]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/futex.c
futex: Rework futex_lock_pi() to use rt_mutex_*_proxy_lock()
[mirror_ubuntu-artful-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/wake_q.h>
65 #include <linux/sched/mm.h>
66 #include <linux/hugetlb.h>
67 #include <linux/freezer.h>
68 #include <linux/bootmem.h>
69 #include <linux/fault-inject.h>
70
71 #include <asm/futex.h>
72
73 #include "locking/rtmutex_common.h"
74
75 /*
76 * READ this before attempting to hack on futexes!
77 *
78 * Basic futex operation and ordering guarantees
79 * =============================================
80 *
81 * The waiter reads the futex value in user space and calls
82 * futex_wait(). This function computes the hash bucket and acquires
83 * the hash bucket lock. After that it reads the futex user space value
84 * again and verifies that the data has not changed. If it has not changed
85 * it enqueues itself into the hash bucket, releases the hash bucket lock
86 * and schedules.
87 *
88 * The waker side modifies the user space value of the futex and calls
89 * futex_wake(). This function computes the hash bucket and acquires the
90 * hash bucket lock. Then it looks for waiters on that futex in the hash
91 * bucket and wakes them.
92 *
93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
94 * the hb spinlock can be avoided and simply return. In order for this
95 * optimization to work, ordering guarantees must exist so that the waiter
96 * being added to the list is acknowledged when the list is concurrently being
97 * checked by the waker, avoiding scenarios like the following:
98 *
99 * CPU 0 CPU 1
100 * val = *futex;
101 * sys_futex(WAIT, futex, val);
102 * futex_wait(futex, val);
103 * uval = *futex;
104 * *futex = newval;
105 * sys_futex(WAKE, futex);
106 * futex_wake(futex);
107 * if (queue_empty())
108 * return;
109 * if (uval == val)
110 * lock(hash_bucket(futex));
111 * queue();
112 * unlock(hash_bucket(futex));
113 * schedule();
114 *
115 * This would cause the waiter on CPU 0 to wait forever because it
116 * missed the transition of the user space value from val to newval
117 * and the waker did not find the waiter in the hash bucket queue.
118 *
119 * The correct serialization ensures that a waiter either observes
120 * the changed user space value before blocking or is woken by a
121 * concurrent waker:
122 *
123 * CPU 0 CPU 1
124 * val = *futex;
125 * sys_futex(WAIT, futex, val);
126 * futex_wait(futex, val);
127 *
128 * waiters++; (a)
129 * smp_mb(); (A) <-- paired with -.
130 * |
131 * lock(hash_bucket(futex)); |
132 * |
133 * uval = *futex; |
134 * | *futex = newval;
135 * | sys_futex(WAKE, futex);
136 * | futex_wake(futex);
137 * |
138 * `--------> smp_mb(); (B)
139 * if (uval == val)
140 * queue();
141 * unlock(hash_bucket(futex));
142 * schedule(); if (waiters)
143 * lock(hash_bucket(futex));
144 * else wake_waiters(futex);
145 * waiters--; (b) unlock(hash_bucket(futex));
146 *
147 * Where (A) orders the waiters increment and the futex value read through
148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
149 * to futex and the waiters read -- this is done by the barriers for both
150 * shared and private futexes in get_futex_key_refs().
151 *
152 * This yields the following case (where X:=waiters, Y:=futex):
153 *
154 * X = Y = 0
155 *
156 * w[X]=1 w[Y]=1
157 * MB MB
158 * r[Y]=y r[X]=x
159 *
160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
161 * the guarantee that we cannot both miss the futex variable change and the
162 * enqueue.
163 *
164 * Note that a new waiter is accounted for in (a) even when it is possible that
165 * the wait call can return error, in which case we backtrack from it in (b).
166 * Refer to the comment in queue_lock().
167 *
168 * Similarly, in order to account for waiters being requeued on another
169 * address we always increment the waiters for the destination bucket before
170 * acquiring the lock. It then decrements them again after releasing it -
171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
172 * will do the additional required waiter count housekeeping. This is done for
173 * double_lock_hb() and double_unlock_hb(), respectively.
174 */
175
176 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
177 int __read_mostly futex_cmpxchg_enabled;
178 #endif
179
180 /*
181 * Futex flags used to encode options to functions and preserve them across
182 * restarts.
183 */
184 #ifdef CONFIG_MMU
185 # define FLAGS_SHARED 0x01
186 #else
187 /*
188 * NOMMU does not have per process address space. Let the compiler optimize
189 * code away.
190 */
191 # define FLAGS_SHARED 0x00
192 #endif
193 #define FLAGS_CLOCKRT 0x02
194 #define FLAGS_HAS_TIMEOUT 0x04
195
196 /*
197 * Priority Inheritance state:
198 */
199 struct futex_pi_state {
200 /*
201 * list of 'owned' pi_state instances - these have to be
202 * cleaned up in do_exit() if the task exits prematurely:
203 */
204 struct list_head list;
205
206 /*
207 * The PI object:
208 */
209 struct rt_mutex pi_mutex;
210
211 struct task_struct *owner;
212 atomic_t refcount;
213
214 union futex_key key;
215 };
216
217 /**
218 * struct futex_q - The hashed futex queue entry, one per waiting task
219 * @list: priority-sorted list of tasks waiting on this futex
220 * @task: the task waiting on the futex
221 * @lock_ptr: the hash bucket lock
222 * @key: the key the futex is hashed on
223 * @pi_state: optional priority inheritance state
224 * @rt_waiter: rt_waiter storage for use with requeue_pi
225 * @requeue_pi_key: the requeue_pi target futex key
226 * @bitset: bitset for the optional bitmasked wakeup
227 *
228 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
229 * we can wake only the relevant ones (hashed queues may be shared).
230 *
231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
233 * The order of wakeup is always to make the first condition true, then
234 * the second.
235 *
236 * PI futexes are typically woken before they are removed from the hash list via
237 * the rt_mutex code. See unqueue_me_pi().
