]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/futex.c
Merge branch 'for-2.6.24' of master.kernel.org:/pub/scm/linux/kernel/git/jwboyer...
[mirror_ubuntu-zesty-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
64
65 /*
66 * Priority Inheritance state:
67 */
68 struct futex_pi_state {
69 /*
70 * list of 'owned' pi_state instances - these have to be
71 * cleaned up in do_exit() if the task exits prematurely:
72 */
73 struct list_head list;
74
75 /*
76 * The PI object:
77 */
78 struct rt_mutex pi_mutex;
79
80 struct task_struct *owner;
81 atomic_t refcount;
82
83 union futex_key key;
84 };
85
86 /*
87 * We use this hashed waitqueue instead of a normal wait_queue_t, so
88 * we can wake only the relevant ones (hashed queues may be shared).
89 *
90 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
91 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
92 * The order of wakup is always to make the first condition true, then
93 * wake up q->waiters, then make the second condition true.
94 */
95 struct futex_q {
96 struct plist_node list;
97 wait_queue_head_t waiters;
98
99 /* Which hash list lock to use: */
100 spinlock_t *lock_ptr;
101
102 /* Key which the futex is hashed on: */
103 union futex_key key;
104
105 /* For fd, sigio sent using these: */
106 int fd;
107 struct file *filp;
108
109 /* Optional priority inheritance state: */
110 struct futex_pi_state *pi_state;
111 struct task_struct *task;
112 };
113
114 /*
115 * Split the global futex_lock into every hash list lock.
116 */
117 struct futex_hash_bucket {
118 spinlock_t lock;
119 struct plist_head chain;
120 };
121
122 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
123
124 /* Futex-fs vfsmount entry: */
125 static struct vfsmount *futex_mnt;
126
127 /*
128 * Take mm->mmap_sem, when futex is shared
129 */
130 static inline void futex_lock_mm(struct rw_semaphore *fshared)
131 {
132 if (fshared)
133 down_read(fshared);
134 }
135
136 /*
137 * Release mm->mmap_sem, when the futex is shared
138 */
139 static inline void futex_unlock_mm(struct rw_semaphore *fshared)
140 {
141 if (fshared)
142 up_read(fshared);
143 }
144
145 /*
146 * We hash on the keys returned from get_futex_key (see below).
147 */
148 static struct futex_hash_bucket *hash_futex(union futex_key *key)
149 {
150 u32 hash = jhash2((u32*)&key->both.word,
151 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
152 key->both.offset);
153 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
154 }
155
156 /*
157 * Return 1 if two futex_keys are equal, 0 otherwise.
158 */
159 static inline int match_futex(union futex_key *key1, union futex_key *key2)
160 {
161 return (key1->both.word == key2->both.word
162 && key1->both.ptr == key2->both.ptr
163 && key1->both.offset == key2->both.offset);
164 }
165
166 /**
167 * get_futex_key - Get parameters which are the keys for a futex.
168 * @uaddr: virtual address of the futex
169 * @shared: NULL for a PROCESS_PRIVATE futex,
170 * &current->mm->mmap_sem for a PROCESS_SHARED futex
171 * @key: address where result is stored.
172 *
173 * Returns a negative error code or 0
174 * The key words are stored in *key on success.
175 *
176 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
177 * offset_within_page). For private mappings, it's (uaddr, current->mm).
178 * We can usually work out the index without swapping in the page.
179 *
180 * fshared is NULL for PROCESS_PRIVATE futexes
181 * For other futexes, it points to &current->mm->mmap_sem and
182 * caller must have taken the reader lock. but NOT any spinlocks.
183 */
184 int get_futex_key(u32 __user *uaddr, struct rw_semaphore *fshared,
185 union futex_key *key)
186 {
187 unsigned long address = (unsigned long)uaddr;
188 struct mm_struct *mm = current->mm;
189 struct vm_area_struct *vma;
190 struct page *page;
191 int err;
192
193 /*
194 * The futex address must be "naturally" aligned.
195 */
196 key->both.offset = address % PAGE_SIZE;
197 if (unlikely((address % sizeof(u32)) != 0))
198 return -EINVAL;
199 address -= key->both.offset;
200
201 /*
202 * PROCESS_PRIVATE futexes are fast.
203 * As the mm cannot disappear under us and the 'key' only needs
204 * virtual address, we dont even have to find the underlying vma.
205 * Note : We do have to check 'uaddr' is a valid user address,
206 * but access_ok() should be faster than find_vma()
207 */
208 if (!fshared) {
209 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
210 return -EFAULT;
211 key->private.mm = mm;
212 key->private.address = address;
213 return 0;
214 }
215 /*
216 * The futex is hashed differently depending on whether
217 * it's in a shared or private mapping. So check vma first.
218 */
219 vma = find_extend_vma(mm, address);
220 if (unlikely(!vma))
221 return -EFAULT;
222
223 /*
224 * Permissions.
225 */
226 if (unlikely((vma->vm_flags & (VM_IO|VM_READ)) != VM_READ))
227 return (vma->vm_flags & VM_IO) ? -EPERM : -EACCES;
228
229 /*
230 * Private mappings are handled in a simple way.
231 *
232 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
233 * it's a read-only handle, it's expected that futexes attach to
234 * the object not the particular process. Therefore we use
235 * VM_MAYSHARE here, not VM_SHARED which is restricted to shared
236 * mappings of _writable_ handles.
237 */
238 if (likely(!(vma->vm_flags & VM_MAYSHARE))) {
239 key->both.offset |= FUT_OFF_MMSHARED; /* reference taken on mm */
240 key->private.mm = mm;
241 key->private.address = address;
242 return 0;
243 }
244
245 /*
246 * Linear file mappings are also simple.
247 */
248 key->shared.inode = vma->vm_file->f_path.dentry->d_inode;
249 key->both.offset |= FUT_OFF_INODE; /* inode-based key. */
250 if (likely(!(vma->vm_flags & VM_NONLINEAR))) {
251 key->shared.pgoff = (((address - vma->vm_start) >> PAGE_SHIFT)
252 + vma->vm_pgoff);
253 return 0;
254 }
255
256 /*
257 * We could walk the page table to read the non-linear
258 * pte, and get the page index without fetching the page
259 * from swap. But that's a lot of code to duplicate here
260 * for a rare case, so we simply fetch the page.
261 */
262 err = get_user_pages(current, mm, address, 1, 0, 0, &page, NULL);
263 if (err >= 0) {
264 key->shared.pgoff =
265 page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
266 put_page(page);
267 return 0;
268 }
269 return err;
270 }
271 EXPORT_SYMBOL_GPL(get_futex_key);
272
273 /*
274 * Take a reference to the resource addressed by a key.
275 * Can be called while holding spinlocks.
276 *
277 */
278 inline void get_futex_key_refs(union futex_key *key)
279 {
280 if (key->both.ptr == 0)
281 return;
282 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
283 case FUT_OFF_INODE:
284 atomic_inc(&key->shared.inode->i_count);
285 break;
286 case FUT_OFF_MMSHARED:
287 atomic_inc(&key->private.mm->mm_count);
288 break;
289 }
290 }
291 EXPORT_SYMBOL_GPL(get_futex_key_refs);
292
293 /*
294 * Drop a reference to the resource addressed by a key.
295 * The hash bucket spinlock must not be held.
296 */
297 void drop_futex_key_refs(union futex_key *key)
298 {
299 if (!key->both.ptr)
300 return;
301 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
302 case FUT_OFF_INODE:
303 iput(key->shared.inode);
304 break;
305 case FUT_OFF_MMSHARED:
306 mmdrop(key->private.mm);
307 break;
308 }
309 }
310 EXPORT_SYMBOL_GPL(drop_futex_key_refs);
311
312 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
313 {
314 u32 curval;
315
316 pagefault_disable();
317 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
318 pagefault_enable();
319
320 return curval;
321 }
322
323 static int get_futex_value_locked(u32 *dest, u32 __user *from)
324 {
325 int ret;
326
327 pagefault_disable();
328 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
329 pagefault_enable();
330
331 return ret ? -EFAULT : 0;
332 }
333
334 /*
335 * Fault handling.
