * the object not the particular process.
262 */
263 if (PageAnon(page)) {
264 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
265 key->private.mm = mm;
266 key->private.address = address;
267 } else {
268 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
269 key->shared.inode = page->mapping->host;
270 key->shared.pgoff = page->index;
271 }
272
273 get_futex_key_refs(key);
274
275 unlock_page(page);
276 put_page(page);
277 return 0;
278 }
279
280 static inline
281 void put_futex_key(int fshared, union futex_key *key)
282 {
283 drop_futex_key_refs(key);
284 }
285
286 /**
287 * futex_top_waiter() - Return the highest priority waiter on a futex
288 * @hb: the hash bucket the futex_q's reside in
289 * @key: the futex key (to distinguish it from other futex futex_q's)
290 *
291 * Must be called with the hb lock held.
292 */
293 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
294 union futex_key *key)
295 {
296 struct futex_q *this;
297
298 plist_for_each_entry(this, &hb->chain, list) {
299 if (match_futex(&this->key, key))
300 return this;
301 }
302 return NULL;
303 }
304
305 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
306 {
307 u32 curval;
308
309 pagefault_disable();
310 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
311 pagefault_enable();
312
313 return curval;
314 }
315
316 static int get_futex_value_locked(u32 *dest, u32 __user *from)
317 {
318 int ret;
319
320 pagefault_disable();
321 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
322 pagefault_enable();
323
324 return ret ? -EFAULT : 0;
325 }
326
327
328 /*
329 * PI code:
330 */
331 static int refill_pi_state_cache(void)
332 {
333 struct futex_pi_state *pi_state;
334
335 if (likely(current->pi_state_cache))
336 return 0;
337
338 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
339
340 if (!pi_state)
341 return -ENOMEM;
342
343 INIT_LIST_HEAD(&pi_state->list);
344 /* pi_mutex gets initialized later */
345 pi_state->owner = NULL;
346 atomic_set(&pi_state->refcount, 1);
347 pi_state->key = FUTEX_KEY_INIT;
348
349 current->pi_state_cache = pi_state;
350
351 return 0;
352 }
353
354 static struct futex_pi_state * alloc_pi_state(void)
355 {
356 struct futex_pi_state *pi_state = current->pi_state_cache;
357
358 WARN_ON(!pi_state);
359 current->pi_state_cache = NULL;
360
361 return pi_state;
362 }
363
364 static void free_pi_state(struct futex_pi_state *pi_state)
365 {
366 if (!atomic_dec_and_test(&pi_state->refcount))
367 return;
368
369 /*
370 * If pi_state->owner is NULL, the owner is most probably dying
371 * and has cleaned up the pi_state already
372 */
373 if (pi_state->owner) {
374 spin_lock_irq(&pi_state->owner->pi_lock);
375 list_del_init(&pi_state->list);
376 spin_unlock_irq(&pi_state->owner->pi_lock);
377
378 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
379 }
380
381 if (current->pi_state_cache)
382 kfree(pi_state);
383 else {
384 /*
385 * pi_state->list is already empty.
386 * clear pi_state->owner.
387 * refcount is at 0 - put it back to 1.
388 */
389 pi_state->owner = NULL;
390 atomic_set(&pi_state->refcount, 1);
391 current->pi_state_cache = pi_state;
392 }
393 }
394
395 /*
396 * Look up the task based on what TID userspace gave us.
397 * We dont trust it.
398 */
399 static struct task_struct * futex_find_get_task(pid_t pid)
400 {
401 struct task_struct *p;
402 const struct cred *cred = current_cred(), *pcred;
403
404 rcu_read_lock();
405 p = find_task_by_vpid(pid);
406 if (!p) {
407 p = ERR_PTR(-ESRCH);
408 } else {
409 pcred = __task_cred(p);
410 if (cred->euid != pcred->euid &&
411 cred->euid != pcred->uid)
412 p = ERR_PTR(-ESRCH);
413 else
414 get_task_struct(p);
415 }
416
417 rcu_read_unlock();
418
419 return p;
420 }
421
422 /*
423 * This task is holding PI mutexes at exit time => bad.
424 * Kernel cleans up PI-state, but userspace is likely hosed.
425 * (Robust-futex cleanup is separate and might save the day for userspace.)
426 */
427 void exit_pi_state_list(struct task_struct *curr)
428 {
429 struct list_head *next, *head = &curr->pi_state_list;
430 struct futex_pi_state *pi_state;
431 struct futex_hash_bucket *hb;
432 union futex_key key = FUTEX_KEY_INIT;
433
434 if (!futex_cmpxchg_enabled)
435 return;
436 /*
437 * We are a ZOMBIE and nobody can enqueue itself on
438 * pi_state_list anymore, but we have to be careful
439 * versus waiters unqueueing themselves:
440 */
441 spin_lock_irq(&curr->pi_lock);
442 while (!list_empty(head)) {
443
444 next = head->next;
445 pi_state = list_entry(next, struct futex_pi_state, list);
446 key = pi_state->key;
447 hb = hash_futex(&key);
448 spin_unlock_irq(&curr->pi_lock);
449
450 spin_lock(&hb->lock);
451
452 spin_lock_irq(&curr->pi_lock);
453 /*
454 * We dropped the pi-lock, so re-check whether this
455 * task still owns the PI-state:
456 */
457 if (head->next != next) {
458 spin_unlock(&hb->lock);
459 continue;
460 }
461
462 WARN_ON(pi_state->owner != curr);
463 WARN_ON(list_empty(&pi_state->list));
464 list_del_init(&pi_state->list);
465 pi_state->owner = NULL;
466 spin_unlock_irq(&curr->pi_lock);
467
468 rt_mutex_unlock(&pi_state->pi_mutex);
469
470 spin_unlock(&hb->lock);
471
472 spin_lock_irq(&curr->pi_lock);
473 }
474 spin_unlock_irq(&curr->pi_lock);
475 }
476
477 static int
478 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
479 union futex_key *key, struct futex_pi_state **ps)
480 {
481 struct futex_pi_state *pi_state = NULL;
482 struct futex_q *this, *next;
483 struct plist_head *head;
484 struct task_struct *p;
485 pid_t pid = uval & FUTEX_TID_MASK;
486
487 head = &hb->chain;
488
489 plist_for_each_entry_safe(this, next, head, list) {
490 if (match_futex(&this->key, key)) {
491 /*
492 * Another waiter already exists - bump up
493 * the refcount and return its pi_state:
494 */
495 pi_state = this->pi_state;
496 /*
497 * Userspace might have messed up non PI and PI futexes
498 */
499 if (unlikely(!pi_state))
500 return -EINVAL;
501
502 WARN_ON(!atomic_read(&pi_state->refcount));
503 WARN_ON(pid && pi_state->owner &&
504 pi_state->owner->pid != pid);
505
506 atomic_inc(&pi_state->refcount);
507 *ps = pi_state;
508
509 return 0;
510 }
511 }
512
513 /*
514 * We are the first waiter - try to look up the real owner and attach
515 * the new pi_state to it, but bail out when TID = 0
516 */
517 if (!pid)
518 return -ESRCH;
519 p = futex_find_get_task(pid);
520 if (IS_ERR(p))
521 return PTR_ERR(p);
522
523 /*
524 * We need to look at the task state flags to figure out,
525 * whether the task is exiting. To protect against the do_exit
526 * change of the task flags, we do this protected by
527 * p->pi_lock:
528 */
529 spin_lock_irq(&p->pi_lock);
530 if (unlikely(p->flags & PF_EXITING)) {
531 /*
532 * The task is on the way out. When PF_EXITPIDONE is
533 * set, we know that the task has finished the
534 * cleanup:
535 */
536 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
537
538 spin_unlock_irq(&p->pi_lock);
539 put_task_struct(p);
540 return ret;
541 }
542
543 pi_state = alloc_pi_state();
544
545 /*
546 * Initialize the pi_mutex in locked state and make 'p'
547 * the owner of it:
548 */
549 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
550
551 /* Store the key for possible exit cleanups: */
552 pi_state->key = *key;
553
554 WARN_ON(!list_empty(&pi_state->list));
555 list_add(&pi_state->list, &p->pi_state_list);
556 pi_state->owner = p;
557 spin_unlock_irq(&p->pi_lock);
558
559 put_task_struct(p);
560
561 *ps = pi_state;
562
563 return 0;
564 }
565
566 /**
567 * futex_lock_pi_atomic() - atomic work required to acquire a pi aware futex
568 * @uaddr: the pi futex user address
569 * @hb: the pi futex hash bucket
570 * @key: the futex key associated with uaddr and hb
571 * @ps: the pi_state pointer where we store the result of the lookup
572 * @task: the task to perform the atomic lock work for. This will be
573 * "current" except in the case of requeue pi.
574 *
575 * Returns:
576 * 0 - ready to wait
577 * 1 - acquired the lock
578 * <0 - error
579 *
580 * The hb->lock and futex_key refs shall be held by the caller.
