]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - kernel/futex.c
Merge tag 'cxl-for-5.15' of git://git.kernel.org/pub/scm/linux/kernel/git/cxl/cxl
[mirror_ubuntu-jammy-kernel.git] / kernel / futex.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
5 *
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 *
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
11 *
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 *
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 *
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 *
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 *
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
30 *
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
33 */
34 #include <linux/compat.h>
35 #include <linux/jhash.h>
36 #include <linux/pagemap.h>
37 #include <linux/syscalls.h>
38 #include <linux/freezer.h>
39 #include <linux/memblock.h>
40 #include <linux/fault-inject.h>
41 #include <linux/time_namespace.h>
42
43 #include <asm/futex.h>
44
45 #include "locking/rtmutex_common.h"
46
47 /*
48 * READ this before attempting to hack on futexes!
49 *
50 * Basic futex operation and ordering guarantees
51 * =============================================
52 *
53 * The waiter reads the futex value in user space and calls
54 * futex_wait(). This function computes the hash bucket and acquires
55 * the hash bucket lock. After that it reads the futex user space value
56 * again and verifies that the data has not changed. If it has not changed
57 * it enqueues itself into the hash bucket, releases the hash bucket lock
58 * and schedules.
59 *
60 * The waker side modifies the user space value of the futex and calls
61 * futex_wake(). This function computes the hash bucket and acquires the
62 * hash bucket lock. Then it looks for waiters on that futex in the hash
63 * bucket and wakes them.
64 *
65 * In futex wake up scenarios where no tasks are blocked on a futex, taking
66 * the hb spinlock can be avoided and simply return. In order for this
67 * optimization to work, ordering guarantees must exist so that the waiter
68 * being added to the list is acknowledged when the list is concurrently being
69 * checked by the waker, avoiding scenarios like the following:
70 *
71 * CPU 0 CPU 1
72 * val = *futex;
73 * sys_futex(WAIT, futex, val);
74 * futex_wait(futex, val);
75 * uval = *futex;
76 * *futex = newval;
77 * sys_futex(WAKE, futex);
78 * futex_wake(futex);
79 * if (queue_empty())
80 * return;
81 * if (uval == val)
82 * lock(hash_bucket(futex));
83 * queue();
84 * unlock(hash_bucket(futex));
85 * schedule();
86 *
87 * This would cause the waiter on CPU 0 to wait forever because it
88 * missed the transition of the user space value from val to newval
89 * and the waker did not find the waiter in the hash bucket queue.
90 *
91 * The correct serialization ensures that a waiter either observes
92 * the changed user space value before blocking or is woken by a
93 * concurrent waker:
94 *
95 * CPU 0 CPU 1
96 * val = *futex;
97 * sys_futex(WAIT, futex, val);
98 * futex_wait(futex, val);
99 *
100 * waiters++; (a)
101 * smp_mb(); (A) <-- paired with -.
102 * |
103 * lock(hash_bucket(futex)); |
104 * |
105 * uval = *futex; |
106 * | *futex = newval;
107 * | sys_futex(WAKE, futex);
108 * | futex_wake(futex);
109 * |
110 * `--------> smp_mb(); (B)
111 * if (uval == val)
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule(); if (waiters)
115 * lock(hash_bucket(futex));
116 * else wake_waiters(futex);
117 * waiters--; (b) unlock(hash_bucket(futex));
118 *
119 * Where (A) orders the waiters increment and the futex value read through
120 * atomic operations (see hb_waiters_inc) and where (B) orders the write
121 * to futex and the waiters read (see hb_waiters_pending()).
122 *
123 * This yields the following case (where X:=waiters, Y:=futex):
124 *
125 * X = Y = 0
126 *
127 * w[X]=1 w[Y]=1
128 * MB MB
129 * r[Y]=y r[X]=x
130 *
131 * Which guarantees that x==0 && y==0 is impossible; which translates back into
132 * the guarantee that we cannot both miss the futex variable change and the
133 * enqueue.
134 *
135 * Note that a new waiter is accounted for in (a) even when it is possible that
136 * the wait call can return error, in which case we backtrack from it in (b).
137 * Refer to the comment in queue_lock().
138 *
139 * Similarly, in order to account for waiters being requeued on another
140 * address we always increment the waiters for the destination bucket before
141 * acquiring the lock. It then decrements them again after releasing it -
142 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
143 * will do the additional required waiter count housekeeping. This is done for
144 * double_lock_hb() and double_unlock_hb(), respectively.
145 */
146
147 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
148 #define futex_cmpxchg_enabled 1
149 #else
150 static int __read_mostly futex_cmpxchg_enabled;
151 #endif
152
153 /*
154 * Futex flags used to encode options to functions and preserve them across
155 * restarts.
156 */
157 #ifdef CONFIG_MMU
158 # define FLAGS_SHARED 0x01
159 #else
160 /*
161 * NOMMU does not have per process address space. Let the compiler optimize
162 * code away.
163 */
164 # define FLAGS_SHARED 0x00
165 #endif
166 #define FLAGS_CLOCKRT 0x02
167 #define FLAGS_HAS_TIMEOUT 0x04
168
169 /*
170 * Priority Inheritance state:
171 */
172 struct futex_pi_state {
173 /*
174 * list of 'owned' pi_state instances - these have to be
175 * cleaned up in do_exit() if the task exits prematurely:
176 */
177 struct list_head list;
178
179 /*
180 * The PI object:
181 */
182 struct rt_mutex_base pi_mutex;
183
184 struct task_struct *owner;
185 refcount_t refcount;
186
187 union futex_key key;
188 } __randomize_layout;
189
190 /**
191 * struct futex_q - The hashed futex queue entry, one per waiting task
192 * @list: priority-sorted list of tasks waiting on this futex
193 * @task: the task waiting on the futex
194 * @lock_ptr: the hash bucket lock
195 * @key: the key the futex is hashed on
196 * @pi_state: optional priority inheritance state
197 * @rt_waiter: rt_waiter storage for use with requeue_pi
198 * @requeue_pi_key: the requeue_pi target futex key
199 * @bitset: bitset for the optional bitmasked wakeup
200 * @requeue_state: State field for futex_requeue_pi()
201 * @requeue_wait: RCU wait for futex_requeue_pi() (RT only)
202 *
203 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
204 * we can wake only the relevant ones (hashed queues may be shared).
205 *
206 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
207 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
208 * The order of wakeup is always to make the first condition true, then
209 * the second.
210 *
211 * PI futexes are typically woken before they are removed from the hash list via
212 * the rt_mutex code. See unqueue_me_pi().
213 */
214 struct futex_q {
215 struct plist_node list;
216
217 struct task_struct *task;
218 spinlock_t *lock_ptr;
219 union futex_key key;
220 struct futex_pi_state *pi_state;
221 struct rt_mutex_waiter *rt_waiter;
222 union futex_key *requeue_pi_key;
223 u32 bitset;
224 atomic_t requeue_state;
225 #ifdef CONFIG_PREEMPT_RT
226 struct rcuwait requeue_wait;
227 #endif
228 } __randomize_layout;
229
230 /*
231 * On PREEMPT_RT, the hash bucket lock is a 'sleeping' spinlock with an
232 * underlying rtmutex. The task which is about to be requeued could have
233 * just woken up (timeout, signal). After the wake up the task has to
234 * acquire hash bucket lock, which is held by the requeue code. As a task
235 * can only be blocked on _ONE_ rtmutex at a time, the proxy lock blocking
236 * and the hash bucket lock blocking would collide and corrupt state.
237 *
238 * On !PREEMPT_RT this is not a problem and everything could be serialized
239 * on hash bucket lock, but aside of having the benefit of common code,
240 * this allows to avoid doing the requeue when the task is already on the
241 * way out and taking the hash bucket lock of the original uaddr1 when the
242 * requeue has been completed.
243 *
244 * The following state transitions are valid:
245 *
246 * On the waiter side:
247 * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_IGNORE
248 * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_WAIT
249 *
250 * On the requeue side:
251 * Q_REQUEUE_PI_NONE -> Q_REQUEUE_PI_INPROGRESS
252 * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_DONE/LOCKED
253 * Q_REQUEUE_PI_IN_PROGRESS -> Q_REQUEUE_PI_NONE (requeue failed)
254 * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_DONE/LOCKED
255 * Q_REQUEUE_PI_WAIT -> Q_REQUEUE_PI_IGNORE (requeue failed)
256 *
257 * The requeue side ignores a waiter with state Q_REQUEUE_PI_IGNORE as this
258 * signals that the waiter is already on the way out. It also means that
259 * the waiter is still on the 'wait' futex, i.e. uaddr1.
260 *
261 * The waiter side signals early wakeup to the requeue side either through
262 * setting state to Q_REQUEUE_PI_IGNORE or to Q_REQUEUE_PI_WAIT depending
263 * on the current state. In case of Q_REQUEUE_PI_IGNORE it can immediately
264 * proceed to take the hash bucket lock of uaddr1. If it set state to WAIT,
265 * which means the wakeup is interleaving with a requeue in progress it has
266 * to wait for the requeue side to change the state. Either to DONE/LOCKED
267 * or to IGNORE. DONE/LOCKED means the waiter q is now on the uaddr2 futex
268 * and either blocked (DONE) or has acquired it (LOCKED). IGNORE is set by
269 * the requeue side when the requeue attempt failed via deadlock detection
270 * and therefore the waiter q is still on the uaddr1 futex.
271 */
272 enum {
273 Q_REQUEUE_PI_NONE = 0,
274 Q_REQUEUE_PI_IGNORE,
275 Q_REQUEUE_PI_IN_PROGRESS,
276 Q_REQUEUE_PI_WAIT,
277 Q_REQUEUE_PI_DONE,
278 Q_REQUEUE_PI_LOCKED,
279 };
280
281 static const struct futex_q futex_q_init = {
282 /* list gets initialized in queue_me()*/
283 .key = FUTEX_KEY_INIT,
284 .bitset = FUTEX_BITSET_MATCH_ANY,
285 .requeue_state = ATOMIC_INIT(Q_REQUEUE_PI_NONE),
286 };
287
288 /*
289 * Hash buckets are shared by all the futex_keys that hash to the same
290 * location. Each key may have multiple futex_q structures, one for each task
291 * waiting on a futex.
292 */
293 struct futex_hash_bucket {
294 atomic_t waiters;
295 spinlock_t lock;
296 struct plist_head chain;
297 } ____cacheline_aligned_in_smp;
298
299 /*
300 * The base of the bucket array and its size are always used together
301 * (after initialization only in hash_futex()), so ensure that they
302 * reside in the same cacheline.
303 */
304 static struct {
305 struct futex_hash_bucket *queues;
306 unsigned long hashsize;
307 } __futex_data __read_mostly __aligned(2*sizeof(long));
308 #define futex_queues (__futex_data.queues)
309 #define futex_hashsize (__futex_data.hashsize)
310
311
312 /*
313 * Fault injections for futexes.
314 */
315 #ifdef CONFIG_FAIL_FUTEX
316
317 static struct {
318 struct fault_attr attr;
319
320 bool ignore_private;
321 } fail_futex = {
322 .attr = FAULT_ATTR_INITIALIZER,
323 .ignore_private = false,
324 };
325
326 static int __init setup_fail_futex(char *str)
327 {
328 return setup_fault_attr(&fail_futex.attr, str);
329 }
330 __setup("fail_futex=", setup_fail_futex);
331
332 static bool should_fail_futex(bool fshared)
333 {
334 if (fail_futex.ignore_private && !fshared)
335 return false;
336
337 return should_fail(&fail_futex.attr, 1);
338 }
339
340 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
341
342 static int __init fail_futex_debugfs(void)
343 {
344 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
345 struct dentry *dir;
346
347 dir = fault_create_debugfs_attr("fail_futex", NULL,
348 &fail_futex.attr);
349 if (IS_ERR(dir))
350 return PTR_ERR(dir);
351
352 debugfs_create_bool("ignore-private", mode, dir,
353 &fail_futex.ignore_private);
354 return 0;
355 }
356
357 late_initcall(fail_futex_debugfs);
358
359 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
360
361 #else
362 static inline bool should_fail_futex(bool fshared)
363 {
364 return false;
365 }
366 #endif /* CONFIG_FAIL_FUTEX */
367
368 #ifdef CONFIG_COMPAT
369 static void compat_exit_robust_list(struct task_struct *curr);
370 #endif
371
372 /*
373 * Reflects a new waiter being added to the waitqueue.
374 */
375 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
376 {
377 #ifdef CONFIG_SMP
378 atomic_inc(&hb->waiters);
379 /*
380 * Full barrier (A), see the ordering comment above.
381 */
382 smp_mb__after_atomic();
383 #endif
384 }
385
386 /*
387 * Reflects a waiter being removed from the waitqueue by wakeup
388 * paths.
389 */
390 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
391 {
392 #ifdef CONFIG_SMP
393 atomic_dec(&hb->waiters);
394 #endif
395 }
396
397 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
398 {
399 #ifdef CONFIG_SMP
400 /*
401 * Full barrier (B), see the ordering comment above.
402 */
403 smp_mb();
404 return atomic_read(&hb->waiters);
405 #else
406 return 1;
407 #endif
408 }
409
410 /**
411 * hash_futex - Return the hash bucket in the global hash
412 * @key: Pointer to the futex key for which the hash is calculated
413 *
414 * We hash on the keys returned from get_futex_key (see below) and return the
415 * corresponding hash bucket in the global hash.
416 */
417 static struct futex_hash_bucket *hash_futex(union futex_key *key)
418 {
419 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
420 key->both.offset);
421
422 return &futex_queues[hash & (futex_hashsize - 1)];
423 }
424
425
426 /**
427 * match_futex - Check whether two futex keys are equal
428 * @key1: Pointer to key1
429 * @key2: Pointer to key2
430 *
431 * Return 1 if two futex_keys are equal, 0 otherwise.
432 */
433 static inline int match_futex(union futex_key *key1, union futex_key *key2)
434 {
435 return (key1 && key2
436 && key1->both.word == key2->both.word
437 && key1->both.ptr == key2->both.ptr
438 && key1->both.offset == key2->both.offset);
439 }
440
441 enum futex_access {
442 FUTEX_READ,
443 FUTEX_WRITE
444 };
445
446 /**
447 * futex_setup_timer - set up the sleeping hrtimer.
448 * @time: ptr to the given timeout value
449 * @timeout: the hrtimer_sleeper structure to be set up
450 * @flags: futex flags
451 * @range_ns: optional range in ns
452 *
453 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
454 * value given
455 */
456 static inline struct hrtimer_sleeper *
457 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
458 int flags, u64 range_ns)
459 {
460 if (!time)
461 return NULL;
462
463 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
464 CLOCK_REALTIME : CLOCK_MONOTONIC,
465 HRTIMER_MODE_ABS);
466 /*
467 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
468 * effectively the same as calling hrtimer_set_expires().
469 */
470 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
471
472 return timeout;
473 }
474
475 /*
476 * Generate a machine wide unique identifier for this inode.
477 *
478 * This relies on u64 not wrapping in the life-time of the machine; which with
479 * 1ns resolution means almost 585 years.
480 *
481 * This further relies on the fact that a well formed program will not unmap
482 * the file while it has a (shared) futex waiting on it. This mapping will have
483 * a file reference which pins the mount and inode.
484 *
485 * If for some reason an inode gets evicted and read back in again, it will get
486 * a new sequence number and will _NOT_ match, even though it is the exact same
487 * file.
488 *
489 * It is important that match_futex() will never have a false-positive, esp.
490 * for PI futexes that can mess up the state. The above argues that false-negatives
491 * are only possible for malformed programs.
492 */
493 static u64 get_inode_sequence_number(struct inode *inode)
494 {
495 static atomic64_t i_seq;
496 u64 old;
497
498 /* Does the inode already have a sequence number? */
499 old = atomic64_read(&inode->i_sequence);
500 if (likely(old))
501 return old;
502
503 for (;;) {
504 u64 new = atomic64_add_return(1, &i_seq);
505 if (WARN_ON_ONCE(!new))
506 continue;
507
508 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
509 if (old)
510 return old;
511 return new;
512 }
513 }
514
515 /**
516 * get_futex_key() - Get parameters which are the keys for a futex
517 * @uaddr: virtual address of the futex
518 * @fshared: false for a PROCESS_PRIVATE futex, true for PROCESS_SHARED
519 * @key: address where result is stored.
520 * @rw: mapping needs to be read/write (values: FUTEX_READ,
521 * FUTEX_WRITE)
522 *
523 * Return: a negative error code or 0
524 *
525 * The key words are stored in @key on success.