336 * if fshared is non NULL, current->mm->mmap_sem is already held
337 */
338 static int futex_handle_fault(unsigned long address,
339 struct rw_semaphore *fshared, int attempt)
340 {
341 struct vm_area_struct * vma;
342 struct mm_struct *mm = current->mm;
343 int ret = -EFAULT;
344
345 if (attempt > 2)
346 return ret;
347
348 if (!fshared)
349 down_read(&mm->mmap_sem);
350 vma = find_vma(mm, address);
351 if (vma && address >= vma->vm_start &&
352 (vma->vm_flags & VM_WRITE)) {
353 int fault;
354 fault = handle_mm_fault(mm, vma, address, 1);
355 if (unlikely((fault & VM_FAULT_ERROR))) {
356 #if 0
357 /* XXX: let's do this when we verify it is OK */
358 if (ret & VM_FAULT_OOM)
359 ret = -ENOMEM;
360 #endif
361 } else {
362 ret = 0;
363 if (fault & VM_FAULT_MAJOR)
364 current->maj_flt++;
365 else
366 current->min_flt++;
367 }
368 }
369 if (!fshared)
370 up_read(&mm->mmap_sem);
371 return ret;
372 }
373
374 /*
375 * PI code:
376 */
377 static int refill_pi_state_cache(void)
378 {
379 struct futex_pi_state *pi_state;
380
381 if (likely(current->pi_state_cache))
382 return 0;
383
384 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
385
386 if (!pi_state)
387 return -ENOMEM;
388
389 INIT_LIST_HEAD(&pi_state->list);
390 /* pi_mutex gets initialized later */
391 pi_state->owner = NULL;
392 atomic_set(&pi_state->refcount, 1);
393
394 current->pi_state_cache = pi_state;
395
396 return 0;
397 }
398
399 static struct futex_pi_state * alloc_pi_state(void)
400 {
401 struct futex_pi_state *pi_state = current->pi_state_cache;
402
403 WARN_ON(!pi_state);
404 current->pi_state_cache = NULL;
405
406 return pi_state;
407 }
408
409 static void free_pi_state(struct futex_pi_state *pi_state)
410 {
411 if (!atomic_dec_and_test(&pi_state->refcount))
412 return;
413
414 /*
415 * If pi_state->owner is NULL, the owner is most probably dying
416 * and has cleaned up the pi_state already
417 */
418 if (pi_state->owner) {
419 spin_lock_irq(&pi_state->owner->pi_lock);
420 list_del_init(&pi_state->list);
421 spin_unlock_irq(&pi_state->owner->pi_lock);
422
423 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
424 }
425
426 if (current->pi_state_cache)
427 kfree(pi_state);
428 else {
429 /*
430 * pi_state->list is already empty.
431 * clear pi_state->owner.
432 * refcount is at 0 - put it back to 1.
433 */
434 pi_state->owner = NULL;
435 atomic_set(&pi_state->refcount, 1);
436 current->pi_state_cache = pi_state;
437 }
438 }
439
440 /*
441 * Look up the task based on what TID userspace gave us.
442 * We dont trust it.
443 */
444 static struct task_struct * futex_find_get_task(pid_t pid)
445 {
446 struct task_struct *p;
447
448 rcu_read_lock();
449 p = find_task_by_vpid(pid);
450 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
451 p = ERR_PTR(-ESRCH);
452 else
453 get_task_struct(p);
454
455 rcu_read_unlock();
456
457 return p;
458 }
459
460 /*
461 * This task is holding PI mutexes at exit time => bad.
462 * Kernel cleans up PI-state, but userspace is likely hosed.
463 * (Robust-futex cleanup is separate and might save the day for userspace.)
464 */
465 void exit_pi_state_list(struct task_struct *curr)
466 {
467 struct list_head *next, *head = &curr->pi_state_list;
468 struct futex_pi_state *pi_state;
469 struct futex_hash_bucket *hb;
470 union futex_key key;
471
472 /*
473 * We are a ZOMBIE and nobody can enqueue itself on
474 * pi_state_list anymore, but we have to be careful
475 * versus waiters unqueueing themselves:
476 */
477 spin_lock_irq(&curr->pi_lock);
478 while (!list_empty(head)) {
479
480 next = head->next;
481 pi_state = list_entry(next, struct futex_pi_state, list);
482 key = pi_state->key;
483 hb = hash_futex(&key);
484 spin_unlock_irq(&curr->pi_lock);
485
486 spin_lock(&hb->lock);
487
488 spin_lock_irq(&curr->pi_lock);
489 /*
490 * We dropped the pi-lock, so re-check whether this
491 * task still owns the PI-state:
492 */
493 if (head->next != next) {
494 spin_unlock(&hb->lock);
495 continue;
496 }
497
498 WARN_ON(pi_state->owner != curr);
499 WARN_ON(list_empty(&pi_state->list));
500 list_del_init(&pi_state->list);
501 pi_state->owner = NULL;
502 spin_unlock_irq(&curr->pi_lock);
503
504 rt_mutex_unlock(&pi_state->pi_mutex);
505
506 spin_unlock(&hb->lock);
507
508 spin_lock_irq(&curr->pi_lock);
509 }
510 spin_unlock_irq(&curr->pi_lock);
511 }
512
513 static int
514 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
515 union futex_key *key, struct futex_pi_state **ps)
516 {
517 struct futex_pi_state *pi_state = NULL;
518 struct futex_q *this, *next;
519 struct plist_head *head;
520 struct task_struct *p;
521 pid_t pid = uval & FUTEX_TID_MASK;
522
523 head = &hb->chain;
524
525 plist_for_each_entry_safe(this, next, head, list) {
526 if (match_futex(&this->key, key)) {
527 /*
528 * Another waiter already exists - bump up
529 * the refcount and return its pi_state:
530 */
531 pi_state = this->pi_state;
532 /*
533 * Userspace might have messed up non PI and PI futexes
534 */
535 if (unlikely(!pi_state))
536 return -EINVAL;
537
538 WARN_ON(!atomic_read(&pi_state->refcount));
539 WARN_ON(pid && pi_state->owner &&
540 pi_state->owner->pid != pid);
541
542 atomic_inc(&pi_state->refcount);
543 *ps = pi_state;
544
545 return 0;
546 }
547 }
548
549 /*
550 * We are the first waiter - try to look up the real owner and attach
551 * the new pi_state to it, but bail out when TID = 0
552 */
553 if (!pid)
554 return -ESRCH;
555 p = futex_find_get_task(pid);
556 if (IS_ERR(p))
557 return PTR_ERR(p);
558
559 /*
560 * We need to look at the task state flags to figure out,
561 * whether the task is exiting. To protect against the do_exit
562 * change of the task flags, we do this protected by
563 * p->pi_lock:
564 */
565 spin_lock_irq(&p->pi_lock);
566 if (unlikely(p->flags & PF_EXITING)) {
567 /*
568 * The task is on the way out. When PF_EXITPIDONE is
569 * set, we know that the task has finished the
570 * cleanup:
571 */
572 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
573
574 spin_unlock_irq(&p->pi_lock);
575 put_task_struct(p);
576 return ret;
577 }
578
579 pi_state = alloc_pi_state();
580
581 /*
582 * Initialize the pi_mutex in locked state and make 'p'
583 * the owner of it:
584 */
585 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
586
587 /* Store the key for possible exit cleanups: */
588 pi_state->key = *key;
589
590 WARN_ON(!list_empty(&pi_state->list));
591 list_add(&pi_state->list, &p->pi_state_list);
592 pi_state->owner = p;
593 spin_unlock_irq(&p->pi_lock);
594
595 put_task_struct(p);
596
597 *ps = pi_state;
598
599 return 0;
600 }
601
602 /*
603 * The hash bucket lock must be held when this is called.