581 */
582 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
583 union futex_key *key,
584 struct futex_pi_state **ps,
585 struct task_struct *task)
586 {
587 int lock_taken, ret, ownerdied = 0;
588 u32 uval, newval, curval;
589
590 retry:
591 ret = lock_taken = 0;
592
593 /*
594 * To avoid races, we attempt to take the lock here again
595 * (by doing a 0 -> TID atomic cmpxchg), while holding all
596 * the locks. It will most likely not succeed.
597 */
598 newval = task_pid_vnr(task);
599
600 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
601
602 if (unlikely(curval == -EFAULT))
603 return -EFAULT;
604
605 /*
606 * Detect deadlocks.
607 */
608 if ((unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(task))))
609 return -EDEADLK;
610
611 /*
612 * Surprise - we got the lock. Just return to userspace:
613 */
614 if (unlikely(!curval))
615 return 1;
616
617 uval = curval;
618
619 /*
620 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
621 * to wake at the next unlock.
622 */
623 newval = curval | FUTEX_WAITERS;
624
625 /*
626 * There are two cases, where a futex might have no owner (the
627 * owner TID is 0): OWNER_DIED. We take over the futex in this
628 * case. We also do an unconditional take over, when the owner
629 * of the futex died.
630 *
631 * This is safe as we are protected by the hash bucket lock !
632 */
633 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
634 /* Keep the OWNER_DIED bit */
635 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(task);
636 ownerdied = 0;
637 lock_taken = 1;
638 }
639
640 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
641
642 if (unlikely(curval == -EFAULT))
643 return -EFAULT;
644 if (unlikely(curval != uval))
645 goto retry;
646
647 /*
648 * We took the lock due to owner died take over.
649 */
650 if (unlikely(lock_taken))
651 return 1;
652
653 /*
654 * We dont have the lock. Look up the PI state (or create it if
655 * we are the first waiter):
656 */
657 ret = lookup_pi_state(uval, hb, key, ps);
658
659 if (unlikely(ret)) {
660 switch (ret) {
661 case -ESRCH:
662 /*
663 * No owner found for this futex. Check if the
664 * OWNER_DIED bit is set to figure out whether
665 * this is a robust futex or not.
666 */
667 if (get_futex_value_locked(&curval, uaddr))
668 return -EFAULT;
669
670 /*
671 * We simply start over in case of a robust
672 * futex. The code above will take the futex
673 * and return happy.
674 */
675 if (curval & FUTEX_OWNER_DIED) {
676 ownerdied = 1;
677 goto retry;
678 }
679 default:
680 break;
681 }
682 }
683
684 return ret;
685 }
686
687 /*
688 * The hash bucket lock must be held when this is called.
689 * Afterwards, the futex_q must not be accessed.
690 */
691 static void wake_futex(struct futex_q *q)
692 {
693 plist_del(&q->list, &q->list.plist);
694 /*
695 * The lock in wake_up_all() is a crucial memory barrier after the
696 * plist_del() and also before assigning to q->lock_ptr.
697 */
698 wake_up(&q->waiter);
699 /*
700 * The waiting task can free the futex_q as soon as this is written,
701 * without taking any locks. This must come last.
702 *
703 * A memory barrier is required here to prevent the following store to
704 * lock_ptr from getting ahead of the wakeup. Clearing the lock at the
705 * end of wake_up() does not prevent this store from moving.
706 */
707 smp_wmb();
708 q->lock_ptr = NULL;
709 }
710
711 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
712 {
713 struct task_struct *new_owner;
714 struct futex_pi_state *pi_state = this->pi_state;
715 u32 curval, newval;
716
717 if (!pi_state)
718 return -EINVAL;
719
720 spin_lock(&pi_state->pi_mutex.wait_lock);
721 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
722
723 /*
724 * This happens when we have stolen the lock and the original
725 * pending owner did not enqueue itself back on the rt_mutex.
726 * Thats not a tragedy. We know that way, that a lock waiter
727 * is on the fly. We make the futex_q waiter the pending owner.
728 */
729 if (!new_owner)
730 new_owner = this->task;
731
732 /*
733 * We pass it to the next owner. (The WAITERS bit is always
734 * kept enabled while there is PI state around. We must also
735 * preserve the owner died bit.)
736 */
737 if (!(uval & FUTEX_OWNER_DIED)) {
738 int ret = 0;
739
740 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
741
742 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
743
744 if (curval == -EFAULT)
745 ret = -EFAULT;
746 else if (curval != uval)
747 ret = -EINVAL;
748 if (ret) {
749 spin_unlock(&pi_state->pi_mutex.wait_lock);
750 return ret;
751 }
752 }
753
754 spin_lock_irq(&pi_state->owner->pi_lock);
755 WARN_ON(list_empty(&pi_state->list));
756 list_del_init(&pi_state->list);
757 spin_unlock_irq(&pi_state->owner->pi_lock);
758
759 spin_lock_irq(&new_owner->pi_lock);
760 WARN_ON(!list_empty(&pi_state->list));
761 list_add(&pi_state->list, &new_owner->pi_state_list);
762 pi_state->owner = new_owner;
763 spin_unlock_irq(&new_owner->pi_lock);
764
765 spin_unlock(&pi_state->pi_mutex.wait_lock);
766 rt_mutex_unlock(&pi_state->pi_mutex);
767
768 return 0;
769 }
770
771 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
772 {
773 u32 oldval;
774
775 /*
776 * There is no waiter, so we unlock the futex. The owner died
777 * bit has not to be preserved here. We are the owner:
778 */
779 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
780
781 if (oldval == -EFAULT)
782 return oldval;
783 if (oldval != uval)
784 return -EAGAIN;
785
786 return 0;
787 }
788
789 /*
790 * Express the locking dependencies for lockdep:
791 */
792 static inline void
793 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
794 {
795 if (hb1 <= hb2) {
796 spin_lock(&hb1->lock);
797 if (hb1 < hb2)
798 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
799 } else { /* hb1 > hb2 */
800 spin_lock(&hb2->lock);
801 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
802 }
803 }
804
805 static inline void
806 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
807 {
808 spin_unlock(&hb1->lock);
809 if (hb1 != hb2)
810 spin_unlock(&hb2->lock);
811 }
812
813 /*
814 * Wake up waiters matching bitset queued on this futex (uaddr).
815 */
816 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
817 {
818 struct futex_hash_bucket *hb;
819 struct futex_q *this, *next;
820 struct plist_head *head;
821 union futex_key key = FUTEX_KEY_INIT;
822 int ret;
823
824 if (!bitset)
825 return -EINVAL;
826
827 ret = get_futex_key(uaddr, fshared, &key);
828 if (unlikely(ret != 0))
829 goto out;
830
831 hb = hash_futex(&key);
832 spin_lock(&hb->lock);
833 head = &hb->chain;
834
835 plist_for_each_entry_safe(this, next, head, list) {
836 if (match_futex (&this->key, &key)) {
837 if (this->pi_state || this->rt_waiter) {
838 ret = -EINVAL;
839 break;
840 }
841
842 /* Check if one of the bits is set in both bitsets */
843 if (!(this->bitset & bitset))
844 continue;
845
846 wake_futex(this);
847 if (++ret >= nr_wake)
848 break;
849 }
850 }
851
852 spin_unlock(&hb->lock);
853 put_futex_key(fshared, &key);
854 out:
855 return ret;
856 }
857
858 /*
859 * Wake up all waiters hashed on the physical page that is mapped
860 * to this virtual address:
861 */
862 static int
863 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
864 int nr_wake, int nr_wake2, int op)
865 {
866 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
867 struct futex_hash_bucket *hb1, *hb2;
868 struct plist_head *head;
869 struct futex_q *this, *next;
870 int ret, op_ret;
871
872 retry:
873 ret = get_futex_key(uaddr1, fshared, &key1);
874 if (unlikely(ret != 0))
875 goto out;
876 ret = get_futex_key(uaddr2, fshared, &key2);
877 if (unlikely(ret != 0))
878 goto out_put_key1;
879
880 hb1 = hash_futex(&key1);
881 hb2 = hash_futex(&key2);
882
883 double_lock_hb(hb1, hb2);
884 retry_private:
885 op_ret = futex_atomic_op_inuser(op, uaddr2);
886 if (unlikely(op_ret < 0)) {
887 u32 dummy;
888
889 double_unlock_hb(hb1, hb2);
890
891 #ifndef CONFIG_MMU
892 /*
893 * we don't get EFAULT from MMU faults if we don't have an MMU,
894 * but we might get them from range checking
895 */
896 ret = op_ret;
897 goto out_put_keys;
898 #endif
899
900 if (unlikely(op_ret != -EFAULT)) {
901 ret = op_ret;
902 goto out_put_keys;
903 }
904
905 ret = get_user(dummy, uaddr2);
906 if (ret)
907 goto out_put_keys;
908
909 if (!fshared)
910 goto retry_private;
911
912 put_futex_key(fshared, &key2);
913 put_futex_key(fshared, &key1);
914 goto retry;
915 }
916
917 head = &hb1->chain;
918
919 plist_for_each_entry_safe(this, next, head, list) {
920 if (match_futex (&this->key, &key1)) {
921 wake_futex(this);
922 if (++ret >= nr_wake)
923 break;
924 }
925 }
926
927 if (op_ret > 0) {
928 head = &hb2->chain;
929
930 op_ret = 0;
931 plist_for_each_entry_safe(this, next, head, list) {
932 if (match_futex (&this->key, &key2)) {
933 wake_futex(this);
934 if (++op_ret >= nr_wake2)
935 break;
936 }
937 }
938 ret += op_ret;
939 }
940
941 double_unlock_hb(hb1, hb2);
942 out_put_keys:
943 put_futex_key(fshared, &key2);
944 out_put_key1:
945 put_futex_key(fshared, &key1);
946 out:
947 return ret;
948 }
949
950 /**
951 * requeue_futex() - Requeue a futex_q from one hb to another
952 * @q: the futex_q to requeue
953 * @hb1: the source hash_bucket
954 * @hb2: the target hash_bucket
955 * @key2: the new key for the requeued futex_q
956 */
957 static inline
958 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
959 struct futex_hash_bucket *hb2, union futex_key *key2)
960 {
961
962 /*
963 * If key1 and key2 hash to the same bucket, no need to
964 * requeue.