526 *
527 * For shared mappings (when @fshared), the key is:
528 *
529 * ( inode->i_sequence, page->index, offset_within_page )
530 *
531 * [ also see get_inode_sequence_number() ]
532 *
533 * For private mappings (or when !@fshared), the key is:
534 *
535 * ( current->mm, address, 0 )
536 *
537 * This allows (cross process, where applicable) identification of the futex
538 * without keeping the page pinned for the duration of the FUTEX_WAIT.
539 *
540 * lock_page() might sleep, the caller should not hold a spinlock.
541 */
542 static int get_futex_key(u32 __user *uaddr, bool fshared, union futex_key *key,
543 enum futex_access rw)
544 {
545 unsigned long address = (unsigned long)uaddr;
546 struct mm_struct *mm = current->mm;
547 struct page *page, *tail;
548 struct address_space *mapping;
549 int err, ro = 0;
550
551 /*
552 * The futex address must be "naturally" aligned.
553 */
554 key->both.offset = address % PAGE_SIZE;
555 if (unlikely((address % sizeof(u32)) != 0))
556 return -EINVAL;
557 address -= key->both.offset;
558
559 if (unlikely(!access_ok(uaddr, sizeof(u32))))
560 return -EFAULT;
561
562 if (unlikely(should_fail_futex(fshared)))
563 return -EFAULT;
564
565 /*
566 * PROCESS_PRIVATE futexes are fast.
567 * As the mm cannot disappear under us and the 'key' only needs
568 * virtual address, we dont even have to find the underlying vma.
569 * Note : We do have to check 'uaddr' is a valid user address,
570 * but access_ok() should be faster than find_vma()
571 */
572 if (!fshared) {
573 key->private.mm = mm;
574 key->private.address = address;
575 return 0;
576 }
577
578 again:
579 /* Ignore any VERIFY_READ mapping (futex common case) */
580 if (unlikely(should_fail_futex(true)))
581 return -EFAULT;
582
583 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
584 /*
585 * If write access is not required (eg. FUTEX_WAIT), try
586 * and get read-only access.
587 */
588 if (err == -EFAULT && rw == FUTEX_READ) {
589 err = get_user_pages_fast(address, 1, 0, &page);
590 ro = 1;
591 }
592 if (err < 0)
593 return err;
594 else
595 err = 0;
596
597 /*
598 * The treatment of mapping from this point on is critical. The page
599 * lock protects many things but in this context the page lock
600 * stabilizes mapping, prevents inode freeing in the shared
601 * file-backed region case and guards against movement to swap cache.
602 *
603 * Strictly speaking the page lock is not needed in all cases being
604 * considered here and page lock forces unnecessarily serialization
605 * From this point on, mapping will be re-verified if necessary and
606 * page lock will be acquired only if it is unavoidable
607 *
608 * Mapping checks require the head page for any compound page so the
609 * head page and mapping is looked up now. For anonymous pages, it
610 * does not matter if the page splits in the future as the key is
611 * based on the address. For filesystem-backed pages, the tail is
612 * required as the index of the page determines the key. For
613 * base pages, there is no tail page and tail == page.
614 */
615 tail = page;
616 page = compound_head(page);
617 mapping = READ_ONCE(page->mapping);
618
619 /*
620 * If page->mapping is NULL, then it cannot be a PageAnon
621 * page; but it might be the ZERO_PAGE or in the gate area or
622 * in a special mapping (all cases which we are happy to fail);
623 * or it may have been a good file page when get_user_pages_fast
624 * found it, but truncated or holepunched or subjected to
625 * invalidate_complete_page2 before we got the page lock (also
626 * cases which we are happy to fail). And we hold a reference,
627 * so refcount care in invalidate_complete_page's remove_mapping
628 * prevents drop_caches from setting mapping to NULL beneath us.
629 *
630 * The case we do have to guard against is when memory pressure made
631 * shmem_writepage move it from filecache to swapcache beneath us:
632 * an unlikely race, but we do need to retry for page->mapping.
633 */
634 if (unlikely(!mapping)) {
635 int shmem_swizzled;
636
637 /*
638 * Page lock is required to identify which special case above
639 * applies. If this is really a shmem page then the page lock
640 * will prevent unexpected transitions.
641 */
642 lock_page(page);
643 shmem_swizzled = PageSwapCache(page) || page->mapping;
644 unlock_page(page);
645 put_page(page);
646
647 if (shmem_swizzled)
648 goto again;
649
650 return -EFAULT;
651 }
652
653 /*
654 * Private mappings are handled in a simple way.
655 *
656 * If the futex key is stored on an anonymous page, then the associated
657 * object is the mm which is implicitly pinned by the calling process.
658 *
659 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
660 * it's a read-only handle, it's expected that futexes attach to
661 * the object not the particular process.
662 */
663 if (PageAnon(page)) {
664 /*
665 * A RO anonymous page will never change and thus doesn't make
666 * sense for futex operations.
667 */
668 if (unlikely(should_fail_futex(true)) || ro) {
669 err = -EFAULT;
670 goto out;
671 }
672
673 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
674 key->private.mm = mm;
675 key->private.address = address;
676
677 } else {
678 struct inode *inode;
679
680 /*
681 * The associated futex object in this case is the inode and
682 * the page->mapping must be traversed. Ordinarily this should
683 * be stabilised under page lock but it's not strictly
684 * necessary in this case as we just want to pin the inode, not
685 * update the radix tree or anything like that.
686 *
687 * The RCU read lock is taken as the inode is finally freed
688 * under RCU. If the mapping still matches expectations then the
689 * mapping->host can be safely accessed as being a valid inode.
690 */
691 rcu_read_lock();
692
693 if (READ_ONCE(page->mapping) != mapping) {
694 rcu_read_unlock();
695 put_page(page);
696
697 goto again;
698 }
699
700 inode = READ_ONCE(mapping->host);
701 if (!inode) {
702 rcu_read_unlock();
703 put_page(page);
704
705 goto again;
706 }
707
708 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
709 key->shared.i_seq = get_inode_sequence_number(inode);
710 key->shared.pgoff = page_to_pgoff(tail);
711 rcu_read_unlock();
712 }
713
714 out:
715 put_page(page);
716 return err;
717 }
718
719 /**
720 * fault_in_user_writeable() - Fault in user address and verify RW access
721 * @uaddr: pointer to faulting user space address
722 *
723 * Slow path to fixup the fault we just took in the atomic write
724 * access to @uaddr.
725 *
726 * We have no generic implementation of a non-destructive write to the
727 * user address. We know that we faulted in the atomic pagefault
728 * disabled section so we can as well avoid the #PF overhead by
729 * calling get_user_pages() right away.
730 */
731 static int fault_in_user_writeable(u32 __user *uaddr)
732 {
733 struct mm_struct *mm = current->mm;
734 int ret;
735
736 mmap_read_lock(mm);
737 ret = fixup_user_fault(mm, (unsigned long)uaddr,
738 FAULT_FLAG_WRITE, NULL);
739 mmap_read_unlock(mm);
740
741 return ret < 0 ? ret : 0;
742 }
743
744 /**
745 * futex_top_waiter() - Return the highest priority waiter on a futex
746 * @hb: the hash bucket the futex_q's reside in
747 * @key: the futex key (to distinguish it from other futex futex_q's)
748 *
749 * Must be called with the hb lock held.
750 */
751 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
752 union futex_key *key)
753 {
754 struct futex_q *this;
755
756 plist_for_each_entry(this, &hb->chain, list) {
757 if (match_futex(&this->key, key))
758 return this;
759 }
760 return NULL;
761 }
762
763 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
764 u32 uval, u32 newval)
765 {
766 int ret;
767
768 pagefault_disable();
769 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
770 pagefault_enable();
771
772 return ret;
773 }
774
775 static int get_futex_value_locked(u32 *dest, u32 __user *from)
776 {
777 int ret;
778
779 pagefault_disable();
780 ret = __get_user(*dest, from);
781 pagefault_enable();
782
783 return ret ? -EFAULT : 0;
784 }
785
786
787 /*
788 * PI code:
789 */
790 static int refill_pi_state_cache(void)
791 {
792 struct futex_pi_state *pi_state;
793
794 if (likely(current->pi_state_cache))
795 return 0;
796
797 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
798
799 if (!pi_state)
800 return -ENOMEM;
801
802 INIT_LIST_HEAD(&pi_state->list);
803 /* pi_mutex gets initialized later */
804 pi_state->owner = NULL;
805 refcount_set(&pi_state->refcount, 1);
806 pi_state->key = FUTEX_KEY_INIT;
807
808 current->pi_state_cache = pi_state;
809
810 return 0;
811 }
812
813 static struct futex_pi_state *alloc_pi_state(void)
814 {
815 struct futex_pi_state *pi_state = current->pi_state_cache;
816
817 WARN_ON(!pi_state);
818 current->pi_state_cache = NULL;
819
820 return pi_state;
821 }
822
823 static void pi_state_update_owner(struct futex_pi_state *pi_state,
824 struct task_struct *new_owner)
825 {
826 struct task_struct *old_owner = pi_state->owner;
827
828 lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
829
830 if (old_owner) {
831 raw_spin_lock(&old_owner->pi_lock);
832 WARN_ON(list_empty(&pi_state->list));
833 list_del_init(&pi_state->list);
834 raw_spin_unlock(&old_owner->pi_lock);
835 }
836
837 if (new_owner) {
838 raw_spin_lock(&new_owner->pi_lock);
839 WARN_ON(!list_empty(&pi_state->list));
840 list_add(&pi_state->list, &new_owner->pi_state_list);
841 pi_state->owner = new_owner;
842 raw_spin_unlock(&new_owner->pi_lock);
843 }
844 }
845
846 static void get_pi_state(struct futex_pi_state *pi_state)
847 {
848 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
849 }
850
851 /*
852 * Drops a reference to the pi_state object and frees or caches it
853 * when the last reference is gone.
854 */
855 static void put_pi_state(struct futex_pi_state *pi_state)
856 {
857 if (!pi_state)
858 return;
859
860 if (!refcount_dec_and_test(&pi_state->refcount))
861 return;
862
863 /*
864 * If pi_state->owner is NULL, the owner is most probably dying
865 * and has cleaned up the pi_state already
866 */
867 if (pi_state->owner) {
868 unsigned long flags;
869
870 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
871 pi_state_update_owner(pi_state, NULL);
872 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
873 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
874 }
875
876 if (current->pi_state_cache) {
877 kfree(pi_state);
878 } else {
879 /*
880 * pi_state->list is already empty.
881 * clear pi_state->owner.
882 * refcount is at 0 - put it back to 1.
883 */
884 pi_state->owner = NULL;
885 refcount_set(&pi_state->refcount, 1);
886 current->pi_state_cache = pi_state;
887 }
888 }
889
890 #ifdef CONFIG_FUTEX_PI
891
892 /*
893 * This task is holding PI mutexes at exit time => bad.
894 * Kernel cleans up PI-state, but userspace is likely hosed.
895 * (Robust-futex cleanup is separate and might save the day for userspace.)
896 */
897 static void exit_pi_state_list(struct task_struct *curr)
898 {
899 struct list_head *next, *head = &curr->pi_state_list;
900 struct futex_pi_state *pi_state;
901 struct futex_hash_bucket *hb;
902 union futex_key key = FUTEX_KEY_INIT;
903
904 if (!futex_cmpxchg_enabled)
905 return;
906 /*
907 * We are a ZOMBIE and nobody can enqueue itself on
908 * pi_state_list anymore, but we have to be careful
909 * versus waiters unqueueing themselves:
910 */
911 raw_spin_lock_irq(&curr->pi_lock);
912 while (!list_empty(head)) {
913 next = head->next;
914 pi_state = list_entry(next, struct futex_pi_state, list);
915 key = pi_state->key;
916 hb = hash_futex(&key);
917
918 /*
919 * We can race against put_pi_state() removing itself from the
920 * list (a waiter going away). put_pi_state() will first
921 * decrement the reference count and then modify the list, so
922 * its possible to see the list entry but fail this reference
923 * acquire.
924 *
925 * In that case; drop the locks to let put_pi_state() make
926 * progress and retry the loop.
927 */
928 if (!refcount_inc_not_zero(&pi_state->refcount)) {
929 raw_spin_unlock_irq(&curr->pi_lock);
930 cpu_relax();
931 raw_spin_lock_irq(&curr->pi_lock);
932 continue;
933 }
934 raw_spin_unlock_irq(&curr->pi_lock);
935
936 spin_lock(&hb->lock);
937 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
938 raw_spin_lock(&curr->pi_lock);
939 /*
940 * We dropped the pi-lock, so re-check whether this
941 * task still owns the PI-state:
942 */
943 if (head->next != next) {
944 /* retain curr->pi_lock for the loop invariant */
945 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
946 spin_unlock(&hb->lock);
947 put_pi_state(pi_state);
948 continue;
949 }
950
951 WARN_ON(pi_state->owner != curr);
952 WARN_ON(list_empty(&pi_state->list));
953 list_del_init(&pi_state->list);
954 pi_state->owner = NULL;
955
956 raw_spin_unlock(&curr->pi_lock);
957 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
958 spin_unlock(&hb->lock);
959
960 rt_mutex_futex_unlock(&pi_state->pi_mutex);
961 put_pi_state(pi_state);
962
963 raw_spin_lock_irq(&curr->pi_lock);
964 }
965 raw_spin_unlock_irq(&curr->pi_lock);
966 }
967 #else
968 static inline void exit_pi_state_list(struct task_struct *curr) { }
969 #endif
970
971 /*
972 * We need to check the following states:
973 *
974 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
975 *
976 * [1] NULL | --- | --- | 0 | 0/1 | Valid
977 * [2] NULL | --- | --- | >0 | 0/1 | Valid
978 *
979 * [3] Found | NULL | -- | Any | 0/1 | Invalid
980 *
981 * [4] Found | Found | NULL | 0 | 1 | Valid
982 * [5] Found | Found | NULL | >0 | 1 | Invalid
983 *
984 * [6] Found | Found | task | 0 | 1 | Valid
985 *
986 * [7] Found | Found | NULL | Any | 0 | Invalid
987 *
988 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
989 * [9] Found | Found | task | 0 | 0 | Invalid
990 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
991 *
992 * [1] Indicates that the kernel can acquire the futex atomically. We
993 * came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
994 *
995 * [2] Valid, if TID does not belong to a kernel thread. If no matching
996 * thread is found then it indicates that the owner TID has died.
997 *
998 * [3] Invalid. The waiter is queued on a non PI futex
999 *
1000 * [4] Valid state after exit_robust_list(), which sets the user space
1001 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1002 *
1003 * [5] The user space value got manipulated between exit_robust_list()
1004 * and exit_pi_state_list()
1005 *
1006 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1007 * the pi_state but cannot access the user space value.
1008 *
1009 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1010 *
1011 * [8] Owner and user space value match
1012 *
1013 * [9] There is no transient state which sets the user space TID to 0
1014 * except exit_robust_list(), but this is indicated by the
1015 * FUTEX_OWNER_DIED bit. See [4]
1016 *
1017 * [10] There is no transient state which leaves owner and user space
1018 * TID out of sync. Except one error case where the kernel is denied
1019 * write access to the user address, see fixup_pi_state_owner().
1020 *
1021 *
1022 * Serialization and lifetime rules:
1023 *
1024 * hb->lock:
1025 *
1026 * hb -> futex_q, relation
1027 * futex_q -> pi_state, relation
1028 *
1029 * (cannot be raw because hb can contain arbitrary amount
1030 * of futex_q's)
1031 *
1032 * pi_mutex->wait_lock:
1033 *
1034 * {uval, pi_state}
1035 *
1036 * (and pi_mutex 'obviously')
1037 *
1038 * p->pi_lock:
1039 *
1040 * p->pi_state_list -> pi_state->list, relation
1041 * pi_mutex->owner -> pi_state->owner, relation
1042 *
1043 * pi_state->refcount:
1044 *
1045 * pi_state lifetime
1046 *
1047 *
1048 * Lock order:
1049 *
1050 * hb->lock
1051 * pi_mutex->wait_lock
1052 * p->pi_lock
1053 *
1054 */
1055
1056 /*
1057 * Validate that the existing waiter has a pi_state and sanity check
1058 * the pi_state against the user space value. If correct, attach to
1059 * it.
1060 */
1061 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062 struct futex_pi_state *pi_state,
1063 struct futex_pi_state **ps)
1064 {
1065 pid_t pid = uval & FUTEX_TID_MASK;
1066 u32 uval2;
1067 int ret;
1068
1069 /*
1070 * Userspace might have messed up non-PI and PI futexes [3]
1071 */
1072 if (unlikely(!pi_state))
1073 return -EINVAL;
1074
1075 /*
1076 * We get here with hb->lock held, and having found a
1077 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079 * which in turn means that futex_lock_pi() still has a reference on
1080 * our pi_state.
