]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/futex.c
Merge ../linux-2.6-x86
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
23 * enough at me, Linus for the original (flawed) idea, Matthew
24 * Kirkwood for proof-of-concept implementation.
25 *
26 * "The futexes are also cursed."
27 * "But they come in a choice of three flavours!"
28 *
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License as published by
31 * the Free Software Foundation; either version 2 of the License, or
32 * (at your option) any later version.
33 *
34 * This program is distributed in the hope that it will be useful,
35 * but WITHOUT ANY WARRANTY; without even the implied warranty of
36 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
37 * GNU General Public License for more details.
38 *
39 * You should have received a copy of the GNU General Public License
40 * along with this program; if not, write to the Free Software
41 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
42 */
43 #include <linux/slab.h>
44 #include <linux/poll.h>
45 #include <linux/fs.h>
46 #include <linux/file.h>
47 #include <linux/jhash.h>
48 #include <linux/init.h>
49 #include <linux/futex.h>
50 #include <linux/mount.h>
51 #include <linux/pagemap.h>
52 #include <linux/syscalls.h>
53 #include <linux/signal.h>
54 #include <linux/module.h>
55 #include <linux/magic.h>
56 #include <linux/pid.h>
57 #include <linux/nsproxy.h>
58
59 #include <asm/futex.h>
60
61 #include "rtmutex_common.h"
62
63 int __read_mostly futex_cmpxchg_enabled;
64
65 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
66
67 /*
68 * Priority Inheritance state:
69 */
70 struct futex_pi_state {
71 /*
72 * list of 'owned' pi_state instances - these have to be
73 * cleaned up in do_exit() if the task exits prematurely:
74 */
75 struct list_head list;
76
77 /*
78 * The PI object:
79 */
80 struct rt_mutex pi_mutex;
81
82 struct task_struct *owner;
83 atomic_t refcount;
84
85 union futex_key key;
86 };
87
88 /*
89 * We use this hashed waitqueue instead of a normal wait_queue_t, so
90 * we can wake only the relevant ones (hashed queues may be shared).
91 *
92 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
93 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
94 * The order of wakup is always to make the first condition true, then
95 * wake up q->waiters, then make the second condition true.
96 */
97 struct futex_q {
98 struct plist_node list;
99 wait_queue_head_t waiters;
100
101 /* Which hash list lock to use: */
102 spinlock_t *lock_ptr;
103
104 /* Key which the futex is hashed on: */
105 union futex_key key;
106
107 /* Optional priority inheritance state: */
108 struct futex_pi_state *pi_state;
109 struct task_struct *task;
110
111 /* Bitset for the optional bitmasked wakeup */
112 u32 bitset;
113 };
114
115 /*
116 * Split the global futex_lock into every hash list lock.
117 */
118 struct futex_hash_bucket {
119 spinlock_t lock;
120 struct plist_head chain;
121 };
122
123 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
124
125 /*
126 * We hash on the keys returned from get_futex_key (see below).
127 */
128 static struct futex_hash_bucket *hash_futex(union futex_key *key)
129 {
130 u32 hash = jhash2((u32*)&key->both.word,
131 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
132 key->both.offset);
133 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
134 }
135
136 /*
137 * Return 1 if two futex_keys are equal, 0 otherwise.
138 */
139 static inline int match_futex(union futex_key *key1, union futex_key *key2)
140 {
141 return (key1->both.word == key2->both.word
142 && key1->both.ptr == key2->both.ptr
143 && key1->both.offset == key2->both.offset);
144 }
145
146 /*
147 * Take a reference to the resource addressed by a key.
148 * Can be called while holding spinlocks.
149 *
150 */
151 static void get_futex_key_refs(union futex_key *key)
152 {
153 if (!key->both.ptr)
154 return;
155
156 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
157 case FUT_OFF_INODE:
158 atomic_inc(&key->shared.inode->i_count);
159 break;
160 case FUT_OFF_MMSHARED:
161 atomic_inc(&key->private.mm->mm_count);
162 break;
163 }
164 }
165
166 /*
167 * Drop a reference to the resource addressed by a key.
168 * The hash bucket spinlock must not be held.
169 */
170 static void drop_futex_key_refs(union futex_key *key)
171 {
172 if (!key->both.ptr)
173 return;
174
175 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
176 case FUT_OFF_INODE:
177 iput(key->shared.inode);
178 break;
179 case FUT_OFF_MMSHARED:
180 mmdrop(key->private.mm);
181 break;
182 }
183 }
184
185 /**
186 * get_futex_key - Get parameters which are the keys for a futex.
187 * @uaddr: virtual address of the futex
188 * @shared: NULL for a PROCESS_PRIVATE futex,
189 * &current->mm->mmap_sem for a PROCESS_SHARED futex
190 * @key: address where result is stored.
191 *
192 * Returns a negative error code or 0
193 * The key words are stored in *key on success.
194 *
195 * For shared mappings, it's (page->index, vma->vm_file->f_path.dentry->d_inode,
196 * offset_within_page). For private mappings, it's (uaddr, current->mm).
197 * We can usually work out the index without swapping in the page.
198 *
199 * fshared is NULL for PROCESS_PRIVATE futexes
200 * For other futexes, it points to &current->mm->mmap_sem and
201 * caller must have taken the reader lock. but NOT any spinlocks.
202 */
203 static int get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key)
204 {
205 unsigned long address = (unsigned long)uaddr;
206 struct mm_struct *mm = current->mm;
207 struct page *page;
208 int err;
209
210 /*
211 * The futex address must be "naturally" aligned.
212 */
213 key->both.offset = address % PAGE_SIZE;
214 if (unlikely((address % sizeof(u32)) != 0))
215 return -EINVAL;
216 address -= key->both.offset;
217
218 /*
219 * PROCESS_PRIVATE futexes are fast.
220 * As the mm cannot disappear under us and the 'key' only needs
221 * virtual address, we dont even have to find the underlying vma.
222 * Note : We do have to check 'uaddr' is a valid user address,
223 * but access_ok() should be faster than find_vma()
224 */
225 if (!fshared) {
226 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
227 return -EFAULT;
228 key->private.mm = mm;
229 key->private.address = address;
230 get_futex_key_refs(key);
231 return 0;
232 }
233
234 again:
235 err = get_user_pages_fast(address, 1, 0, &page);
236 if (err < 0)
237 return err;
238
239 lock_page(page);
240 if (!page->mapping) {
241 unlock_page(page);
242 put_page(page);
243 goto again;
244 }
245
246 /*
247 * Private mappings are handled in a simple way.
248 *
249 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
250 * it's a read-only handle, it's expected that futexes attach to
251 * the object not the particular process.
252 */
253 if (PageAnon(page)) {
254 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
255 key->private.mm = mm;
256 key->private.address = address;
257 } else {
258 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
259 key->shared.inode = page->mapping->host;
260 key->shared.pgoff = page->index;
261 }
262
263 get_futex_key_refs(key);
264
265 unlock_page(page);
266 put_page(page);
267 return 0;
268 }
269
270 static inline
271 void put_futex_key(int fshared, union futex_key *key)
272 {
273 drop_futex_key_refs(key);
274 }
275
276 static u32 cmpxchg_futex_value_locked(u32 __user *uaddr, u32 uval, u32 newval)
277 {
278 u32 curval;
279
280 pagefault_disable();
281 curval = futex_atomic_cmpxchg_inatomic(uaddr, uval, newval);
282 pagefault_enable();
283
284 return curval;
285 }
286
287 static int get_futex_value_locked(u32 *dest, u32 __user *from)
288 {
289 int ret;
290
291 pagefault_disable();
292 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
293 pagefault_enable();
294
295 return ret ? -EFAULT : 0;
296 }
297
298 /*
299 * Fault handling.