965 */
966 if (likely(&hb1->chain != &hb2->chain)) {
967 plist_del(&q->list, &hb1->chain);
968 plist_add(&q->list, &hb2->chain);
969 q->lock_ptr = &hb2->lock;
970 #ifdef CONFIG_DEBUG_PI_LIST
971 q->list.plist.lock = &hb2->lock;
972 #endif
973 }
974 get_futex_key_refs(key2);
975 q->key = *key2;
976 }
977
978 /**
979 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
980 * q: the futex_q
981 * key: the key of the requeue target futex
982 *
983 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
984 * target futex if it is uncontended or via a lock steal. Set the futex_q key
985 * to the requeue target futex so the waiter can detect the wakeup on the right
986 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
987 * atomic lock acquisition. Must be called with the q->lock_ptr held.
988 */
989 static inline
990 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key)
991 {
992 drop_futex_key_refs(&q->key);
993 get_futex_key_refs(key);
994 q->key = *key;
995
996 WARN_ON(plist_node_empty(&q->list));
997 plist_del(&q->list, &q->list.plist);
998
999 WARN_ON(!q->rt_waiter);
1000 q->rt_waiter = NULL;
1001
1002 wake_up(&q->waiter);
1003 }
1004
1005 /**
1006 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1007 * @pifutex: the user address of the to futex
1008 * @hb1: the from futex hash bucket, must be locked by the caller
1009 * @hb2: the to futex hash bucket, must be locked by the caller
1010 * @key1: the from futex key
1011 * @key2: the to futex key
1012 *
1013 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1014 * Wake the top waiter if we succeed. hb1 and hb2 must be held by the caller.
1015 *
1016 * Returns:
1017 * 0 - failed to acquire the lock atomicly
1018 * 1 - acquired the lock
1019 * <0 - error
1020 */
1021 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1022 struct futex_hash_bucket *hb1,
1023 struct futex_hash_bucket *hb2,
1024 union futex_key *key1, union futex_key *key2,
1025 struct futex_pi_state **ps)
1026 {
1027 struct futex_q *top_waiter;
1028 u32 curval;
1029 int ret;
1030
1031 if (get_futex_value_locked(&curval, pifutex))
1032 return -EFAULT;
1033
1034 top_waiter = futex_top_waiter(hb1, key1);
1035
1036 /* There are no waiters, nothing for us to do. */
1037 if (!top_waiter)
1038 return 0;
1039
1040 /*
1041 * Either take the lock for top_waiter or set the FUTEX_WAITERS bit.
1042 * The pi_state is returned in ps in contended cases.
1043 */
1044 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task);
1045 if (ret == 1)
1046 requeue_pi_wake_futex(top_waiter, key2);
1047
1048 return ret;
1049 }
1050
1051 /**
1052 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1053 * uaddr1: source futex user address
1054 * uaddr2: target futex user address
1055 * nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1056 * nr_requeue: number of waiters to requeue (0-INT_MAX)
1057 * requeue_pi: if we are attempting to requeue from a non-pi futex to a
1058 * pi futex (pi to pi requeue is not supported)
1059 *
1060 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1061 * uaddr2 atomically on behalf of the top waiter.
1062 *
1063 * Returns:
1064 * >=0 - on success, the number of tasks requeued or woken
1065 * <0 - on error
1066 */
1067 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
1068 int nr_wake, int nr_requeue, u32 *cmpval,
1069 int requeue_pi)
1070 {
1071 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1072 int drop_count = 0, task_count = 0, ret;
1073 struct futex_pi_state *pi_state = NULL;
1074 struct futex_hash_bucket *hb1, *hb2;
1075 struct plist_head *head1;
1076 struct futex_q *this, *next;
1077 u32 curval2;
1078
1079 if (requeue_pi) {
1080 /*
1081 * requeue_pi requires a pi_state, try to allocate it now
1082 * without any locks in case it fails.
1083 */
1084 if (refill_pi_state_cache())
1085 return -ENOMEM;
1086 /*
1087 * requeue_pi must wake as many tasks as it can, up to nr_wake
1088 * + nr_requeue, since it acquires the rt_mutex prior to
1089 * returning to userspace, so as to not leave the rt_mutex with
1090 * waiters and no owner. However, second and third wake-ups
1091 * cannot be predicted as they involve race conditions with the
1092 * first wake and a fault while looking up the pi_state. Both
1093 * pthread_cond_signal() and pthread_cond_broadcast() should
1094 * use nr_wake=1.
1095 */
1096 if (nr_wake != 1)
1097 return -EINVAL;
1098 }
1099
1100 retry:
1101 if (pi_state != NULL) {
1102 /*
1103 * We will have to lookup the pi_state again, so free this one
1104 * to keep the accounting correct.
1105 */
1106 free_pi_state(pi_state);
1107 pi_state = NULL;
1108 }
1109
1110 ret = get_futex_key(uaddr1, fshared, &key1);
1111 if (unlikely(ret != 0))
1112 goto out;
1113 ret = get_futex_key(uaddr2, fshared, &key2);
1114 if (unlikely(ret != 0))
1115 goto out_put_key1;
1116
1117 hb1 = hash_futex(&key1);
1118 hb2 = hash_futex(&key2);
1119
1120 retry_private:
1121 double_lock_hb(hb1, hb2);
1122
1123 if (likely(cmpval != NULL)) {
1124 u32 curval;
1125
1126 ret = get_futex_value_locked(&curval, uaddr1);
1127
1128 if (unlikely(ret)) {
1129 double_unlock_hb(hb1, hb2);
1130
1131 ret = get_user(curval, uaddr1);
1132 if (ret)
1133 goto out_put_keys;
1134
1135 if (!fshared)
1136 goto retry_private;
1137
1138 put_futex_key(fshared, &key2);
1139 put_futex_key(fshared, &key1);
1140 goto retry;
1141 }
1142 if (curval != *cmpval) {
1143 ret = -EAGAIN;
1144 goto out_unlock;
1145 }
1146 }
1147
1148 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1149 /* Attempt to acquire uaddr2 and wake the top_waiter. */
1150 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1151 &key2, &pi_state);
1152
1153 /*
1154 * At this point the top_waiter has either taken uaddr2 or is
1155 * waiting on it. If the former, then the pi_state will not
1156 * exist yet, look it up one more time to ensure we have a
1157 * reference to it.
1158 */
1159 if (ret == 1) {
1160 WARN_ON(pi_state);
1161 task_count++;
1162 ret = get_futex_value_locked(&curval2, uaddr2);
1163 if (!ret)
1164 ret = lookup_pi_state(curval2, hb2, &key2,
1165 &pi_state);
1166 }
1167
1168 switch (ret) {
1169 case 0:
1170 break;
1171 case -EFAULT:
1172 double_unlock_hb(hb1, hb2);
1173 put_futex_key(fshared, &key2);
1174 put_futex_key(fshared, &key1);
1175 ret = get_user(curval2, uaddr2);
1176 if (!ret)
1177 goto retry;
1178 goto out;
1179 case -EAGAIN:
1180 /* The owner was exiting, try again. */
1181 double_unlock_hb(hb1, hb2);
1182 put_futex_key(fshared, &key2);
1183 put_futex_key(fshared, &key1);
1184 cond_resched();
1185 goto retry;
1186 default:
1187 goto out_unlock;
1188 }
1189 }
1190
1191 head1 = &hb1->chain;
1192 plist_for_each_entry_safe(this, next, head1, list) {
1193 if (task_count - nr_wake >= nr_requeue)
1194 break;
1195
1196 if (!match_futex(&this->key, &key1))
1197 continue;
1198
1199 WARN_ON(!requeue_pi && this->rt_waiter);
1200 WARN_ON(requeue_pi && !this->rt_waiter);
1201
1202 /*
1203 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1204 * lock, we already woke the top_waiter. If not, it will be
1205 * woken by futex_unlock_pi().
1206 */
1207 if (++task_count <= nr_wake && !requeue_pi) {
1208 wake_futex(this);
1209 continue;
1210 }
1211
1212 /*
1213 * Requeue nr_requeue waiters and possibly one more in the case
1214 * of requeue_pi if we couldn't acquire the lock atomically.