1081 *
1082 * The waiter holding a reference on @pi_state also protects against
1083 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085 * free pi_state before we can take a reference ourselves.
1086 */
1087 WARN_ON(!refcount_read(&pi_state->refcount));
1088
1089 /*
1090 * Now that we have a pi_state, we can acquire wait_lock
1091 * and do the state validation.
1092 */
1093 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095 /*
1096 * Since {uval, pi_state} is serialized by wait_lock, and our current
1097 * uval was read without holding it, it can have changed. Verify it
1098 * still is what we expect it to be, otherwise retry the entire
1099 * operation.
1100 */
1101 if (get_futex_value_locked(&uval2, uaddr))
1102 goto out_efault;
1103
1104 if (uval != uval2)
1105 goto out_eagain;
1106
1107 /*
1108 * Handle the owner died case:
1109 */
1110 if (uval & FUTEX_OWNER_DIED) {
1111 /*
1112 * exit_pi_state_list sets owner to NULL and wakes the
1113 * topmost waiter. The task which acquires the
1114 * pi_state->rt_mutex will fixup owner.
1115 */
1116 if (!pi_state->owner) {
1117 /*
1118 * No pi state owner, but the user space TID
1119 * is not 0. Inconsistent state. [5]
1120 */
1121 if (pid)
1122 goto out_einval;
1123 /*
1124 * Take a ref on the state and return success. [4]
1125 */
1126 goto out_attach;
1127 }
1128
1129 /*
1130 * If TID is 0, then either the dying owner has not
1131 * yet executed exit_pi_state_list() or some waiter
1132 * acquired the rtmutex in the pi state, but did not
1133 * yet fixup the TID in user space.
1134 *
1135 * Take a ref on the state and return success. [6]
1136 */
1137 if (!pid)
1138 goto out_attach;
1139 } else {
1140 /*
1141 * If the owner died bit is not set, then the pi_state
1142 * must have an owner. [7]
1143 */
1144 if (!pi_state->owner)
1145 goto out_einval;
1146 }
1147
1148 /*
1149 * Bail out if user space manipulated the futex value. If pi
1150 * state exists then the owner TID must be the same as the
1151 * user space TID. [9/10]
1152 */
1153 if (pid != task_pid_vnr(pi_state->owner))
1154 goto out_einval;
1155
1156 out_attach:
1157 get_pi_state(pi_state);
1158 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1159 *ps = pi_state;
1160 return 0;
1161
1162 out_einval:
1163 ret = -EINVAL;
1164 goto out_error;
1165
1166 out_eagain:
1167 ret = -EAGAIN;
1168 goto out_error;
1169
1170 out_efault:
1171 ret = -EFAULT;
1172 goto out_error;
1173
1174 out_error:
1175 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176 return ret;
1177 }
1178
1179 /**
1180 * wait_for_owner_exiting - Block until the owner has exited
1181 * @ret: owner's current futex lock status
1182 * @exiting: Pointer to the exiting task
1183 *
1184 * Caller must hold a refcount on @exiting.
1185 */
1186 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1187 {
1188 if (ret != -EBUSY) {
1189 WARN_ON_ONCE(exiting);
1190 return;
1191 }
1192
1193 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1194 return;
1195
1196 mutex_lock(&exiting->futex_exit_mutex);
1197 /*
1198 * No point in doing state checking here. If the waiter got here
1199 * while the task was in exec()->exec_futex_release() then it can
1200 * have any FUTEX_STATE_* value when the waiter has acquired the
1201 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1202 * already. Highly unlikely and not a problem. Just one more round
1203 * through the futex maze.
1204 */
1205 mutex_unlock(&exiting->futex_exit_mutex);
1206
1207 put_task_struct(exiting);
1208 }
1209
1210 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1211 struct task_struct *tsk)
1212 {
1213 u32 uval2;
1214
1215 /*
1216 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1217 * caller that the alleged owner is busy.
1218 */
1219 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1220 return -EBUSY;
1221
1222 /*
1223 * Reread the user space value to handle the following situation:
1224 *
1225 * CPU0 CPU1
1226 *
1227 * sys_exit() sys_futex()
1228 * do_exit() futex_lock_pi()
1229 * futex_lock_pi_atomic()
1230 * exit_signals(tsk) No waiters:
1231 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1232 * mm_release(tsk) Set waiter bit
1233 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1234 * Set owner died attach_to_pi_owner() {
1235 * *uaddr = 0xC0000000; tsk = get_task(PID);
1236 * } if (!tsk->flags & PF_EXITING) {
1237 * ... attach();
1238 * tsk->futex_state = } else {
1239 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1240 * FUTEX_STATE_DEAD)
1241 * return -EAGAIN;
1242 * return -ESRCH; <--- FAIL
1243 * }
1244 *
1245 * Returning ESRCH unconditionally is wrong here because the
1246 * user space value has been changed by the exiting task.
1247 *
1248 * The same logic applies to the case where the exiting task is
1249 * already gone.
1250 */
1251 if (get_futex_value_locked(&uval2, uaddr))
1252 return -EFAULT;
1253
1254 /* If the user space value has changed, try again. */
1255 if (uval2 != uval)
1256 return -EAGAIN;
1257
1258 /*
1259 * The exiting task did not have a robust list, the robust list was
1260 * corrupted or the user space value in *uaddr is simply bogus.
1261 * Give up and tell user space.
1262 */
1263 return -ESRCH;
1264 }
1265
1266 /*
1267 * Lookup the task for the TID provided from user space and attach to
1268 * it after doing proper sanity checks.
1269 */
1270 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1271 struct futex_pi_state **ps,
1272 struct task_struct **exiting)
1273 {
1274 pid_t pid = uval & FUTEX_TID_MASK;
1275 struct futex_pi_state *pi_state;
1276 struct task_struct *p;
1277
1278 /*
1279 * We are the first waiter - try to look up the real owner and attach
1280 * the new pi_state to it, but bail out when TID = 0 [1]
1281 *
1282 * The !pid check is paranoid. None of the call sites should end up
1283 * with pid == 0, but better safe than sorry. Let the caller retry
1284 */
1285 if (!pid)
1286 return -EAGAIN;
1287 p = find_get_task_by_vpid(pid);
1288 if (!p)
1289 return handle_exit_race(uaddr, uval, NULL);
1290
1291 if (unlikely(p->flags & PF_KTHREAD)) {
1292 put_task_struct(p);
1293 return -EPERM;
1294 }
1295
1296 /*
1297 * We need to look at the task state to figure out, whether the
1298 * task is exiting. To protect against the change of the task state
1299 * in futex_exit_release(), we do this protected by p->pi_lock:
1300 */
1301 raw_spin_lock_irq(&p->pi_lock);
1302 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1303 /*
1304 * The task is on the way out. When the futex state is
1305 * FUTEX_STATE_DEAD, we know that the task has finished
1306 * the cleanup:
1307 */
1308 int ret = handle_exit_race(uaddr, uval, p);
1309
1310 raw_spin_unlock_irq(&p->pi_lock);
1311 /*
1312 * If the owner task is between FUTEX_STATE_EXITING and
1313 * FUTEX_STATE_DEAD then store the task pointer and keep
1314 * the reference on the task struct. The calling code will
1315 * drop all locks, wait for the task to reach
1316 * FUTEX_STATE_DEAD and then drop the refcount. This is
1317 * required to prevent a live lock when the current task
1318 * preempted the exiting task between the two states.
1319 */
1320 if (ret == -EBUSY)
1321 *exiting = p;
1322 else
1323 put_task_struct(p);
1324 return ret;
1325 }
1326
1327 /*
1328 * No existing pi state. First waiter. [2]
1329 *
1330 * This creates pi_state, we have hb->lock held, this means nothing can
1331 * observe this state, wait_lock is irrelevant.
1332 */
1333 pi_state = alloc_pi_state();
1334
1335 /*
1336 * Initialize the pi_mutex in locked state and make @p
1337 * the owner of it:
1338 */
1339 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1340
1341 /* Store the key for possible exit cleanups: */
1342 pi_state->key = *key;
1343
1344 WARN_ON(!list_empty(&pi_state->list));
1345 list_add(&pi_state->list, &p->pi_state_list);
1346 /*
1347 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1348 * because there is no concurrency as the object is not published yet.
1349 */
1350 pi_state->owner = p;
1351 raw_spin_unlock_irq(&p->pi_lock);
1352
1353 put_task_struct(p);
1354
1355 *ps = pi_state;
1356
1357 return 0;
1358 }
1359
1360 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1361 {
1362 int err;
1363 u32 curval;
1364
1365 if (unlikely(should_fail_futex(true)))
1366 return -EFAULT;
1367
1368 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1369 if (unlikely(err))
1370 return err;
1371
1372 /* If user space value changed, let the caller retry */
1373 return curval != uval ? -EAGAIN : 0;
1374 }
1375
1376 /**
1377 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1378 * @uaddr: the pi futex user address
1379 * @hb: the pi futex hash bucket
1380 * @key: the futex key associated with uaddr and hb
1381 * @ps: the pi_state pointer where we store the result of the
1382 * lookup
1383 * @task: the task to perform the atomic lock work for. This will
1384 * be "current" except in the case of requeue pi.
1385 * @exiting: Pointer to store the task pointer of the owner task
1386 * which is in the middle of exiting
1387 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1388 *
1389 * Return:
1390 * - 0 - ready to wait;
1391 * - 1 - acquired the lock;
1392 * - <0 - error
1393 *
1394 * The hb->lock must be held by the caller.
1395 *
1396 * @exiting is only set when the return value is -EBUSY. If so, this holds
1397 * a refcount on the exiting task on return and the caller needs to drop it
1398 * after waiting for the exit to complete.
1399 */
1400 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1401 union futex_key *key,
1402 struct futex_pi_state **ps,
1403 struct task_struct *task,
1404 struct task_struct **exiting,
1405 int set_waiters)
1406 {
1407 u32 uval, newval, vpid = task_pid_vnr(task);
1408 struct futex_q *top_waiter;
1409 int ret;
1410
1411 /*
1412 * Read the user space value first so we can validate a few
1413 * things before proceeding further.
1414 */
1415 if (get_futex_value_locked(&uval, uaddr))
1416 return -EFAULT;
1417
1418 if (unlikely(should_fail_futex(true)))
1419 return -EFAULT;
1420
1421 /*
1422 * Detect deadlocks.
1423 */
1424 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1425 return -EDEADLK;
1426
1427 if ((unlikely(should_fail_futex(true))))
1428 return -EDEADLK;
1429
1430 /*
1431 * Lookup existing state first. If it exists, try to attach to
1432 * its pi_state.
1433 */
1434 top_waiter = futex_top_waiter(hb, key);
1435 if (top_waiter)
1436 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1437
1438 /*
1439 * No waiter and user TID is 0. We are here because the
1440 * waiters or the owner died bit is set or called from
1441 * requeue_cmp_pi or for whatever reason something took the
1442 * syscall.
1443 */
1444 if (!(uval & FUTEX_TID_MASK)) {
1445 /*
1446 * We take over the futex. No other waiters and the user space
1447 * TID is 0. We preserve the owner died bit.
1448 */
1449 newval = uval & FUTEX_OWNER_DIED;
1450 newval |= vpid;
1451
1452 /* The futex requeue_pi code can enforce the waiters bit */
1453 if (set_waiters)
1454 newval |= FUTEX_WAITERS;
1455
1456 ret = lock_pi_update_atomic(uaddr, uval, newval);
1457 /* If the take over worked, return 1 */
1458 return ret < 0 ? ret : 1;
1459 }
1460
1461 /*
1462 * First waiter. Set the waiters bit before attaching ourself to
1463 * the owner. If owner tries to unlock, it will be forced into
1464 * the kernel and blocked on hb->lock.
1465 */
1466 newval = uval | FUTEX_WAITERS;
1467 ret = lock_pi_update_atomic(uaddr, uval, newval);
1468 if (ret)
1469 return ret;
1470 /*
1471 * If the update of the user space value succeeded, we try to
1472 * attach to the owner. If that fails, no harm done, we only
1473 * set the FUTEX_WAITERS bit in the user space variable.
1474 */
1475 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1476 }
1477
1478 /**
1479 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1480 * @q: The futex_q to unqueue
1481 *
1482 * The q->lock_ptr must not be NULL and must be held by the caller.
1483 */
1484 static void __unqueue_futex(struct futex_q *q)
1485 {
1486 struct futex_hash_bucket *hb;
1487
1488 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1489 return;
1490 lockdep_assert_held(q->lock_ptr);
1491
1492 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1493 plist_del(&q->list, &hb->chain);
1494 hb_waiters_dec(hb);
1495 }
1496
1497 /*
1498 * The hash bucket lock must be held when this is called.
1499 * Afterwards, the futex_q must not be accessed. Callers
1500 * must ensure to later call wake_up_q() for the actual
1501 * wakeups to occur.
1502 */
1503 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1504 {
1505 struct task_struct *p = q->task;
1506
1507 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1508 return;
1509
1510 get_task_struct(p);
1511 __unqueue_futex(q);
1512 /*
1513 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1514 * is written, without taking any locks. This is possible in the event
1515 * of a spurious wakeup, for example. A memory barrier is required here
1516 * to prevent the following store to lock_ptr from getting ahead of the
1517 * plist_del in __unqueue_futex().
1518 */
1519 smp_store_release(&q->lock_ptr, NULL);
1520
1521 /*
1522 * Queue the task for later wakeup for after we've released
1523 * the hb->lock.
1524 */
1525 wake_q_add_safe(wake_q, p);
1526 }
1527
1528 /*
1529 * Caller must hold a reference on @pi_state.
1530 */
1531 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1532 {
1533 struct rt_mutex_waiter *top_waiter;
1534 struct task_struct *new_owner;
1535 bool postunlock = false;
1536 DEFINE_RT_WAKE_Q(wqh);
1537 u32 curval, newval;
1538 int ret = 0;
1539
1540 top_waiter = rt_mutex_top_waiter(&pi_state->pi_mutex);
1541 if (WARN_ON_ONCE(!top_waiter)) {
1542 /*
1543 * As per the comment in futex_unlock_pi() this should not happen.
1544 *
1545 * When this happens, give up our locks and try again, giving
1546 * the futex_lock_pi() instance time to complete, either by
1547 * waiting on the rtmutex or removing itself from the futex
1548 * queue.
1549 */
1550 ret = -EAGAIN;
1551 goto out_unlock;
1552 }
1553
1554 new_owner = top_waiter->task;
1555
1556 /*
1557 * We pass it to the next owner. The WAITERS bit is always kept
1558 * enabled while there is PI state around. We cleanup the owner
1559 * died bit, because we are the owner.
1560 */
1561 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1562
1563 if (unlikely(should_fail_futex(true))) {
1564 ret = -EFAULT;
1565 goto out_unlock;
1566 }
1567
1568 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1569 if (!ret && (curval != uval)) {
1570 /*
1571 * If a unconditional UNLOCK_PI operation (user space did not
1572 * try the TID->0 transition) raced with a waiter setting the
1573 * FUTEX_WAITERS flag between get_user() and locking the hash
1574 * bucket lock, retry the operation.
1575 */
1576 if ((FUTEX_TID_MASK & curval) == uval)
1577 ret = -EAGAIN;
1578 else
1579 ret = -EINVAL;
1580 }
1581
1582 if (!ret) {
1583 /*
1584 * This is a point of no return; once we modified the uval
1585 * there is no going back and subsequent operations must
1586 * not fail.
1587 */
1588 pi_state_update_owner(pi_state, new_owner);
1589 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wqh);
1590 }
1591
1592 out_unlock:
1593 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1594
1595 if (postunlock)
1596 rt_mutex_postunlock(&wqh);
1597
1598 return ret;
1599 }
1600
1601 /*
1602 * Express the locking dependencies for lockdep:
1603 */
1604 static inline void
1605 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1606 {
1607 if (hb1 <= hb2) {
1608 spin_lock(&hb1->lock);
1609 if (hb1 < hb2)
1610 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1611 } else { /* hb1 > hb2 */
1612 spin_lock(&hb2->lock);
1613 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1614 }
1615 }
1616
1617 static inline void
1618 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1619 {
1620 spin_unlock(&hb1->lock);
1621 if (hb1 != hb2)
1622 spin_unlock(&hb2->lock);
1623 }
1624
1625 /*
1626 * Wake up waiters matching bitset queued on this futex (uaddr).