300 */
301 static int futex_handle_fault(unsigned long address, int attempt)
302 {
303 struct vm_area_struct * vma;
304 struct mm_struct *mm = current->mm;
305 int ret = -EFAULT;
306
307 if (attempt > 2)
308 return ret;
309
310 down_read(&mm->mmap_sem);
311 vma = find_vma(mm, address);
312 if (vma && address >= vma->vm_start &&
313 (vma->vm_flags & VM_WRITE)) {
314 int fault;
315 fault = handle_mm_fault(mm, vma, address, 1);
316 if (unlikely((fault & VM_FAULT_ERROR))) {
317 #if 0
318 /* XXX: let's do this when we verify it is OK */
319 if (ret & VM_FAULT_OOM)
320 ret = -ENOMEM;
321 #endif
322 } else {
323 ret = 0;
324 if (fault & VM_FAULT_MAJOR)
325 current->maj_flt++;
326 else
327 current->min_flt++;
328 }
329 }
330 up_read(&mm->mmap_sem);
331 return ret;
332 }
333
334 /*
335 * PI code:
336 */
337 static int refill_pi_state_cache(void)
338 {
339 struct futex_pi_state *pi_state;
340
341 if (likely(current->pi_state_cache))
342 return 0;
343
344 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
345
346 if (!pi_state)
347 return -ENOMEM;
348
349 INIT_LIST_HEAD(&pi_state->list);
350 /* pi_mutex gets initialized later */
351 pi_state->owner = NULL;
352 atomic_set(&pi_state->refcount, 1);
353 pi_state->key = FUTEX_KEY_INIT;
354
355 current->pi_state_cache = pi_state;
356
357 return 0;
358 }
359
360 static struct futex_pi_state * alloc_pi_state(void)
361 {
362 struct futex_pi_state *pi_state = current->pi_state_cache;
363
364 WARN_ON(!pi_state);
365 current->pi_state_cache = NULL;
366
367 return pi_state;
368 }
369
370 static void free_pi_state(struct futex_pi_state *pi_state)
371 {
372 if (!atomic_dec_and_test(&pi_state->refcount))
373 return;
374
375 /*
376 * If pi_state->owner is NULL, the owner is most probably dying
377 * and has cleaned up the pi_state already
378 */
379 if (pi_state->owner) {
380 spin_lock_irq(&pi_state->owner->pi_lock);
381 list_del_init(&pi_state->list);
382 spin_unlock_irq(&pi_state->owner->pi_lock);
383
384 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
385 }
386
387 if (current->pi_state_cache)
388 kfree(pi_state);
389 else {
390 /*
391 * pi_state->list is already empty.
392 * clear pi_state->owner.
393 * refcount is at 0 - put it back to 1.
394 */
395 pi_state->owner = NULL;
396 atomic_set(&pi_state->refcount, 1);
397 current->pi_state_cache = pi_state;
398 }
399 }
400
401 /*
402 * Look up the task based on what TID userspace gave us.
403 * We dont trust it.
404 */
405 static struct task_struct * futex_find_get_task(pid_t pid)
406 {
407 struct task_struct *p;
408
409 rcu_read_lock();
410 p = find_task_by_vpid(pid);
411 if (!p || ((current->euid != p->euid) && (current->euid != p->uid)))
412 p = ERR_PTR(-ESRCH);
413 else
414 get_task_struct(p);
415
416 rcu_read_unlock();
417
418 return p;
419 }
420
421 /*
422 * This task is holding PI mutexes at exit time => bad.
423 * Kernel cleans up PI-state, but userspace is likely hosed.
424 * (Robust-futex cleanup is separate and might save the day for userspace.)
425 */
426 void exit_pi_state_list(struct task_struct *curr)
427 {
428 struct list_head *next, *head = &curr->pi_state_list;
429 struct futex_pi_state *pi_state;
430 struct futex_hash_bucket *hb;
431 union futex_key key = FUTEX_KEY_INIT;
432
433 if (!futex_cmpxchg_enabled)
434 return;
435 /*
436 * We are a ZOMBIE and nobody can enqueue itself on
437 * pi_state_list anymore, but we have to be careful
438 * versus waiters unqueueing themselves:
439 */
440 spin_lock_irq(&curr->pi_lock);
441 while (!list_empty(head)) {
442
443 next = head->next;
444 pi_state = list_entry(next, struct futex_pi_state, list);
445 key = pi_state->key;
446 hb = hash_futex(&key);
447 spin_unlock_irq(&curr->pi_lock);
448
449 spin_lock(&hb->lock);
450
451 spin_lock_irq(&curr->pi_lock);
452 /*
453 * We dropped the pi-lock, so re-check whether this
454 * task still owns the PI-state:
455 */
456 if (head->next != next) {
457 spin_unlock(&hb->lock);
458 continue;
459 }
460
461 WARN_ON(pi_state->owner != curr);
462 WARN_ON(list_empty(&pi_state->list));
463 list_del_init(&pi_state->list);
464 pi_state->owner = NULL;
465 spin_unlock_irq(&curr->pi_lock);
466
467 rt_mutex_unlock(&pi_state->pi_mutex);
468
469 spin_unlock(&hb->lock);
470
471 spin_lock_irq(&curr->pi_lock);
472 }
473 spin_unlock_irq(&curr->pi_lock);
474 }
475
476 static int
477 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
478 union futex_key *key, struct futex_pi_state **ps)
479 {
480 struct futex_pi_state *pi_state = NULL;
481 struct futex_q *this, *next;
482 struct plist_head *head;
483 struct task_struct *p;
484 pid_t pid = uval & FUTEX_TID_MASK;
485
486 head = &hb->chain;
487
488 plist_for_each_entry_safe(this, next, head, list) {
489 if (match_futex(&this->key, key)) {
490 /*
491 * Another waiter already exists - bump up
492 * the refcount and return its pi_state:
493 */
494 pi_state = this->pi_state;
495 /*
496 * Userspace might have messed up non PI and PI futexes
497 */
498 if (unlikely(!pi_state))
499 return -EINVAL;
500
501 WARN_ON(!atomic_read(&pi_state->refcount));
502 WARN_ON(pid && pi_state->owner &&
503 pi_state->owner->pid != pid);
504
505 atomic_inc(&pi_state->refcount);
506 *ps = pi_state;
507
508 return 0;
509 }
510 }
511
512 /*
513 * We are the first waiter - try to look up the real owner and attach
514 * the new pi_state to it, but bail out when TID = 0
515 */
516 if (!pid)
517 return -ESRCH;
518 p = futex_find_get_task(pid);
519 if (IS_ERR(p))
520 return PTR_ERR(p);
521
522 /*
523 * We need to look at the task state flags to figure out,
524 * whether the task is exiting. To protect against the do_exit
525 * change of the task flags, we do this protected by
526 * p->pi_lock:
527 */
528 spin_lock_irq(&p->pi_lock);
529 if (unlikely(p->flags & PF_EXITING)) {
530 /*
531 * The task is on the way out. When PF_EXITPIDONE is
532 * set, we know that the task has finished the
533 * cleanup:
534 */
535 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
536
537 spin_unlock_irq(&p->pi_lock);
538 put_task_struct(p);
539 return ret;
540 }
541
542 pi_state = alloc_pi_state();
543
544 /*
545 * Initialize the pi_mutex in locked state and make 'p'
546 * the owner of it:
547 */
548 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
549
550 /* Store the key for possible exit cleanups: */
551 pi_state->key = *key;
552
553 WARN_ON(!list_empty(&pi_state->list));
554 list_add(&pi_state->list, &p->pi_state_list);
555 pi_state->owner = p;
556 spin_unlock_irq(&p->pi_lock);
557
558 put_task_struct(p);
559
560 *ps = pi_state;
561
562 return 0;
563 }
564
565 /*
566 * The hash bucket lock must be held when this is called.