604 * Afterwards, the futex_q must not be accessed.
605 */
606 static void wake_futex(struct futex_q *q)
607 {
608 plist_del(&q->list, &q->list.plist);
609 if (q->filp)
610 send_sigio(&q->filp->f_owner, q->fd, POLL_IN);
611 /*
612 * The lock in wake_up_all() is a crucial memory barrier after the
613 * plist_del() and also before assigning to q->lock_ptr.
614 */
615 wake_up_all(&q->waiters);
616 /*
617 * The waiting task can free the futex_q as soon as this is written,
618 * without taking any locks. This must come last.
619 *
620 * A memory barrier is required here to prevent the following store
621 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
622 * at the end of wake_up_all() does not prevent this store from
623 * moving.
624 */
625 smp_wmb();
626 q->lock_ptr = NULL;
627 }
628
629 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
630 {
631 struct task_struct *new_owner;
632 struct futex_pi_state *pi_state = this->pi_state;
633 u32 curval, newval;
634
635 if (!pi_state)
636 return -EINVAL;
637
638 spin_lock(&pi_state->pi_mutex.wait_lock);
639 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
640
641 /*
642 * This happens when we have stolen the lock and the original
643 * pending owner did not enqueue itself back on the rt_mutex.
644 * Thats not a tragedy. We know that way, that a lock waiter
645 * is on the fly. We make the futex_q waiter the pending owner.
646 */
647 if (!new_owner)
648 new_owner = this->task;
649
650 /*
651 * We pass it to the next owner. (The WAITERS bit is always
652 * kept enabled while there is PI state around. We must also
653 * preserve the owner died bit.)
654 */
655 if (!(uval & FUTEX_OWNER_DIED)) {
656 int ret = 0;
657
658 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
659
660 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
661
662 if (curval == -EFAULT)
663 ret = -EFAULT;
664 if (curval != uval)
665 ret = -EINVAL;
666 if (ret) {
667 spin_unlock(&pi_state->pi_mutex.wait_lock);
668 return ret;
669 }
670 }
671
672 spin_lock_irq(&pi_state->owner->pi_lock);
673 WARN_ON(list_empty(&pi_state->list));
674 list_del_init(&pi_state->list);
675 spin_unlock_irq(&pi_state->owner->pi_lock);
676
677 spin_lock_irq(&new_owner->pi_lock);
678 WARN_ON(!list_empty(&pi_state->list));
679 list_add(&pi_state->list, &new_owner->pi_state_list);
680 pi_state->owner = new_owner;
681 spin_unlock_irq(&new_owner->pi_lock);
682
683 spin_unlock(&pi_state->pi_mutex.wait_lock);
684 rt_mutex_unlock(&pi_state->pi_mutex);
685
686 return 0;
687 }
688
689 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
690 {
691 u32 oldval;
692
693 /*
694 * There is no waiter, so we unlock the futex. The owner died
695 * bit has not to be preserved here. We are the owner:
696 */
697 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
698
699 if (oldval == -EFAULT)
700 return oldval;
701 if (oldval != uval)
702 return -EAGAIN;
703
704 return 0;
705 }
706
707 /*
708 * Express the locking dependencies for lockdep:
709 */
710 static inline void
711 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
712 {
713 if (hb1 <= hb2) {
714 spin_lock(&hb1->lock);
715 if (hb1 < hb2)
716 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
717 } else { /* hb1 > hb2 */
718 spin_lock(&hb2->lock);
719 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
720 }
721 }
722
723 /*
724 * Wake up all waiters hashed on the physical page that is mapped
725 * to this virtual address:
726 */
727 static int futex_wake(u32 __user *uaddr, struct rw_semaphore *fshared,
728 int nr_wake)
729 {
730 struct futex_hash_bucket *hb;
731 struct futex_q *this, *next;
732 struct plist_head *head;
733 union futex_key key;
734 int ret;
735
736 futex_lock_mm(fshared);
737
738 ret = get_futex_key(uaddr, fshared, &key);
739 if (unlikely(ret != 0))
740 goto out;
741
742 hb = hash_futex(&key);
743 spin_lock(&hb->lock);
744 head = &hb->chain;
745
746 plist_for_each_entry_safe(this, next, head, list) {
747 if (match_futex (&this->key, &key)) {
748 if (this->pi_state) {
749 ret = -EINVAL;
750 break;
751 }
752 wake_futex(this);
753 if (++ret >= nr_wake)
754 break;
755 }
756 }
757
758 spin_unlock(&hb->lock);
759 out:
760 futex_unlock_mm(fshared);
761 return ret;
762 }
763
764 /*
765 * Wake up all waiters hashed on the physical page that is mapped
766 * to this virtual address:
767 */
768 static int
769 futex_wake_op(u32 __user *uaddr1, struct rw_semaphore *fshared,
770 u32 __user *uaddr2,
771 int nr_wake, int nr_wake2, int op)
772 {
773 union futex_key key1, key2;
774 struct futex_hash_bucket *hb1, *hb2;
775 struct plist_head *head;
776 struct futex_q *this, *next;
777 int ret, op_ret, attempt = 0;
778
779 retryfull:
780 futex_lock_mm(fshared);
781
782 ret = get_futex_key(uaddr1, fshared, &key1);
783 if (unlikely(ret != 0))
784 goto out;
785 ret = get_futex_key(uaddr2, fshared, &key2);
786 if (unlikely(ret != 0))
787 goto out;
788
789 hb1 = hash_futex(&key1);
790 hb2 = hash_futex(&key2);
791
792 retry:
793 double_lock_hb(hb1, hb2);
794
795 op_ret = futex_atomic_op_inuser(op, uaddr2);
796 if (unlikely(op_ret < 0)) {
797 u32 dummy;
798
799 spin_unlock(&hb1->lock);
800 if (hb1 != hb2)
801 spin_unlock(&hb2->lock);
802
803 #ifndef CONFIG_MMU
804 /*
805 * we don't get EFAULT from MMU faults if we don't have an MMU,
806 * but we might get them from range checking
807 */
808 ret = op_ret;
809 goto out;
810 #endif
811
812 if (unlikely(op_ret != -EFAULT)) {
813 ret = op_ret;
814 goto out;
815 }
816
817 /*
818 * futex_atomic_op_inuser needs to both read and write
819 * *(int __user *)uaddr2, but we can't modify it
820 * non-atomically. Therefore, if get_user below is not
821 * enough, we need to handle the fault ourselves, while
822 * still holding the mmap_sem.
823 */
824 if (attempt++) {
825 ret = futex_handle_fault((unsigned long)uaddr2,
826 fshared, attempt);
827 if (ret)
828 goto out;
829 goto retry;
830 }
831
832 /*
833 * If we would have faulted, release mmap_sem,
834 * fault it in and start all over again.