238 */
239 struct futex_q {
240 struct plist_node list;
241
242 struct task_struct *task;
243 spinlock_t *lock_ptr;
244 union futex_key key;
245 struct futex_pi_state *pi_state;
246 struct rt_mutex_waiter *rt_waiter;
247 union futex_key *requeue_pi_key;
248 u32 bitset;
249 };
250
251 static const struct futex_q futex_q_init = {
252 /* list gets initialized in queue_me()*/
253 .key = FUTEX_KEY_INIT,
254 .bitset = FUTEX_BITSET_MATCH_ANY
255 };
256
257 /*
258 * Hash buckets are shared by all the futex_keys that hash to the same
259 * location. Each key may have multiple futex_q structures, one for each task
260 * waiting on a futex.
261 */
262 struct futex_hash_bucket {
263 atomic_t waiters;
264 spinlock_t lock;
265 struct plist_head chain;
266 } ____cacheline_aligned_in_smp;
267
268 /*
269 * The base of the bucket array and its size are always used together
270 * (after initialization only in hash_futex()), so ensure that they
271 * reside in the same cacheline.
272 */
273 static struct {
274 struct futex_hash_bucket *queues;
275 unsigned long hashsize;
276 } __futex_data __read_mostly __aligned(2*sizeof(long));
277 #define futex_queues (__futex_data.queues)
278 #define futex_hashsize (__futex_data.hashsize)
279
280
281 /*
282 * Fault injections for futexes.
283 */
284 #ifdef CONFIG_FAIL_FUTEX
285
286 static struct {
287 struct fault_attr attr;
288
289 bool ignore_private;
290 } fail_futex = {
291 .attr = FAULT_ATTR_INITIALIZER,
292 .ignore_private = false,
293 };
294
295 static int __init setup_fail_futex(char *str)
296 {
297 return setup_fault_attr(&fail_futex.attr, str);
298 }
299 __setup("fail_futex=", setup_fail_futex);
300
301 static bool should_fail_futex(bool fshared)
302 {
303 if (fail_futex.ignore_private && !fshared)
304 return false;
305
306 return should_fail(&fail_futex.attr, 1);
307 }
308
309 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
310
311 static int __init fail_futex_debugfs(void)
312 {
313 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
314 struct dentry *dir;
315
316 dir = fault_create_debugfs_attr("fail_futex", NULL,
317 &fail_futex.attr);
318 if (IS_ERR(dir))
319 return PTR_ERR(dir);
320
321 if (!debugfs_create_bool("ignore-private", mode, dir,
322 &fail_futex.ignore_private)) {
323 debugfs_remove_recursive(dir);
324 return -ENOMEM;
325 }
326
327 return 0;
328 }
329
330 late_initcall(fail_futex_debugfs);
331
332 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
333
334 #else
335 static inline bool should_fail_futex(bool fshared)
336 {
337 return false;
338 }
339 #endif /* CONFIG_FAIL_FUTEX */
340
341 static inline void futex_get_mm(union futex_key *key)
342 {
343 mmgrab(key->private.mm);
344 /*
345 * Ensure futex_get_mm() implies a full barrier such that
346 * get_futex_key() implies a full barrier. This is relied upon
347 * as smp_mb(); (B), see the ordering comment above.
348 */
349 smp_mb__after_atomic();
350 }
351
352 /*
353 * Reflects a new waiter being added to the waitqueue.
354 */
355 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
356 {
357 #ifdef CONFIG_SMP
358 atomic_inc(&hb->waiters);
359 /*
360 * Full barrier (A), see the ordering comment above.
361 */
362 smp_mb__after_atomic();
363 #endif
364 }
365
366 /*
367 * Reflects a waiter being removed from the waitqueue by wakeup
368 * paths.
369 */
370 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
371 {
372 #ifdef CONFIG_SMP
373 atomic_dec(&hb->waiters);
374 #endif
375 }
376
377 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
378 {
379 #ifdef CONFIG_SMP
380 return atomic_read(&hb->waiters);
381 #else
382 return 1;
383 #endif
384 }
385
386 /**
387 * hash_futex - Return the hash bucket in the global hash
388 * @key: Pointer to the futex key for which the hash is calculated
389 *
390 * We hash on the keys returned from get_futex_key (see below) and return the
391 * corresponding hash bucket in the global hash.
392 */
393 static struct futex_hash_bucket *hash_futex(union futex_key *key)
394 {
395 u32 hash = jhash2((u32*)&key->both.word,
396 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
397 key->both.offset);
398 return &futex_queues[hash & (futex_hashsize - 1)];
399 }
400
401
402 /**
403 * match_futex - Check whether two futex keys are equal
404 * @key1: Pointer to key1
405 * @key2: Pointer to key2
406 *
407 * Return 1 if two futex_keys are equal, 0 otherwise.
408 */
409 static inline int match_futex(union futex_key *key1, union futex_key *key2)
410 {
411 return (key1 && key2
412 && key1->both.word == key2->both.word
413 && key1->both.ptr == key2->both.ptr
414 && key1->both.offset == key2->both.offset);
415 }
416
417 /*
418 * Take a reference to the resource addressed by a key.
419 * Can be called while holding spinlocks.
420 *
421 */
422 static void get_futex_key_refs(union futex_key *key)
423 {
424 if (!key->both.ptr)
425 return;
426
427 /*
428 * On MMU less systems futexes are always "private" as there is no per
429 * process address space. We need the smp wmb nevertheless - yes,
430 * arch/blackfin has MMU less SMP ...
431 */
432 if (!IS_ENABLED(CONFIG_MMU)) {
433 smp_mb(); /* explicit smp_mb(); (B) */
434 return;
435 }
436
437 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
438 case FUT_OFF_INODE:
439 ihold(key->shared.inode); /* implies smp_mb(); (B) */
440 break;
441 case FUT_OFF_MMSHARED:
442 futex_get_mm(key); /* implies smp_mb(); (B) */
443 break;
444 default:
445 /*
446 * Private futexes do not hold reference on an inode or
447 * mm, therefore the only purpose of calling get_futex_key_refs
448 * is because we need the barrier for the lockless waiter check.