567 * Afterwards, the futex_q must not be accessed.
568 */
569 static void wake_futex(struct futex_q *q)
570 {
571 plist_del(&q->list, &q->list.plist);
572 /*
573 * The lock in wake_up_all() is a crucial memory barrier after the
574 * plist_del() and also before assigning to q->lock_ptr.
575 */
576 wake_up_all(&q->waiters);
577 /*
578 * The waiting task can free the futex_q as soon as this is written,
579 * without taking any locks. This must come last.
580 *
581 * A memory barrier is required here to prevent the following store
582 * to lock_ptr from getting ahead of the wakeup. Clearing the lock
583 * at the end of wake_up_all() does not prevent this store from
584 * moving.
585 */
586 smp_wmb();
587 q->lock_ptr = NULL;
588 }
589
590 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
591 {
592 struct task_struct *new_owner;
593 struct futex_pi_state *pi_state = this->pi_state;
594 u32 curval, newval;
595
596 if (!pi_state)
597 return -EINVAL;
598
599 spin_lock(&pi_state->pi_mutex.wait_lock);
600 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
601
602 /*
603 * This happens when we have stolen the lock and the original
604 * pending owner did not enqueue itself back on the rt_mutex.
605 * Thats not a tragedy. We know that way, that a lock waiter
606 * is on the fly. We make the futex_q waiter the pending owner.
607 */
608 if (!new_owner)
609 new_owner = this->task;
610
611 /*
612 * We pass it to the next owner. (The WAITERS bit is always
613 * kept enabled while there is PI state around. We must also
614 * preserve the owner died bit.)
615 */
616 if (!(uval & FUTEX_OWNER_DIED)) {
617 int ret = 0;
618
619 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
620
621 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
622
623 if (curval == -EFAULT)
624 ret = -EFAULT;
625 else if (curval != uval)
626 ret = -EINVAL;
627 if (ret) {
628 spin_unlock(&pi_state->pi_mutex.wait_lock);
629 return ret;
630 }
631 }
632
633 spin_lock_irq(&pi_state->owner->pi_lock);
634 WARN_ON(list_empty(&pi_state->list));
635 list_del_init(&pi_state->list);
636 spin_unlock_irq(&pi_state->owner->pi_lock);
637
638 spin_lock_irq(&new_owner->pi_lock);
639 WARN_ON(!list_empty(&pi_state->list));
640 list_add(&pi_state->list, &new_owner->pi_state_list);
641 pi_state->owner = new_owner;
642 spin_unlock_irq(&new_owner->pi_lock);
643
644 spin_unlock(&pi_state->pi_mutex.wait_lock);
645 rt_mutex_unlock(&pi_state->pi_mutex);
646
647 return 0;
648 }
649
650 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
651 {
652 u32 oldval;
653
654 /*
655 * There is no waiter, so we unlock the futex. The owner died
656 * bit has not to be preserved here. We are the owner:
657 */
658 oldval = cmpxchg_futex_value_locked(uaddr, uval, 0);
659
660 if (oldval == -EFAULT)
661 return oldval;
662 if (oldval != uval)
663 return -EAGAIN;
664
665 return 0;
666 }
667
668 /*
669 * Express the locking dependencies for lockdep:
670 */
671 static inline void
672 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
673 {
674 if (hb1 <= hb2) {
675 spin_lock(&hb1->lock);
676 if (hb1 < hb2)
677 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
678 } else { /* hb1 > hb2 */
679 spin_lock(&hb2->lock);
680 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
681 }
682 }
683
684 /*
685 * Wake up all waiters hashed on the physical page that is mapped
686 * to this virtual address:
687 */
688 static int futex_wake(u32 __user *uaddr, int fshared, int nr_wake, u32 bitset)
689 {
690 struct futex_hash_bucket *hb;
691 struct futex_q *this, *next;
692 struct plist_head *head;
693 union futex_key key = FUTEX_KEY_INIT;
694 int ret;
695
696 if (!bitset)
697 return -EINVAL;
698
699 ret = get_futex_key(uaddr, fshared, &key);
700 if (unlikely(ret != 0))
701 goto out;
702
703 hb = hash_futex(&key);
704 spin_lock(&hb->lock);
705 head = &hb->chain;
706
707 plist_for_each_entry_safe(this, next, head, list) {
708 if (match_futex (&this->key, &key)) {
709 if (this->pi_state) {
710 ret = -EINVAL;
711 break;
712 }
713
714 /* Check if one of the bits is set in both bitsets */
715 if (!(this->bitset & bitset))
716 continue;
717
718 wake_futex(this);
719 if (++ret >= nr_wake)
720 break;
721 }
722 }
723
724 spin_unlock(&hb->lock);
725 out:
726 put_futex_key(fshared, &key);
727 return ret;
728 }
729
730 /*
731 * Wake up all waiters hashed on the physical page that is mapped
732 * to this virtual address:
733 */
734 static int
735 futex_wake_op(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
736 int nr_wake, int nr_wake2, int op)
737 {
738 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
739 struct futex_hash_bucket *hb1, *hb2;
740 struct plist_head *head;
741 struct futex_q *this, *next;
742 int ret, op_ret, attempt = 0;
743
744 retryfull:
745 ret = get_futex_key(uaddr1, fshared, &key1);
746 if (unlikely(ret != 0))
747 goto out;
748 ret = get_futex_key(uaddr2, fshared, &key2);
749 if (unlikely(ret != 0))
750 goto out;
751
752 hb1 = hash_futex(&key1);
753 hb2 = hash_futex(&key2);
754
755 retry:
756 double_lock_hb(hb1, hb2);
757
758 op_ret = futex_atomic_op_inuser(op, uaddr2);
759 if (unlikely(op_ret < 0)) {
760 u32 dummy;
761
762 spin_unlock(&hb1->lock);
763 if (hb1 != hb2)
764 spin_unlock(&hb2->lock);
765
766 #ifndef CONFIG_MMU
767 /*
768 * we don't get EFAULT from MMU faults if we don't have an MMU,
769 * but we might get them from range checking
770 */
771 ret = op_ret;
772 goto out;
773 #endif
774
775 if (unlikely(op_ret != -EFAULT)) {
776 ret = op_ret;
777 goto out;
778 }
779
780 /*
781 * futex_atomic_op_inuser needs to both read and write
782 * *(int __user *)uaddr2, but we can't modify it
783 * non-atomically. Therefore, if get_user below is not
784 * enough, we need to handle the fault ourselves, while
785 * still holding the mmap_sem.
786 */
787 if (attempt++) {
788 ret = futex_handle_fault((unsigned long)uaddr2,
789 attempt);
790 if (ret)
791 goto out;
792 goto retry;
793 }
794
795 ret = get_user(dummy, uaddr2);
796 if (ret)
797 return ret;
798
799 goto retryfull;
800 }
801
802 head = &hb1->chain;
803
804 plist_for_each_entry_safe(this, next, head, list) {
805 if (match_futex (&this->key, &key1)) {
806 wake_futex(this);
807 if (++ret >= nr_wake)
808 break;
809 }
810 }
811
812 if (op_ret > 0) {
813 head = &hb2->chain;
814
815 op_ret = 0;
816 plist_for_each_entry_safe(this, next, head, list) {
817 if (match_futex (&this->key, &key2)) {
818 wake_futex(this);
819 if (++op_ret >= nr_wake2)
820 break;
821 }
822 }
823 ret += op_ret;
824 }
825
826 spin_unlock(&hb1->lock);
827 if (hb1 != hb2)
828 spin_unlock(&hb2->lock);
829 out:
830 put_futex_key(fshared, &key2);
831 put_futex_key(fshared, &key1);
832
833 return ret;
834 }
835
836 /*
837 * Requeue all waiters hashed on one physical page to another
838 * physical page.