835 */
836 futex_unlock_mm(fshared);
837
838 ret = get_user(dummy, uaddr2);
839 if (ret)
840 return ret;
841
842 goto retryfull;
843 }
844
845 head = &hb1->chain;
846
847 plist_for_each_entry_safe(this, next, head, list) {
848 if (match_futex (&this->key, &key1)) {
849 wake_futex(this);
850 if (++ret >= nr_wake)
851 break;
852 }
853 }
854
855 if (op_ret > 0) {
856 head = &hb2->chain;
857
858 op_ret = 0;
859 plist_for_each_entry_safe(this, next, head, list) {
860 if (match_futex (&this->key, &key2)) {
861 wake_futex(this);
862 if (++op_ret >= nr_wake2)
863 break;
864 }
865 }
866 ret += op_ret;
867 }
868
869 spin_unlock(&hb1->lock);
870 if (hb1 != hb2)
871 spin_unlock(&hb2->lock);
872 out:
873 futex_unlock_mm(fshared);
874
875 return ret;
876 }
877
878 /*
879 * Requeue all waiters hashed on one physical page to another
880 * physical page.
881 */
882 static int futex_requeue(u32 __user *uaddr1, struct rw_semaphore *fshared,
883 u32 __user *uaddr2,
884 int nr_wake, int nr_requeue, u32 *cmpval)
885 {
886 union futex_key key1, key2;
887 struct futex_hash_bucket *hb1, *hb2;
888 struct plist_head *head1;
889 struct futex_q *this, *next;
890 int ret, drop_count = 0;
891
892 retry:
893 futex_lock_mm(fshared);
894
895 ret = get_futex_key(uaddr1, fshared, &key1);
896 if (unlikely(ret != 0))
897 goto out;
898 ret = get_futex_key(uaddr2, fshared, &key2);
899 if (unlikely(ret != 0))
900 goto out;
901
902 hb1 = hash_futex(&key1);
903 hb2 = hash_futex(&key2);
904
905 double_lock_hb(hb1, hb2);
906
907 if (likely(cmpval != NULL)) {
908 u32 curval;
909
910 ret = get_futex_value_locked(&curval, uaddr1);
911
912 if (unlikely(ret)) {
913 spin_unlock(&hb1->lock);
914 if (hb1 != hb2)
915 spin_unlock(&hb2->lock);
916
917 /*
918 * If we would have faulted, release mmap_sem, fault
919 * it in and start all over again.
920 */
921 futex_unlock_mm(fshared);
922
923 ret = get_user(curval, uaddr1);
924
925 if (!ret)
926 goto retry;
927
928 return ret;
929 }
930 if (curval != *cmpval) {
931 ret = -EAGAIN;
932 goto out_unlock;
933 }
934 }
935
936 head1 = &hb1->chain;
937 plist_for_each_entry_safe(this, next, head1, list) {
938 if (!match_futex (&this->key, &key1))
939 continue;
940 if (++ret <= nr_wake) {
941 wake_futex(this);
942 } else {
943 /*
944 * If key1 and key2 hash to the same bucket, no need to
945 * requeue.
946 */
947 if (likely(head1 != &hb2->chain)) {
948 plist_del(&this->list, &hb1->chain);
949 plist_add(&this->list, &hb2->chain);
950 this->lock_ptr = &hb2->lock;
951 #ifdef CONFIG_DEBUG_PI_LIST
952 this->list.plist.lock = &hb2->lock;
953 #endif
954 }
955 this->key = key2;
956 get_futex_key_refs(&key2);
957 drop_count++;
958
959 if (ret - nr_wake >= nr_requeue)
960 break;
961 }
962 }
963
964 out_unlock:
965 spin_unlock(&hb1->lock);
966 if (hb1 != hb2)
967 spin_unlock(&hb2->lock);
968
969 /* drop_futex_key_refs() must be called outside the spinlocks. */
970 while (--drop_count >= 0)
971 drop_futex_key_refs(&key1);
972
973 out:
974 futex_unlock_mm(fshared);
975 return ret;
976 }
977
978 /* The key must be already stored in q->key. */
979 static inline struct futex_hash_bucket *
980 queue_lock(struct futex_q *q, int fd, struct file *filp)
981 {
982 struct futex_hash_bucket *hb;
983
984 q->fd = fd;
985 q->filp = filp;
986
987 init_waitqueue_head(&q->waiters);
988
989 get_futex_key_refs(&q->key);
990 hb = hash_futex(&q->key);
991 q->lock_ptr = &hb->lock;
992
993 spin_lock(&hb->lock);
994 return hb;
995 }
996
997 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
998 {
999 int prio;
1000
1001 /*
1002 * The priority used to register this element is
1003 * - either the real thread-priority for the real-time threads
1004 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1005 * - or MAX_RT_PRIO for non-RT threads.
1006 * Thus, all RT-threads are woken first in priority order, and
1007 * the others are woken last, in FIFO order.
1008 */
1009 prio = min(current->normal_prio, MAX_RT_PRIO);
1010
1011 plist_node_init(&q->list, prio);
1012 #ifdef CONFIG_DEBUG_PI_LIST
1013 q->list.plist.lock = &hb->lock;
1014 #endif
1015 plist_add(&q->list, &hb->chain);
1016 q->task = current;
1017 spin_unlock(&hb->lock);
1018 }
1019
1020 static inline void
1021 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1022 {
1023 spin_unlock(&hb->lock);
1024 drop_futex_key_refs(&q->key);
1025 }
1026
1027 /*
1028 * queue_me and unqueue_me must be called as a pair, each
1029 * exactly once. They are called with the hashed spinlock held.
1030 */
1031
1032 /* The key must be already stored in q->key. */
1033 static void queue_me(struct futex_q *q, int fd, struct file *filp)
1034 {
1035 struct futex_hash_bucket *hb;
1036
1037 hb = queue_lock(q, fd, filp);
1038 __queue_me(q, hb);
1039 }
1040
1041 /* Return 1 if we were still queued (ie. 0 means we were woken) */
1042 static int unqueue_me(struct futex_q *q)
1043 {
1044 spinlock_t *lock_ptr;
1045 int ret = 0;
1046
1047 /* In the common case we don't take the spinlock, which is nice. */
1048 retry:
1049 lock_ptr = q->lock_ptr;
1050 barrier();
1051 if (lock_ptr != NULL) {
1052 spin_lock(lock_ptr);
1053 /*
1054 * q->lock_ptr can change between reading it and
1055 * spin_lock(), causing us to take the wrong lock. This
1056 * corrects the race condition.
1057 *
1058 * Reasoning goes like this: if we have the wrong lock,
1059 * q->lock_ptr must have changed (maybe several times)
1060 * between reading it and the spin_lock(). It can
1061 * change again after the spin_lock() but only if it was
1062 * already changed before the spin_lock(). It cannot,
1063 * however, change back to the original value. Therefore
1064 * we can detect whether we acquired the correct lock.
1065 */
1066 if (unlikely(lock_ptr != q->lock_ptr)) {
1067 spin_unlock(lock_ptr);
1068 goto retry;
1069 }
1070 WARN_ON(plist_node_empty(&q->list));
1071 plist_del(&q->list, &q->list.plist);
1072
1073 BUG_ON(q->pi_state);
1074
1075 spin_unlock(lock_ptr);
1076 ret = 1;
1077 }
1078
1079 drop_futex_key_refs(&q->key);
1080 return ret;
1081 }
1082
1083 /*
1084 * PI futexes can not be requeued and must remove themself from the
1085 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1086 * and dropped here.
1087 */
1088 static void unqueue_me_pi(struct futex_q *q)
1089 {
1090 WARN_ON(plist_node_empty(&q->list));
1091 plist_del(&q->list, &q->list.plist);
1092
1093 BUG_ON(!q->pi_state);
1094 free_pi_state(q->pi_state);
1095 q->pi_state = NULL;
1096
1097 spin_unlock(q->lock_ptr);
1098
1099 drop_futex_key_refs(&q->key);
1100 }
1101
1102 /*
1103 * Fixup the pi_state owner with current.
1104 *
1105 * Must be called with hash bucket lock held and mm->sem held for non
1106 * private futexes.