449 */
450 smp_mb(); /* explicit smp_mb(); (B) */
451 }
452 }
453
454 /*
455 * Drop a reference to the resource addressed by a key.
456 * The hash bucket spinlock must not be held. This is
457 * a no-op for private futexes, see comment in the get
458 * counterpart.
459 */
460 static void drop_futex_key_refs(union futex_key *key)
461 {
462 if (!key->both.ptr) {
463 /* If we're here then we tried to put a key we failed to get */
464 WARN_ON_ONCE(1);
465 return;
466 }
467
468 if (!IS_ENABLED(CONFIG_MMU))
469 return;
470
471 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
472 case FUT_OFF_INODE:
473 iput(key->shared.inode);
474 break;
475 case FUT_OFF_MMSHARED:
476 mmdrop(key->private.mm);
477 break;
478 }
479 }
480
481 /**
482 * get_futex_key() - Get parameters which are the keys for a futex
483 * @uaddr: virtual address of the futex
484 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
485 * @key: address where result is stored.
486 * @rw: mapping needs to be read/write (values: VERIFY_READ,
487 * VERIFY_WRITE)
488 *
489 * Return: a negative error code or 0
490 *
491 * The key words are stored in *key on success.
492 *
493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
494 * offset_within_page). For private mappings, it's (uaddr, current->mm).
495 * We can usually work out the index without swapping in the page.
496 *
497 * lock_page() might sleep, the caller should not hold a spinlock.
498 */
499 static int
500 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
501 {
502 unsigned long address = (unsigned long)uaddr;
503 struct mm_struct *mm = current->mm;
504 struct page *page, *tail;
505 struct address_space *mapping;
506 int err, ro = 0;
507
508 /*
509 * The futex address must be "naturally" aligned.
510 */
511 key->both.offset = address % PAGE_SIZE;
512 if (unlikely((address % sizeof(u32)) != 0))
513 return -EINVAL;
514 address -= key->both.offset;
515
516 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
517 return -EFAULT;
518
519 if (unlikely(should_fail_futex(fshared)))
520 return -EFAULT;
521
522 /*
523 * PROCESS_PRIVATE futexes are fast.
524 * As the mm cannot disappear under us and the 'key' only needs
525 * virtual address, we dont even have to find the underlying vma.
526 * Note : We do have to check 'uaddr' is a valid user address,
527 * but access_ok() should be faster than find_vma()
528 */
529 if (!fshared) {
530 key->private.mm = mm;
531 key->private.address = address;
532 get_futex_key_refs(key); /* implies smp_mb(); (B) */
533 return 0;
534 }
535
536 again:
537 /* Ignore any VERIFY_READ mapping (futex common case) */
538 if (unlikely(should_fail_futex(fshared)))
539 return -EFAULT;
540
541 err = get_user_pages_fast(address, 1, 1, &page);
542 /*
543 * If write access is not required (eg. FUTEX_WAIT), try
544 * and get read-only access.
545 */
546 if (err == -EFAULT && rw == VERIFY_READ) {
547 err = get_user_pages_fast(address, 1, 0, &page);
548 ro = 1;
549 }
550 if (err < 0)
551 return err;
552 else
553 err = 0;
554
555 /*
556 * The treatment of mapping from this point on is critical. The page
557 * lock protects many things but in this context the page lock
558 * stabilizes mapping, prevents inode freeing in the shared
559 * file-backed region case and guards against movement to swap cache.
560 *
561 * Strictly speaking the page lock is not needed in all cases being
562 * considered here and page lock forces unnecessarily serialization
563 * From this point on, mapping will be re-verified if necessary and
564 * page lock will be acquired only if it is unavoidable
565 *
566 * Mapping checks require the head page for any compound page so the
567 * head page and mapping is looked up now. For anonymous pages, it
568 * does not matter if the page splits in the future as the key is
569 * based on the address. For filesystem-backed pages, the tail is
570 * required as the index of the page determines the key. For
571 * base pages, there is no tail page and tail == page.
572 */
573 tail = page;
574 page = compound_head(page);
575 mapping = READ_ONCE(page->mapping);
576
577 /*
578 * If page->mapping is NULL, then it cannot be a PageAnon
579 * page; but it might be the ZERO_PAGE or in the gate area or
580 * in a special mapping (all cases which we are happy to fail);
581 * or it may have been a good file page when get_user_pages_fast
582 * found it, but truncated or holepunched or subjected to
583 * invalidate_complete_page2 before we got the page lock (also
584 * cases which we are happy to fail). And we hold a reference,
585 * so refcount care in invalidate_complete_page's remove_mapping
586 * prevents drop_caches from setting mapping to NULL beneath us.
587 *
588 * The case we do have to guard against is when memory pressure made
589 * shmem_writepage move it from filecache to swapcache beneath us:
590 * an unlikely race, but we do need to retry for page->mapping.
591 */
592 if (unlikely(!mapping)) {
593 int shmem_swizzled;
594
595 /*
596 * Page lock is required to identify which special case above
597 * applies. If this is really a shmem page then the page lock
598 * will prevent unexpected transitions.
599 */
600 lock_page(page);
601 shmem_swizzled = PageSwapCache(page) || page->mapping;
602 unlock_page(page);
603 put_page(page);
604
605 if (shmem_swizzled)
606 goto again;
607
608 return -EFAULT;
609 }
610
611 /*
612 * Private mappings are handled in a simple way.
613 *
614 * If the futex key is stored on an anonymous page, then the associated
615 * object is the mm which is implicitly pinned by the calling process.
616 *
617 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
618 * it's a read-only handle, it's expected that futexes attach to
619 * the object not the particular process.
620 */
621 if (PageAnon(page)) {
622 /*
623 * A RO anonymous page will never change and thus doesn't make
624 * sense for futex operations.