839 */
840 static int futex_requeue(u32 __user *uaddr1, int fshared, u32 __user *uaddr2,
841 int nr_wake, int nr_requeue, u32 *cmpval)
842 {
843 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
844 struct futex_hash_bucket *hb1, *hb2;
845 struct plist_head *head1;
846 struct futex_q *this, *next;
847 int ret, drop_count = 0;
848
849 retry:
850 ret = get_futex_key(uaddr1, fshared, &key1);
851 if (unlikely(ret != 0))
852 goto out;
853 ret = get_futex_key(uaddr2, fshared, &key2);
854 if (unlikely(ret != 0))
855 goto out;
856
857 hb1 = hash_futex(&key1);
858 hb2 = hash_futex(&key2);
859
860 double_lock_hb(hb1, hb2);
861
862 if (likely(cmpval != NULL)) {
863 u32 curval;
864
865 ret = get_futex_value_locked(&curval, uaddr1);
866
867 if (unlikely(ret)) {
868 spin_unlock(&hb1->lock);
869 if (hb1 != hb2)
870 spin_unlock(&hb2->lock);
871
872 ret = get_user(curval, uaddr1);
873
874 if (!ret)
875 goto retry;
876
877 return ret;
878 }
879 if (curval != *cmpval) {
880 ret = -EAGAIN;
881 goto out_unlock;
882 }
883 }
884
885 head1 = &hb1->chain;
886 plist_for_each_entry_safe(this, next, head1, list) {
887 if (!match_futex (&this->key, &key1))
888 continue;
889 if (++ret <= nr_wake) {
890 wake_futex(this);
891 } else {
892 /*
893 * If key1 and key2 hash to the same bucket, no need to
894 * requeue.
895 */
896 if (likely(head1 != &hb2->chain)) {
897 plist_del(&this->list, &hb1->chain);
898 plist_add(&this->list, &hb2->chain);
899 this->lock_ptr = &hb2->lock;
900 #ifdef CONFIG_DEBUG_PI_LIST
901 this->list.plist.lock = &hb2->lock;
902 #endif
903 }
904 this->key = key2;
905 get_futex_key_refs(&key2);
906 drop_count++;
907
908 if (ret - nr_wake >= nr_requeue)
909 break;
910 }
911 }
912
913 out_unlock:
914 spin_unlock(&hb1->lock);
915 if (hb1 != hb2)
916 spin_unlock(&hb2->lock);
917
918 /* drop_futex_key_refs() must be called outside the spinlocks. */
919 while (--drop_count >= 0)
920 drop_futex_key_refs(&key1);
921
922 out:
923 put_futex_key(fshared, &key2);
924 put_futex_key(fshared, &key1);
925 return ret;
926 }
927
928 /* The key must be already stored in q->key. */
929 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
930 {
931 struct futex_hash_bucket *hb;
932
933 init_waitqueue_head(&q->waiters);
934
935 get_futex_key_refs(&q->key);
936 hb = hash_futex(&q->key);
937 q->lock_ptr = &hb->lock;
938
939 spin_lock(&hb->lock);
940 return hb;
941 }
942
943 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
944 {
945 int prio;
946
947 /*
948 * The priority used to register this element is
949 * - either the real thread-priority for the real-time threads
950 * (i.e. threads with a priority lower than MAX_RT_PRIO)
951 * - or MAX_RT_PRIO for non-RT threads.
952 * Thus, all RT-threads are woken first in priority order, and
953 * the others are woken last, in FIFO order.
954 */
955 prio = min(current->normal_prio, MAX_RT_PRIO);
956
957 plist_node_init(&q->list, prio);
958 #ifdef CONFIG_DEBUG_PI_LIST
959 q->list.plist.lock = &hb->lock;
960 #endif
961 plist_add(&q->list, &hb->chain);
962 q->task = current;
963 spin_unlock(&hb->lock);
964 }
965
966 static inline void
967 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
968 {
969 spin_unlock(&hb->lock);
970 drop_futex_key_refs(&q->key);
971 }
972
973 /*
974 * queue_me and unqueue_me must be called as a pair, each
975 * exactly once. They are called with the hashed spinlock held.
976 */
977
978 /* Return 1 if we were still queued (ie. 0 means we were woken) */
979 static int unqueue_me(struct futex_q *q)
980 {
981 spinlock_t *lock_ptr;
982 int ret = 0;
983
984 /* In the common case we don't take the spinlock, which is nice. */
985 retry:
986 lock_ptr = q->lock_ptr;
987 barrier();
988 if (lock_ptr != NULL) {
989 spin_lock(lock_ptr);
990 /*
991 * q->lock_ptr can change between reading it and
992 * spin_lock(), causing us to take the wrong lock. This
993 * corrects the race condition.
994 *
995 * Reasoning goes like this: if we have the wrong lock,
996 * q->lock_ptr must have changed (maybe several times)
997 * between reading it and the spin_lock(). It can
998 * change again after the spin_lock() but only if it was
999 * already changed before the spin_lock(). It cannot,
1000 * however, change back to the original value. Therefore
1001 * we can detect whether we acquired the correct lock.
1002 */
1003 if (unlikely(lock_ptr != q->lock_ptr)) {
1004 spin_unlock(lock_ptr);
1005 goto retry;
1006 }
1007 WARN_ON(plist_node_empty(&q->list));
1008 plist_del(&q->list, &q->list.plist);
1009
1010 BUG_ON(q->pi_state);
1011
1012 spin_unlock(lock_ptr);
1013 ret = 1;
1014 }
1015
1016 drop_futex_key_refs(&q->key);
1017 return ret;
1018 }
1019
1020 /*
1021 * PI futexes can not be requeued and must remove themself from the
1022 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1023 * and dropped here.
1024 */
1025 static void unqueue_me_pi(struct futex_q *q)
1026 {
1027 WARN_ON(plist_node_empty(&q->list));
1028 plist_del(&q->list, &q->list.plist);
1029
1030 BUG_ON(!q->pi_state);
1031 free_pi_state(q->pi_state);
1032 q->pi_state = NULL;
1033
1034 spin_unlock(q->lock_ptr);
1035
1036 drop_futex_key_refs(&q->key);
1037 }
1038
1039 /*
1040 * Fixup the pi_state owner with the new owner.
1041 *
1042 * Must be called with hash bucket lock held and mm->sem held for non
1043 * private futexes.
1044 */
1045 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1046 struct task_struct *newowner, int fshared)
1047 {
1048 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1049 struct futex_pi_state *pi_state = q->pi_state;
1050 struct task_struct *oldowner = pi_state->owner;
1051 u32 uval, curval, newval;
1052 int ret, attempt = 0;
1053
1054 /* Owner died? */
1055 if (!pi_state->owner)
1056 newtid |= FUTEX_OWNER_DIED;
1057
1058 /*
1059 * We are here either because we stole the rtmutex from the
1060 * pending owner or we are the pending owner which failed to
1061 * get the rtmutex. We have to replace the pending owner TID
1062 * in the user space variable. This must be atomic as we have
1063 * to preserve the owner died bit here.
1064 *
1065 * Note: We write the user space value _before_ changing the
1066 * pi_state because we can fault here. Imagine swapped out
1067 * pages or a fork, which was running right before we acquired
1068 * mmap_sem, that marked all the anonymous memory readonly for
1069 * cow.
1070 *
1071 * Modifying pi_state _before_ the user space value would
1072 * leave the pi_state in an inconsistent state when we fault
1073 * here, because we need to drop the hash bucket lock to
1074 * handle the fault. This might be observed in the PID check
1075 * in lookup_pi_state.