1107 */
1108 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1109 struct task_struct *curr)
1110 {
1111 u32 newtid = task_pid_vnr(curr) | FUTEX_WAITERS;
1112 struct futex_pi_state *pi_state = q->pi_state;
1113 u32 uval, curval, newval;
1114 int ret;
1115
1116 /* Owner died? */
1117 if (pi_state->owner != NULL) {
1118 spin_lock_irq(&pi_state->owner->pi_lock);
1119 WARN_ON(list_empty(&pi_state->list));
1120 list_del_init(&pi_state->list);
1121 spin_unlock_irq(&pi_state->owner->pi_lock);
1122 } else
1123 newtid |= FUTEX_OWNER_DIED;
1124
1125 pi_state->owner = curr;
1126
1127 spin_lock_irq(&curr->pi_lock);
1128 WARN_ON(!list_empty(&pi_state->list));
1129 list_add(&pi_state->list, &curr->pi_state_list);
1130 spin_unlock_irq(&curr->pi_lock);
1131
1132 /*
1133 * We own it, so we have to replace the pending owner
1134 * TID. This must be atomic as we have preserve the
1135 * owner died bit here.
1136 */
1137 ret = get_futex_value_locked(&uval, uaddr);
1138
1139 while (!ret) {
1140 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1141
1142 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1143
1144 if (curval == -EFAULT)
1145 ret = -EFAULT;
1146 if (curval == uval)
1147 break;
1148 uval = curval;
1149 }
1150 return ret;
1151 }
1152
1153 /*
1154 * In case we must use restart_block to restart a futex_wait,
1155 * we encode in the 'arg3' shared capability
1156 */
1157 #define ARG3_SHARED 1
1158
1159 static long futex_wait_restart(struct restart_block *restart);
1160
1161 static int futex_wait(u32 __user *uaddr, struct rw_semaphore *fshared,
1162 u32 val, ktime_t *abs_time)
1163 {
1164 struct task_struct *curr = current;
1165 DECLARE_WAITQUEUE(wait, curr);
1166 struct futex_hash_bucket *hb;
1167 struct futex_q q;
1168 u32 uval;
1169 int ret;
1170 struct hrtimer_sleeper t;
1171 int rem = 0;
1172
1173 q.pi_state = NULL;
1174 retry:
1175 futex_lock_mm(fshared);
1176
1177 ret = get_futex_key(uaddr, fshared, &q.key);
1178 if (unlikely(ret != 0))
1179 goto out_release_sem;
1180
1181 hb = queue_lock(&q, -1, NULL);
1182
1183 /*
1184 * Access the page AFTER the futex is queued.
1185 * Order is important:
1186 *
1187 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1188 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1189 *
1190 * The basic logical guarantee of a futex is that it blocks ONLY
1191 * if cond(var) is known to be true at the time of blocking, for
1192 * any cond. If we queued after testing *uaddr, that would open
1193 * a race condition where we could block indefinitely with
1194 * cond(var) false, which would violate the guarantee.
1195 *
1196 * A consequence is that futex_wait() can return zero and absorb
1197 * a wakeup when *uaddr != val on entry to the syscall. This is
1198 * rare, but normal.
1199 *
1200 * for shared futexes, we hold the mmap semaphore, so the mapping
1201 * cannot have changed since we looked it up in get_futex_key.
1202 */
1203 ret = get_futex_value_locked(&uval, uaddr);
1204
1205 if (unlikely(ret)) {
1206 queue_unlock(&q, hb);
1207
1208 /*
1209 * If we would have faulted, release mmap_sem, fault it in and
1210 * start all over again.
1211 */
1212 futex_unlock_mm(fshared);
1213
1214 ret = get_user(uval, uaddr);
1215
1216 if (!ret)
1217 goto retry;
1218 return ret;
1219 }
1220 ret = -EWOULDBLOCK;
1221 if (uval != val)
1222 goto out_unlock_release_sem;
1223
1224 /* Only actually queue if *uaddr contained val. */
1225 __queue_me(&q, hb);
1226
1227 /*
1228 * Now the futex is queued and we have checked the data, we
1229 * don't want to hold mmap_sem while we sleep.
1230 */
1231 futex_unlock_mm(fshared);
1232
1233 /*
1234 * There might have been scheduling since the queue_me(), as we
1235 * cannot hold a spinlock across the get_user() in case it
1236 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1237 * queueing ourselves into the futex hash. This code thus has to
1238 * rely on the futex_wake() code removing us from hash when it
1239 * wakes us up.
1240 */
1241
1242 /* add_wait_queue is the barrier after __set_current_state. */
1243 __set_current_state(TASK_INTERRUPTIBLE);
1244 add_wait_queue(&q.waiters, &wait);
1245 /*
1246 * !plist_node_empty() is safe here without any lock.
1247 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1248 */
1249 if (likely(!plist_node_empty(&q.list))) {
1250 if (!abs_time)
1251 schedule();
1252 else {
1253 hrtimer_init(&t.timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1254 hrtimer_init_sleeper(&t, current);
1255 t.timer.expires = *abs_time;
1256
1257 hrtimer_start(&t.timer, t.timer.expires, HRTIMER_MODE_ABS);
1258
1259 /*
1260 * the timer could have already expired, in which
1261 * case current would be flagged for rescheduling.
1262 * Don't bother calling schedule.
1263 */
1264 if (likely(t.task))
1265 schedule();
1266
1267 hrtimer_cancel(&t.timer);
1268
1269 /* Flag if a timeout occured */
1270 rem = (t.task == NULL);
1271 }
1272 }
1273 __set_current_state(TASK_RUNNING);
1274
1275 /*
1276 * NOTE: we don't remove ourselves from the waitqueue because
1277 * we are the only user of it.
1278 */
1279
1280 /* If we were woken (and unqueued), we succeeded, whatever. */
1281 if (!unqueue_me(&q))
1282 return 0;
1283 if (rem)
1284 return -ETIMEDOUT;
1285
1286 /*
1287 * We expect signal_pending(current), but another thread may
1288 * have handled it for us already.
1289 */
1290 if (!abs_time)
1291 return -ERESTARTSYS;
1292 else {
1293 struct restart_block *restart;
1294 restart = &current_thread_info()->restart_block;
1295 restart->fn = futex_wait_restart;
1296 restart->arg0 = (unsigned long)uaddr;
1297 restart->arg1 = (unsigned long)val;
1298 restart->arg2 = (unsigned long)abs_time;
1299 restart->arg3 = 0;
1300 if (fshared)
1301 restart->arg3 |= ARG3_SHARED;
1302 return -ERESTART_RESTARTBLOCK;
1303 }
1304
1305 out_unlock_release_sem:
1306 queue_unlock(&q, hb);
1307
1308 out_release_sem:
1309 futex_unlock_mm(fshared);
1310 return ret;
1311 }
1312
1313
1314 static long futex_wait_restart(struct restart_block *restart)
1315 {
1316 u32 __user *uaddr = (u32 __user *)restart->arg0;
1317 u32 val = (u32)restart->arg1;
1318 ktime_t *abs_time = (ktime_t *)restart->arg2;
1319 struct rw_semaphore *fshared = NULL;
1320
1321 restart->fn = do_no_restart_syscall;
1322 if (restart->arg3 & ARG3_SHARED)
1323 fshared = &current->mm->mmap_sem;
1324 return (long)futex_wait(uaddr, fshared, val, abs_time);
1325 }
1326
1327
1328 /*
1329 * Userspace tried a 0 -> TID atomic transition of the futex value
1330 * and failed. The kernel side here does the whole locking operation:
1331 * if there are waiters then it will block, it does PI, etc. (Due to
1332 * races the kernel might see a 0 value of the futex too.)