1627 */
1628 static int
1629 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1630 {
1631 struct futex_hash_bucket *hb;
1632 struct futex_q *this, *next;
1633 union futex_key key = FUTEX_KEY_INIT;
1634 int ret;
1635 DEFINE_WAKE_Q(wake_q);
1636
1637 if (!bitset)
1638 return -EINVAL;
1639
1640 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1641 if (unlikely(ret != 0))
1642 return ret;
1643
1644 hb = hash_futex(&key);
1645
1646 /* Make sure we really have tasks to wakeup */
1647 if (!hb_waiters_pending(hb))
1648 return ret;
1649
1650 spin_lock(&hb->lock);
1651
1652 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1653 if (match_futex (&this->key, &key)) {
1654 if (this->pi_state || this->rt_waiter) {
1655 ret = -EINVAL;
1656 break;
1657 }
1658
1659 /* Check if one of the bits is set in both bitsets */
1660 if (!(this->bitset & bitset))
1661 continue;
1662
1663 mark_wake_futex(&wake_q, this);
1664 if (++ret >= nr_wake)
1665 break;
1666 }
1667 }
1668
1669 spin_unlock(&hb->lock);
1670 wake_up_q(&wake_q);
1671 return ret;
1672 }
1673
1674 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1675 {
1676 unsigned int op = (encoded_op & 0x70000000) >> 28;
1677 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1678 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1679 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1680 int oldval, ret;
1681
1682 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1683 if (oparg < 0 || oparg > 31) {
1684 char comm[sizeof(current->comm)];
1685 /*
1686 * kill this print and return -EINVAL when userspace
1687 * is sane again
1688 */
1689 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1690 get_task_comm(comm, current), oparg);
1691 oparg &= 31;
1692 }
1693 oparg = 1 << oparg;
1694 }
1695
1696 pagefault_disable();
1697 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1698 pagefault_enable();
1699 if (ret)
1700 return ret;
1701
1702 switch (cmp) {
1703 case FUTEX_OP_CMP_EQ:
1704 return oldval == cmparg;
1705 case FUTEX_OP_CMP_NE:
1706 return oldval != cmparg;
1707 case FUTEX_OP_CMP_LT:
1708 return oldval < cmparg;
1709 case FUTEX_OP_CMP_GE:
1710 return oldval >= cmparg;
1711 case FUTEX_OP_CMP_LE:
1712 return oldval <= cmparg;
1713 case FUTEX_OP_CMP_GT:
1714 return oldval > cmparg;
1715 default:
1716 return -ENOSYS;
1717 }
1718 }
1719
1720 /*
1721 * Wake up all waiters hashed on the physical page that is mapped
1722 * to this virtual address:
1723 */
1724 static int
1725 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1726 int nr_wake, int nr_wake2, int op)
1727 {
1728 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1729 struct futex_hash_bucket *hb1, *hb2;
1730 struct futex_q *this, *next;
1731 int ret, op_ret;
1732 DEFINE_WAKE_Q(wake_q);
1733
1734 retry:
1735 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1736 if (unlikely(ret != 0))
1737 return ret;
1738 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1739 if (unlikely(ret != 0))
1740 return ret;
1741
1742 hb1 = hash_futex(&key1);
1743 hb2 = hash_futex(&key2);
1744
1745 retry_private:
1746 double_lock_hb(hb1, hb2);
1747 op_ret = futex_atomic_op_inuser(op, uaddr2);
1748 if (unlikely(op_ret < 0)) {
1749 double_unlock_hb(hb1, hb2);
1750
1751 if (!IS_ENABLED(CONFIG_MMU) ||
1752 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1753 /*
1754 * we don't get EFAULT from MMU faults if we don't have
1755 * an MMU, but we might get them from range checking
1756 */
1757 ret = op_ret;
1758 return ret;
1759 }
1760
1761 if (op_ret == -EFAULT) {
1762 ret = fault_in_user_writeable(uaddr2);
1763 if (ret)
1764 return ret;
1765 }
1766
1767 cond_resched();
1768 if (!(flags & FLAGS_SHARED))
1769 goto retry_private;
1770 goto retry;
1771 }
1772
1773 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1774 if (match_futex (&this->key, &key1)) {
1775 if (this->pi_state || this->rt_waiter) {
1776 ret = -EINVAL;
1777 goto out_unlock;
1778 }
1779 mark_wake_futex(&wake_q, this);
1780 if (++ret >= nr_wake)
1781 break;
1782 }
1783 }
1784
1785 if (op_ret > 0) {
1786 op_ret = 0;
1787 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1788 if (match_futex (&this->key, &key2)) {
1789 if (this->pi_state || this->rt_waiter) {
1790 ret = -EINVAL;
1791 goto out_unlock;
1792 }
1793 mark_wake_futex(&wake_q, this);
1794 if (++op_ret >= nr_wake2)
1795 break;
1796 }
1797 }
1798 ret += op_ret;
1799 }
1800
1801 out_unlock:
1802 double_unlock_hb(hb1, hb2);
1803 wake_up_q(&wake_q);
1804 return ret;
1805 }
1806
1807 /**
1808 * requeue_futex() - Requeue a futex_q from one hb to another
1809 * @q: the futex_q to requeue
1810 * @hb1: the source hash_bucket
1811 * @hb2: the target hash_bucket
1812 * @key2: the new key for the requeued futex_q
1813 */
1814 static inline
1815 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1816 struct futex_hash_bucket *hb2, union futex_key *key2)
1817 {
1818
1819 /*
1820 * If key1 and key2 hash to the same bucket, no need to
1821 * requeue.
1822 */
1823 if (likely(&hb1->chain != &hb2->chain)) {
1824 plist_del(&q->list, &hb1->chain);
1825 hb_waiters_dec(hb1);
1826 hb_waiters_inc(hb2);
1827 plist_add(&q->list, &hb2->chain);
1828 q->lock_ptr = &hb2->lock;
1829 }
1830 q->key = *key2;
1831 }
1832
1833 static inline bool futex_requeue_pi_prepare(struct futex_q *q,
1834 struct futex_pi_state *pi_state)
1835 {
1836 int old, new;
1837
1838 /*
1839 * Set state to Q_REQUEUE_PI_IN_PROGRESS unless an early wakeup has
1840 * already set Q_REQUEUE_PI_IGNORE to signal that requeue should
1841 * ignore the waiter.
1842 */
1843 old = atomic_read_acquire(&q->requeue_state);
1844 do {
1845 if (old == Q_REQUEUE_PI_IGNORE)
1846 return false;
1847
1848 /*
1849 * futex_proxy_trylock_atomic() might have set it to
1850 * IN_PROGRESS and a interleaved early wake to WAIT.
1851 *
1852 * It was considered to have an extra state for that
1853 * trylock, but that would just add more conditionals
1854 * all over the place for a dubious value.
1855 */
1856 if (old != Q_REQUEUE_PI_NONE)
1857 break;
1858
1859 new = Q_REQUEUE_PI_IN_PROGRESS;
1860 } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
1861
1862 q->pi_state = pi_state;
1863 return true;
1864 }
1865
1866 static inline void futex_requeue_pi_complete(struct futex_q *q, int locked)
1867 {
1868 int old, new;
1869
1870 old = atomic_read_acquire(&q->requeue_state);
1871 do {
1872 if (old == Q_REQUEUE_PI_IGNORE)
1873 return;
1874
1875 if (locked >= 0) {
1876 /* Requeue succeeded. Set DONE or LOCKED */
1877 WARN_ON_ONCE(old != Q_REQUEUE_PI_IN_PROGRESS &&
1878 old != Q_REQUEUE_PI_WAIT);
1879 new = Q_REQUEUE_PI_DONE + locked;
1880 } else if (old == Q_REQUEUE_PI_IN_PROGRESS) {
1881 /* Deadlock, no early wakeup interleave */
1882 new = Q_REQUEUE_PI_NONE;
1883 } else {
1884 /* Deadlock, early wakeup interleave. */
1885 WARN_ON_ONCE(old != Q_REQUEUE_PI_WAIT);
1886 new = Q_REQUEUE_PI_IGNORE;
1887 }
1888 } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
1889
1890 #ifdef CONFIG_PREEMPT_RT
1891 /* If the waiter interleaved with the requeue let it know */
1892 if (unlikely(old == Q_REQUEUE_PI_WAIT))
1893 rcuwait_wake_up(&q->requeue_wait);
1894 #endif
1895 }
1896
1897 static inline int futex_requeue_pi_wakeup_sync(struct futex_q *q)
1898 {
1899 int old, new;
1900
1901 old = atomic_read_acquire(&q->requeue_state);
1902 do {
1903 /* Is requeue done already? */
1904 if (old >= Q_REQUEUE_PI_DONE)
1905 return old;
1906
1907 /*
1908 * If not done, then tell the requeue code to either ignore
1909 * the waiter or to wake it up once the requeue is done.
1910 */
1911 new = Q_REQUEUE_PI_WAIT;
1912 if (old == Q_REQUEUE_PI_NONE)
1913 new = Q_REQUEUE_PI_IGNORE;
1914 } while (!atomic_try_cmpxchg(&q->requeue_state, &old, new));
1915
1916 /* If the requeue was in progress, wait for it to complete */
1917 if (old == Q_REQUEUE_PI_IN_PROGRESS) {
1918 #ifdef CONFIG_PREEMPT_RT
1919 rcuwait_wait_event(&q->requeue_wait,
1920 atomic_read(&q->requeue_state) != Q_REQUEUE_PI_WAIT,
1921 TASK_UNINTERRUPTIBLE);
1922 #else
1923 (void)atomic_cond_read_relaxed(&q->requeue_state, VAL != Q_REQUEUE_PI_WAIT);
1924 #endif
1925 }
1926
1927 /*
1928 * Requeue is now either prohibited or complete. Reread state
1929 * because during the wait above it might have changed. Nothing
1930 * will modify q->requeue_state after this point.
1931 */
1932 return atomic_read(&q->requeue_state);
1933 }
1934
1935 /**
1936 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1937 * @q: the futex_q
1938 * @key: the key of the requeue target futex
1939 * @hb: the hash_bucket of the requeue target futex
1940 *
1941 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1942 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1943 * to the requeue target futex so the waiter can detect the wakeup on the right
1944 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1945 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1946 * to protect access to the pi_state to fixup the owner later. Must be called
1947 * with both q->lock_ptr and hb->lock held.
1948 */
1949 static inline
1950 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1951 struct futex_hash_bucket *hb)
1952 {
1953 q->key = *key;
1954
1955 __unqueue_futex(q);
1956
1957 WARN_ON(!q->rt_waiter);
1958 q->rt_waiter = NULL;
1959
1960 q->lock_ptr = &hb->lock;
1961
1962 /* Signal locked state to the waiter */
1963 futex_requeue_pi_complete(q, 1);
1964 wake_up_state(q->task, TASK_NORMAL);
1965 }
1966
1967 /**
1968 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1969 * @pifutex: the user address of the to futex
1970 * @hb1: the from futex hash bucket, must be locked by the caller
1971 * @hb2: the to futex hash bucket, must be locked by the caller
1972 * @key1: the from futex key
1973 * @key2: the to futex key
1974 * @ps: address to store the pi_state pointer
1975 * @exiting: Pointer to store the task pointer of the owner task
1976 * which is in the middle of exiting
1977 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1978 *
1979 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1980 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1981 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1982 * hb1 and hb2 must be held by the caller.
1983 *
1984 * @exiting is only set when the return value is -EBUSY. If so, this holds
1985 * a refcount on the exiting task on return and the caller needs to drop it
1986 * after waiting for the exit to complete.
1987 *
1988 * Return:
1989 * - 0 - failed to acquire the lock atomically;
1990 * - >0 - acquired the lock, return value is vpid of the top_waiter
1991 * - <0 - error
1992 */
1993 static int
1994 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1995 struct futex_hash_bucket *hb2, union futex_key *key1,
1996 union futex_key *key2, struct futex_pi_state **ps,
1997 struct task_struct **exiting, int set_waiters)
1998 {
1999 struct futex_q *top_waiter = NULL;
2000 u32 curval;
2001 int ret, vpid;
2002
2003 if (get_futex_value_locked(&curval, pifutex))
2004 return -EFAULT;
2005
2006 if (unlikely(should_fail_futex(true)))
2007 return -EFAULT;
2008
2009 /*
2010 * Find the top_waiter and determine if there are additional waiters.
2011 * If the caller intends to requeue more than 1 waiter to pifutex,
2012 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
2013 * as we have means to handle the possible fault. If not, don't set
2014 * the bit unnecessarily as it will force the subsequent unlock to enter
2015 * the kernel.
2016 */
2017 top_waiter = futex_top_waiter(hb1, key1);
2018
2019 /* There are no waiters, nothing for us to do. */
2020 if (!top_waiter)
2021 return 0;
2022
2023 /*
2024 * Ensure that this is a waiter sitting in futex_wait_requeue_pi()
2025 * and waiting on the 'waitqueue' futex which is always !PI.
2026 */
2027 if (!top_waiter->rt_waiter || top_waiter->pi_state)
2028 ret = -EINVAL;
2029
2030 /* Ensure we requeue to the expected futex. */
2031 if (!match_futex(top_waiter->requeue_pi_key, key2))
2032 return -EINVAL;
2033
2034 /* Ensure that this does not race against an early wakeup */
2035 if (!futex_requeue_pi_prepare(top_waiter, NULL))
2036 return -EAGAIN;
2037
2038 /*
2039 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
2040 * the contended case or if set_waiters is 1. The pi_state is returned
2041 * in ps in contended cases.
2042 */
2043 vpid = task_pid_vnr(top_waiter->task);
2044 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
2045 exiting, set_waiters);
2046 if (ret == 1) {
2047 /* Dequeue, wake up and update top_waiter::requeue_state */
2048 requeue_pi_wake_futex(top_waiter, key2, hb2);
2049 return vpid;
2050 } else if (ret < 0) {
2051 /* Rewind top_waiter::requeue_state */
2052 futex_requeue_pi_complete(top_waiter, ret);
2053 } else {
2054 /*
2055 * futex_lock_pi_atomic() did not acquire the user space
2056 * futex, but managed to establish the proxy lock and pi
2057 * state. top_waiter::requeue_state cannot be fixed up here
2058 * because the waiter is not enqueued on the rtmutex
2059 * yet. This is handled at the callsite depending on the
2060 * result of rt_mutex_start_proxy_lock() which is
2061 * guaranteed to be reached with this function returning 0.
2062 */
2063 }
2064 return ret;
2065 }
2066
2067 /**
2068 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
2069 * @uaddr1: source futex user address
2070 * @flags: futex flags (FLAGS_SHARED, etc.)
2071 * @uaddr2: target futex user address
2072 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
2073 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
2074 * @cmpval: @uaddr1 expected value (or %NULL)
2075 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
2076 * pi futex (pi to pi requeue is not supported)
2077 *
2078 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
2079 * uaddr2 atomically on behalf of the top waiter.
2080 *
2081 * Return:
2082 * - >=0 - on success, the number of tasks requeued or woken;
2083 * - <0 - on error
2084 */
2085 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2086 u32 __user *uaddr2, int nr_wake, int nr_requeue,
2087 u32 *cmpval, int requeue_pi)
2088 {
2089 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2090 int task_count = 0, ret;
2091 struct futex_pi_state *pi_state = NULL;
2092 struct futex_hash_bucket *hb1, *hb2;
2093 struct futex_q *this, *next;
2094 DEFINE_WAKE_Q(wake_q);
2095
2096 if (nr_wake < 0 || nr_requeue < 0)
2097 return -EINVAL;
2098
2099 /*
2100 * When PI not supported: return -ENOSYS if requeue_pi is true,
2101 * consequently the compiler knows requeue_pi is always false past
2102 * this point which will optimize away all the conditional code
2103 * further down.
2104 */
2105 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2106 return -ENOSYS;
2107
2108 if (requeue_pi) {
2109 /*
2110 * Requeue PI only works on two distinct uaddrs. This
2111 * check is only valid for private futexes. See below.
2112 */
2113 if (uaddr1 == uaddr2)
2114 return -EINVAL;
2115
2116 /*
2117 * futex_requeue() allows the caller to define the number
2118 * of waiters to wake up via the @nr_wake argument. With
2119 * REQUEUE_PI, waking up more than one waiter is creating
2120 * more problems than it solves. Waking up a waiter makes
2121 * only sense if the PI futex @uaddr2 is uncontended as
2122 * this allows the requeue code to acquire the futex
2123 * @uaddr2 before waking the waiter. The waiter can then
2124 * return to user space without further action. A secondary
2125 * wakeup would just make the futex_wait_requeue_pi()
2126 * handling more complex, because that code would have to
2127 * look up pi_state and do more or less all the handling
2128 * which the requeue code has to do for the to be requeued
2129 * waiters. So restrict the number of waiters to wake to
2130 * one, and only wake it up when the PI futex is
2131 * uncontended. Otherwise requeue it and let the unlock of
2132 * the PI futex handle the wakeup.