1076 */
1077 retry:
1078 if (get_futex_value_locked(&uval, uaddr))
1079 goto handle_fault;
1080
1081 while (1) {
1082 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1083
1084 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1085
1086 if (curval == -EFAULT)
1087 goto handle_fault;
1088 if (curval == uval)
1089 break;
1090 uval = curval;
1091 }
1092
1093 /*
1094 * We fixed up user space. Now we need to fix the pi_state
1095 * itself.
1096 */
1097 if (pi_state->owner != NULL) {
1098 spin_lock_irq(&pi_state->owner->pi_lock);
1099 WARN_ON(list_empty(&pi_state->list));
1100 list_del_init(&pi_state->list);
1101 spin_unlock_irq(&pi_state->owner->pi_lock);
1102 }
1103
1104 pi_state->owner = newowner;
1105
1106 spin_lock_irq(&newowner->pi_lock);
1107 WARN_ON(!list_empty(&pi_state->list));
1108 list_add(&pi_state->list, &newowner->pi_state_list);
1109 spin_unlock_irq(&newowner->pi_lock);
1110 return 0;
1111
1112 /*
1113 * To handle the page fault we need to drop the hash bucket
1114 * lock here. That gives the other task (either the pending
1115 * owner itself or the task which stole the rtmutex) the
1116 * chance to try the fixup of the pi_state. So once we are
1117 * back from handling the fault we need to check the pi_state
1118 * after reacquiring the hash bucket lock and before trying to
1119 * do another fixup. When the fixup has been done already we
1120 * simply return.
1121 */
1122 handle_fault:
1123 spin_unlock(q->lock_ptr);
1124
1125 ret = futex_handle_fault((unsigned long)uaddr, attempt++);
1126
1127 spin_lock(q->lock_ptr);
1128
1129 /*
1130 * Check if someone else fixed it for us:
1131 */
1132 if (pi_state->owner != oldowner)
1133 return 0;
1134
1135 if (ret)
1136 return ret;
1137
1138 goto retry;
1139 }
1140
1141 /*
1142 * In case we must use restart_block to restart a futex_wait,
1143 * we encode in the 'flags' shared capability
1144 */
1145 #define FLAGS_SHARED 1
1146
1147 static long futex_wait_restart(struct restart_block *restart);
1148
1149 static int futex_wait(u32 __user *uaddr, int fshared,
1150 u32 val, ktime_t *abs_time, u32 bitset)
1151 {
1152 struct task_struct *curr = current;
1153 DECLARE_WAITQUEUE(wait, curr);
1154 struct futex_hash_bucket *hb;
1155 struct futex_q q;
1156 u32 uval;
1157 int ret;
1158 struct hrtimer_sleeper t;
1159 int rem = 0;
1160
1161 if (!bitset)
1162 return -EINVAL;
1163
1164 q.pi_state = NULL;
1165 q.bitset = bitset;
1166 retry:
1167 q.key = FUTEX_KEY_INIT;
1168 ret = get_futex_key(uaddr, fshared, &q.key);
1169 if (unlikely(ret != 0))
1170 goto out_release_sem;
1171
1172 hb = queue_lock(&q);
1173
1174 /*
1175 * Access the page AFTER the futex is queued.
1176 * Order is important:
1177 *
1178 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1179 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1180 *
1181 * The basic logical guarantee of a futex is that it blocks ONLY
1182 * if cond(var) is known to be true at the time of blocking, for
1183 * any cond. If we queued after testing *uaddr, that would open
1184 * a race condition where we could block indefinitely with
1185 * cond(var) false, which would violate the guarantee.
1186 *
1187 * A consequence is that futex_wait() can return zero and absorb
1188 * a wakeup when *uaddr != val on entry to the syscall. This is
1189 * rare, but normal.
1190 *
1191 * for shared futexes, we hold the mmap semaphore, so the mapping
1192 * cannot have changed since we looked it up in get_futex_key.
1193 */
1194 ret = get_futex_value_locked(&uval, uaddr);
1195
1196 if (unlikely(ret)) {
1197 queue_unlock(&q, hb);
1198
1199 ret = get_user(uval, uaddr);
1200
1201 if (!ret)
1202 goto retry;
1203 return ret;
1204 }
1205 ret = -EWOULDBLOCK;
1206 if (uval != val)
1207 goto out_unlock_release_sem;
1208
1209 /* Only actually queue if *uaddr contained val. */
1210 queue_me(&q, hb);
1211
1212 /*
1213 * There might have been scheduling since the queue_me(), as we
1214 * cannot hold a spinlock across the get_user() in case it
1215 * faults, and we cannot just set TASK_INTERRUPTIBLE state when
1216 * queueing ourselves into the futex hash. This code thus has to
1217 * rely on the futex_wake() code removing us from hash when it
1218 * wakes us up.
1219 */
1220
1221 /* add_wait_queue is the barrier after __set_current_state. */
1222 __set_current_state(TASK_INTERRUPTIBLE);
1223 add_wait_queue(&q.waiters, &wait);
1224 /*
1225 * !plist_node_empty() is safe here without any lock.
1226 * q.lock_ptr != 0 is not safe, because of ordering against wakeup.
1227 */
1228 if (likely(!plist_node_empty(&q.list))) {
1229 if (!abs_time)
1230 schedule();
1231 else {
1232 unsigned long slack;
1233 slack = current->timer_slack_ns;
1234 if (rt_task(current))
1235 slack = 0;
1236 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC,
1237 HRTIMER_MODE_ABS);
1238 hrtimer_init_sleeper(&t, current);
1239 hrtimer_set_expires_range_ns(&t.timer, *abs_time, slack);
1240
1241 hrtimer_start_expires(&t.timer, HRTIMER_MODE_ABS);
1242 if (!hrtimer_active(&t.timer))
1243 t.task = NULL;
1244
1245 /*
1246 * the timer could have already expired, in which
1247 * case current would be flagged for rescheduling.
1248 * Don't bother calling schedule.
1249 */
1250 if (likely(t.task))
1251 schedule();
1252
1253 hrtimer_cancel(&t.timer);
1254
1255 /* Flag if a timeout occured */
1256 rem = (t.task == NULL);
1257
1258 destroy_hrtimer_on_stack(&t.timer);
1259 }
1260 }
1261 __set_current_state(TASK_RUNNING);
1262
1263 /*
1264 * NOTE: we don't remove ourselves from the waitqueue because
1265 * we are the only user of it.
1266 */
1267
1268 /* If we were woken (and unqueued), we succeeded, whatever. */
1269 if (!unqueue_me(&q))
1270 return 0;
1271 if (rem)
1272 return -ETIMEDOUT;
1273
1274 /*
1275 * We expect signal_pending(current), but another thread may
1276 * have handled it for us already.
1277 */
1278 if (!abs_time)
1279 return -ERESTARTSYS;
1280 else {
1281 struct restart_block *restart;
1282 restart = &current_thread_info()->restart_block;
1283 restart->fn = futex_wait_restart;
1284 restart->futex.uaddr = (u32 *)uaddr;
1285 restart->futex.val = val;
1286 restart->futex.time = abs_time->tv64;
1287 restart->futex.bitset = bitset;
1288 restart->futex.flags = 0;
1289
1290 if (fshared)
1291 restart->futex.flags |= FLAGS_SHARED;
1292 return -ERESTART_RESTARTBLOCK;
1293 }
1294
1295 out_unlock_release_sem:
1296 queue_unlock(&q, hb);
1297
1298 out_release_sem:
1299 put_futex_key(fshared, &q.key);
1300 return ret;
1301 }
1302
1303
1304 static long futex_wait_restart(struct restart_block *restart)
1305 {
1306 u32 __user *uaddr = (u32 __user *)restart->futex.uaddr;
1307 int fshared = 0;
1308 ktime_t t;
1309
1310 t.tv64 = restart->futex.time;
1311 restart->fn = do_no_restart_syscall;
1312 if (restart->futex.flags & FLAGS_SHARED)
1313 fshared = 1;
1314 return (long)futex_wait(uaddr, fshared, restart->futex.val, &t,
1315 restart->futex.bitset);
1316 }
1317
1318
1319 /*
1320 * Userspace tried a 0 -> TID atomic transition of the futex value
1321 * and failed. The kernel side here does the whole locking operation:
1322 * if there are waiters then it will block, it does PI, etc. (Due to
1323 * races the kernel might see a 0 value of the futex too.)