1333 */
1334 static int futex_lock_pi(u32 __user *uaddr, struct rw_semaphore *fshared,
1335 int detect, ktime_t *time, int trylock)
1336 {
1337 struct hrtimer_sleeper timeout, *to = NULL;
1338 struct task_struct *curr = current;
1339 struct futex_hash_bucket *hb;
1340 u32 uval, newval, curval;
1341 struct futex_q q;
1342 int ret, lock_taken, ownerdied = 0, attempt = 0;
1343
1344 if (refill_pi_state_cache())
1345 return -ENOMEM;
1346
1347 if (time) {
1348 to = &timeout;
1349 hrtimer_init(&to->timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
1350 hrtimer_init_sleeper(to, current);
1351 to->timer.expires = *time;
1352 }
1353
1354 q.pi_state = NULL;
1355 retry:
1356 futex_lock_mm(fshared);
1357
1358 ret = get_futex_key(uaddr, fshared, &q.key);
1359 if (unlikely(ret != 0))
1360 goto out_release_sem;
1361
1362 retry_unlocked:
1363 hb = queue_lock(&q, -1, NULL);
1364
1365 retry_locked:
1366 ret = lock_taken = 0;
1367
1368 /*
1369 * To avoid races, we attempt to take the lock here again
1370 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1371 * the locks. It will most likely not succeed.
1372 */
1373 newval = task_pid_vnr(current);
1374
1375 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1376
1377 if (unlikely(curval == -EFAULT))
1378 goto uaddr_faulted;
1379
1380 /*
1381 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1382 * situation and we return success to user space.
1383 */
1384 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1385 ret = -EDEADLK;
1386 goto out_unlock_release_sem;
1387 }
1388
1389 /*
1390 * Surprise - we got the lock. Just return to userspace:
1391 */
1392 if (unlikely(!curval))
1393 goto out_unlock_release_sem;
1394
1395 uval = curval;
1396
1397 /*
1398 * Set the WAITERS flag, so the owner will know it has someone
1399 * to wake at next unlock
1400 */
1401 newval = curval | FUTEX_WAITERS;
1402
1403 /*
1404 * There are two cases, where a futex might have no owner (the
1405 * owner TID is 0): OWNER_DIED. We take over the futex in this
1406 * case. We also do an unconditional take over, when the owner
1407 * of the futex died.
1408 *
1409 * This is safe as we are protected by the hash bucket lock !
1410 */
1411 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1412 /* Keep the OWNER_DIED bit */
1413 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1414 ownerdied = 0;
1415 lock_taken = 1;
1416 }
1417
1418 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1419
1420 if (unlikely(curval == -EFAULT))
1421 goto uaddr_faulted;
1422 if (unlikely(curval != uval))
1423 goto retry_locked;
1424
1425 /*
1426 * We took the lock due to owner died take over.
1427 */
1428 if (unlikely(lock_taken))
1429 goto out_unlock_release_sem;
1430
1431 /*
1432 * We dont have the lock. Look up the PI state (or create it if
1433 * we are the first waiter):
1434 */
1435 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1436
1437 if (unlikely(ret)) {
1438 switch (ret) {
1439
1440 case -EAGAIN:
1441 /*
1442 * Task is exiting and we just wait for the
1443 * exit to complete.
1444 */
1445 queue_unlock(&q, hb);
1446 futex_unlock_mm(fshared);
1447 cond_resched();
1448 goto retry;
1449
1450 case -ESRCH:
1451 /*
1452 * No owner found for this futex. Check if the
1453 * OWNER_DIED bit is set to figure out whether
1454 * this is a robust futex or not.
1455 */
1456 if (get_futex_value_locked(&curval, uaddr))
1457 goto uaddr_faulted;
1458
1459 /*
1460 * We simply start over in case of a robust
1461 * futex. The code above will take the futex
1462 * and return happy.
1463 */
1464 if (curval & FUTEX_OWNER_DIED) {
1465 ownerdied = 1;
1466 goto retry_locked;
1467 }
1468 default:
1469 goto out_unlock_release_sem;
1470 }
1471 }
1472
1473 /*
1474 * Only actually queue now that the atomic ops are done:
1475 */
1476 __queue_me(&q, hb);
1477
1478 /*
1479 * Now the futex is queued and we have checked the data, we
1480 * don't want to hold mmap_sem while we sleep.
1481 */
1482 futex_unlock_mm(fshared);
1483
1484 WARN_ON(!q.pi_state);
1485 /*
1486 * Block on the PI mutex:
1487 */
1488 if (!trylock)
1489 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1490 else {
1491 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1492 /* Fixup the trylock return value: */
1493 ret = ret ? 0 : -EWOULDBLOCK;
1494 }
1495
1496 futex_lock_mm(fshared);
1497 spin_lock(q.lock_ptr);
1498
1499 if (!ret) {
1500 /*
1501 * Got the lock. We might not be the anticipated owner
1502 * if we did a lock-steal - fix up the PI-state in
1503 * that case:
1504 */
1505 if (q.pi_state->owner != curr)
1506 ret = fixup_pi_state_owner(uaddr, &q, curr);
1507 } else {
1508 /*
1509 * Catch the rare case, where the lock was released
1510 * when we were on the way back before we locked the
1511 * hash bucket.
1512 */
1513 if (q.pi_state->owner == curr &&
1514 rt_mutex_trylock(&q.pi_state->pi_mutex)) {
1515 ret = 0;
1516 } else {
1517 /*
1518 * Paranoia check. If we did not take the lock
1519 * in the trylock above, then we should not be
1520 * the owner of the rtmutex, neither the real
1521 * nor the pending one:
1522 */
1523 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1524 printk(KERN_ERR "futex_lock_pi: ret = %d "
1525 "pi-mutex: %p pi-state %p\n", ret,
1526 q.pi_state->pi_mutex.owner,
1527 q.pi_state->owner);
1528 }
1529 }
1530
1531 /* Unqueue and drop the lock */
1532 unqueue_me_pi(&q);
1533 futex_unlock_mm(fshared);
1534
1535 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1536
1537 out_unlock_release_sem:
1538 queue_unlock(&q, hb);
1539
1540 out_release_sem:
1541 futex_unlock_mm(fshared);
1542 return ret;
1543
1544 uaddr_faulted:
1545 /*
1546 * We have to r/w *(int __user *)uaddr, but we can't modify it
1547 * non-atomically. Therefore, if get_user below is not
1548 * enough, we need to handle the fault ourselves, while
1549 * still holding the mmap_sem.
1550 *
1551 * ... and hb->lock. :-) --ANK
1552 */
1553 queue_unlock(&q, hb);
1554
1555 if (attempt++) {
1556 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1557 attempt);
1558 if (ret)
1559 goto out_release_sem;
1560 goto retry_unlocked;
1561 }
1562
1563 futex_unlock_mm(fshared);
1564
1565 ret = get_user(uval, uaddr);
1566 if (!ret && (uval != -EFAULT))
1567 goto retry;
1568
1569 return ret;
1570 }
1571
1572 /*
1573 * Userspace attempted a TID -> 0 atomic transition, and failed.
1574 * This is the in-kernel slowpath: we look up the PI state (if any),
1575 * and do the rt-mutex unlock.