1215 */
1216 if (requeue_pi) {
1217 /* Prepare the waiter to take the rt_mutex. */
1218 atomic_inc(&pi_state->refcount);
1219 this->pi_state = pi_state;
1220 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1221 this->rt_waiter,
1222 this->task, 1);
1223 if (ret == 1) {
1224 /* We got the lock. */
1225 requeue_pi_wake_futex(this, &key2);
1226 continue;
1227 } else if (ret) {
1228 /* -EDEADLK */
1229 this->pi_state = NULL;
1230 free_pi_state(pi_state);
1231 goto out_unlock;
1232 }
1233 }
1234 requeue_futex(this, hb1, hb2, &key2);
1235 drop_count++;
1236 }
1237
1238 out_unlock:
1239 double_unlock_hb(hb1, hb2);
1240
1241 /* drop_futex_key_refs() must be called outside the spinlocks. */
1242 while (--drop_count >= 0)
1243 drop_futex_key_refs(&key1);
1244
1245 out_put_keys:
1246 put_futex_key(fshared, &key2);
1247 out_put_key1:
1248 put_futex_key(fshared, &key1);
1249 out:
1250 if (pi_state != NULL)
1251 free_pi_state(pi_state);
1252 return ret ? ret : task_count;
1253 }
1254
1255 /* The key must be already stored in q->key. */
1256 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1257 {
1258 struct futex_hash_bucket *hb;
1259
1260 init_waitqueue_head(&q->waiter);
1261
1262 get_futex_key_refs(&q->key);
1263 hb = hash_futex(&q->key);
1264 q->lock_ptr = &hb->lock;
1265
1266 spin_lock(&hb->lock);
1267 return hb;
1268 }
1269
1270 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1271 {
1272 int prio;
1273
1274 /*
1275 * The priority used to register this element is
1276 * - either the real thread-priority for the real-time threads
1277 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1278 * - or MAX_RT_PRIO for non-RT threads.
1279 * Thus, all RT-threads are woken first in priority order, and
1280 * the others are woken last, in FIFO order.
1281 */
1282 prio = min(current->normal_prio, MAX_RT_PRIO);
1283
1284 plist_node_init(&q->list, prio);
1285 #ifdef CONFIG_DEBUG_PI_LIST
1286 q->list.plist.lock = &hb->lock;
1287 #endif
1288 plist_add(&q->list, &hb->chain);
1289 q->task = current;
1290 spin_unlock(&hb->lock);
1291 }
1292
1293 static inline void
1294 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1295 {
1296 spin_unlock(&hb->lock);
1297 drop_futex_key_refs(&q->key);
1298 }
1299
1300 /*
1301 * queue_me and unqueue_me must be called as a pair, each
1302 * exactly once. They are called with the hashed spinlock held.
1303 */
1304
1305 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1306 static int unqueue_me(struct futex_q *q)
1307 {
1308 spinlock_t *lock_ptr;
1309 int ret = 0;
1310
1311 /* In the common case we don't take the spinlock, which is nice. */
1312 retry:
1313 lock_ptr = q->lock_ptr;
1314 barrier();
1315 if (lock_ptr != NULL) {
1316 spin_lock(lock_ptr);
1317 /*
1318 * q->lock_ptr can change between reading it and
1319 * spin_lock(), causing us to take the wrong lock. This
1320 * corrects the race condition.
1321 *
1322 * Reasoning goes like this: if we have the wrong lock,
1323 * q->lock_ptr must have changed (maybe several times)
1324 * between reading it and the spin_lock(). It can
1325 * change again after the spin_lock() but only if it was
1326 * already changed before the spin_lock(). It cannot,
1327 * however, change back to the original value. Therefore
1328 * we can detect whether we acquired the correct lock.
1329 */
1330 if (unlikely(lock_ptr != q->lock_ptr)) {
1331 spin_unlock(lock_ptr);
1332 goto retry;
1333 }
1334 WARN_ON(plist_node_empty(&q->list));
1335 plist_del(&q->list, &q->list.plist);
1336
1337 BUG_ON(q->pi_state);
1338
1339 spin_unlock(lock_ptr);
1340 ret = 1;
1341 }
1342
1343 drop_futex_key_refs(&q->key);
1344 return ret;
1345 }
1346
1347 /*
1348 * PI futexes can not be requeued and must remove themself from the
1349 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1350 * and dropped here.
1351 */
1352 static void unqueue_me_pi(struct futex_q *q)
1353 {
1354 WARN_ON(plist_node_empty(&q->list));
1355 plist_del(&q->list, &q->list.plist);
1356
1357 BUG_ON(!q->pi_state);
1358 free_pi_state(q->pi_state);
1359 q->pi_state = NULL;
1360
1361 spin_unlock(q->lock_ptr);
1362
1363 drop_futex_key_refs(&q->key);
1364 }
1365
1366 /*
1367 * Fixup the pi_state owner with the new owner.
1368 *
1369 * Must be called with hash bucket lock held and mm->sem held for non
1370 * private futexes.
1371 */
1372 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1373 struct task_struct *newowner, int fshared)
1374 {
1375 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1376 struct futex_pi_state *pi_state = q->pi_state;
1377 struct task_struct *oldowner = pi_state->owner;
1378 u32 uval, curval, newval;
1379 int ret;
1380
1381 /* Owner died? */
1382 if (!pi_state->owner)
1383 newtid |= FUTEX_OWNER_DIED;
1384
1385 /*
1386 * We are here either because we stole the rtmutex from the
1387 * pending owner or we are the pending owner which failed to
1388 * get the rtmutex. We have to replace the pending owner TID
1389 * in the user space variable. This must be atomic as we have
1390 * to preserve the owner died bit here.
1391 *
1392 * Note: We write the user space value _before_ changing the pi_state
1393 * because we can fault here. Imagine swapped out pages or a fork
1394 * that marked all the anonymous memory readonly for cow.
1395 *
1396 * Modifying pi_state _before_ the user space value would
1397 * leave the pi_state in an inconsistent state when we fault
1398 * here, because we need to drop the hash bucket lock to
1399 * handle the fault. This might be observed in the PID check
1400 * in lookup_pi_state.
1401 */
1402 retry:
1403 if (get_futex_value_locked(&uval, uaddr))
1404 goto handle_fault;
1405
1406 while (1) {
1407 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1408
1409 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1410
1411 if (curval == -EFAULT)
1412 goto handle_fault;
1413 if (curval == uval)
1414 break;
1415 uval = curval;
1416 }
1417
1418 /*
1419 * We fixed up user space. Now we need to fix the pi_state
1420 * itself.
1421 */
1422 if (pi_state->owner != NULL) {
1423 spin_lock_irq(&pi_state->owner->pi_lock);
1424 WARN_ON(list_empty(&pi_state->list));
1425 list_del_init(&pi_state->list);
1426 spin_unlock_irq(&pi_state->owner->pi_lock);
1427 }
1428
1429 pi_state->owner = newowner;
1430
1431 spin_lock_irq(&newowner->pi_lock);
1432 WARN_ON(!list_empty(&pi_state->list));
1433 list_add(&pi_state->list, &newowner->pi_state_list);
1434 spin_unlock_irq(&newowner->pi_lock);
1435 return 0;
1436
1437 /*
1438 * To handle the page fault we need to drop the hash bucket
1439 * lock here. That gives the other task (either the pending
1440 * owner itself or the task which stole the rtmutex) the
1441 * chance to try the fixup of the pi_state. So once we are
1442 * back from handling the fault we need to check the pi_state
1443 * after reacquiring the hash bucket lock and before trying to
1444 * do another fixup. When the fixup has been done already we
1445 * simply return.
1446 */
1447 handle_fault:
1448 spin_unlock(q->lock_ptr);
1449
1450 ret = get_user(uval, uaddr);
1451
1452 spin_lock(q->lock_ptr);
1453
1454 /*
1455 * Check if someone else fixed it for us:
1456 */
1457 if (pi_state->owner != oldowner)
1458 return 0;
1459
1460 if (ret)
1461 return ret;
1462
1463 goto retry;
1464 }
1465
1466 /*
1467 * In case we must use restart_block to restart a futex_wait,
1468 * we encode in the 'flags' shared capability
1469 */
1470 #define FLAGS_SHARED 0x01
1471 #define FLAGS_CLOCKRT 0x02
1472 #define FLAGS_HAS_TIMEOUT 0x04
1473
1474 static long futex_wait_restart(struct restart_block *restart);
1475 static long futex_lock_pi_restart(struct restart_block *restart);
1476
1477 /**
1478 * fixup_owner() - Post lock pi_state and corner case management
1479 * @uaddr: user address of the futex
1480 * @fshared: whether the futex is shared (1) or not (0)
1481 * @q: futex_q (contains pi_state and access to the rt_mutex)
1482 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1483 *
1484 * After attempting to lock an rt_mutex, this function is called to cleanup
1485 * the pi_state owner as well as handle race conditions that may allow us to
1486 * acquire the lock. Must be called with the hb lock held.