1324 */
1325 static int futex_lock_pi(u32 __user *uaddr, int fshared,
1326 int detect, ktime_t *time, int trylock)
1327 {
1328 struct hrtimer_sleeper timeout, *to = NULL;
1329 struct task_struct *curr = current;
1330 struct futex_hash_bucket *hb;
1331 u32 uval, newval, curval;
1332 struct futex_q q;
1333 int ret, lock_taken, ownerdied = 0, attempt = 0;
1334
1335 if (refill_pi_state_cache())
1336 return -ENOMEM;
1337
1338 if (time) {
1339 to = &timeout;
1340 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
1341 HRTIMER_MODE_ABS);
1342 hrtimer_init_sleeper(to, current);
1343 hrtimer_set_expires(&to->timer, *time);
1344 }
1345
1346 q.pi_state = NULL;
1347 retry:
1348 q.key = FUTEX_KEY_INIT;
1349 ret = get_futex_key(uaddr, fshared, &q.key);
1350 if (unlikely(ret != 0))
1351 goto out_release_sem;
1352
1353 retry_unlocked:
1354 hb = queue_lock(&q);
1355
1356 retry_locked:
1357 ret = lock_taken = 0;
1358
1359 /*
1360 * To avoid races, we attempt to take the lock here again
1361 * (by doing a 0 -> TID atomic cmpxchg), while holding all
1362 * the locks. It will most likely not succeed.
1363 */
1364 newval = task_pid_vnr(current);
1365
1366 curval = cmpxchg_futex_value_locked(uaddr, 0, newval);
1367
1368 if (unlikely(curval == -EFAULT))
1369 goto uaddr_faulted;
1370
1371 /*
1372 * Detect deadlocks. In case of REQUEUE_PI this is a valid
1373 * situation and we return success to user space.
1374 */
1375 if (unlikely((curval & FUTEX_TID_MASK) == task_pid_vnr(current))) {
1376 ret = -EDEADLK;
1377 goto out_unlock_release_sem;
1378 }
1379
1380 /*
1381 * Surprise - we got the lock. Just return to userspace:
1382 */
1383 if (unlikely(!curval))
1384 goto out_unlock_release_sem;
1385
1386 uval = curval;
1387
1388 /*
1389 * Set the WAITERS flag, so the owner will know it has someone
1390 * to wake at next unlock
1391 */
1392 newval = curval | FUTEX_WAITERS;
1393
1394 /*
1395 * There are two cases, where a futex might have no owner (the
1396 * owner TID is 0): OWNER_DIED. We take over the futex in this
1397 * case. We also do an unconditional take over, when the owner
1398 * of the futex died.
1399 *
1400 * This is safe as we are protected by the hash bucket lock !
1401 */
1402 if (unlikely(ownerdied || !(curval & FUTEX_TID_MASK))) {
1403 /* Keep the OWNER_DIED bit */
1404 newval = (curval & ~FUTEX_TID_MASK) | task_pid_vnr(current);
1405 ownerdied = 0;
1406 lock_taken = 1;
1407 }
1408
1409 curval = cmpxchg_futex_value_locked(uaddr, uval, newval);
1410
1411 if (unlikely(curval == -EFAULT))
1412 goto uaddr_faulted;
1413 if (unlikely(curval != uval))
1414 goto retry_locked;
1415
1416 /*
1417 * We took the lock due to owner died take over.
1418 */
1419 if (unlikely(lock_taken))
1420 goto out_unlock_release_sem;
1421
1422 /*
1423 * We dont have the lock. Look up the PI state (or create it if
1424 * we are the first waiter):
1425 */
1426 ret = lookup_pi_state(uval, hb, &q.key, &q.pi_state);
1427
1428 if (unlikely(ret)) {
1429 switch (ret) {
1430
1431 case -EAGAIN:
1432 /*
1433 * Task is exiting and we just wait for the
1434 * exit to complete.
1435 */
1436 queue_unlock(&q, hb);
1437 cond_resched();
1438 goto retry;
1439
1440 case -ESRCH:
1441 /*
1442 * No owner found for this futex. Check if the
1443 * OWNER_DIED bit is set to figure out whether
1444 * this is a robust futex or not.
1445 */
1446 if (get_futex_value_locked(&curval, uaddr))
1447 goto uaddr_faulted;
1448
1449 /*
1450 * We simply start over in case of a robust
1451 * futex. The code above will take the futex
1452 * and return happy.
1453 */
1454 if (curval & FUTEX_OWNER_DIED) {
1455 ownerdied = 1;
1456 goto retry_locked;
1457 }
1458 default:
1459 goto out_unlock_release_sem;
1460 }
1461 }
1462
1463 /*
1464 * Only actually queue now that the atomic ops are done:
1465 */
1466 queue_me(&q, hb);
1467
1468 WARN_ON(!q.pi_state);
1469 /*
1470 * Block on the PI mutex:
1471 */
1472 if (!trylock)
1473 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
1474 else {
1475 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
1476 /* Fixup the trylock return value: */
1477 ret = ret ? 0 : -EWOULDBLOCK;
1478 }
1479
1480 spin_lock(q.lock_ptr);
1481
1482 if (!ret) {
1483 /*
1484 * Got the lock. We might not be the anticipated owner
1485 * if we did a lock-steal - fix up the PI-state in
1486 * that case:
1487 */
1488 if (q.pi_state->owner != curr)
1489 ret = fixup_pi_state_owner(uaddr, &q, curr, fshared);
1490 } else {
1491 /*
1492 * Catch the rare case, where the lock was released
1493 * when we were on the way back before we locked the
1494 * hash bucket.
1495 */
1496 if (q.pi_state->owner == curr) {
1497 /*
1498 * Try to get the rt_mutex now. This might
1499 * fail as some other task acquired the
1500 * rt_mutex after we removed ourself from the
1501 * rt_mutex waiters list.
1502 */
1503 if (rt_mutex_trylock(&q.pi_state->pi_mutex))
1504 ret = 0;
1505 else {
1506 /*
1507 * pi_state is incorrect, some other
1508 * task did a lock steal and we
1509 * returned due to timeout or signal
1510 * without taking the rt_mutex. Too
1511 * late. We can access the
1512 * rt_mutex_owner without locking, as
1513 * the other task is now blocked on
1514 * the hash bucket lock. Fix the state
1515 * up.