625 */
626 if (unlikely(should_fail_futex(fshared)) || ro) {
627 err = -EFAULT;
628 goto out;
629 }
630
631 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
632 key->private.mm = mm;
633 key->private.address = address;
634
635 get_futex_key_refs(key); /* implies smp_mb(); (B) */
636
637 } else {
638 struct inode *inode;
639
640 /*
641 * The associated futex object in this case is the inode and
642 * the page->mapping must be traversed. Ordinarily this should
643 * be stabilised under page lock but it's not strictly
644 * necessary in this case as we just want to pin the inode, not
645 * update the radix tree or anything like that.
646 *
647 * The RCU read lock is taken as the inode is finally freed
648 * under RCU. If the mapping still matches expectations then the
649 * mapping->host can be safely accessed as being a valid inode.
650 */
651 rcu_read_lock();
652
653 if (READ_ONCE(page->mapping) != mapping) {
654 rcu_read_unlock();
655 put_page(page);
656
657 goto again;
658 }
659
660 inode = READ_ONCE(mapping->host);
661 if (!inode) {
662 rcu_read_unlock();
663 put_page(page);
664
665 goto again;
666 }
667
668 /*
669 * Take a reference unless it is about to be freed. Previously
670 * this reference was taken by ihold under the page lock
671 * pinning the inode in place so i_lock was unnecessary. The
672 * only way for this check to fail is if the inode was
673 * truncated in parallel so warn for now if this happens.
674 *
675 * We are not calling into get_futex_key_refs() in file-backed
676 * cases, therefore a successful atomic_inc return below will
677 * guarantee that get_futex_key() will still imply smp_mb(); (B).
678 */
679 if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
680 rcu_read_unlock();
681 put_page(page);
682
683 goto again;
684 }
685
686 /* Should be impossible but lets be paranoid for now */
687 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
688 err = -EFAULT;
689 rcu_read_unlock();
690 iput(inode);
691
692 goto out;
693 }
694
695 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
696 key->shared.inode = inode;
697 key->shared.pgoff = basepage_index(tail);
698 rcu_read_unlock();
699 }
700
701 out:
702 put_page(page);
703 return err;
704 }
705
706 static inline void put_futex_key(union futex_key *key)
707 {
708 drop_futex_key_refs(key);
709 }
710
711 /**
712 * fault_in_user_writeable() - Fault in user address and verify RW access
713 * @uaddr: pointer to faulting user space address
714 *
715 * Slow path to fixup the fault we just took in the atomic write
716 * access to @uaddr.
717 *
718 * We have no generic implementation of a non-destructive write to the
719 * user address. We know that we faulted in the atomic pagefault
720 * disabled section so we can as well avoid the #PF overhead by
721 * calling get_user_pages() right away.
722 */
723 static int fault_in_user_writeable(u32 __user *uaddr)
724 {
725 struct mm_struct *mm = current->mm;
726 int ret;
727
728 down_read(&mm->mmap_sem);
729 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
730 FAULT_FLAG_WRITE, NULL);
731 up_read(&mm->mmap_sem);
732
733 return ret < 0 ? ret : 0;
734 }
735
736 /**
737 * futex_top_waiter() - Return the highest priority waiter on a futex
738 * @hb: the hash bucket the futex_q's reside in
739 * @key: the futex key (to distinguish it from other futex futex_q's)
740 *
741 * Must be called with the hb lock held.
742 */
743 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
744 union futex_key *key)
745 {
746 struct futex_q *this;
747
748 plist_for_each_entry(this, &hb->chain, list) {
749 if (match_futex(&this->key, key))
750 return this;
751 }
752 return NULL;
753 }
754
755 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
756 u32 uval, u32 newval)
757 {
758 int ret;
759
760 pagefault_disable();
761 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
762 pagefault_enable();
763
764 return ret;
765 }
766
767 static int get_futex_value_locked(u32 *dest, u32 __user *from)
768 {
769 int ret;
770
771 pagefault_disable();
772 ret = __get_user(*dest, from);
773 pagefault_enable();
774
775 return ret ? -EFAULT : 0;
776 }
777
778
779 /*
780 * PI code:
781 */
782 static int refill_pi_state_cache(void)
783 {
784 struct futex_pi_state *pi_state;
785
786 if (likely(current->pi_state_cache))
787 return 0;
788
789 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
790
791 if (!pi_state)
792 return -ENOMEM;
793
794 INIT_LIST_HEAD(&pi_state->list);
795 /* pi_mutex gets initialized later */
796 pi_state->owner = NULL;
797 atomic_set(&pi_state->refcount, 1);
798 pi_state->key = FUTEX_KEY_INIT;
799
800 current->pi_state_cache = pi_state;
801
802 return 0;
803 }
804
805 static struct futex_pi_state *alloc_pi_state(void)
806 {
807 struct futex_pi_state *pi_state = current->pi_state_cache;
808
809 WARN_ON(!pi_state);
810 current->pi_state_cache = NULL;
811
812 return pi_state;
813 }
814
815 static void get_pi_state(struct futex_pi_state *pi_state)
816 {
817 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
818 }
819
820 /*
821 * Drops a reference to the pi_state object and frees or caches it
822 * when the last reference is gone.
823 *
824 * Must be called with the hb lock held.
825 */
826 static void put_pi_state(struct futex_pi_state *pi_state)
827 {
828 if (!pi_state)
829 return;
830
831 if (!atomic_dec_and_test(&pi_state->refcount))
832 return;
833
834 /*
835 * If pi_state->owner is NULL, the owner is most probably dying
836 * and has cleaned up the pi_state already
837 */
838 if (pi_state->owner) {
839 raw_spin_lock_irq(&pi_state->owner->pi_lock);
840 list_del_init(&pi_state->list);
841 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
842
843 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
844 }
845
846 if (current->pi_state_cache)
847 kfree(pi_state);
848 else {
849 /*
850 * pi_state->list is already empty.
851 * clear pi_state->owner.
852 * refcount is at 0 - put it back to 1.
853 */
854 pi_state->owner = NULL;
855 atomic_set(&pi_state->refcount, 1);
856 current->pi_state_cache = pi_state;
857 }
858 }
859
860 /*
861 * Look up the task based on what TID userspace gave us.
862 * We dont trust it.