2133 *
2134 * All REQUEUE_PI users, e.g. pthread_cond_signal() and
2135 * pthread_cond_broadcast() must use nr_wake=1.
2136 */
2137 if (nr_wake != 1)
2138 return -EINVAL;
2139
2140 /*
2141 * requeue_pi requires a pi_state, try to allocate it now
2142 * without any locks in case it fails.
2143 */
2144 if (refill_pi_state_cache())
2145 return -ENOMEM;
2146 }
2147
2148 retry:
2149 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
2150 if (unlikely(ret != 0))
2151 return ret;
2152 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2153 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
2154 if (unlikely(ret != 0))
2155 return ret;
2156
2157 /*
2158 * The check above which compares uaddrs is not sufficient for
2159 * shared futexes. We need to compare the keys:
2160 */
2161 if (requeue_pi && match_futex(&key1, &key2))
2162 return -EINVAL;
2163
2164 hb1 = hash_futex(&key1);
2165 hb2 = hash_futex(&key2);
2166
2167 retry_private:
2168 hb_waiters_inc(hb2);
2169 double_lock_hb(hb1, hb2);
2170
2171 if (likely(cmpval != NULL)) {
2172 u32 curval;
2173
2174 ret = get_futex_value_locked(&curval, uaddr1);
2175
2176 if (unlikely(ret)) {
2177 double_unlock_hb(hb1, hb2);
2178 hb_waiters_dec(hb2);
2179
2180 ret = get_user(curval, uaddr1);
2181 if (ret)
2182 return ret;
2183
2184 if (!(flags & FLAGS_SHARED))
2185 goto retry_private;
2186
2187 goto retry;
2188 }
2189 if (curval != *cmpval) {
2190 ret = -EAGAIN;
2191 goto out_unlock;
2192 }
2193 }
2194
2195 if (requeue_pi) {
2196 struct task_struct *exiting = NULL;
2197
2198 /*
2199 * Attempt to acquire uaddr2 and wake the top waiter. If we
2200 * intend to requeue waiters, force setting the FUTEX_WAITERS
2201 * bit. We force this here where we are able to easily handle
2202 * faults rather in the requeue loop below.
2203 *
2204 * Updates topwaiter::requeue_state if a top waiter exists.
2205 */
2206 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2207 &key2, &pi_state,
2208 &exiting, nr_requeue);
2209
2210 /*
2211 * At this point the top_waiter has either taken uaddr2 or is
2212 * waiting on it. If the former, then the pi_state will not
2213 * exist yet, look it up one more time to ensure we have a
2214 * reference to it. If the lock was taken, @ret contains the
2215 * VPID of the top waiter task.
2216 * If the lock was not taken, we have pi_state and an initial
2217 * refcount on it. In case of an error we have nothing.
2218 *
2219 * The top waiter's requeue_state is up to date:
2220 *
2221 * - If the lock was acquired atomically (ret > 0), then
2222 * the state is Q_REQUEUE_PI_LOCKED.
2223 *
2224 * - If the trylock failed with an error (ret < 0) then
2225 * the state is either Q_REQUEUE_PI_NONE, i.e. "nothing
2226 * happened", or Q_REQUEUE_PI_IGNORE when there was an
2227 * interleaved early wakeup.
2228 *
2229 * - If the trylock did not succeed (ret == 0) then the
2230 * state is either Q_REQUEUE_PI_IN_PROGRESS or
2231 * Q_REQUEUE_PI_WAIT if an early wakeup interleaved.
2232 * This will be cleaned up in the loop below, which
2233 * cannot fail because futex_proxy_trylock_atomic() did
2234 * the same sanity checks for requeue_pi as the loop
2235 * below does.
2236 */
2237 if (ret > 0) {
2238 WARN_ON(pi_state);
2239 task_count++;
2240 /*
2241 * If futex_proxy_trylock_atomic() acquired the
2242 * user space futex, then the user space value
2243 * @uaddr2 has been set to the @hb1's top waiter
2244 * task VPID. This task is guaranteed to be alive
2245 * and cannot be exiting because it is either
2246 * sleeping or blocked on @hb2 lock.
2247 *
2248 * The @uaddr2 futex cannot have waiters either as
2249 * otherwise futex_proxy_trylock_atomic() would not
2250 * have succeeded.
2251 *
2252 * In order to requeue waiters to @hb2, pi state is
2253 * required. Hand in the VPID value (@ret) and
2254 * allocate PI state with an initial refcount on
2255 * it.
2256 */
2257 ret = attach_to_pi_owner(uaddr2, ret, &key2, &pi_state,
2258 &exiting);
2259 WARN_ON(ret);
2260 }
2261
2262 switch (ret) {
2263 case 0:
2264 /* We hold a reference on the pi state. */
2265 break;
2266
2267 /*
2268 * If the above failed, then pi_state is NULL and
2269 * waiter::requeue_state is correct.
2270 */
2271 case -EFAULT:
2272 double_unlock_hb(hb1, hb2);
2273 hb_waiters_dec(hb2);
2274 ret = fault_in_user_writeable(uaddr2);
2275 if (!ret)
2276 goto retry;
2277 return ret;
2278 case -EBUSY:
2279 case -EAGAIN:
2280 /*
2281 * Two reasons for this:
2282 * - EBUSY: Owner is exiting and we just wait for the
2283 * exit to complete.
2284 * - EAGAIN: The user space value changed.
2285 */
2286 double_unlock_hb(hb1, hb2);
2287 hb_waiters_dec(hb2);
2288 /*
2289 * Handle the case where the owner is in the middle of
2290 * exiting. Wait for the exit to complete otherwise
2291 * this task might loop forever, aka. live lock.
2292 */
2293 wait_for_owner_exiting(ret, exiting);
2294 cond_resched();
2295 goto retry;
2296 default:
2297 goto out_unlock;
2298 }
2299 }
2300
2301 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2302 if (task_count - nr_wake >= nr_requeue)
2303 break;
2304
2305 if (!match_futex(&this->key, &key1))
2306 continue;
2307
2308 /*
2309 * FUTEX_WAIT_REQUEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2310 * be paired with each other and no other futex ops.
2311 *
2312 * We should never be requeueing a futex_q with a pi_state,
2313 * which is awaiting a futex_unlock_pi().
2314 */
2315 if ((requeue_pi && !this->rt_waiter) ||
2316 (!requeue_pi && this->rt_waiter) ||
2317 this->pi_state) {
2318 ret = -EINVAL;
2319 break;
2320 }
2321
2322 /* Plain futexes just wake or requeue and are done */
2323 if (!requeue_pi) {
2324 if (++task_count <= nr_wake)
2325 mark_wake_futex(&wake_q, this);
2326 else
2327 requeue_futex(this, hb1, hb2, &key2);
2328 continue;
2329 }
2330
2331 /* Ensure we requeue to the expected futex for requeue_pi. */
2332 if (!match_futex(this->requeue_pi_key, &key2)) {
2333 ret = -EINVAL;
2334 break;
2335 }
2336
2337 /*
2338 * Requeue nr_requeue waiters and possibly one more in the case
2339 * of requeue_pi if we couldn't acquire the lock atomically.
2340 *
2341 * Prepare the waiter to take the rt_mutex. Take a refcount
2342 * on the pi_state and store the pointer in the futex_q
2343 * object of the waiter.
2344 */
2345 get_pi_state(pi_state);
2346
2347 /* Don't requeue when the waiter is already on the way out. */
2348 if (!futex_requeue_pi_prepare(this, pi_state)) {
2349 /*
2350 * Early woken waiter signaled that it is on the
2351 * way out. Drop the pi_state reference and try the
2352 * next waiter. @this->pi_state is still NULL.
2353 */
2354 put_pi_state(pi_state);
2355 continue;
2356 }
2357
2358 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2359 this->rt_waiter,
2360 this->task);
2361
2362 if (ret == 1) {
2363 /*
2364 * We got the lock. We do neither drop the refcount
2365 * on pi_state nor clear this->pi_state because the
2366 * waiter needs the pi_state for cleaning up the
2367 * user space value. It will drop the refcount
2368 * after doing so. this::requeue_state is updated
2369 * in the wakeup as well.
2370 */
2371 requeue_pi_wake_futex(this, &key2, hb2);
2372 task_count++;
2373 } else if (!ret) {
2374 /* Waiter is queued, move it to hb2 */
2375 requeue_futex(this, hb1, hb2, &key2);
2376 futex_requeue_pi_complete(this, 0);
2377 task_count++;
2378 } else {
2379 /*
2380 * rt_mutex_start_proxy_lock() detected a potential
2381 * deadlock when we tried to queue that waiter.
2382 * Drop the pi_state reference which we took above
2383 * and remove the pointer to the state from the
2384 * waiters futex_q object.
2385 */
2386 this->pi_state = NULL;
2387 put_pi_state(pi_state);
2388 futex_requeue_pi_complete(this, ret);
2389 /*
2390 * We stop queueing more waiters and let user space
2391 * deal with the mess.
2392 */
2393 break;
2394 }
2395 }
2396
2397 /*
2398 * We took an extra initial reference to the pi_state either in
2399 * futex_proxy_trylock_atomic() or in attach_to_pi_owner(). We need
2400 * to drop it here again.
2401 */
2402 put_pi_state(pi_state);
2403
2404 out_unlock:
2405 double_unlock_hb(hb1, hb2);
2406 wake_up_q(&wake_q);
2407 hb_waiters_dec(hb2);
2408 return ret ? ret : task_count;
2409 }
2410
2411 /* The key must be already stored in q->key. */
2412 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2413 __acquires(&hb->lock)
2414 {
2415 struct futex_hash_bucket *hb;
2416
2417 hb = hash_futex(&q->key);
2418
2419 /*
2420 * Increment the counter before taking the lock so that
2421 * a potential waker won't miss a to-be-slept task that is
2422 * waiting for the spinlock. This is safe as all queue_lock()
2423 * users end up calling queue_me(). Similarly, for housekeeping,
2424 * decrement the counter at queue_unlock() when some error has
2425 * occurred and we don't end up adding the task to the list.
2426 */
2427 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2428
2429 q->lock_ptr = &hb->lock;
2430
2431 spin_lock(&hb->lock);
2432 return hb;
2433 }
2434
2435 static inline void
2436 queue_unlock(struct futex_hash_bucket *hb)
2437 __releases(&hb->lock)
2438 {
2439 spin_unlock(&hb->lock);
2440 hb_waiters_dec(hb);
2441 }
2442
2443 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2444 {
2445 int prio;
2446
2447 /*
2448 * The priority used to register this element is
2449 * - either the real thread-priority for the real-time threads
2450 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2451 * - or MAX_RT_PRIO for non-RT threads.
2452 * Thus, all RT-threads are woken first in priority order, and
2453 * the others are woken last, in FIFO order.
2454 */
2455 prio = min(current->normal_prio, MAX_RT_PRIO);
2456
2457 plist_node_init(&q->list, prio);
2458 plist_add(&q->list, &hb->chain);
2459 q->task = current;
2460 }
2461
2462 /**
2463 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2464 * @q: The futex_q to enqueue
2465 * @hb: The destination hash bucket
2466 *
2467 * The hb->lock must be held by the caller, and is released here. A call to
2468 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2469 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2470 * or nothing if the unqueue is done as part of the wake process and the unqueue
2471 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2472 * an example).
2473 */
2474 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2475 __releases(&hb->lock)
2476 {
2477 __queue_me(q, hb);
2478 spin_unlock(&hb->lock);
2479 }
2480
2481 /**
2482 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2483 * @q: The futex_q to unqueue
2484 *
2485 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2486 * be paired with exactly one earlier call to queue_me().
2487 *
2488 * Return:
2489 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2490 * - 0 - if the futex_q was already removed by the waking thread
2491 */
2492 static int unqueue_me(struct futex_q *q)
2493 {
2494 spinlock_t *lock_ptr;
2495 int ret = 0;
2496
2497 /* In the common case we don't take the spinlock, which is nice. */
2498 retry:
2499 /*
2500 * q->lock_ptr can change between this read and the following spin_lock.
2501 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2502 * optimizing lock_ptr out of the logic below.
2503 */
2504 lock_ptr = READ_ONCE(q->lock_ptr);
2505 if (lock_ptr != NULL) {
2506 spin_lock(lock_ptr);
2507 /*
2508 * q->lock_ptr can change between reading it and
2509 * spin_lock(), causing us to take the wrong lock. This
2510 * corrects the race condition.
2511 *
2512 * Reasoning goes like this: if we have the wrong lock,
2513 * q->lock_ptr must have changed (maybe several times)
2514 * between reading it and the spin_lock(). It can
2515 * change again after the spin_lock() but only if it was
2516 * already changed before the spin_lock(). It cannot,
2517 * however, change back to the original value. Therefore
2518 * we can detect whether we acquired the correct lock.
2519 */
2520 if (unlikely(lock_ptr != q->lock_ptr)) {
2521 spin_unlock(lock_ptr);
2522 goto retry;
2523 }
2524 __unqueue_futex(q);
2525
2526 BUG_ON(q->pi_state);
2527
2528 spin_unlock(lock_ptr);
2529 ret = 1;
2530 }
2531
2532 return ret;
2533 }
2534
2535 /*
2536 * PI futexes can not be requeued and must remove themselves from the
2537 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held.
2538 */
2539 static void unqueue_me_pi(struct futex_q *q)
2540 {
2541 __unqueue_futex(q);
2542
2543 BUG_ON(!q->pi_state);
2544 put_pi_state(q->pi_state);
2545 q->pi_state = NULL;
2546 }
2547
2548 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2549 struct task_struct *argowner)
2550 {
2551 struct futex_pi_state *pi_state = q->pi_state;
2552 struct task_struct *oldowner, *newowner;
2553 u32 uval, curval, newval, newtid;
2554 int err = 0;
2555
2556 oldowner = pi_state->owner;
2557
2558 /*
2559 * We are here because either:
2560 *
2561 * - we stole the lock and pi_state->owner needs updating to reflect
2562 * that (@argowner == current),
2563 *
2564 * or:
2565 *
2566 * - someone stole our lock and we need to fix things to point to the
2567 * new owner (@argowner == NULL).
2568 *
2569 * Either way, we have to replace the TID in the user space variable.
2570 * This must be atomic as we have to preserve the owner died bit here.
2571 *
2572 * Note: We write the user space value _before_ changing the pi_state
2573 * because we can fault here. Imagine swapped out pages or a fork
2574 * that marked all the anonymous memory readonly for cow.
2575 *
2576 * Modifying pi_state _before_ the user space value would leave the
2577 * pi_state in an inconsistent state when we fault here, because we
2578 * need to drop the locks to handle the fault. This might be observed
2579 * in the PID checks when attaching to PI state .
2580 */
2581 retry:
2582 if (!argowner) {
2583 if (oldowner != current) {
2584 /*
2585 * We raced against a concurrent self; things are
2586 * already fixed up. Nothing to do.
2587 */
2588 return 0;
2589 }
2590
2591 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2592 /* We got the lock. pi_state is correct. Tell caller. */
2593 return 1;
2594 }
2595
2596 /*
2597 * The trylock just failed, so either there is an owner or
2598 * there is a higher priority waiter than this one.
2599 */
2600 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2601 /*
2602 * If the higher priority waiter has not yet taken over the
2603 * rtmutex then newowner is NULL. We can't return here with
2604 * that state because it's inconsistent vs. the user space
2605 * state. So drop the locks and try again. It's a valid
2606 * situation and not any different from the other retry
2607 * conditions.
2608 */
2609 if (unlikely(!newowner)) {
2610 err = -EAGAIN;
2611 goto handle_err;
2612 }
2613 } else {
2614 WARN_ON_ONCE(argowner != current);
2615 if (oldowner == current) {
2616 /*
2617 * We raced against a concurrent self; things are
2618 * already fixed up. Nothing to do.
2619 */
2620 return 1;
2621 }
2622 newowner = argowner;
2623 }
2624
2625 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2626 /* Owner died? */
2627 if (!pi_state->owner)
2628 newtid |= FUTEX_OWNER_DIED;
2629
2630 err = get_futex_value_locked(&uval, uaddr);
2631 if (err)
2632 goto handle_err;
2633
2634 for (;;) {
2635 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2636
2637 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2638 if (err)
2639 goto handle_err;
2640
2641 if (curval == uval)
2642 break;
2643 uval = curval;
2644 }
2645
2646 /*
2647 * We fixed up user space. Now we need to fix the pi_state
2648 * itself.