1487 *
1488 * Returns:
1489 * 1 - success, lock taken
1490 * 0 - success, lock not taken
1491 * <0 - on error (-EFAULT)
1492 */
1493 static int fixup_owner(u32 __user *uaddr, int fshared, struct futex_q *q,
1494 int locked)
1495 {
1496 struct task_struct *owner;
1497 int ret = 0;
1498
1499 if (locked) {
1500 /*
1501 * Got the lock. We might not be the anticipated owner if we
1502 * did a lock-steal - fix up the PI-state in that case:
1503 */
1504 if (q->pi_state->owner != current)
1505 ret = fixup_pi_state_owner(uaddr, q, current, fshared);
1506 goto out;
1507 }
1508
1509 /*
1510 * Catch the rare case, where the lock was released when we were on the
1511 * way back before we locked the hash bucket.
1512 */
1513 if (q->pi_state->owner == current) {
1514 /*
1515 * Try to get the rt_mutex now. This might fail as some other
1516 * task acquired the rt_mutex after we removed ourself from the
1517 * rt_mutex waiters list.
1518 */
1519 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1520 locked = 1;
1521 goto out;
1522 }
1523
1524 /*
1525 * pi_state is incorrect, some other task did a lock steal and
1526 * we returned due to timeout or signal without taking the
1527 * rt_mutex. Too late. We can access the rt_mutex_owner without
1528 * locking, as the other task is now blocked on the hash bucket
1529 * lock. Fix the state up.
1530 */
1531 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1532 ret = fixup_pi_state_owner(uaddr, q, owner, fshared);
1533 goto out;
1534 }
1535
1536 /*
1537 * Paranoia check. If we did not take the lock, then we should not be
1538 * the owner, nor the pending owner, of the rt_mutex.
1539 */
1540 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1541 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1542 "pi-state %p\n", ret,
1543 q->pi_state->pi_mutex.owner,
1544 q->pi_state->owner);
1545
1546 out:
1547 return ret ? ret : locked;
1548 }
1549
1550 /**
1551 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1552 * @hb: the futex hash bucket, must be locked by the caller
1553 * @q: the futex_q to queue up on
1554 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1555 * @wait: the wait_queue to add to the futex_q after queueing in the hb
1556 */
1557 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1558 struct hrtimer_sleeper *timeout,
1559 wait_queue_t *wait)
1560 {
1561 queue_me(q, hb);
1562
1563 /*
1564 * There might have been scheduling since the queue_me(), as we
1565 * cannot hold a spinlock across the get_user() in case it
1566 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1567 * queueing ourselves into the futex hash. This code thus has to
1568 * rely on the futex_wake() code removing us from hash when it
1569 * wakes us up.
1570 */
1571
1572 /* add_wait_queue is the barrier after __set_current_state. */
1573 __set_current_state(TASK_INTERRUPTIBLE);
1574
1575 /*
1576 * Add current as the futex_q waiter. We don't remove ourselves from
1577 * the wait_queue because we are the only user of it.
1578 */
1579 add_wait_queue(&q->waiter, wait);
1580
1581 /* Arm the timer */
1582 if (timeout) {
1583 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1584 if (!hrtimer_active(&timeout->timer))
1585 timeout->task = NULL;
1586 }
1587
1588 /*
1589 * !plist_node_empty() is safe here without any lock.
1590 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1591 */
1592 if (likely(!plist_node_empty(&q->list))) {
1593 /*
1594 * If the timer has already expired, current will already be
1595 * flagged for rescheduling. Only call schedule if there
1596 * is no timeout, or if it has yet to expire.
1597 */
1598 if (!timeout || timeout->task)
1599 schedule();
1600 }
1601 __set_current_state(TASK_RUNNING);
1602 }
1603
1604 /**
1605 * futex_wait_setup() - Prepare to wait on a futex
1606 * @uaddr: the futex userspace address
1607 * @val: the expected value
1608 * @fshared: whether the futex is shared (1) or not (0)
1609 * @q: the associated futex_q
1610 * @hb: storage for hash_bucket pointer to be returned to caller
1611 *
1612 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1613 * compare it with the expected value. Handle atomic faults internally.
1614 * Return with the hb lock held and a q.key reference on success, and unlocked
1615 * with no q.key reference on failure.
1616 *
1617 * Returns:
1618 * 0 - uaddr contains val and hb has been locked
1619 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlcoked
1620 */
1621 static int futex_wait_setup(u32 __user *uaddr, u32 val, int fshared,
1622 struct futex_q *q, struct futex_hash_bucket **hb)
1623 {
1624 u32 uval;
1625 int ret;
1626
1627 /*
1628 * Access the page AFTER the hash-bucket is locked.
1629 * Order is important:
1630 *
1631 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1632 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1633 *
1634 * The basic logical guarantee of a futex is that it blocks ONLY
1635 * if cond(var) is known to be true at the time of blocking, for
1636 * any cond. If we queued after testing *uaddr, that would open
1637 * a race condition where we could block indefinitely with
1638 * cond(var) false, which would violate the guarantee.
1639 *
1640 * A consequence is that futex_wait() can return zero and absorb
1641 * a wakeup when *uaddr != val on entry to the syscall. This is
1642 * rare, but normal.
1643 */
1644 retry:
1645 q->key = FUTEX_KEY_INIT;
1646 ret = get_futex_key(uaddr, fshared, &q->key);
1647 if (unlikely(ret != 0))
1648 goto out;
1649
1650 retry_private:
1651 *hb = queue_lock(q);
1652
1653 ret = get_futex_value_locked(&uval, uaddr);
1654
1655 if (ret) {
1656 queue_unlock(q, *hb);
1657
1658 ret = get_user(uval, uaddr);
1659 if (ret)
1660 goto out;
1661
1662 if (!fshared)
1663 goto retry_private;
1664
1665 put_futex_key(fshared, &q->key);
1666 goto retry;
1667 }
1668
1669 if (uval != val) {
1670 queue_unlock(q, *hb);
1671 ret = -EWOULDBLOCK;
1672 }
1673
1674 out:
1675 if (ret)
1676 put_futex_key(fshared, &q->key);
1677 return ret;
1678 }
1679
1680 static int futex_wait(u32 __user *uaddr, int fshared,
1681 u32 val, ktime_t *abs_time, u32 bitset, int clockrt)
1682 {
1683 struct hrtimer_sleeper timeout, *to = NULL;
1684 DECLARE_WAITQUEUE(wait, current);
1685 struct restart_block *restart;
1686 struct futex_hash_bucket *hb;
1687 struct futex_q q;
1688 int ret;
1689
1690 if (!bitset)
1691 return -EINVAL;
1692
1693 q.pi_state = NULL;
1694 q.bitset = bitset;
1695 q.rt_waiter = NULL;
1696
1697 if (abs_time) {
1698 to = &timeout;
1699
1700 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
1701 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1702 hrtimer_init_sleeper(to, current);
1703 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1704 current->timer_slack_ns);
1705 }
1706
1707 /* Prepare to wait on uaddr. */
1708 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
1709 if (ret)
1710 goto out;
1711
1712 /* queue_me and wait for wakeup, timeout, or a signal. */
1713 futex_wait_queue_me(hb, &q, to, &wait);
1714
1715 /* If we were woken (and unqueued), we succeeded, whatever. */
1716 ret = 0;
1717 if (!unqueue_me(&q))
1718 goto out_put_key;
1719 ret = -ETIMEDOUT;
1720 if (to && !to->task)
1721 goto out_put_key;
1722
1723 /*
1724 * We expect signal_pending(current), but another thread may
1725 * have handled it for us already.
1726 */
1727 ret = -ERESTARTSYS;
1728 if (!abs_time)
1729 goto out_put_key;
1730
1731 restart = &current_thread_info()->restart_block;
1732 restart->fn = futex_wait_restart;
1733 restart->futex.uaddr = (u32 *)uaddr;
1734 restart->futex.val = val;
1735 restart->futex.time = abs_time->tv64;
1736 restart->futex.bitset = bitset;
1737 restart->futex.flags = FLAGS_HAS_TIMEOUT;
1738
1739 if (fshared)
1740 restart->futex.flags |= FLAGS_SHARED;
1741 if (clockrt)
1742 restart->futex.flags |= FLAGS_CLOCKRT;
1743
1744 ret = -ERESTART_RESTARTBLOCK;
1745
1746 out_put_key:
1747 put_futex_key(fshared, &q.key);
1748 out:
1749 if (to) {
1750 hrtimer_cancel(&to->timer);
1751 destroy_hrtimer_on_stack(&to->timer);
1752 }
1753 return ret;
1754 }
1755
1756
1757 static long futex_wait_restart(struct restart_block *restart)
1758 {
1759 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1760 int fshared = 0;
1761 ktime_t t, *tp = NULL;
1762
1763 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1764 t.tv64 = restart->futex.time;
1765 tp = &t;
1766 }
1767 restart->fn = do_no_restart_syscall;
1768 if (restart->futex.flags & FLAGS_SHARED)
1769 fshared = 1;
1770 return (long)futex_wait(uaddr, fshared, restart->futex.val, tp,
1771 restart->futex.bitset,
1772 restart->futex.flags & FLAGS_CLOCKRT);
1773 }
1774
1775
1776 /*
1777 * Userspace tried a 0 -> TID atomic transition of the futex value
1778 * and failed. The kernel side here does the whole locking operation:
1779 * if there are waiters then it will block, it does PI, etc. (Due to
1780 * races the kernel might see a 0 value of the futex too.)