863 */
864 static struct task_struct *futex_find_get_task(pid_t pid)
865 {
866 struct task_struct *p;
867
868 rcu_read_lock();
869 p = find_task_by_vpid(pid);
870 if (p)
871 get_task_struct(p);
872
873 rcu_read_unlock();
874
875 return p;
876 }
877
878 /*
879 * This task is holding PI mutexes at exit time => bad.
880 * Kernel cleans up PI-state, but userspace is likely hosed.
881 * (Robust-futex cleanup is separate and might save the day for userspace.)
882 */
883 void exit_pi_state_list(struct task_struct *curr)
884 {
885 struct list_head *next, *head = &curr->pi_state_list;
886 struct futex_pi_state *pi_state;
887 struct futex_hash_bucket *hb;
888 union futex_key key = FUTEX_KEY_INIT;
889
890 if (!futex_cmpxchg_enabled)
891 return;
892 /*
893 * We are a ZOMBIE and nobody can enqueue itself on
894 * pi_state_list anymore, but we have to be careful
895 * versus waiters unqueueing themselves:
896 */
897 raw_spin_lock_irq(&curr->pi_lock);
898 while (!list_empty(head)) {
899
900 next = head->next;
901 pi_state = list_entry(next, struct futex_pi_state, list);
902 key = pi_state->key;
903 hb = hash_futex(&key);
904 raw_spin_unlock_irq(&curr->pi_lock);
905
906 spin_lock(&hb->lock);
907
908 raw_spin_lock_irq(&curr->pi_lock);
909 /*
910 * We dropped the pi-lock, so re-check whether this
911 * task still owns the PI-state:
912 */
913 if (head->next != next) {
914 spin_unlock(&hb->lock);
915 continue;
916 }
917
918 WARN_ON(pi_state->owner != curr);
919 WARN_ON(list_empty(&pi_state->list));
920 list_del_init(&pi_state->list);
921 pi_state->owner = NULL;
922 raw_spin_unlock_irq(&curr->pi_lock);
923
924 get_pi_state(pi_state);
925 spin_unlock(&hb->lock);
926
927 rt_mutex_futex_unlock(&pi_state->pi_mutex);
928 put_pi_state(pi_state);
929
930 raw_spin_lock_irq(&curr->pi_lock);
931 }
932 raw_spin_unlock_irq(&curr->pi_lock);
933 }
934
935 /*
936 * We need to check the following states:
937 *
938 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
939 *
940 * [1] NULL | --- | --- | 0 | 0/1 | Valid
941 * [2] NULL | --- | --- | >0 | 0/1 | Valid
942 *
943 * [3] Found | NULL | -- | Any | 0/1 | Invalid
944 *
945 * [4] Found | Found | NULL | 0 | 1 | Valid
946 * [5] Found | Found | NULL | >0 | 1 | Invalid
947 *
948 * [6] Found | Found | task | 0 | 1 | Valid
949 *
950 * [7] Found | Found | NULL | Any | 0 | Invalid
951 *
952 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
953 * [9] Found | Found | task | 0 | 0 | Invalid
954 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
955 *
956 * [1] Indicates that the kernel can acquire the futex atomically. We
957 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
958 *
959 * [2] Valid, if TID does not belong to a kernel thread. If no matching
960 * thread is found then it indicates that the owner TID has died.
961 *
962 * [3] Invalid. The waiter is queued on a non PI futex
963 *
964 * [4] Valid state after exit_robust_list(), which sets the user space
965 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
966 *
967 * [5] The user space value got manipulated between exit_robust_list()
968 * and exit_pi_state_list()
969 *
970 * [6] Valid state after exit_pi_state_list() which sets the new owner in
971 * the pi_state but cannot access the user space value.
972 *
973 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
974 *
975 * [8] Owner and user space value match
976 *
977 * [9] There is no transient state which sets the user space TID to 0
978 * except exit_robust_list(), but this is indicated by the
979 * FUTEX_OWNER_DIED bit. See [4]
980 *
981 * [10] There is no transient state which leaves owner and user space
982 * TID out of sync.
983 *
984 *
985 * Serialization and lifetime rules:
986 *
987 * hb->lock:
988 *
989 * hb -> futex_q, relation
990 * futex_q -> pi_state, relation
991 *
992 * (cannot be raw because hb can contain arbitrary amount
993 * of futex_q's)
994 *
995 * pi_mutex->wait_lock:
996 *
997 * {uval, pi_state}
998 *
999 * (and pi_mutex 'obviously')
1000 *
1001 * p->pi_lock:
1002 *
1003 * p->pi_state_list -> pi_state->list, relation
1004 *
1005 * pi_state->refcount:
1006 *
1007 * pi_state lifetime
1008 *
1009 *
1010 * Lock order:
1011 *
1012 * hb->lock
1013 * pi_mutex->wait_lock
1014 * p->pi_lock
1015 *
1016 */
1017
1018 /*
1019 * Validate that the existing waiter has a pi_state and sanity check
1020 * the pi_state against the user space value. If correct, attach to
1021 * it.
1022 */
1023 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1024 struct futex_pi_state *pi_state,
1025 struct futex_pi_state **ps)
1026 {
1027 pid_t pid = uval & FUTEX_TID_MASK;
1028 int ret, uval2;
1029
1030 /*
1031 * Userspace might have messed up non-PI and PI futexes [3]
1032 */
1033 if (unlikely(!pi_state))
1034 return -EINVAL;
1035
1036 /*
1037 * We get here with hb->lock held, and having found a
1038 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1039 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1040 * which in turn means that futex_lock_pi() still has a reference on
1041 * our pi_state.
1042 *
1043 * The waiter holding a reference on @pi_state also protects against
1044 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1045 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1046 * free pi_state before we can take a reference ourselves.
1047 */
1048 WARN_ON(!atomic_read(&pi_state->refcount));
1049
1050 /*
1051 * Now that we have a pi_state, we can acquire wait_lock
1052 * and do the state validation.
1053 */
1054 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1055
1056 /*
1057 * Since {uval, pi_state} is serialized by wait_lock, and our current
1058 * uval was read without holding it, it can have changed. Verify it
1059 * still is what we expect it to be, otherwise retry the entire
1060 * operation.