1516 */
1517 struct task_struct *owner;
1518 int res;
1519
1520 owner = rt_mutex_owner(&q.pi_state->pi_mutex);
1521 res = fixup_pi_state_owner(uaddr, &q, owner,
1522 fshared);
1523
1524 /* propagate -EFAULT, if the fixup failed */
1525 if (res)
1526 ret = res;
1527 }
1528 } else {
1529 /*
1530 * Paranoia check. If we did not take the lock
1531 * in the trylock above, then we should not be
1532 * the owner of the rtmutex, neither the real
1533 * nor the pending one:
1534 */
1535 if (rt_mutex_owner(&q.pi_state->pi_mutex) == curr)
1536 printk(KERN_ERR "futex_lock_pi: ret = %d "
1537 "pi-mutex: %p pi-state %p\n", ret,
1538 q.pi_state->pi_mutex.owner,
1539 q.pi_state->owner);
1540 }
1541 }
1542
1543 /* Unqueue and drop the lock */
1544 unqueue_me_pi(&q);
1545
1546 if (to)
1547 destroy_hrtimer_on_stack(&to->timer);
1548 return ret != -EINTR ? ret : -ERESTARTNOINTR;
1549
1550 out_unlock_release_sem:
1551 queue_unlock(&q, hb);
1552
1553 out_release_sem:
1554 put_futex_key(fshared, &q.key);
1555 if (to)
1556 destroy_hrtimer_on_stack(&to->timer);
1557 return ret;
1558
1559 uaddr_faulted:
1560 /*
1561 * We have to r/w *(int __user *)uaddr, but we can't modify it
1562 * non-atomically. Therefore, if get_user below is not
1563 * enough, we need to handle the fault ourselves, while
1564 * still holding the mmap_sem.
1565 *
1566 * ... and hb->lock. :-) --ANK
1567 */
1568 queue_unlock(&q, hb);
1569
1570 if (attempt++) {
1571 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1572 if (ret)
1573 goto out_release_sem;
1574 goto retry_unlocked;
1575 }
1576
1577 ret = get_user(uval, uaddr);
1578 if (!ret && (uval != -EFAULT))
1579 goto retry;
1580
1581 if (to)
1582 destroy_hrtimer_on_stack(&to->timer);
1583 return ret;
1584 }
1585
1586 /*
1587 * Userspace attempted a TID -> 0 atomic transition, and failed.
1588 * This is the in-kernel slowpath: we look up the PI state (if any),
1589 * and do the rt-mutex unlock.
1590 */
1591 static int futex_unlock_pi(u32 __user *uaddr, int fshared)
1592 {
1593 struct futex_hash_bucket *hb;
1594 struct futex_q *this, *next;
1595 u32 uval;
1596 struct plist_head *head;
1597 union futex_key key = FUTEX_KEY_INIT;
1598 int ret, attempt = 0;
1599
1600 retry:
1601 if (get_user(uval, uaddr))
1602 return -EFAULT;
1603 /*
1604 * We release only a lock we actually own:
1605 */
1606 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(current))
1607 return -EPERM;
1608
1609 ret = get_futex_key(uaddr, fshared, &key);
1610 if (unlikely(ret != 0))
1611 goto out;
1612
1613 hb = hash_futex(&key);
1614 retry_unlocked:
1615 spin_lock(&hb->lock);
1616
1617 /*
1618 * To avoid races, try to do the TID -> 0 atomic transition
1619 * again. If it succeeds then we can return without waking
1620 * anyone else up:
1621 */
1622 if (!(uval & FUTEX_OWNER_DIED))
1623 uval = cmpxchg_futex_value_locked(uaddr, task_pid_vnr(current), 0);
1624
1625
1626 if (unlikely(uval == -EFAULT))
1627 goto pi_faulted;
1628 /*
1629 * Rare case: we managed to release the lock atomically,
1630 * no need to wake anyone else up:
1631 */
1632 if (unlikely(uval == task_pid_vnr(current)))
1633 goto out_unlock;
1634
1635 /*
1636 * Ok, other tasks may need to be woken up - check waiters
1637 * and do the wakeup if necessary:
1638 */
1639 head = &hb->chain;
1640
1641 plist_for_each_entry_safe(this, next, head, list) {
1642 if (!match_futex (&this->key, &key))
1643 continue;
1644 ret = wake_futex_pi(uaddr, uval, this);
1645 /*
1646 * The atomic access to the futex value
1647 * generated a pagefault, so retry the
1648 * user-access and the wakeup:
1649 */
1650 if (ret == -EFAULT)
1651 goto pi_faulted;
1652 goto out_unlock;
1653 }
1654 /*
1655 * No waiters - kernel unlocks the futex:
1656 */
1657 if (!(uval & FUTEX_OWNER_DIED)) {
1658 ret = unlock_futex_pi(uaddr, uval);
1659 if (ret == -EFAULT)
1660 goto pi_faulted;
1661 }
1662
1663 out_unlock:
1664 spin_unlock(&hb->lock);
1665 out:
1666 put_futex_key(fshared, &key);
1667
1668 return ret;
1669
1670 pi_faulted:
1671 /*
1672 * We have to r/w *(int __user *)uaddr, but we can't modify it
1673 * non-atomically. Therefore, if get_user below is not
1674 * enough, we need to handle the fault ourselves, while
1675 * still holding the mmap_sem.
1676 *
1677 * ... and hb->lock. --ANK
1678 */
1679 spin_unlock(&hb->lock);
1680
1681 if (attempt++) {
1682 ret = futex_handle_fault((unsigned long)uaddr, attempt);
1683 if (ret)
1684 goto out;
1685 uval = 0;
1686 goto retry_unlocked;
1687 }
1688
1689 ret = get_user(uval, uaddr);
1690 if (!ret && (uval != -EFAULT))
1691 goto retry;
1692
1693 return ret;
1694 }
1695
1696 /*
1697 * Support for robust futexes: the kernel cleans up held futexes at
1698 * thread exit time.
1699 *
1700 * Implementation: user-space maintains a per-thread list of locks it
1701 * is holding. Upon do_exit(), the kernel carefully walks this list,
1702 * and marks all locks that are owned by this thread with the
1703 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
1704 * always manipulated with the lock held, so the list is private and
1705 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
1706 * field, to allow the kernel to clean up if the thread dies after
1707 * acquiring the lock, but just before it could have added itself to
1708 * the list. There can only be one such pending lock.
1709 */
1710
1711 /**
1712 * sys_set_robust_list - set the robust-futex list head of a task
1713 * @head: pointer to the list-head
1714 * @len: length of the list-head, as userspace expects
1715 */
1716 asmlinkage long
1717 sys_set_robust_list(struct robust_list_head __user *head,
1718 size_t len)
1719 {
1720 if (!futex_cmpxchg_enabled)
1721 return -ENOSYS;
1722 /*
1723 * The kernel knows only one size for now:
1724 */
1725 if (unlikely(len != sizeof(*head)))
1726 return -EINVAL;
1727
1728 current->robust_list = head;
1729
1730 return 0;
1731 }
1732
1733 /**
1734 * sys_get_robust_list - get the robust-futex list head of a task
1735 * @pid: pid of the process [zero for current task]
1736 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
1737 * @len_ptr: pointer to a length field, the kernel fills in the header size
1738 */
1739 asmlinkage long
1740 sys_get_robust_list(int pid, struct robust_list_head __user * __user *head_ptr,
1741 size_t __user *len_ptr)
1742 {
1743 struct robust_list_head __user *head;
1744 unsigned long ret;
1745
1746 if (!futex_cmpxchg_enabled)
1747 return -ENOSYS;
1748
1749 if (!pid)
1750 head = current->robust_list;
1751 else {
1752 struct task_struct *p;
1753
1754 ret = -ESRCH;
1755 rcu_read_lock();
1756 p = find_task_by_vpid(pid);
1757 if (!p)
1758 goto err_unlock;
1759 ret = -EPERM;
1760 if ((current->euid != p->euid) && (current->euid != p->uid) &&
1761 !capable(CAP_SYS_PTRACE))
1762 goto err_unlock;
1763 head = p->robust_list;
1764 rcu_read_unlock();
1765 }
1766
1767 if (put_user(sizeof(*head), len_ptr))
1768 return -EFAULT;
1769 return put_user(head, head_ptr);
1770
1771 err_unlock:
1772 rcu_read_unlock();
1773
1774 return ret;
1775 }
1776
1777 /*
1778 * Process a futex-list entry, check whether it's owned by the
1779 * dying task, and do notification if so:
1780 */
1781 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
1782 {
1783 u32 uval, nval, mval;
1784
1785 retry:
1786 if (get_user(uval, uaddr))
1787 return -1;
1788
1789 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
1790 /*
1791 * Ok, this dying thread is truly holding a futex
1792 * of interest. Set the OWNER_DIED bit atomically
1793 * via cmpxchg, and if the value had FUTEX_WAITERS
1794 * set, wake up a waiter (if any). (We have to do a
1795 * futex_wake() even if OWNER_DIED is already set -
1796 * to handle the rare but possible case of recursive
1797 * thread-death.) The rest of the cleanup is done in
1798 * userspace.