1781 */
1782 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1783 int detect, ktime_t *time, int trylock)
1784 {
1785 struct hrtimer_sleeper timeout, *to = NULL;
1786 struct futex_hash_bucket *hb;
1787 u32 uval;
1788 struct futex_q q;
1789 int res, ret;
1790
1791 if (refill_pi_state_cache())
1792 return -ENOMEM;
1793
1794 if (time) {
1795 to = &timeout;
1796 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1797 HRTIMER_MODE_ABS);
1798 hrtimer_init_sleeper(to, current);
1799 hrtimer_set_expires(&to->timer, *time);
1800 }
1801
1802 q.pi_state = NULL;
1803 q.rt_waiter = NULL;
1804 retry:
1805 q.key = FUTEX_KEY_INIT;
1806 ret = get_futex_key(uaddr, fshared, &q.key);
1807 if (unlikely(ret != 0))
1808 goto out;
1809
1810 retry_private:
1811 hb = queue_lock(&q);
1812
1813 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current);
1814 if (unlikely(ret)) {
1815 switch (ret) {
1816 case 1:
1817 /* We got the lock. */
1818 ret = 0;
1819 goto out_unlock_put_key;
1820 case -EFAULT:
1821 goto uaddr_faulted;
1822 case -EAGAIN:
1823 /*
1824 * Task is exiting and we just wait for the
1825 * exit to complete.
1826 */
1827 queue_unlock(&q, hb);
1828 put_futex_key(fshared, &q.key);
1829 cond_resched();
1830 goto retry;
1831 default:
1832 goto out_unlock_put_key;
1833 }
1834 }
1835
1836 /*
1837 * Only actually queue now that the atomic ops are done:
1838 */
1839 queue_me(&q, hb);
1840
1841 WARN_ON(!q.pi_state);
1842 /*
1843 * Block on the PI mutex:
1844 */
1845 if (!trylock)
1846 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1847 else {
1848 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1849 /* Fixup the trylock return value: */
1850 ret = ret ? 0 : -EWOULDBLOCK;
1851 }
1852
1853 spin_lock(q.lock_ptr);
1854 /*
1855 * Fixup the pi_state owner and possibly acquire the lock if we
1856 * haven't already.
1857 */
1858 res = fixup_owner(uaddr, fshared, &q, !ret);
1859 /*
1860 * If fixup_owner() returned an error, proprogate that. If it acquired
1861 * the lock, clear our -ETIMEDOUT or -EINTR.
1862 */
1863 if (res)
1864 ret = (res < 0) ? res : 0;
1865
1866 /*
1867 * If fixup_owner() faulted and was unable to handle the fault, unlock
1868 * it and return the fault to userspace.
1869 */
1870 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
1871 rt_mutex_unlock(&q.pi_state->pi_mutex);
1872
1873 /* Unqueue and drop the lock */
1874 unqueue_me_pi(&q);
1875
1876 goto out;
1877
1878 out_unlock_put_key:
1879 queue_unlock(&q, hb);
1880
1881 out_put_key:
1882 put_futex_key(fshared, &q.key);
1883 out:
1884 if (to)
1885 destroy_hrtimer_on_stack(&to->timer);
1886 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1887
1888 uaddr_faulted:
1889 /*
1890 * We have to r/w *(int __user *)uaddr, and we have to modify it
1891 * atomically. Therefore, if we continue to fault after get_user()
1892 * below, we need to handle the fault ourselves, while still holding
1893 * the mmap_sem. This can occur if the uaddr is under contention as
1894 * we have to drop the mmap_sem in order to call get_user().
1895 */
1896 queue_unlock(&q, hb);
1897
1898 ret = get_user(uval, uaddr);
1899 if (ret)
1900 goto out_put_key;
1901
1902 if (!fshared)
1903 goto retry_private;
1904
1905 put_futex_key(fshared, &q.key);
1906 goto retry;
1907 }
1908
1909 static long futex_lock_pi_restart(struct restart_block *restart)
1910 {
1911 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1912 ktime_t t, *tp = NULL;
1913 int fshared = restart->futex.flags & FLAGS_SHARED;
1914
1915 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1916 t.tv64 = restart->futex.time;
1917 tp = &t;
1918 }
1919 restart->fn = do_no_restart_syscall;
1920
1921 return (long)futex_lock_pi(uaddr, fshared, restart->futex.val, tp, 0);
1922 }
1923
1924 /*
1925 * Userspace attempted a TID -> 0 atomic transition, and failed.
1926 * This is the in-kernel slowpath: we look up the PI state (if any),
1927 * and do the rt-mutex unlock.
1928 */
1929 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1930 {
1931 struct futex_hash_bucket *hb;
1932 struct futex_q *this, *next;
1933 u32 uval;
1934 struct plist_head *head;
1935 union futex_key key = FUTEX_KEY_INIT;
1936 int ret;
1937
1938 retry:
1939 if (get_user(uval, uaddr))
1940 return -EFAULT;
1941 /*
1942 * We release only a lock we actually own:
1943 */
1944 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1945 return -EPERM;
1946
1947 ret = get_futex_key(uaddr, fshared, &key);
1948 if (unlikely(ret != 0))
1949 goto out;
1950
1951 hb = hash_futex(&key);
1952 spin_lock(&hb->lock);
1953
1954 /*
1955 * To avoid races, try to do the TID -> 0 atomic transition
1956 * again. If it succeeds then we can return without waking
1957 * anyone else up:
1958 */
1959 if (!(uval & FUTEX_OWNER_DIED))
1960 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1961
1962
1963 if (unlikely(uval == -EFAULT))
1964 goto pi_faulted;
1965 /*
1966 * Rare case: we managed to release the lock atomically,
1967 * no need to wake anyone else up:
1968 */
1969 if (unlikely(uval == task_pid_vnr(current)))
1970 goto out_unlock;
1971
1972 /*
1973 * Ok, other tasks may need to be woken up - check waiters
1974 * and do the wakeup if necessary:
1975 */
1976 head = &hb->chain;
1977
1978 plist_for_each_entry_safe(this, next, head, list) {
1979 if (!match_futex (&this->key, &key))
1980 continue;
1981 ret = wake_futex_pi(uaddr, uval, this);
1982 /*
1983 * The atomic access to the futex value
1984 * generated a pagefault, so retry the
1985 * user-access and the wakeup:
1986 */
1987 if (ret == -EFAULT)
1988 goto pi_faulted;
1989 goto out_unlock;
1990 }
1991 /*
1992 * No waiters - kernel unlocks the futex:
1993 */
1994 if (!(uval & FUTEX_OWNER_DIED)) {
1995 ret = unlock_futex_pi(uaddr, uval);
1996 if (ret == -EFAULT)
1997 goto pi_faulted;
1998 }
1999
2000 out_unlock:
2001 spin_unlock(&hb->lock);
2002 put_futex_key(fshared, &key);
2003
2004 out:
2005 return ret;
2006
2007 pi_faulted:
2008 /*
2009 * We have to r/w *(int __user *)uaddr, and we have to modify it
2010 * atomically. Therefore, if we continue to fault after get_user()
2011 * below, we need to handle the fault ourselves, while still holding
2012 * the mmap_sem. This can occur if the uaddr is under contention as
2013 * we have to drop the mmap_sem in order to call get_user().
2014 */
2015 spin_unlock(&hb->lock);
2016 put_futex_key(fshared, &key);
2017
2018 ret = get_user(uval, uaddr);
2019 if (!ret)
2020 goto retry;
2021
2022 return ret;
2023 }
2024
2025 /**
2026 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2027 * @hb: the hash_bucket futex_q was original enqueued on
2028 * @q: the futex_q woken while waiting to be requeued
2029 * @key2: the futex_key of the requeue target futex
2030 * @timeout: the timeout associated with the wait (NULL if none)
2031 *
2032 * Detect if the task was woken on the initial futex as opposed to the requeue
2033 * target futex. If so, determine if it was a timeout or a signal that caused
2034 * the wakeup and return the appropriate error code to the caller. Must be
2035 * called with the hb lock held.
2036 *
2037 * Returns
2038 * 0 - no early wakeup detected
2039 * <0 - -ETIMEDOUT or -ERESTARTSYS (FIXME: or ERESTARTNOINTR?)
2040 */
2041 static inline
2042 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2043 struct futex_q *q, union futex_key *key2,
2044 struct hrtimer_sleeper *timeout)
2045 {
2046 int ret = 0;
2047
2048 /*
2049 * With the hb lock held, we avoid races while we process the wakeup.
2050 * We only need to hold hb (and not hb2) to ensure atomicity as the
2051 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2052 * It can't be requeued from uaddr2 to something else since we don't
2053 * support a PI aware source futex for requeue.