1061 */
1062 if (get_futex_value_locked(&uval2, uaddr))
1063 goto out_efault;
1064
1065 if (uval != uval2)
1066 goto out_eagain;
1067
1068 /*
1069 * Handle the owner died case:
1070 */
1071 if (uval & FUTEX_OWNER_DIED) {
1072 /*
1073 * exit_pi_state_list sets owner to NULL and wakes the
1074 * topmost waiter. The task which acquires the
1075 * pi_state->rt_mutex will fixup owner.
1076 */
1077 if (!pi_state->owner) {
1078 /*
1079 * No pi state owner, but the user space TID
1080 * is not 0. Inconsistent state. [5]
1081 */
1082 if (pid)
1083 goto out_einval;
1084 /*
1085 * Take a ref on the state and return success. [4]
1086 */
1087 goto out_attach;
1088 }
1089
1090 /*
1091 * If TID is 0, then either the dying owner has not
1092 * yet executed exit_pi_state_list() or some waiter
1093 * acquired the rtmutex in the pi state, but did not
1094 * yet fixup the TID in user space.
1095 *
1096 * Take a ref on the state and return success. [6]
1097 */
1098 if (!pid)
1099 goto out_attach;
1100 } else {
1101 /*
1102 * If the owner died bit is not set, then the pi_state
1103 * must have an owner. [7]
1104 */
1105 if (!pi_state->owner)
1106 goto out_einval;
1107 }
1108
1109 /*
1110 * Bail out if user space manipulated the futex value. If pi
1111 * state exists then the owner TID must be the same as the
1112 * user space TID. [9/10]
1113 */
1114 if (pid != task_pid_vnr(pi_state->owner))
1115 goto out_einval;
1116
1117 out_attach:
1118 get_pi_state(pi_state);
1119 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1120 *ps = pi_state;
1121 return 0;
1122
1123 out_einval:
1124 ret = -EINVAL;
1125 goto out_error;
1126
1127 out_eagain:
1128 ret = -EAGAIN;
1129 goto out_error;
1130
1131 out_efault:
1132 ret = -EFAULT;
1133 goto out_error;
1134
1135 out_error:
1136 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1137 return ret;
1138 }
1139
1140 /*
1141 * Lookup the task for the TID provided from user space and attach to
1142 * it after doing proper sanity checks.
1143 */
1144 static int attach_to_pi_owner(u32 uval, union futex_key *key,
1145 struct futex_pi_state **ps)
1146 {
1147 pid_t pid = uval & FUTEX_TID_MASK;
1148 struct futex_pi_state *pi_state;
1149 struct task_struct *p;
1150
1151 /*
1152 * We are the first waiter - try to look up the real owner and attach
1153 * the new pi_state to it, but bail out when TID = 0 [1]
1154 */
1155 if (!pid)
1156 return -ESRCH;
1157 p = futex_find_get_task(pid);
1158 if (!p)
1159 return -ESRCH;
1160
1161 if (unlikely(p->flags & PF_KTHREAD)) {
1162 put_task_struct(p);
1163 return -EPERM;
1164 }
1165
1166 /*
1167 * We need to look at the task state flags to figure out,
1168 * whether the task is exiting. To protect against the do_exit
1169 * change of the task flags, we do this protected by
1170 * p->pi_lock:
1171 */
1172 raw_spin_lock_irq(&p->pi_lock);
1173 if (unlikely(p->flags & PF_EXITING)) {
1174 /*
1175 * The task is on the way out. When PF_EXITPIDONE is
1176 * set, we know that the task has finished the
1177 * cleanup:
1178 */
1179 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1180
1181 raw_spin_unlock_irq(&p->pi_lock);
1182 put_task_struct(p);
1183 return ret;
1184 }
1185
1186 /*
1187 * No existing pi state. First waiter. [2]
1188 *
1189 * This creates pi_state, we have hb->lock held, this means nothing can
1190 * observe this state, wait_lock is irrelevant.
1191 */
1192 pi_state = alloc_pi_state();
1193
1194 /*
1195 * Initialize the pi_mutex in locked state and make @p
1196 * the owner of it:
1197 */
1198 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1199
1200 /* Store the key for possible exit cleanups: */
1201 pi_state->key = *key;
1202
1203 WARN_ON(!list_empty(&pi_state->list));
1204 list_add(&pi_state->list, &p->pi_state_list);
1205 pi_state->owner = p;
1206 raw_spin_unlock_irq(&p->pi_lock);
1207
1208 put_task_struct(p);
1209
1210 *ps = pi_state;
1211
1212 return 0;
1213 }
1214
1215 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1216 struct futex_hash_bucket *hb,
1217 union futex_key *key, struct futex_pi_state **ps)
1218 {
1219 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1220
1221 /*
1222 * If there is a waiter on that futex, validate it and
1223 * attach to the pi_state when the validation succeeds.
1224 */
1225 if (top_waiter)
1226 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1227
1228 /*
1229 * We are the first waiter - try to look up the owner based on
1230 * @uval and attach to it.
1231 */
1232 return attach_to_pi_owner(uval, key, ps);
1233 }
1234
1235 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1236 {
1237 u32 uninitialized_var(curval);
1238
1239 if (unlikely(should_fail_futex(true)))
1240 return -EFAULT;
1241
1242 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1243 return -EFAULT;
1244
1245 /* If user space value changed, let the caller retry */
1246 return curval != uval ? -EAGAIN : 0;
1247 }
1248
1249 /**
1250 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1251 * @uaddr: the pi futex user address
1252 * @hb: the pi futex hash bucket
1253 * @key: the futex key associated with uaddr and hb
1254 * @ps: the pi_state pointer where we store the result of the
1255 * lookup
1256 * @task: the task to perform the atomic lock work for. This will
1257 * be "current" except in the case of requeue pi.
1258 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1259 *
1260 * Return:
1261 * 0 - ready to wait;
1262 * 1 - acquired the lock;
1263 * <0 - error
1264 *
1265 * The hb->lock and futex_key refs shall be held by the caller.