2649 */
2650 pi_state_update_owner(pi_state, newowner);
2651
2652 return argowner == current;
2653
2654 /*
2655 * In order to reschedule or handle a page fault, we need to drop the
2656 * locks here. In the case of a fault, this gives the other task
2657 * (either the highest priority waiter itself or the task which stole
2658 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2659 * are back from handling the fault we need to check the pi_state after
2660 * reacquiring the locks and before trying to do another fixup. When
2661 * the fixup has been done already we simply return.
2662 *
2663 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2664 * drop hb->lock since the caller owns the hb -> futex_q relation.
2665 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2666 */
2667 handle_err:
2668 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2669 spin_unlock(q->lock_ptr);
2670
2671 switch (err) {
2672 case -EFAULT:
2673 err = fault_in_user_writeable(uaddr);
2674 break;
2675
2676 case -EAGAIN:
2677 cond_resched();
2678 err = 0;
2679 break;
2680
2681 default:
2682 WARN_ON_ONCE(1);
2683 break;
2684 }
2685
2686 spin_lock(q->lock_ptr);
2687 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2688
2689 /*
2690 * Check if someone else fixed it for us:
2691 */
2692 if (pi_state->owner != oldowner)
2693 return argowner == current;
2694
2695 /* Retry if err was -EAGAIN or the fault in succeeded */
2696 if (!err)
2697 goto retry;
2698
2699 /*
2700 * fault_in_user_writeable() failed so user state is immutable. At
2701 * best we can make the kernel state consistent but user state will
2702 * be most likely hosed and any subsequent unlock operation will be
2703 * rejected due to PI futex rule [10].
2704 *
2705 * Ensure that the rtmutex owner is also the pi_state owner despite
2706 * the user space value claiming something different. There is no
2707 * point in unlocking the rtmutex if current is the owner as it
2708 * would need to wait until the next waiter has taken the rtmutex
2709 * to guarantee consistent state. Keep it simple. Userspace asked
2710 * for this wreckaged state.
2711 *
2712 * The rtmutex has an owner - either current or some other
2713 * task. See the EAGAIN loop above.
2714 */
2715 pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2716
2717 return err;
2718 }
2719
2720 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2721 struct task_struct *argowner)
2722 {
2723 struct futex_pi_state *pi_state = q->pi_state;
2724 int ret;
2725
2726 lockdep_assert_held(q->lock_ptr);
2727
2728 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2729 ret = __fixup_pi_state_owner(uaddr, q, argowner);
2730 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2731 return ret;
2732 }
2733
2734 static long futex_wait_restart(struct restart_block *restart);
2735
2736 /**
2737 * fixup_owner() - Post lock pi_state and corner case management
2738 * @uaddr: user address of the futex
2739 * @q: futex_q (contains pi_state and access to the rt_mutex)
2740 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2741 *
2742 * After attempting to lock an rt_mutex, this function is called to cleanup
2743 * the pi_state owner as well as handle race conditions that may allow us to
2744 * acquire the lock. Must be called with the hb lock held.
2745 *
2746 * Return:
2747 * - 1 - success, lock taken;
2748 * - 0 - success, lock not taken;
2749 * - <0 - on error (-EFAULT)
2750 */
2751 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2752 {
2753 if (locked) {
2754 /*
2755 * Got the lock. We might not be the anticipated owner if we
2756 * did a lock-steal - fix up the PI-state in that case:
2757 *
2758 * Speculative pi_state->owner read (we don't hold wait_lock);
2759 * since we own the lock pi_state->owner == current is the
2760 * stable state, anything else needs more attention.
2761 */
2762 if (q->pi_state->owner != current)
2763 return fixup_pi_state_owner(uaddr, q, current);
2764 return 1;
2765 }
2766
2767 /*
2768 * If we didn't get the lock; check if anybody stole it from us. In
2769 * that case, we need to fix up the uval to point to them instead of
2770 * us, otherwise bad things happen. [10]
2771 *
2772 * Another speculative read; pi_state->owner == current is unstable
2773 * but needs our attention.
2774 */
2775 if (q->pi_state->owner == current)
2776 return fixup_pi_state_owner(uaddr, q, NULL);
2777
2778 /*
2779 * Paranoia check. If we did not take the lock, then we should not be
2780 * the owner of the rt_mutex. Warn and establish consistent state.
2781 */
2782 if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2783 return fixup_pi_state_owner(uaddr, q, current);
2784
2785 return 0;
2786 }
2787
2788 /**
2789 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2790 * @hb: the futex hash bucket, must be locked by the caller
2791 * @q: the futex_q to queue up on
2792 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2793 */
2794 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2795 struct hrtimer_sleeper *timeout)
2796 {
2797 /*
2798 * The task state is guaranteed to be set before another task can
2799 * wake it. set_current_state() is implemented using smp_store_mb() and
2800 * queue_me() calls spin_unlock() upon completion, both serializing
2801 * access to the hash list and forcing another memory barrier.
2802 */
2803 set_current_state(TASK_INTERRUPTIBLE);
2804 queue_me(q, hb);
2805
2806 /* Arm the timer */
2807 if (timeout)
2808 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2809
2810 /*
2811 * If we have been removed from the hash list, then another task
2812 * has tried to wake us, and we can skip the call to schedule().
2813 */
2814 if (likely(!plist_node_empty(&q->list))) {
2815 /*
2816 * If the timer has already expired, current will already be
2817 * flagged for rescheduling. Only call schedule if there
2818 * is no timeout, or if it has yet to expire.
2819 */
2820 if (!timeout || timeout->task)
2821 freezable_schedule();
2822 }
2823 __set_current_state(TASK_RUNNING);
2824 }
2825
2826 /**
2827 * futex_wait_setup() - Prepare to wait on a futex
2828 * @uaddr: the futex userspace address
2829 * @val: the expected value
2830 * @flags: futex flags (FLAGS_SHARED, etc.)
2831 * @q: the associated futex_q
2832 * @hb: storage for hash_bucket pointer to be returned to caller
2833 *
2834 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2835 * compare it with the expected value. Handle atomic faults internally.
2836 * Return with the hb lock held on success, and unlocked on failure.
2837 *
2838 * Return:
2839 * - 0 - uaddr contains val and hb has been locked;
2840 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2841 */
2842 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2843 struct futex_q *q, struct futex_hash_bucket **hb)
2844 {
2845 u32 uval;
2846 int ret;
2847
2848 /*
2849 * Access the page AFTER the hash-bucket is locked.
2850 * Order is important:
2851 *
2852 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2853 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2854 *
2855 * The basic logical guarantee of a futex is that it blocks ONLY
2856 * if cond(var) is known to be true at the time of blocking, for
2857 * any cond. If we locked the hash-bucket after testing *uaddr, that
2858 * would open a race condition where we could block indefinitely with
2859 * cond(var) false, which would violate the guarantee.
2860 *
2861 * On the other hand, we insert q and release the hash-bucket only
2862 * after testing *uaddr. This guarantees that futex_wait() will NOT
2863 * absorb a wakeup if *uaddr does not match the desired values
2864 * while the syscall executes.
2865 */
2866 retry:
2867 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2868 if (unlikely(ret != 0))
2869 return ret;
2870
2871 retry_private:
2872 *hb = queue_lock(q);
2873
2874 ret = get_futex_value_locked(&uval, uaddr);
2875
2876 if (ret) {
2877 queue_unlock(*hb);
2878
2879 ret = get_user(uval, uaddr);
2880 if (ret)
2881 return ret;
2882
2883 if (!(flags & FLAGS_SHARED))
2884 goto retry_private;
2885
2886 goto retry;
2887 }
2888
2889 if (uval != val) {
2890 queue_unlock(*hb);
2891 ret = -EWOULDBLOCK;
2892 }
2893
2894 return ret;
2895 }
2896
2897 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2898 ktime_t *abs_time, u32 bitset)
2899 {
2900 struct hrtimer_sleeper timeout, *to;
2901 struct restart_block *restart;
2902 struct futex_hash_bucket *hb;
2903 struct futex_q q = futex_q_init;
2904 int ret;
2905
2906 if (!bitset)
2907 return -EINVAL;
2908 q.bitset = bitset;
2909
2910 to = futex_setup_timer(abs_time, &timeout, flags,
2911 current->timer_slack_ns);
2912 retry:
2913 /*
2914 * Prepare to wait on uaddr. On success, it holds hb->lock and q
2915 * is initialized.
2916 */
2917 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2918 if (ret)
2919 goto out;
2920
2921 /* queue_me and wait for wakeup, timeout, or a signal. */
2922 futex_wait_queue_me(hb, &q, to);
2923
2924 /* If we were woken (and unqueued), we succeeded, whatever. */
2925 ret = 0;
2926 if (!unqueue_me(&q))
2927 goto out;
2928 ret = -ETIMEDOUT;
2929 if (to && !to->task)
2930 goto out;
2931
2932 /*
2933 * We expect signal_pending(current), but we might be the
2934 * victim of a spurious wakeup as well.
2935 */
2936 if (!signal_pending(current))
2937 goto retry;
2938
2939 ret = -ERESTARTSYS;
2940 if (!abs_time)
2941 goto out;
2942
2943 restart = &current->restart_block;
2944 restart->futex.uaddr = uaddr;
2945 restart->futex.val = val;
2946 restart->futex.time = *abs_time;
2947 restart->futex.bitset = bitset;
2948 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2949
2950 ret = set_restart_fn(restart, futex_wait_restart);
2951
2952 out:
2953 if (to) {
2954 hrtimer_cancel(&to->timer);
2955 destroy_hrtimer_on_stack(&to->timer);
2956 }
2957 return ret;
2958 }
2959
2960
2961 static long futex_wait_restart(struct restart_block *restart)
2962 {
2963 u32 __user *uaddr = restart->futex.uaddr;
2964 ktime_t t, *tp = NULL;
2965
2966 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2967 t = restart->futex.time;
2968 tp = &t;
2969 }
2970 restart->fn = do_no_restart_syscall;
2971
2972 return (long)futex_wait(uaddr, restart->futex.flags,
2973 restart->futex.val, tp, restart->futex.bitset);
2974 }
2975
2976
2977 /*
2978 * Userspace tried a 0 -> TID atomic transition of the futex value
2979 * and failed. The kernel side here does the whole locking operation:
2980 * if there are waiters then it will block as a consequence of relying
2981 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2982 * a 0 value of the futex too.).
2983 *
2984 * Also serves as futex trylock_pi()'ing, and due semantics.
2985 */
2986 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2987 ktime_t *time, int trylock)
2988 {
2989 struct hrtimer_sleeper timeout, *to;
2990 struct task_struct *exiting = NULL;
2991 struct rt_mutex_waiter rt_waiter;
2992 struct futex_hash_bucket *hb;
2993 struct futex_q q = futex_q_init;
2994 int res, ret;
2995
2996 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2997 return -ENOSYS;
2998
2999 if (refill_pi_state_cache())
3000 return -ENOMEM;
3001
3002 to = futex_setup_timer(time, &timeout, flags, 0);
3003
3004 retry:
3005 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
3006 if (unlikely(ret != 0))
3007 goto out;
3008
3009 retry_private:
3010 hb = queue_lock(&q);
3011
3012 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
3013 &exiting, 0);
3014 if (unlikely(ret)) {
3015 /*
3016 * Atomic work succeeded and we got the lock,
3017 * or failed. Either way, we do _not_ block.
3018 */
3019 switch (ret) {
3020 case 1:
3021 /* We got the lock. */
3022 ret = 0;
3023 goto out_unlock_put_key;
3024 case -EFAULT:
3025 goto uaddr_faulted;
3026 case -EBUSY:
3027 case -EAGAIN:
3028 /*
3029 * Two reasons for this:
3030 * - EBUSY: Task is exiting and we just wait for the
3031 * exit to complete.
3032 * - EAGAIN: The user space value changed.
3033 */
3034 queue_unlock(hb);
3035 /*
3036 * Handle the case where the owner is in the middle of
3037 * exiting. Wait for the exit to complete otherwise
3038 * this task might loop forever, aka. live lock.
3039 */
3040 wait_for_owner_exiting(ret, exiting);
3041 cond_resched();
3042 goto retry;
3043 default:
3044 goto out_unlock_put_key;
3045 }
3046 }
3047
3048 WARN_ON(!q.pi_state);
3049
3050 /*
3051 * Only actually queue now that the atomic ops are done:
3052 */
3053 __queue_me(&q, hb);
3054
3055 if (trylock) {
3056 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
3057 /* Fixup the trylock return value: */
3058 ret = ret ? 0 : -EWOULDBLOCK;
3059 goto no_block;
3060 }
3061
3062 rt_mutex_init_waiter(&rt_waiter);
3063
3064 /*
3065 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
3066 * hold it while doing rt_mutex_start_proxy(), because then it will
3067 * include hb->lock in the blocking chain, even through we'll not in
3068 * fact hold it while blocking. This will lead it to report -EDEADLK
3069 * and BUG when futex_unlock_pi() interleaves with this.
3070 *
3071 * Therefore acquire wait_lock while holding hb->lock, but drop the
3072 * latter before calling __rt_mutex_start_proxy_lock(). This
3073 * interleaves with futex_unlock_pi() -- which does a similar lock
3074 * handoff -- such that the latter can observe the futex_q::pi_state
3075 * before __rt_mutex_start_proxy_lock() is done.
3076 */
3077 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
3078 spin_unlock(q.lock_ptr);
3079 /*
3080 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
3081 * such that futex_unlock_pi() is guaranteed to observe the waiter when
3082 * it sees the futex_q::pi_state.
3083 */
3084 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
3085 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
3086
3087 if (ret) {
3088 if (ret == 1)
3089 ret = 0;
3090 goto cleanup;
3091 }
3092
3093 if (unlikely(to))
3094 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
3095
3096 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
3097
3098 cleanup:
3099 spin_lock(q.lock_ptr);
3100 /*
3101 * If we failed to acquire the lock (deadlock/signal/timeout), we must
3102 * first acquire the hb->lock before removing the lock from the
3103 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
3104 * lists consistent.
3105 *
3106 * In particular; it is important that futex_unlock_pi() can not
3107 * observe this inconsistency.
3108 */
3109 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3110 ret = 0;
3111
3112 no_block:
3113 /*
3114 * Fixup the pi_state owner and possibly acquire the lock if we
3115 * haven't already.
3116 */
3117 res = fixup_owner(uaddr, &q, !ret);
3118 /*
3119 * If fixup_owner() returned an error, propagate that. If it acquired
3120 * the lock, clear our -ETIMEDOUT or -EINTR.
3121 */
3122 if (res)
3123 ret = (res < 0) ? res : 0;
3124
3125 unqueue_me_pi(&q);
3126 spin_unlock(q.lock_ptr);
3127 goto out;
3128
3129 out_unlock_put_key:
3130 queue_unlock(hb);
3131
3132 out:
3133 if (to) {
3134 hrtimer_cancel(&to->timer);
3135 destroy_hrtimer_on_stack(&to->timer);
3136 }
3137 return ret != -EINTR ? ret : -ERESTARTNOINTR;
3138
3139 uaddr_faulted:
3140 queue_unlock(hb);
3141
3142 ret = fault_in_user_writeable(uaddr);
3143 if (ret)
3144 goto out;
3145
3146 if (!(flags & FLAGS_SHARED))
3147 goto retry_private;
3148
3149 goto retry;
3150 }
3151
3152 /*
3153 * Userspace attempted a TID -> 0 atomic transition, and failed.
3154 * This is the in-kernel slowpath: we look up the PI state (if any),
3155 * and do the rt-mutex unlock.
3156 */
3157 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3158 {
3159 u32 curval, uval, vpid = task_pid_vnr(current);
3160 union futex_key key = FUTEX_KEY_INIT;
3161 struct futex_hash_bucket *hb;
3162 struct futex_q *top_waiter;
3163 int ret;
3164
3165 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3166 return -ENOSYS;
3167
3168 retry:
3169 if (get_user(uval, uaddr))
3170 return -EFAULT;
3171 /*
3172 * We release only a lock we actually own:
3173 */
3174 if ((uval & FUTEX_TID_MASK) != vpid)
3175 return -EPERM;
3176
3177 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3178 if (ret)
3179 return ret;
3180
3181 hb = hash_futex(&key);
3182 spin_lock(&hb->lock);
3183
3184 /*
3185 * Check waiters first. We do not trust user space values at
3186 * all and we at least want to know if user space fiddled
3187 * with the futex value instead of blindly unlocking.