1799 */
1800 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
1801 nval = futex_atomic_cmpxchg_inatomic(uaddr, uval, mval);
1802
1803 if (nval == -EFAULT)
1804 return -1;
1805
1806 if (nval != uval)
1807 goto retry;
1808
1809 /*
1810 * Wake robust non-PI futexes here. The wakeup of
1811 * PI futexes happens in exit_pi_state():
1812 */
1813 if (!pi && (uval & FUTEX_WAITERS))
1814 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
1815 }
1816 return 0;
1817 }
1818
1819 /*
1820 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
1821 */
1822 static inline int fetch_robust_entry(struct robust_list __user **entry,
1823 struct robust_list __user * __user *head,
1824 int *pi)
1825 {
1826 unsigned long uentry;
1827
1828 if (get_user(uentry, (unsigned long __user *)head))
1829 return -EFAULT;
1830
1831 *entry = (void __user *)(uentry & ~1UL);
1832 *pi = uentry & 1;
1833
1834 return 0;
1835 }
1836
1837 /*
1838 * Walk curr->robust_list (very carefully, it's a userspace list!)
1839 * and mark any locks found there dead, and notify any waiters.
1840 *
1841 * We silently return on any sign of list-walking problem.
1842 */
1843 void exit_robust_list(struct task_struct *curr)
1844 {
1845 struct robust_list_head __user *head = curr->robust_list;
1846 struct robust_list __user *entry, *next_entry, *pending;
1847 unsigned int limit = ROBUST_LIST_LIMIT, pi, next_pi, pip;
1848 unsigned long futex_offset;
1849 int rc;
1850
1851 if (!futex_cmpxchg_enabled)
1852 return;
1853
1854 /*
1855 * Fetch the list head (which was registered earlier, via
1856 * sys_set_robust_list()):
1857 */
1858 if (fetch_robust_entry(&entry, &head->list.next, &pi))
1859 return;
1860 /*
1861 * Fetch the relative futex offset:
1862 */
1863 if (get_user(futex_offset, &head->futex_offset))
1864 return;
1865 /*
1866 * Fetch any possibly pending lock-add first, and handle it
1867 * if it exists:
1868 */
1869 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
1870 return;
1871
1872 next_entry = NULL; /* avoid warning with gcc */
1873 while (entry != &head->list) {
1874 /*
1875 * Fetch the next entry in the list before calling
1876 * handle_futex_death:
1877 */
1878 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
1879 /*
1880 * A pending lock might already be on the list, so
1881 * don't process it twice:
1882 */
1883 if (entry != pending)
1884 if (handle_futex_death((void __user *)entry + futex_offset,
1885 curr, pi))
1886 return;
1887 if (rc)
1888 return;
1889 entry = next_entry;
1890 pi = next_pi;
1891 /*
1892 * Avoid excessively long or circular lists:
1893 */
1894 if (!--limit)
1895 break;
1896
1897 cond_resched();
1898 }
1899
1900 if (pending)
1901 handle_futex_death((void __user *)pending + futex_offset,
1902 curr, pip);
1903 }
1904
1905 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
1906 u32 __user *uaddr2, u32 val2, u32 val3)
1907 {
1908 int ret = -ENOSYS;
1909 int cmd = op & FUTEX_CMD_MASK;
1910 int fshared = 0;
1911
1912 if (!(op & FUTEX_PRIVATE_FLAG))
1913 fshared = 1;
1914
1915 switch (cmd) {
1916 case FUTEX_WAIT:
1917 val3 = FUTEX_BITSET_MATCH_ANY;
1918 case FUTEX_WAIT_BITSET:
1919 ret = futex_wait(uaddr, fshared, val, timeout, val3);
1920 break;
1921 case FUTEX_WAKE:
1922 val3 = FUTEX_BITSET_MATCH_ANY;
1923 case FUTEX_WAKE_BITSET:
1924 ret = futex_wake(uaddr, fshared, val, val3);
1925 break;
1926 case FUTEX_REQUEUE:
1927 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, NULL);
1928 break;
1929 case FUTEX_CMP_REQUEUE:
1930 ret = futex_requeue(uaddr, fshared, uaddr2, val, val2, &val3);
1931 break;
1932 case FUTEX_WAKE_OP:
1933 ret = futex_wake_op(uaddr, fshared, uaddr2, val, val2, val3);
1934 break;
1935 case FUTEX_LOCK_PI:
1936 if (futex_cmpxchg_enabled)
1937 ret = futex_lock_pi(uaddr, fshared, val, timeout, 0);
1938 break;
1939 case FUTEX_UNLOCK_PI:
1940 if (futex_cmpxchg_enabled)
1941 ret = futex_unlock_pi(uaddr, fshared);
1942 break;
1943 case FUTEX_TRYLOCK_PI:
1944 if (futex_cmpxchg_enabled)
1945 ret = futex_lock_pi(uaddr, fshared, 0, timeout, 1);
1946 break;
1947 default:
1948 ret = -ENOSYS;
1949 }
1950 return ret;
1951 }
1952
1953
1954 asmlinkage long sys_futex(u32 __user *uaddr, int op, u32 val,
1955 struct timespec __user *utime, u32 __user *uaddr2,
1956 u32 val3)
1957 {
1958 struct timespec ts;
1959 ktime_t t, *tp = NULL;
1960 u32 val2 = 0;
1961 int cmd = op & FUTEX_CMD_MASK;
1962
1963 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
1964 cmd == FUTEX_WAIT_BITSET)) {
1965 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1966 return -EFAULT;
1967 if (!timespec_valid(&ts))
1968 return -EINVAL;
1969
1970 t = timespec_to_ktime(ts);
1971 if (cmd == FUTEX_WAIT)
1972 t = ktime_add_safe(ktime_get(), t);
1973 tp = &t;
1974 }
1975 /*
1976 * requeue parameter in 'utime' if cmd == FUTEX_REQUEUE.
1977 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1978 */
1979 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
1980 cmd == FUTEX_WAKE_OP)
1981 val2 = (u32) (unsigned long) utime;
1982
1983 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1984 }
1985
1986 static int __init futex_init(void)
1987 {
1988 u32 curval;
1989 int i;
1990
1991 /*
1992 * This will fail and we want it. Some arch implementations do
1993 * runtime detection of the futex_atomic_cmpxchg_inatomic()
1994 * functionality. We want to know that before we call in any
1995 * of the complex code paths. Also we want to prevent
1996 * registration of robust lists in that case. NULL is
1997 * guaranteed to fault and we get -EFAULT on functional
1998 * implementation, the non functional ones will return
1999 * -ENOSYS.
2000 */
2001 curval = cmpxchg_futex_value_locked(NULL, 0, 0);
2002 if (curval == -EFAULT)
2003 futex_cmpxchg_enabled = 1;
2004
2005 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2006 plist_head_init(&futex_queues[i].chain, &futex_queues[i].lock);
2007 spin_lock_init(&futex_queues[i].lock);
2008 }
2009
2010 return 0;
2011 }
2012 __initcall(futex_init);