1266 */
1267 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1268 union futex_key *key,
1269 struct futex_pi_state **ps,
1270 struct task_struct *task, int set_waiters)
1271 {
1272 u32 uval, newval, vpid = task_pid_vnr(task);
1273 struct futex_q *top_waiter;
1274 int ret;
1275
1276 /*
1277 * Read the user space value first so we can validate a few
1278 * things before proceeding further.
1279 */
1280 if (get_futex_value_locked(&uval, uaddr))
1281 return -EFAULT;
1282
1283 if (unlikely(should_fail_futex(true)))
1284 return -EFAULT;
1285
1286 /*
1287 * Detect deadlocks.
1288 */
1289 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1290 return -EDEADLK;
1291
1292 if ((unlikely(should_fail_futex(true))))
1293 return -EDEADLK;
1294
1295 /*
1296 * Lookup existing state first. If it exists, try to attach to
1297 * its pi_state.
1298 */
1299 top_waiter = futex_top_waiter(hb, key);
1300 if (top_waiter)
1301 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1302
1303 /*
1304 * No waiter and user TID is 0. We are here because the
1305 * waiters or the owner died bit is set or called from
1306 * requeue_cmp_pi or for whatever reason something took the
1307 * syscall.
1308 */
1309 if (!(uval & FUTEX_TID_MASK)) {
1310 /*
1311 * We take over the futex. No other waiters and the user space
1312 * TID is 0. We preserve the owner died bit.
1313 */
1314 newval = uval & FUTEX_OWNER_DIED;
1315 newval |= vpid;
1316
1317 /* The futex requeue_pi code can enforce the waiters bit */
1318 if (set_waiters)
1319 newval |= FUTEX_WAITERS;
1320
1321 ret = lock_pi_update_atomic(uaddr, uval, newval);
1322 /* If the take over worked, return 1 */
1323 return ret < 0 ? ret : 1;
1324 }
1325
1326 /*
1327 * First waiter. Set the waiters bit before attaching ourself to
1328 * the owner. If owner tries to unlock, it will be forced into
1329 * the kernel and blocked on hb->lock.
1330 */
1331 newval = uval | FUTEX_WAITERS;
1332 ret = lock_pi_update_atomic(uaddr, uval, newval);
1333 if (ret)
1334 return ret;
1335 /*
1336 * If the update of the user space value succeeded, we try to
1337 * attach to the owner. If that fails, no harm done, we only
1338 * set the FUTEX_WAITERS bit in the user space variable.
1339 */
1340 return attach_to_pi_owner(uval, key, ps);
1341 }
1342
1343 /**
1344 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1345 * @q: The futex_q to unqueue
1346 *
1347 * The q->lock_ptr must not be NULL and must be held by the caller.
1348 */
1349 static void __unqueue_futex(struct futex_q *q)
1350 {
1351 struct futex_hash_bucket *hb;
1352
1353 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1354 || WARN_ON(plist_node_empty(&q->list)))
1355 return;
1356
1357 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1358 plist_del(&q->list, &hb->chain);
1359 hb_waiters_dec(hb);
1360 }
1361
1362 /*
1363 * The hash bucket lock must be held when this is called.
1364 * Afterwards, the futex_q must not be accessed. Callers
1365 * must ensure to later call wake_up_q() for the actual
1366 * wakeups to occur.
1367 */
1368 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1369 {
1370 struct task_struct *p = q->task;
1371
1372 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1373 return;
1374
1375 /*
1376 * Queue the task for later wakeup for after we've released
1377 * the hb->lock. wake_q_add() grabs reference to p.
1378 */
1379 wake_q_add(wake_q, p);
1380 __unqueue_futex(q);
1381 /*
1382 * The waiting task can free the futex_q as soon as
1383 * q->lock_ptr = NULL is written, without taking any locks. A
1384 * memory barrier is required here to prevent the following
1385 * store to lock_ptr from getting ahead of the plist_del.
1386 */
1387 smp_store_release(&q->lock_ptr, NULL);
1388 }
1389
1390 /*
1391 * Caller must hold a reference on @pi_state.
1392 */
1393 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1394 {
1395 u32 uninitialized_var(curval), newval;
1396 struct task_struct *new_owner;
1397 bool deboost = false;
1398 DEFINE_WAKE_Q(wake_q);
1399 int ret = 0;
1400
1401 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1402 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1403 if (!new_owner) {
1404 /*
1405 * Since we held neither hb->lock nor wait_lock when coming
1406 * into this function, we could have raced with futex_lock_pi()
1407 * such that we might observe @this futex_q waiter, but the
1408 * rt_mutex's wait_list can be empty (either still, or again,
1409 * depending on which side we land).
1410 *
1411 * When this happens, give up our locks and try again, giving
1412 * the futex_lock_pi() instance time to complete, either by
1413 * waiting on the rtmutex or removing itself from the futex
1414 * queue.
1415 */
1416 ret = -EAGAIN;
1417 goto out_unlock;
1418 }
1419
1420 /*
1421 * We pass it to the next owner. The WAITERS bit is always kept
1422 * enabled while there is PI state around. We cleanup the owner
1423 * died bit, because we are the owner.
1424 */
1425 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1426
1427 if (unlikely(should_fail_futex(true)))
1428 ret = -EFAULT;
1429
1430 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1431 ret = -EFAULT;
1432
1433 } else if (curval != uval) {
1434 /*
1435 * If a unconditional UNLOCK_PI operation (user space did not
1436 * try the TID->0 transition) raced with a waiter setting the
1437 * FUTEX_WAITERS flag between get_user() and locking the hash
1438 * bucket lock, retry the operation.