2054 */
2055 if (!match_futex(&q->key, key2)) {
2056 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2057 /*
2058 * We were woken prior to requeue by a timeout or a signal.
2059 * Unqueue the futex_q and determine which it was.
2060 */
2061 plist_del(&q->list, &q->list.plist);
2062 drop_futex_key_refs(&q->key);
2063
2064 if (timeout && !timeout->task)
2065 ret = -ETIMEDOUT;
2066 else {
2067 /*
2068 * We expect signal_pending(current), but another
2069 * thread may have handled it for us already.
2070 */
2071 /* FIXME: ERESTARTSYS or ERESTARTNOINTR? Do we care if
2072 * the user specified SA_RESTART or not? */
2073 ret = -ERESTARTSYS;
2074 }
2075 }
2076 return ret;
2077 }
2078
2079 /**
2080 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2081 * @uaddr: the futex we initialyl wait on (non-pi)
2082 * @fshared: whether the futexes are shared (1) or not (0). They must be
2083 * the same type, no requeueing from private to shared, etc.
2084 * @val: the expected value of uaddr
2085 * @abs_time: absolute timeout
2086 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all.
2087 * @clockrt: whether to use CLOCK_REALTIME (1) or CLOCK_MONOTONIC (0)
2088 * @uaddr2: the pi futex we will take prior to returning to user-space
2089 *
2090 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2091 * uaddr2 which must be PI aware. Normal wakeup will wake on uaddr2 and
2092 * complete the acquisition of the rt_mutex prior to returning to userspace.
2093 * This ensures the rt_mutex maintains an owner when it has waiters; without
2094 * one, the pi logic wouldn't know which task to boost/deboost, if there was a
2095 * need to.
2096 *
2097 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2098 * via the following:
2099 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2100 * 2) wakeup on uaddr2 after a requeue and subsequent unlock
2101 * 3) signal (before or after requeue)
2102 * 4) timeout (before or after requeue)
2103 *
2104 * If 3, we setup a restart_block with futex_wait_requeue_pi() as the function.
2105 *
2106 * If 2, we may then block on trying to take the rt_mutex and return via:
2107 * 5) successful lock
2108 * 6) signal
2109 * 7) timeout
2110 * 8) other lock acquisition failure
2111 *
2112 * If 6, we setup a restart_block with futex_lock_pi() as the function.
2113 *
2114 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2115 *
2116 * Returns:
2117 * 0 - On success
2118 * <0 - On error
2119 */
2120 static int futex_wait_requeue_pi(u32 __user *uaddr, int fshared,
2121 u32 val, ktime_t *abs_time, u32 bitset,
2122 int clockrt, u32 __user *uaddr2)
2123 {
2124 struct hrtimer_sleeper timeout, *to = NULL;
2125 struct rt_mutex_waiter rt_waiter;
2126 struct rt_mutex *pi_mutex = NULL;
2127 DECLARE_WAITQUEUE(wait, current);
2128 struct restart_block *restart;
2129 struct futex_hash_bucket *hb;
2130 union futex_key key2;
2131 struct futex_q q;
2132 int res, ret;
2133 u32 uval;
2134
2135 if (!bitset)
2136 return -EINVAL;
2137
2138 if (abs_time) {
2139 to = &timeout;
2140 hrtimer_init_on_stack(&to->timer, clockrt ? CLOCK_REALTIME :
2141 CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2142 hrtimer_init_sleeper(to, current);
2143 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2144 current->timer_slack_ns);
2145 }
2146
2147 /*
2148 * The waiter is allocated on our stack, manipulated by the requeue
2149 * code while we sleep on uaddr.
2150 */
2151 debug_rt_mutex_init_waiter(&rt_waiter);
2152 rt_waiter.task = NULL;
2153
2154 q.pi_state = NULL;
2155 q.bitset = bitset;
2156 q.rt_waiter = &rt_waiter;
2157
2158 key2 = FUTEX_KEY_INIT;
2159 ret = get_futex_key(uaddr2, fshared, &key2);
2160 if (unlikely(ret != 0))
2161 goto out;
2162
2163 /* Prepare to wait on uaddr. */
2164 ret = futex_wait_setup(uaddr, val, fshared, &q, &hb);
2165 if (ret) {
2166 put_futex_key(fshared, &key2);
2167 goto out;
2168 }
2169
2170 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2171 futex_wait_queue_me(hb, &q, to, &wait);
2172
2173 spin_lock(&hb->lock);
2174 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2175 spin_unlock(&hb->lock);
2176 if (ret)
2177 goto out_put_keys;
2178
2179 /*
2180 * In order for us to be here, we know our q.key == key2, and since
2181 * we took the hb->lock above, we also know that futex_requeue() has
2182 * completed and we no longer have to concern ourselves with a wakeup
2183 * race with the atomic proxy lock acquition by the requeue code.
2184 */
2185
2186 /* Check if the requeue code acquired the second futex for us. */
2187 if (!q.rt_waiter) {
2188 /*
2189 * Got the lock. We might not be the anticipated owner if we
2190 * did a lock-steal - fix up the PI-state in that case.
2191 */
2192 if (q.pi_state && (q.pi_state->owner != current)) {
2193 spin_lock(q.lock_ptr);
2194 ret = fixup_pi_state_owner(uaddr2, &q, current,
2195 fshared);
2196 spin_unlock(q.lock_ptr);
2197 }
2198 } else {
2199 /*
2200 * We have been woken up by futex_unlock_pi(), a timeout, or a
2201 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2202 * the pi_state.
2203 */
2204 WARN_ON(!&q.pi_state);
2205 pi_mutex = &q.pi_state->pi_mutex;
2206 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2207 debug_rt_mutex_free_waiter(&rt_waiter);
2208
2209 spin_lock(q.lock_ptr);
2210 /*
2211 * Fixup the pi_state owner and possibly acquire the lock if we
2212 * haven't already.
2213 */
2214 res = fixup_owner(uaddr2, fshared, &q, !ret);
2215 /*
2216 * If fixup_owner() returned an error, proprogate that. If it
2217 * acquired the lock, clear our -ETIMEDOUT or -EINTR.
2218 */
2219 if (res)
2220 ret = (res < 0) ? res : 0;
2221
2222 /* Unqueue and drop the lock. */
2223 unqueue_me_pi(&q);
2224 }
2225
2226 /*
2227 * If fixup_pi_state_owner() faulted and was unable to handle the
2228 * fault, unlock the rt_mutex and return the fault to userspace.
2229 */
2230 if (ret == -EFAULT) {
2231 if (rt_mutex_owner(pi_mutex) == current)
2232 rt_mutex_unlock(pi_mutex);
2233 } else if (ret == -EINTR) {
2234 ret = -EFAULT;
2235 if (get_user(uval, uaddr2))
2236 goto out_put_keys;
2237
2238 /*
2239 * We've already been requeued, so restart by calling
2240 * futex_lock_pi() directly, rather then returning to this
2241 * function.
2242 */
2243 ret = -ERESTART_RESTARTBLOCK;
2244 restart = &current_thread_info()->restart_block;
2245 restart->fn = futex_lock_pi_restart;
2246 restart->futex.uaddr = (u32 *)uaddr2;
2247 restart->futex.val = uval;
2248 restart->futex.flags = 0;
2249 if (abs_time) {
2250 restart->futex.flags |= FLAGS_HAS_TIMEOUT;
2251 restart->futex.time = abs_time->tv64;
2252 }
2253
2254 if (fshared)
2255 restart->futex.flags |= FLAGS_SHARED;
2256 if (clockrt)
2257 restart->futex.flags |= FLAGS_CLOCKRT;
2258 }
2259
2260 out_put_keys:
2261 put_futex_key(fshared, &q.key);
2262 put_futex_key(fshared, &key2);
2263
2264 out:
2265 if (to) {
2266 hrtimer_cancel(&to->timer);
2267 destroy_hrtimer_on_stack(&to->timer);
2268 }
2269 return ret;
2270 }
2271
2272 /*
2273 * Support for robust futexes: the kernel cleans up held futexes at
2274 * thread exit time.
2275 *
2276 * Implementation: user-space maintains a per-thread list of locks it
2277 * is holding. Upon do_exit(), the kernel carefully walks this list,
2278 * and marks all locks that are owned by this thread with the
2279 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2280 * always manipulated with the lock held, so the list is private and
2281 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2282 * field, to allow the kernel to clean up if the thread dies after
2283 * acquiring the lock, but just before it could have added itself to
2284 * the list. There can only be one such pending lock.