1576 */
1577 static int futex_unlock_pi(u32 __user *uaddr, struct rw_semaphore *fshared)
1578 {
1579 struct futex_hash_bucket *hb;
1580 struct futex_q *this, *next;
1581 u32 uval;
1582 struct plist_head *head;
1583 union futex_key key;
1584 int ret, attempt = 0;
1585
1586 retry:
1587 if (get_user(uval, uaddr))
1588 return -EFAULT;
1589 /*
1590 * We release only a lock we actually own:
1591 */
1592 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1593 return -EPERM;
1594 /*
1595 * First take all the futex related locks:
1596 */
1597 futex_lock_mm(fshared);
1598
1599 ret = get_futex_key(uaddr, fshared, &key);
1600 if (unlikely(ret != 0))
1601 goto out;
1602
1603 hb = hash_futex(&key);
1604 retry_unlocked:
1605 spin_lock(&hb->lock);
1606
1607 /*
1608 * To avoid races, try to do the TID -> 0 atomic transition
1609 * again. If it succeeds then we can return without waking
1610 * anyone else up:
1611 */
1612 if (!(uval & FUTEX_OWNER_DIED))
1613 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1614
1615
1616 if (unlikely(uval == -EFAULT))
1617 goto pi_faulted;
1618 /*
1619 * Rare case: we managed to release the lock atomically,
1620 * no need to wake anyone else up:
1621 */
1622 if (unlikely(uval == task_pid_vnr(current)))
1623 goto out_unlock;
1624
1625 /*
1626 * Ok, other tasks may need to be woken up - check waiters
1627 * and do the wakeup if necessary:
1628 */
1629 head = &hb->chain;
1630
1631 plist_for_each_entry_safe(this, next, head, list) {
1632 if (!match_futex (&this->key, &key))
1633 continue;
1634 ret = wake_futex_pi(uaddr, uval, this);
1635 /*
1636 * The atomic access to the futex value
1637 * generated a pagefault, so retry the
1638 * user-access and the wakeup:
1639 */
1640 if (ret == -EFAULT)
1641 goto pi_faulted;
1642 goto out_unlock;
1643 }
1644 /*
1645 * No waiters - kernel unlocks the futex:
1646 */
1647 if (!(uval & FUTEX_OWNER_DIED)) {
1648 ret = unlock_futex_pi(uaddr, uval);
1649 if (ret == -EFAULT)
1650 goto pi_faulted;
1651 }
1652
1653 out_unlock:
1654 spin_unlock(&hb->lock);
1655 out:
1656 futex_unlock_mm(fshared);
1657
1658 return ret;
1659
1660 pi_faulted:
1661 /*
1662 * We have to r/w *(int __user *)uaddr, but we can't modify it
1663 * non-atomically. Therefore, if get_user below is not
1664 * enough, we need to handle the fault ourselves, while
1665 * still holding the mmap_sem.
1666 *
1667 * ... and hb->lock. --ANK
1668 */
1669 spin_unlock(&hb->lock);
1670
1671 if (attempt++) {
1672 ret = futex_handle_fault((unsigned long)uaddr, fshared,
1673 attempt);
1674 if (ret)
1675 goto out;
1676 uval = 0;
1677 goto retry_unlocked;
1678 }
1679
1680 futex_unlock_mm(fshared);
1681
1682 ret = get_user(uval, uaddr);
1683 if (!ret && (uval != -EFAULT))
1684 goto retry;
1685
1686 return ret;
1687 }
1688
1689 static int futex_close(struct inode *inode, struct file *filp)
1690 {
1691 struct futex_q *q = filp->private_data;
1692
1693 unqueue_me(q);
1694 kfree(q);
1695
1696 return 0;
1697 }
1698
1699 /* This is one-shot: once it's gone off you need a new fd */
1700 static unsigned int futex_poll(struct file *filp,
1701 struct poll_table_struct *wait)
1702 {
1703 struct futex_q *q = filp->private_data;
1704 int ret = 0;
1705
1706 poll_wait(filp, &q->waiters, wait);
1707
1708 /*
1709 * plist_node_empty() is safe here without any lock.
1710 * q->lock_ptr != 0 is not safe, because of ordering against wakeup.
1711 */
1712 if (plist_node_empty(&q->list))
1713 ret = POLLIN | POLLRDNORM;
1714
1715 return ret;
1716 }
1717
1718 static const struct file_operations futex_fops = {
1719 .release = futex_close,
1720 .poll = futex_poll,
1721 };
1722
1723 /*
1724 * Signal allows caller to avoid the race which would occur if they
1725 * set the sigio stuff up afterwards.
1726 */
1727 static int futex_fd(u32 __user *uaddr, int signal)
1728 {
1729 struct futex_q *q;
1730 struct file *filp;
1731 int ret, err;
1732 struct rw_semaphore *fshared;
1733 static unsigned long printk_interval;
1734
1735 if (printk_timed_ratelimit(&printk_interval, 60 * 60 * 1000)) {
1736 printk(KERN_WARNING "Process `%s' used FUTEX_FD, which "
1737 "will be removed from the kernel in June 2007\n",
1738 current->comm);
1739 }
1740
1741 ret = -EINVAL;
1742 if (!valid_signal(signal))
1743 goto out;
1744
1745 ret = get_unused_fd();
1746 if (ret < 0)
1747 goto out;
1748 filp = get_empty_filp();
1749 if (!filp) {
1750 put_unused_fd(ret);
1751 ret = -ENFILE;
1752 goto out;
1753 }
1754 filp->f_op = &futex_fops;
1755 filp->f_path.mnt = mntget(futex_mnt);
1756 filp->f_path.dentry = dget(futex_mnt->mnt_root);
1757 filp->f_mapping = filp->f_path.dentry->d_inode->i_mapping;
1758
1759 if (signal) {
1760 err = __f_setown(filp, task_pid(current), PIDTYPE_PID, 1);
1761 if (err < 0) {
1762 goto error;
1763 }
1764 filp->f_owner.signum = signal;
1765 }
1766
1767 q = kmalloc(sizeof(*q), GFP_KERNEL);
1768 if (!q) {
1769 err = -ENOMEM;
1770 goto error;
1771 }
1772 q->pi_state = NULL;
1773
1774 fshared = &current->mm->mmap_sem;
1775 down_read(fshared);
1776 err = get_futex_key(uaddr, fshared, &q->key);
1777
1778 if (unlikely(err != 0)) {
1779 up_read(fshared);
1780 kfree(q);
1781 goto error;
1782 }
1783
1784 /*
1785 * queue_me() must be called before releasing mmap_sem, because
1786 * key->shared.inode needs to be referenced while holding it.
1787 */
1788 filp->private_data = q;
1789
1790 queue_me(q, ret, filp);
1791 up_read(fshared);
1792
1793 /* Now we map fd to filp, so userspace can access it */
1794 fd_install(ret, filp);
1795 out:
1796 return ret;
1797 error:
1798 put_unused_fd(ret);
1799 put_filp(filp);
1800 ret = err;
1801 goto out;
1802 }
1803
1804 /*
1805 * Support for robust futexes: the kernel cleans up held futexes at
1806 * thread exit time.
1807 *
1808 * Implementation: user-space maintains a per-thread list of locks it
1809 * is holding. Upon do_exit(), the kernel carefully walks this list,
1810 * and marks all locks that are owned by this thread with the
1811 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1812 * always manipulated with the lock held, so the list is private and
1813 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1814 * field, to allow the kernel to clean up if the thread dies after
1815 * acquiring the lock, but just before it could have added itself to
1816 * the list. There can only be one such pending lock.