3188 */
3189 top_waiter = futex_top_waiter(hb, &key);
3190 if (top_waiter) {
3191 struct futex_pi_state *pi_state = top_waiter->pi_state;
3192
3193 ret = -EINVAL;
3194 if (!pi_state)
3195 goto out_unlock;
3196
3197 /*
3198 * If current does not own the pi_state then the futex is
3199 * inconsistent and user space fiddled with the futex value.
3200 */
3201 if (pi_state->owner != current)
3202 goto out_unlock;
3203
3204 get_pi_state(pi_state);
3205 /*
3206 * By taking wait_lock while still holding hb->lock, we ensure
3207 * there is no point where we hold neither; and therefore
3208 * wake_futex_pi() must observe a state consistent with what we
3209 * observed.
3210 *
3211 * In particular; this forces __rt_mutex_start_proxy() to
3212 * complete such that we're guaranteed to observe the
3213 * rt_waiter. Also see the WARN in wake_futex_pi().
3214 */
3215 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3216 spin_unlock(&hb->lock);
3217
3218 /* drops pi_state->pi_mutex.wait_lock */
3219 ret = wake_futex_pi(uaddr, uval, pi_state);
3220
3221 put_pi_state(pi_state);
3222
3223 /*
3224 * Success, we're done! No tricky corner cases.
3225 */
3226 if (!ret)
3227 return ret;
3228 /*
3229 * The atomic access to the futex value generated a
3230 * pagefault, so retry the user-access and the wakeup:
3231 */
3232 if (ret == -EFAULT)
3233 goto pi_faulted;
3234 /*
3235 * A unconditional UNLOCK_PI op raced against a waiter
3236 * setting the FUTEX_WAITERS bit. Try again.
3237 */
3238 if (ret == -EAGAIN)
3239 goto pi_retry;
3240 /*
3241 * wake_futex_pi has detected invalid state. Tell user
3242 * space.
3243 */
3244 return ret;
3245 }
3246
3247 /*
3248 * We have no kernel internal state, i.e. no waiters in the
3249 * kernel. Waiters which are about to queue themselves are stuck
3250 * on hb->lock. So we can safely ignore them. We do neither
3251 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3252 * owner.
3253 */
3254 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3255 spin_unlock(&hb->lock);
3256 switch (ret) {
3257 case -EFAULT:
3258 goto pi_faulted;
3259
3260 case -EAGAIN:
3261 goto pi_retry;
3262
3263 default:
3264 WARN_ON_ONCE(1);
3265 return ret;
3266 }
3267 }
3268
3269 /*
3270 * If uval has changed, let user space handle it.
3271 */
3272 ret = (curval == uval) ? 0 : -EAGAIN;
3273
3274 out_unlock:
3275 spin_unlock(&hb->lock);
3276 return ret;
3277
3278 pi_retry:
3279 cond_resched();
3280 goto retry;
3281
3282 pi_faulted:
3283
3284 ret = fault_in_user_writeable(uaddr);
3285 if (!ret)
3286 goto retry;
3287
3288 return ret;
3289 }
3290
3291 /**
3292 * handle_early_requeue_pi_wakeup() - Handle early wakeup on the initial futex
3293 * @hb: the hash_bucket futex_q was original enqueued on
3294 * @q: the futex_q woken while waiting to be requeued
3295 * @timeout: the timeout associated with the wait (NULL if none)
3296 *
3297 * Determine the cause for the early wakeup.
3298 *
3299 * Return:
3300 * -EWOULDBLOCK or -ETIMEDOUT or -ERESTARTNOINTR
3301 */
3302 static inline
3303 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3304 struct futex_q *q,
3305 struct hrtimer_sleeper *timeout)
3306 {
3307 int ret;
3308
3309 /*
3310 * With the hb lock held, we avoid races while we process the wakeup.
3311 * We only need to hold hb (and not hb2) to ensure atomicity as the
3312 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3313 * It can't be requeued from uaddr2 to something else since we don't
3314 * support a PI aware source futex for requeue.
3315 */
3316 WARN_ON_ONCE(&hb->lock != q->lock_ptr);
3317
3318 /*
3319 * We were woken prior to requeue by a timeout or a signal.
3320 * Unqueue the futex_q and determine which it was.
3321 */
3322 plist_del(&q->list, &hb->chain);
3323 hb_waiters_dec(hb);
3324
3325 /* Handle spurious wakeups gracefully */
3326 ret = -EWOULDBLOCK;
3327 if (timeout && !timeout->task)
3328 ret = -ETIMEDOUT;
3329 else if (signal_pending(current))
3330 ret = -ERESTARTNOINTR;
3331 return ret;
3332 }
3333
3334 /**
3335 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3336 * @uaddr: the futex we initially wait on (non-pi)
3337 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3338 * the same type, no requeueing from private to shared, etc.
3339 * @val: the expected value of uaddr
3340 * @abs_time: absolute timeout
3341 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3342 * @uaddr2: the pi futex we will take prior to returning to user-space
3343 *
3344 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3345 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3346 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3347 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3348 * without one, the pi logic would not know which task to boost/deboost, if
3349 * there was a need to.
3350 *
3351 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3352 * via the following--
3353 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3354 * 2) wakeup on uaddr2 after a requeue
3355 * 3) signal
3356 * 4) timeout
3357 *
3358 * If 3, cleanup and return -ERESTARTNOINTR.
3359 *
3360 * If 2, we may then block on trying to take the rt_mutex and return via:
3361 * 5) successful lock
3362 * 6) signal
3363 * 7) timeout
3364 * 8) other lock acquisition failure
3365 *
3366 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3367 *
3368 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3369 *
3370 * Return:
3371 * - 0 - On success;
3372 * - <0 - On error
3373 */
3374 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3375 u32 val, ktime_t *abs_time, u32 bitset,
3376 u32 __user *uaddr2)
3377 {
3378 struct hrtimer_sleeper timeout, *to;
3379 struct rt_mutex_waiter rt_waiter;
3380 struct futex_hash_bucket *hb;
3381 union futex_key key2 = FUTEX_KEY_INIT;
3382 struct futex_q q = futex_q_init;
3383 struct rt_mutex_base *pi_mutex;
3384 int res, ret;
3385
3386 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3387 return -ENOSYS;
3388
3389 if (uaddr == uaddr2)
3390 return -EINVAL;
3391
3392 if (!bitset)
3393 return -EINVAL;
3394
3395 to = futex_setup_timer(abs_time, &timeout, flags,
3396 current->timer_slack_ns);
3397
3398 /*
3399 * The waiter is allocated on our stack, manipulated by the requeue
3400 * code while we sleep on uaddr.
3401 */
3402 rt_mutex_init_waiter(&rt_waiter);
3403
3404 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3405 if (unlikely(ret != 0))
3406 goto out;
3407
3408 q.bitset = bitset;
3409 q.rt_waiter = &rt_waiter;
3410 q.requeue_pi_key = &key2;
3411
3412 /*
3413 * Prepare to wait on uaddr. On success, it holds hb->lock and q
3414 * is initialized.
3415 */
3416 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3417 if (ret)
3418 goto out;
3419
3420 /*
3421 * The check above which compares uaddrs is not sufficient for
3422 * shared futexes. We need to compare the keys:
3423 */
3424 if (match_futex(&q.key, &key2)) {
3425 queue_unlock(hb);
3426 ret = -EINVAL;
3427 goto out;
3428 }
3429
3430 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3431 futex_wait_queue_me(hb, &q, to);
3432
3433 switch (futex_requeue_pi_wakeup_sync(&q)) {
3434 case Q_REQUEUE_PI_IGNORE:
3435 /* The waiter is still on uaddr1 */
3436 spin_lock(&hb->lock);
3437 ret = handle_early_requeue_pi_wakeup(hb, &q, to);
3438 spin_unlock(&hb->lock);
3439 break;
3440
3441 case Q_REQUEUE_PI_LOCKED:
3442 /* The requeue acquired the lock */
3443 if (q.pi_state && (q.pi_state->owner != current)) {
3444 spin_lock(q.lock_ptr);
3445 ret = fixup_owner(uaddr2, &q, true);
3446 /*
3447 * Drop the reference to the pi state which the
3448 * requeue_pi() code acquired for us.
3449 */
3450 put_pi_state(q.pi_state);
3451 spin_unlock(q.lock_ptr);
3452 /*
3453 * Adjust the return value. It's either -EFAULT or
3454 * success (1) but the caller expects 0 for success.
3455 */
3456 ret = ret < 0 ? ret : 0;
3457 }
3458 break;
3459
3460 case Q_REQUEUE_PI_DONE:
3461 /* Requeue completed. Current is 'pi_blocked_on' the rtmutex */
3462 pi_mutex = &q.pi_state->pi_mutex;
3463 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3464
3465 /* Current is not longer pi_blocked_on */
3466 spin_lock(q.lock_ptr);
3467 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3468 ret = 0;
3469
3470 debug_rt_mutex_free_waiter(&rt_waiter);
3471 /*
3472 * Fixup the pi_state owner and possibly acquire the lock if we
3473 * haven't already.
3474 */
3475 res = fixup_owner(uaddr2, &q, !ret);
3476 /*
3477 * If fixup_owner() returned an error, propagate that. If it
3478 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3479 */
3480 if (res)
3481 ret = (res < 0) ? res : 0;
3482
3483 unqueue_me_pi(&q);
3484 spin_unlock(q.lock_ptr);
3485
3486 if (ret == -EINTR) {
3487 /*
3488 * We've already been requeued, but cannot restart
3489 * by calling futex_lock_pi() directly. We could
3490 * restart this syscall, but it would detect that
3491 * the user space "val" changed and return
3492 * -EWOULDBLOCK. Save the overhead of the restart
3493 * and return -EWOULDBLOCK directly.
3494 */
3495 ret = -EWOULDBLOCK;
3496 }
3497 break;
3498 default:
3499 BUG();
3500 }
3501
3502 out:
3503 if (to) {
3504 hrtimer_cancel(&to->timer);
3505 destroy_hrtimer_on_stack(&to->timer);
3506 }
3507 return ret;
3508 }
3509
3510 /*
3511 * Support for robust futexes: the kernel cleans up held futexes at
3512 * thread exit time.
3513 *
3514 * Implementation: user-space maintains a per-thread list of locks it
3515 * is holding. Upon do_exit(), the kernel carefully walks this list,
3516 * and marks all locks that are owned by this thread with the
3517 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3518 * always manipulated with the lock held, so the list is private and
3519 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3520 * field, to allow the kernel to clean up if the thread dies after
3521 * acquiring the lock, but just before it could have added itself to
3522 * the list. There can only be one such pending lock.
3523 */
3524
3525 /**
3526 * sys_set_robust_list() - Set the robust-futex list head of a task
3527 * @head: pointer to the list-head
3528 * @len: length of the list-head, as userspace expects
3529 */
3530 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3531 size_t, len)
3532 {
3533 if (!futex_cmpxchg_enabled)
3534 return -ENOSYS;
3535 /*
3536 * The kernel knows only one size for now:
3537 */
3538 if (unlikely(len != sizeof(*head)))
3539 return -EINVAL;
3540
3541 current->robust_list = head;
3542
3543 return 0;
3544 }
3545
3546 /**
3547 * sys_get_robust_list() - Get the robust-futex list head of a task
3548 * @pid: pid of the process [zero for current task]
3549 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3550 * @len_ptr: pointer to a length field, the kernel fills in the header size
3551 */
3552 SYSCALL_DEFINE3(get_robust_list, int, pid,
3553 struct robust_list_head __user * __user *, head_ptr,
3554 size_t __user *, len_ptr)
3555 {
3556 struct robust_list_head __user *head;
3557 unsigned long ret;
3558 struct task_struct *p;
3559
3560 if (!futex_cmpxchg_enabled)
3561 return -ENOSYS;
3562
3563 rcu_read_lock();
3564
3565 ret = -ESRCH;
3566 if (!pid)
3567 p = current;
3568 else {
3569 p = find_task_by_vpid(pid);
3570 if (!p)
3571 goto err_unlock;
3572 }
3573
3574 ret = -EPERM;
3575 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3576 goto err_unlock;
3577
3578 head = p->robust_list;
3579 rcu_read_unlock();
3580
3581 if (put_user(sizeof(*head), len_ptr))
3582 return -EFAULT;
3583 return put_user(head, head_ptr);
3584
3585 err_unlock:
3586 rcu_read_unlock();
3587
3588 return ret;
3589 }
3590
3591 /* Constants for the pending_op argument of handle_futex_death */
3592 #define HANDLE_DEATH_PENDING true
3593 #define HANDLE_DEATH_LIST false
3594
3595 /*
3596 * Process a futex-list entry, check whether it's owned by the
3597 * dying task, and do notification if so:
3598 */
3599 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3600 bool pi, bool pending_op)
3601 {
3602 u32 uval, nval, mval;
3603 int err;
3604
3605 /* Futex address must be 32bit aligned */
3606 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3607 return -1;
3608
3609 retry:
3610 if (get_user(uval, uaddr))
3611 return -1;
3612
3613 /*
3614 * Special case for regular (non PI) futexes. The unlock path in
3615 * user space has two race scenarios:
3616 *
3617 * 1. The unlock path releases the user space futex value and
3618 * before it can execute the futex() syscall to wake up
3619 * waiters it is killed.
3620 *
3621 * 2. A woken up waiter is killed before it can acquire the
3622 * futex in user space.
3623 *
3624 * In both cases the TID validation below prevents a wakeup of
3625 * potential waiters which can cause these waiters to block
3626 * forever.
3627 *
3628 * In both cases the following conditions are met:
3629 *
3630 * 1) task->robust_list->list_op_pending != NULL
3631 * @pending_op == true
3632 * 2) User space futex value == 0
3633 * 3) Regular futex: @pi == false
3634 *
3635 * If these conditions are met, it is safe to attempt waking up a
3636 * potential waiter without touching the user space futex value and
3637 * trying to set the OWNER_DIED bit. The user space futex value is
3638 * uncontended and the rest of the user space mutex state is
3639 * consistent, so a woken waiter will just take over the
3640 * uncontended futex. Setting the OWNER_DIED bit would create
3641 * inconsistent state and malfunction of the user space owner died
3642 * handling.
3643 */
3644 if (pending_op && !pi && !uval) {
3645 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3646 return 0;
3647 }
3648
3649 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3650 return 0;
3651
3652 /*
3653 * Ok, this dying thread is truly holding a futex
3654 * of interest. Set the OWNER_DIED bit atomically
3655 * via cmpxchg, and if the value had FUTEX_WAITERS
3656 * set, wake up a waiter (if any). (We have to do a
3657 * futex_wake() even if OWNER_DIED is already set -
3658 * to handle the rare but possible case of recursive
3659 * thread-death.) The rest of the cleanup is done in
3660 * userspace.
3661 */
3662 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3663
3664 /*
3665 * We are not holding a lock here, but we want to have
3666 * the pagefault_disable/enable() protection because
3667 * we want to handle the fault gracefully. If the
3668 * access fails we try to fault in the futex with R/W
3669 * verification via get_user_pages. get_user() above
3670 * does not guarantee R/W access. If that fails we
3671 * give up and leave the futex locked.
3672 */
3673 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3674 switch (err) {
3675 case -EFAULT:
3676 if (fault_in_user_writeable(uaddr))
3677 return -1;
3678 goto retry;
3679
3680 case -EAGAIN:
3681 cond_resched();
3682 goto retry;
3683
3684 default:
3685 WARN_ON_ONCE(1);
3686 return err;
3687 }
3688 }
3689
3690 if (nval != uval)
3691 goto retry;
3692
3693 /*
3694 * Wake robust non-PI futexes here. The wakeup of
3695 * PI futexes happens in exit_pi_state():
3696 */
3697 if (!pi && (uval & FUTEX_WAITERS))
3698 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3699
3700 return 0;
3701 }
3702
3703 /*
3704 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3705 */
3706 static inline int fetch_robust_entry(struct robust_list __user **entry,
3707 struct robust_list __user * __user *head,
3708 unsigned int *pi)
3709 {
3710 unsigned long uentry;
3711
3712 if (get_user(uentry, (unsigned long __user *)head))
3713 return -EFAULT;
3714
3715 *entry = (void __user *)(uentry & ~1UL);
3716 *pi = uentry & 1;
3717
3718 return 0;
3719 }
3720
3721 /*
3722 * Walk curr->robust_list (very carefully, it's a userspace list!)