2285 */
2286
2287 /**
2288 * sys_set_robust_list - set the robust-futex list head of a task
2289 * @head: pointer to the list-head
2290 * @len: length of the list-head, as userspace expects
2291 */
2292 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2293 size_t, len)
2294 {
2295 if (!futex_cmpxchg_enabled)
2296 return -ENOSYS;
2297 /*
2298 * The kernel knows only one size for now:
2299 */
2300 if (unlikely(len != sizeof(*head)))
2301 return -EINVAL;
2302
2303 current->robust_list = head;
2304
2305 return 0;
2306 }
2307
2308 /**
2309 * sys_get_robust_list - get the robust-futex list head of a task
2310 * @pid: pid of the process [zero for current task]
2311 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2312 * @len_ptr: pointer to a length field, the kernel fills in the header size
2313 */
2314 SYSCALL_DEFINE3(get_robust_list, int, pid,
2315 struct robust_list_head __user * __user *, head_ptr,
2316 size_t __user *, len_ptr)
2317 {
2318 struct robust_list_head __user *head;
2319 unsigned long ret;
2320 const struct cred *cred = current_cred(), *pcred;
2321
2322 if (!futex_cmpxchg_enabled)
2323 return -ENOSYS;
2324
2325 if (!pid)
2326 head = current->robust_list;
2327 else {
2328 struct task_struct *p;
2329
2330 ret = -ESRCH;
2331 rcu_read_lock();
2332 p = find_task_by_vpid(pid);
2333 if (!p)
2334 goto err_unlock;
2335 ret = -EPERM;
2336 pcred = __task_cred(p);
2337 if (cred->euid != pcred->euid &&
2338 cred->euid != pcred->uid &&
2339 !capable(CAP_SYS_PTRACE))
2340 goto err_unlock;
2341 head = p->robust_list;
2342 rcu_read_unlock();
2343 }
2344
2345 if (put_user(sizeof(*head), len_ptr))
2346 return -EFAULT;
2347 return put_user(head, head_ptr);
2348
2349 err_unlock:
2350 rcu_read_unlock();
2351
2352 return ret;
2353 }
2354
2355 /*
2356 * Process a futex-list entry, check whether it's owned by the
2357 * dying task, and do notification if so:
2358 */
2359 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2360 {
2361 u32 uval, nval, mval;
2362
2363 retry:
2364 if (get_user(uval, uaddr))
2365 return -1;
2366
2367 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2368 /*
2369 * Ok, this dying thread is truly holding a futex
2370 * of interest. Set the OWNER_DIED bit atomically
2371 * via cmpxchg, and if the value had FUTEX_WAITERS
2372 * set, wake up a waiter (if any). (We have to do a
2373 * futex_wake() even if OWNER_DIED is already set -
2374 * to handle the rare but possible case of recursive
2375 * thread-death.) The rest of the cleanup is done in
2376 * userspace.
2377 */
2378 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2379 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
2380
2381 if (nval == -EFAULT)
2382 return -1;
2383
2384 if (nval != uval)
2385 goto retry;
2386
2387 /*
2388 * Wake robust non-PI futexes here. The wakeup of
2389 * PI futexes happens in exit_pi_state():
2390 */
2391 if (!pi && (uval & FUTEX_WAITERS))
2392 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2393 }
2394 return 0;
2395 }
2396
2397 /*
2398 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2399 */
2400 static inline int fetch_robust_entry(struct robust_list __user **entry,
2401 struct robust_list __user * __user *head,
2402 int *pi)
2403 {
2404 unsigned long uentry;
2405
2406 if (get_user(uentry, (unsigned long __user *)head))
2407 return -EFAULT;
2408
2409 *entry = (void __user *)(uentry & ~1UL);
2410 *pi = uentry & 1;
2411
2412 return 0;
2413 }
2414
2415 /*
2416 * Walk curr->robust_list (very carefully, it's a userspace list!)
2417 * and mark any locks found there dead, and notify any waiters.
2418 *
2419 * We silently return on any sign of list-walking problem.
2420 */
2421 void exit_robust_list(struct task_struct *curr)
2422 {
2423 struct robust_list_head __user *head = curr->robust_list;
2424 struct robust_list __user *entry, *next_entry, *pending;
2425 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
2426 unsigned long futex_offset;
2427 int rc;
2428
2429 if (!futex_cmpxchg_enabled)
2430 return;
2431
2432 /*
2433 * Fetch the list head (which was registered earlier, via
2434 * sys_set_robust_list()):
2435 */
2436 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2437 return;
2438 /*
2439 * Fetch the relative futex offset:
2440 */
2441 if (get_user(futex_offset, &head->futex_offset))
2442 return;
2443 /*
2444 * Fetch any possibly pending lock-add first, and handle it
2445 * if it exists:
2446 */
2447 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2448 return;
2449
2450 next_entry = NULL; /* avoid warning with gcc */
2451 while (entry != &head->list) {
2452 /*
2453 * Fetch the next entry in the list before calling
2454 * handle_futex_death:
2455 */
2456 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2457 /*
2458 * A pending lock might already be on the list, so
2459 * don't process it twice:
2460 */
2461 if (entry != pending)
2462 if (handle_futex_death((void __user *)entry + futex_offset,
2463 curr, pi))
2464 return;
2465 if (rc)
2466 return;
2467 entry = next_entry;
2468 pi = next_pi;
2469 /*
2470 * Avoid excessively long or circular lists:
2471 */
2472 if (!--limit)
2473 break;
2474
2475 cond_resched();
2476 }
2477
2478 if (pending)
2479 handle_futex_death((void __user *)pending + futex_offset,
2480 curr, pip);
2481 }
2482
2483 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2484 u32 __user *uaddr2, u32 val2, u32 val3)
2485 {
2486 int clockrt, ret = -ENOSYS;
2487 int cmd = op & FUTEX_CMD_MASK;
2488 int fshared = 0;
2489
2490 if (!(op & FUTEX_PRIVATE_FLAG))
2491 fshared = 1;
2492
2493 clockrt = op & FUTEX_CLOCK_REALTIME;
2494 if (clockrt && cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2495 return -ENOSYS;
2496
2497 switch (cmd) {
2498 case FUTEX_WAIT:
2499 val3 = FUTEX_BITSET_MATCH_ANY;
2500 case FUTEX_WAIT_BITSET:
2501 ret = futex_wait(uaddr, fshared, val, timeout, val3, clockrt);
2502 break;
2503 case FUTEX_WAKE:
2504 val3 = FUTEX_BITSET_MATCH_ANY;
2505 case FUTEX_WAKE_BITSET:
2506 ret = futex_wake(uaddr, fshared, val, val3);
2507 break;
2508 case FUTEX_REQUEUE:
2509 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 0);
2510 break;
2511 case FUTEX_CMP_REQUEUE:
2512 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2513 0);
2514 break;
2515 case FUTEX_WAKE_OP:
2516 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2517 break;
2518 case FUTEX_LOCK_PI:
2519 if (futex_cmpxchg_enabled)
2520 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2521 break;
2522 case FUTEX_UNLOCK_PI:
2523 if (futex_cmpxchg_enabled)
2524 ret = futex_unlock_pi(uaddr, fshared);
2525 break;
2526 case FUTEX_TRYLOCK_PI:
2527 if (futex_cmpxchg_enabled)
2528 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2529 break;
2530 case FUTEX_WAIT_REQUEUE_PI:
2531 val3 = FUTEX_BITSET_MATCH_ANY;
2532 ret = futex_wait_requeue_pi(uaddr, fshared, val, timeout, val3,
2533 clockrt, uaddr2);
2534 break;
2535 case FUTEX_REQUEUE_PI:
2536 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL, 1);
2537 break;
2538 case FUTEX_CMP_REQUEUE_PI:
2539 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3,
2540 1);
2541 break;
2542 default:
2543 ret = -ENOSYS;
2544 }
2545 return ret;
2546 }
2547
2548
2549 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2550 struct timespec __user *, utime, u32 __user *, uaddr2,
2551 u32, val3)
2552 {
2553 struct timespec ts;
2554 ktime_t t, *tp = NULL;
2555 u32 val2 = 0;
2556 int cmd = op & FUTEX_CMD_MASK;
2557
2558 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2559 cmd == FUTEX_WAIT_BITSET ||
2560 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2561 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2562 return -EFAULT;
2563 if (!timespec_valid(&ts))
2564 return -EINVAL;
2565
2566 t = timespec_to_ktime(ts);
2567 if (cmd == FUTEX_WAIT)
2568 t = ktime_add_safe(ktime_get(), t);
2569 tp = &t;
2570 }
2571 /*
2572 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2573 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2574 */
2575 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2576 cmd == FUTEX_REQUEUE_PI || cmd == FUTEX_CMP_REQUEUE_PI ||
2577 cmd == FUTEX_WAKE_OP)
2578 val2 = (u32) (unsigned long) utime;
2579
2580 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2581 }
2582
2583 static int __init futex_init(void)
2584 {
2585 u32 curval;
2586 int i;
2587
2588 /*
2589 * This will fail and we want it. Some arch implementations do
2590 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2591 * functionality. We want to know that before we call in any
2592 * of the complex code paths. Also we want to prevent
2593 * registration of robust lists in that case. NULL is
2594 * guaranteed to fault and we get -EFAULT on functional
2595 * implementation, the non functional ones will return
2596 * -ENOSYS.
2597 */
2598 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2599 if (curval == -EFAULT)
2600 futex_cmpxchg_enabled = 1;
2601
2602 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2603 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2604 spin_lock_init(&futex_queues[i].lock);
2605 }
2606
2607 return 0;
2608 }
2609 __initcall(futex_init);