1817 */
1818
1819 /**
1820 * sys_set_robust_list - set the robust-futex list head of a task
1821 * @head: pointer to the list-head
1822 * @len: length of the list-head, as userspace expects
1823 */
1824 asmlinkage long
1825 sys_set_robust_list(struct robust_list_head __user *head,
1826 size_t len)
1827 {
1828 /*
1829 * The kernel knows only one size for now:
1830 */
1831 if (unlikely(len != sizeof(*head)))
1832 return -EINVAL;
1833
1834 current->robust_list = head;
1835
1836 return 0;
1837 }
1838
1839 /**
1840 * sys_get_robust_list - get the robust-futex list head of a task
1841 * @pid: pid of the process [zero for current task]
1842 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1843 * @len_ptr: pointer to a length field, the kernel fills in the header size
1844 */
1845 asmlinkage long
1846 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1847 size_t __user *len_ptr)
1848 {
1849 struct robust_list_head __user *head;
1850 unsigned long ret;
1851
1852 if (!pid)
1853 head = current->robust_list;
1854 else {
1855 struct task_struct *p;
1856
1857 ret = -ESRCH;
1858 rcu_read_lock();
1859 p = find_task_by_vpid(pid);
1860 if (!p)
1861 goto err_unlock;
1862 ret = -EPERM;
1863 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1864 !capable(CAP_SYS_PTRACE))
1865 goto err_unlock;
1866 head = p->robust_list;
1867 rcu_read_unlock();
1868 }
1869
1870 if (put_user(sizeof(*head), len_ptr))
1871 return -EFAULT;
1872 return put_user(head, head_ptr);
1873
1874 err_unlock:
1875 rcu_read_unlock();
1876
1877 return ret;
1878 }
1879
1880 /*
1881 * Process a futex-list entry, check whether it's owned by the
1882 * dying task, and do notification if so:
1883 */
1884 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1885 {
1886 u32 uval, nval, mval;
1887
1888 retry:
1889 if (get_user(uval, uaddr))
1890 return -1;
1891
1892 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1893 /*
1894 * Ok, this dying thread is truly holding a futex
1895 * of interest. Set the OWNER_DIED bit atomically
1896 * via cmpxchg, and if the value had FUTEX_WAITERS
1897 * set, wake up a waiter (if any). (We have to do a
1898 * futex_wake() even if OWNER_DIED is already set -
1899 * to handle the rare but possible case of recursive
1900 * thread-death.) The rest of the cleanup is done in
1901 * userspace.
1902 */
1903 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1904 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1905
1906 if (nval == -EFAULT)
1907 return -1;
1908
1909 if (nval != uval)
1910 goto retry;
1911
1912 /*
1913 * Wake robust non-PI futexes here. The wakeup of
1914 * PI futexes happens in exit_pi_state():
1915 */
1916 if (!pi && (uval & FUTEX_WAITERS))
1917 futex_wake(uaddr, &curr->mm->mmap_sem, 1);
1918 }
1919 return 0;
1920 }
1921
1922 /*
1923 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1924 */
1925 static inline int fetch_robust_entry(struct robust_list __user **entry,
1926 struct robust_list __user * __user *head,
1927 int *pi)
1928 {
1929 unsigned long uentry;
1930
1931 if (get_user(uentry, (unsigned long __user *)head))
1932 return -EFAULT;
1933
1934 *entry = (void __user *)(uentry & ~1UL);
1935 *pi = uentry & 1;
1936
1937 return 0;
1938 }
1939
1940 /*
1941 * Walk curr->robust_list (very carefully, it's a userspace list!)
1942 * and mark any locks found there dead, and notify any waiters.
1943 *
1944 * We silently return on any sign of list-walking problem.
1945 */
1946 void exit_robust_list(struct task_struct *curr)
1947 {
1948 struct robust_list_head __user *head = curr->robust_list;
1949 struct robust_list __user *entry, *next_entry, *pending;
1950 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1951 unsigned long futex_offset;
1952 int rc;
1953
1954 /*
1955 * Fetch the list head (which was registered earlier, via
1956 * sys_set_robust_list()):
1957 */
1958 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1959 return;
1960 /*
1961 * Fetch the relative futex offset:
1962 */
1963 if (get_user(futex_offset, &head->futex_offset))
1964 return;
1965 /*
1966 * Fetch any possibly pending lock-add first, and handle it
1967 * if it exists:
1968 */
1969 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1970 return;
1971
1972 next_entry = NULL; /* avoid warning with gcc */
1973 while (entry != &head->list) {
1974 /*
1975 * Fetch the next entry in the list before calling
1976 * handle_futex_death:
1977 */
1978 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1979 /*
1980 * A pending lock might already be on the list, so
1981 * don't process it twice:
1982 */
1983 if (entry != pending)
1984 if (handle_futex_death((void __user *)entry + futex_offset,
1985 curr, pi))
1986 return;
1987 if (rc)
1988 return;
1989 entry = next_entry;
1990 pi = next_pi;
1991 /*
1992 * Avoid excessively long or circular lists:
1993 */
1994 if (!--limit)
1995 break;
1996
1997 cond_resched();
1998 }
1999
2000 if (pending)
2001 handle_futex_death((void __user *)pending + futex_offset,
2002 curr, pip);
2003 }
2004
2005 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2006 u32 __user *uaddr2, u32 val2, u32 val3)
2007 {
2008 int ret;
2009 int cmd = op & FUTEX_CMD_MASK;
2010 struct rw_semaphore *fshared = NULL;
2011
2012 if (!(op & FUTEX_PRIVATE_FLAG))
2013 fshared = &current->mm->mmap_sem;
2014
2015 switch (cmd) {
2016 case FUTEX_WAIT:
2017 ret = futex_wait(uaddr, fshared, val, timeout);
2018 break;
2019 case FUTEX_WAKE:
2020 ret = futex_wake(uaddr, fshared, val);
2021 break;
2022 case FUTEX_FD:
2023 /* non-zero val means F_SETOWN(getpid()) & F_SETSIG(val) */
2024 ret = futex_fd(uaddr, val);
2025 break;
2026 case FUTEX_REQUEUE:
2027 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
2028 break;
2029 case FUTEX_CMP_REQUEUE:
2030 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
2031 break;
2032 case FUTEX_WAKE_OP:
2033 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
2034 break;
2035 case FUTEX_LOCK_PI:
2036 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
2037 break;
2038 case FUTEX_UNLOCK_PI:
2039 ret = futex_unlock_pi(uaddr, fshared);
2040 break;
2041 case FUTEX_TRYLOCK_PI:
2042 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
2043 break;
2044 default:
2045 ret = -ENOSYS;
2046 }
2047 return ret;
2048 }
2049
2050
2051 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
2052 struct timespec __user *utime, u32 __user *uaddr2,
2053 u32 val3)
2054 {
2055 struct timespec ts;
2056 ktime_t t, *tp = NULL;
2057 u32 val2 = 0;
2058 int cmd = op & FUTEX_CMD_MASK;
2059
2060 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI)) {
2061 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2062 return -EFAULT;
2063 if (!timespec_valid(&ts))
2064 return -EINVAL;
2065
2066 t = timespec_to_ktime(ts);
2067 if (cmd == FUTEX_WAIT)
2068 t = ktime_add(ktime_get(), t);
2069 tp = &t;
2070 }
2071 /*
2072 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
2073 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2074 */
2075 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2076 cmd == FUTEX_WAKE_OP)
2077 val2 = (u32) (unsigned long) utime;
2078
2079 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2080 }
2081
2082 static int futexfs_get_sb(struct file_system_type *fs_type,
2083 int flags, const char *dev_name, void *data,
2084 struct vfsmount *mnt)
2085 {
2086 return get_sb_pseudo(fs_type, "futex", NULL, FUTEXFS_SUPER_MAGIC, mnt);
2087 }
2088
2089 static struct file_system_type futex_fs_type = {
2090 .name = "futexfs",
2091 .get_sb = futexfs_get_sb,
2092 .kill_sb = kill_anon_super,
2093 };
2094
2095 static int __init init(void)
2096 {
2097 int i = register_filesystem(&futex_fs_type);
2098
2099 if (i)
2100 return i;
2101
2102 futex_mnt = kern_mount(&futex_fs_type);
2103 if (IS_ERR(futex_mnt)) {
2104 unregister_filesystem(&futex_fs_type);
2105 return PTR_ERR(futex_mnt);
2106 }
2107
2108 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2109 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2110 spin_lock_init(&futex_queues[i].lock);
2111 }
2112 return 0;
2113 }
2114 __initcall(init);