3723 * and mark any locks found there dead, and notify any waiters.
3724 *
3725 * We silently return on any sign of list-walking problem.
3726 */
3727 static void exit_robust_list(struct task_struct *curr)
3728 {
3729 struct robust_list_head __user *head = curr->robust_list;
3730 struct robust_list __user *entry, *next_entry, *pending;
3731 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3732 unsigned int next_pi;
3733 unsigned long futex_offset;
3734 int rc;
3735
3736 if (!futex_cmpxchg_enabled)
3737 return;
3738
3739 /*
3740 * Fetch the list head (which was registered earlier, via
3741 * sys_set_robust_list()):
3742 */
3743 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3744 return;
3745 /*
3746 * Fetch the relative futex offset:
3747 */
3748 if (get_user(futex_offset, &head->futex_offset))
3749 return;
3750 /*
3751 * Fetch any possibly pending lock-add first, and handle it
3752 * if it exists:
3753 */
3754 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3755 return;
3756
3757 next_entry = NULL; /* avoid warning with gcc */
3758 while (entry != &head->list) {
3759 /*
3760 * Fetch the next entry in the list before calling
3761 * handle_futex_death:
3762 */
3763 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3764 /*
3765 * A pending lock might already be on the list, so
3766 * don't process it twice:
3767 */
3768 if (entry != pending) {
3769 if (handle_futex_death((void __user *)entry + futex_offset,
3770 curr, pi, HANDLE_DEATH_LIST))
3771 return;
3772 }
3773 if (rc)
3774 return;
3775 entry = next_entry;
3776 pi = next_pi;
3777 /*
3778 * Avoid excessively long or circular lists:
3779 */
3780 if (!--limit)
3781 break;
3782
3783 cond_resched();
3784 }
3785
3786 if (pending) {
3787 handle_futex_death((void __user *)pending + futex_offset,
3788 curr, pip, HANDLE_DEATH_PENDING);
3789 }
3790 }
3791
3792 static void futex_cleanup(struct task_struct *tsk)
3793 {
3794 if (unlikely(tsk->robust_list)) {
3795 exit_robust_list(tsk);
3796 tsk->robust_list = NULL;
3797 }
3798
3799 #ifdef CONFIG_COMPAT
3800 if (unlikely(tsk->compat_robust_list)) {
3801 compat_exit_robust_list(tsk);
3802 tsk->compat_robust_list = NULL;
3803 }
3804 #endif
3805
3806 if (unlikely(!list_empty(&tsk->pi_state_list)))
3807 exit_pi_state_list(tsk);
3808 }
3809
3810 /**
3811 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3812 * @tsk: task to set the state on
3813 *
3814 * Set the futex exit state of the task lockless. The futex waiter code
3815 * observes that state when a task is exiting and loops until the task has
3816 * actually finished the futex cleanup. The worst case for this is that the
3817 * waiter runs through the wait loop until the state becomes visible.
3818 *
3819 * This is called from the recursive fault handling path in do_exit().
3820 *
3821 * This is best effort. Either the futex exit code has run already or
3822 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3823 * take it over. If not, the problem is pushed back to user space. If the
3824 * futex exit code did not run yet, then an already queued waiter might
3825 * block forever, but there is nothing which can be done about that.
3826 */
3827 void futex_exit_recursive(struct task_struct *tsk)
3828 {
3829 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3830 if (tsk->futex_state == FUTEX_STATE_EXITING)
3831 mutex_unlock(&tsk->futex_exit_mutex);
3832 tsk->futex_state = FUTEX_STATE_DEAD;
3833 }
3834
3835 static void futex_cleanup_begin(struct task_struct *tsk)
3836 {
3837 /*
3838 * Prevent various race issues against a concurrent incoming waiter
3839 * including live locks by forcing the waiter to block on
3840 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3841 * attach_to_pi_owner().
3842 */
3843 mutex_lock(&tsk->futex_exit_mutex);
3844
3845 /*
3846 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3847 *
3848 * This ensures that all subsequent checks of tsk->futex_state in
3849 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3850 * tsk->pi_lock held.
3851 *
3852 * It guarantees also that a pi_state which was queued right before
3853 * the state change under tsk->pi_lock by a concurrent waiter must
3854 * be observed in exit_pi_state_list().
3855 */
3856 raw_spin_lock_irq(&tsk->pi_lock);
3857 tsk->futex_state = FUTEX_STATE_EXITING;
3858 raw_spin_unlock_irq(&tsk->pi_lock);
3859 }
3860
3861 static void futex_cleanup_end(struct task_struct *tsk, int state)
3862 {
3863 /*
3864 * Lockless store. The only side effect is that an observer might
3865 * take another loop until it becomes visible.
3866 */
3867 tsk->futex_state = state;
3868 /*
3869 * Drop the exit protection. This unblocks waiters which observed
3870 * FUTEX_STATE_EXITING to reevaluate the state.
3871 */
3872 mutex_unlock(&tsk->futex_exit_mutex);
3873 }
3874
3875 void futex_exec_release(struct task_struct *tsk)
3876 {
3877 /*
3878 * The state handling is done for consistency, but in the case of
3879 * exec() there is no way to prevent further damage as the PID stays
3880 * the same. But for the unlikely and arguably buggy case that a
3881 * futex is held on exec(), this provides at least as much state
3882 * consistency protection which is possible.
3883 */
3884 futex_cleanup_begin(tsk);
3885 futex_cleanup(tsk);
3886 /*
3887 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3888 * exec a new binary.
3889 */
3890 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3891 }
3892
3893 void futex_exit_release(struct task_struct *tsk)
3894 {
3895 futex_cleanup_begin(tsk);
3896 futex_cleanup(tsk);
3897 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3898 }
3899
3900 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3901 u32 __user *uaddr2, u32 val2, u32 val3)
3902 {
3903 int cmd = op & FUTEX_CMD_MASK;
3904 unsigned int flags = 0;
3905
3906 if (!(op & FUTEX_PRIVATE_FLAG))
3907 flags |= FLAGS_SHARED;
3908
3909 if (op & FUTEX_CLOCK_REALTIME) {
3910 flags |= FLAGS_CLOCKRT;
3911 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI &&
3912 cmd != FUTEX_LOCK_PI2)
3913 return -ENOSYS;
3914 }
3915
3916 switch (cmd) {
3917 case FUTEX_LOCK_PI:
3918 case FUTEX_LOCK_PI2:
3919 case FUTEX_UNLOCK_PI:
3920 case FUTEX_TRYLOCK_PI:
3921 case FUTEX_WAIT_REQUEUE_PI:
3922 case FUTEX_CMP_REQUEUE_PI:
3923 if (!futex_cmpxchg_enabled)
3924 return -ENOSYS;
3925 }
3926
3927 switch (cmd) {
3928 case FUTEX_WAIT:
3929 val3 = FUTEX_BITSET_MATCH_ANY;
3930 fallthrough;
3931 case FUTEX_WAIT_BITSET:
3932 return futex_wait(uaddr, flags, val, timeout, val3);
3933 case FUTEX_WAKE:
3934 val3 = FUTEX_BITSET_MATCH_ANY;
3935 fallthrough;
3936 case FUTEX_WAKE_BITSET:
3937 return futex_wake(uaddr, flags, val, val3);
3938 case FUTEX_REQUEUE:
3939 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3940 case FUTEX_CMP_REQUEUE:
3941 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3942 case FUTEX_WAKE_OP:
3943 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3944 case FUTEX_LOCK_PI:
3945 flags |= FLAGS_CLOCKRT;
3946 fallthrough;
3947 case FUTEX_LOCK_PI2:
3948 return futex_lock_pi(uaddr, flags, timeout, 0);
3949 case FUTEX_UNLOCK_PI:
3950 return futex_unlock_pi(uaddr, flags);
3951 case FUTEX_TRYLOCK_PI:
3952 return futex_lock_pi(uaddr, flags, NULL, 1);
3953 case FUTEX_WAIT_REQUEUE_PI:
3954 val3 = FUTEX_BITSET_MATCH_ANY;
3955 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3956 uaddr2);
3957 case FUTEX_CMP_REQUEUE_PI:
3958 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3959 }
3960 return -ENOSYS;
3961 }
3962
3963 static __always_inline bool futex_cmd_has_timeout(u32 cmd)
3964 {
3965 switch (cmd) {
3966 case FUTEX_WAIT:
3967 case FUTEX_LOCK_PI:
3968 case FUTEX_LOCK_PI2:
3969 case FUTEX_WAIT_BITSET:
3970 case FUTEX_WAIT_REQUEUE_PI:
3971 return true;
3972 }
3973 return false;
3974 }
3975
3976 static __always_inline int
3977 futex_init_timeout(u32 cmd, u32 op, struct timespec64 *ts, ktime_t *t)
3978 {
3979 if (!timespec64_valid(ts))
3980 return -EINVAL;
3981
3982 *t = timespec64_to_ktime(*ts);
3983 if (cmd == FUTEX_WAIT)
3984 *t = ktime_add_safe(ktime_get(), *t);
3985 else if (cmd != FUTEX_LOCK_PI && !(op & FUTEX_CLOCK_REALTIME))
3986 *t = timens_ktime_to_host(CLOCK_MONOTONIC, *t);
3987 return 0;
3988 }
3989
3990 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3991 const struct __kernel_timespec __user *, utime,
3992 u32 __user *, uaddr2, u32, val3)
3993 {
3994 int ret, cmd = op & FUTEX_CMD_MASK;
3995 ktime_t t, *tp = NULL;
3996 struct timespec64 ts;
3997
3998 if (utime && futex_cmd_has_timeout(cmd)) {
3999 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
4000 return -EFAULT;
4001 if (get_timespec64(&ts, utime))
4002 return -EFAULT;
4003 ret = futex_init_timeout(cmd, op, &ts, &t);
4004 if (ret)
4005 return ret;
4006 tp = &t;
4007 }
4008
4009 return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
4010 }
4011
4012 #ifdef CONFIG_COMPAT
4013 /*
4014 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
4015 */
4016 static inline int
4017 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
4018 compat_uptr_t __user *head, unsigned int *pi)
4019 {
4020 if (get_user(*uentry, head))
4021 return -EFAULT;
4022
4023 *entry = compat_ptr((*uentry) & ~1);
4024 *pi = (unsigned int)(*uentry) & 1;
4025
4026 return 0;
4027 }
4028
4029 static void __user *futex_uaddr(struct robust_list __user *entry,
4030 compat_long_t futex_offset)
4031 {
4032 compat_uptr_t base = ptr_to_compat(entry);
4033 void __user *uaddr = compat_ptr(base + futex_offset);
4034
4035 return uaddr;
4036 }
4037
4038 /*
4039 * Walk curr->robust_list (very carefully, it's a userspace list!)
4040 * and mark any locks found there dead, and notify any waiters.
4041 *
4042 * We silently return on any sign of list-walking problem.
4043 */
4044 static void compat_exit_robust_list(struct task_struct *curr)
4045 {
4046 struct compat_robust_list_head __user *head = curr->compat_robust_list;
4047 struct robust_list __user *entry, *next_entry, *pending;
4048 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
4049 unsigned int next_pi;
4050 compat_uptr_t uentry, next_uentry, upending;
4051 compat_long_t futex_offset;
4052 int rc;
4053
4054 if (!futex_cmpxchg_enabled)
4055 return;
4056
4057 /*
4058 * Fetch the list head (which was registered earlier, via
4059 * sys_set_robust_list()):
4060 */
4061 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
4062 return;
4063 /*
4064 * Fetch the relative futex offset:
4065 */
4066 if (get_user(futex_offset, &head->futex_offset))
4067 return;
4068 /*
4069 * Fetch any possibly pending lock-add first, and handle it
4070 * if it exists:
4071 */
4072 if (compat_fetch_robust_entry(&upending, &pending,
4073 &head->list_op_pending, &pip))
4074 return;
4075
4076 next_entry = NULL; /* avoid warning with gcc */
4077 while (entry != (struct robust_list __user *) &head->list) {
4078 /*
4079 * Fetch the next entry in the list before calling
4080 * handle_futex_death:
4081 */
4082 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4083 (compat_uptr_t __user *)&entry->next, &next_pi);
4084 /*
4085 * A pending lock might already be on the list, so
4086 * dont process it twice:
4087 */
4088 if (entry != pending) {
4089 void __user *uaddr = futex_uaddr(entry, futex_offset);
4090
4091 if (handle_futex_death(uaddr, curr, pi,
4092 HANDLE_DEATH_LIST))
4093 return;
4094 }
4095 if (rc)
4096 return;
4097 uentry = next_uentry;
4098 entry = next_entry;
4099 pi = next_pi;
4100 /*
4101 * Avoid excessively long or circular lists:
4102 */
4103 if (!--limit)
4104 break;
4105
4106 cond_resched();
4107 }
4108 if (pending) {
4109 void __user *uaddr = futex_uaddr(pending, futex_offset);
4110
4111 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4112 }
4113 }
4114
4115 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4116 struct compat_robust_list_head __user *, head,
4117 compat_size_t, len)
4118 {
4119 if (!futex_cmpxchg_enabled)
4120 return -ENOSYS;
4121
4122 if (unlikely(len != sizeof(*head)))
4123 return -EINVAL;
4124
4125 current->compat_robust_list = head;
4126
4127 return 0;
4128 }
4129
4130 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4131 compat_uptr_t __user *, head_ptr,
4132 compat_size_t __user *, len_ptr)
4133 {
4134 struct compat_robust_list_head __user *head;
4135 unsigned long ret;
4136 struct task_struct *p;
4137
4138 if (!futex_cmpxchg_enabled)
4139 return -ENOSYS;
4140
4141 rcu_read_lock();
4142
4143 ret = -ESRCH;
4144 if (!pid)
4145 p = current;
4146 else {
4147 p = find_task_by_vpid(pid);
4148 if (!p)
4149 goto err_unlock;
4150 }
4151
4152 ret = -EPERM;
4153 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4154 goto err_unlock;
4155
4156 head = p->compat_robust_list;
4157 rcu_read_unlock();
4158
4159 if (put_user(sizeof(*head), len_ptr))
4160 return -EFAULT;
4161 return put_user(ptr_to_compat(head), head_ptr);
4162
4163 err_unlock:
4164 rcu_read_unlock();
4165
4166 return ret;
4167 }
4168 #endif /* CONFIG_COMPAT */
4169
4170 #ifdef CONFIG_COMPAT_32BIT_TIME
4171 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4172 const struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4173 u32, val3)
4174 {
4175 int ret, cmd = op & FUTEX_CMD_MASK;
4176 ktime_t t, *tp = NULL;
4177 struct timespec64 ts;
4178
4179 if (utime && futex_cmd_has_timeout(cmd)) {
4180 if (get_old_timespec32(&ts, utime))
4181 return -EFAULT;
4182 ret = futex_init_timeout(cmd, op, &ts, &t);
4183 if (ret)
4184 return ret;
4185 tp = &t;
4186 }
4187
4188 return do_futex(uaddr, op, val, tp, uaddr2, (unsigned long)utime, val3);
4189 }
4190 #endif /* CONFIG_COMPAT_32BIT_TIME */
4191
4192 static void __init futex_detect_cmpxchg(void)
4193 {
4194 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4195 u32 curval;
4196
4197 /*
4198 * This will fail and we want it. Some arch implementations do
4199 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4200 * functionality. We want to know that before we call in any
4201 * of the complex code paths. Also we want to prevent
4202 * registration of robust lists in that case. NULL is
4203 * guaranteed to fault and we get -EFAULT on functional
4204 * implementation, the non-functional ones will return
4205 * -ENOSYS.
4206 */
4207 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4208 futex_cmpxchg_enabled = 1;
4209 #endif
4210 }
4211
4212 static int __init futex_init(void)
4213 {
4214 unsigned int futex_shift;
4215 unsigned long i;
4216
4217 #if CONFIG_BASE_SMALL
4218 futex_hashsize = 16;
4219 #else
4220 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4221 #endif
4222
4223 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4224 futex_hashsize, 0,
4225 futex_hashsize < 256 ? HASH_SMALL : 0,
4226 &futex_shift, NULL,
4227 futex_hashsize, futex_hashsize);
4228 futex_hashsize = 1UL << futex_shift;
4229
4230 futex_detect_cmpxchg();
4231
4232 for (i = 0; i < futex_hashsize; i++) {
4233 atomic_set(&futex_queues[i].waiters, 0);
4234 plist_head_init(&futex_queues[i].chain);
4235 spin_lock_init(&futex_queues[i].lock);
4236 }
4237
4238 return 0;
4239 }
4240 core_initcall(futex_init);