1439 */
1440 if ((FUTEX_TID_MASK & curval) == uval)
1441 ret = -EAGAIN;
1442 else
1443 ret = -EINVAL;
1444 }
1445
1446 if (ret)
1447 goto out_unlock;
1448
1449 raw_spin_lock(&pi_state->owner->pi_lock);
1450 WARN_ON(list_empty(&pi_state->list));
1451 list_del_init(&pi_state->list);
1452 raw_spin_unlock(&pi_state->owner->pi_lock);
1453
1454 raw_spin_lock(&new_owner->pi_lock);
1455 WARN_ON(!list_empty(&pi_state->list));
1456 list_add(&pi_state->list, &new_owner->pi_state_list);
1457 pi_state->owner = new_owner;
1458 raw_spin_unlock(&new_owner->pi_lock);
1459
1460 /*
1461 * We've updated the uservalue, this unlock cannot fail.
1462 */
1463 deboost = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1464
1465 out_unlock:
1466 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1467
1468 if (deboost) {
1469 wake_up_q(&wake_q);
1470 rt_mutex_adjust_prio(current);
1471 }
1472
1473 return ret;
1474 }
1475
1476 /*
1477 * Express the locking dependencies for lockdep:
1478 */
1479 static inline void
1480 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1481 {
1482 if (hb1 <= hb2) {
1483 spin_lock(&hb1->lock);
1484 if (hb1 < hb2)
1485 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1486 } else { /* hb1 > hb2 */
1487 spin_lock(&hb2->lock);
1488 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1489 }
1490 }
1491
1492 static inline void
1493 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1494 {
1495 spin_unlock(&hb1->lock);
1496 if (hb1 != hb2)
1497 spin_unlock(&hb2->lock);
1498 }
1499
1500 /*
1501 * Wake up waiters matching bitset queued on this futex (uaddr).
1502 */
1503 static int
1504 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1505 {
1506 struct futex_hash_bucket *hb;
1507 struct futex_q *this, *next;
1508 union futex_key key = FUTEX_KEY_INIT;
1509 int ret;
1510 DEFINE_WAKE_Q(wake_q);
1511
1512 if (!bitset)
1513 return -EINVAL;
1514
1515 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1516 if (unlikely(ret != 0))
1517 goto out;
1518
1519 hb = hash_futex(&key);
1520
1521 /* Make sure we really have tasks to wakeup */
1522 if (!hb_waiters_pending(hb))
1523 goto out_put_key;
1524
1525 spin_lock(&hb->lock);
1526
1527 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1528 if (match_futex (&this->key, &key)) {
1529 if (this->pi_state || this->rt_waiter) {
1530 ret = -EINVAL;
1531 break;
1532 }
1533
1534 /* Check if one of the bits is set in both bitsets */
1535 if (!(this->bitset & bitset))
1536 continue;
1537
1538 mark_wake_futex(&wake_q, this);
1539 if (++ret >= nr_wake)
1540 break;
1541 }
1542 }
1543
1544 spin_unlock(&hb->lock);
1545 wake_up_q(&wake_q);
1546 out_put_key:
1547 put_futex_key(&key);
1548 out:
1549 return ret;
1550 }
1551
1552 /*
1553 * Wake up all waiters hashed on the physical page that is mapped
1554 * to this virtual address:
1555 */
1556 static int
1557 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1558 int nr_wake, int nr_wake2, int op)
1559 {
1560 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1561 struct futex_hash_bucket *hb1, *hb2;
1562 struct futex_q *this, *next;
1563 int ret, op_ret;
1564 DEFINE_WAKE_Q(wake_q);
1565
1566 retry:
1567 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1568 if (unlikely(ret != 0))
1569 goto out;
1570 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1571 if (unlikely(ret != 0))
1572 goto out_put_key1;
1573
1574 hb1 = hash_futex(&key1);
1575 hb2 = hash_futex(&key2);
1576
1577 retry_private:
1578 double_lock_hb(hb1, hb2);
1579 op_ret = futex_atomic_op_inuser(op, uaddr2);
1580 if (unlikely(op_ret < 0)) {
1581
1582 double_unlock_hb(hb1, hb2);
1583
1584 #ifndef CONFIG_MMU
1585 /*
1586 * we don't get EFAULT from MMU faults if we don't have an MMU,
1587 * but we might get them from range checking
1588 */
1589 ret = op_ret;
1590 goto out_put_keys;
1591 #endif
1592
1593 if (unlikely(op_ret != -EFAULT)) {
1594 ret = op_ret;
1595 goto out_put_keys;
1596 }
1597
1598 ret = fault_in_user_writeable(uaddr2);
1599 if (ret)
1600 goto out_put_keys;
1601
1602 if (!(flags & FLAGS_SHARED))
1603 goto retry_private;
1604
1605 put_futex_key(&key2);
1606 put_futex_key(&key1);
1607 goto retry;
1608 }
1609
1610 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1611 if (match_futex (&this->key, &key1)) {
1612 if (this->pi_state || this->rt_waiter) {
1613 ret = -EINVAL;
1614 goto out_unlock;
1615 }
1616 mark_wake_futex(&wake_q, this);
1617 if (++ret >= nr_wake)
1618 break;
1619 }
1620 }
1621
1622 if (op_ret > 0) {
1623 op_ret = 0;
1624 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1625 if (match_futex (&this->key, &key2)) {
1626 if (this->pi_state || this->rt_waiter) {
1627 ret = -EINVAL;
1628 goto out_unlock;
1629 }
1630 mark_wake_futex(&wake_q, this);
1631 if (++op_ret >= nr_wake2)
1632 break;
1633 }
1634 }
1635 ret += op_ret;
1636 }
1637
1638 out_unlock:
1639 double_unlock_hb(hb1, hb2);
1640 wake_up_q(&wake_q);
1641 out_put_keys:
1642 put_futex_key(&key2);
1643 out_put_key1:
1644 put_futex_key(&key1);
1645 out:
1646 return ret;
1647 }
1648
1649 /**
1650 * requeue_futex() - Requeue a futex_q from one hb to another
1651 * @q: the futex_q to requeue
1652 * @hb1: the source hash_bucket
1653 * @hb2: the target hash_bucket
1654 * @key2: the new key for the requeued futex_q
1655 */
1656 static inline
1657 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1658 struct futex_hash_bucket *hb2, union futex_key *key2)
1659 {
1660
1661 /*
1662 * If key1 and key2 hash to the same bucket, no need to
1663 * requeue.
1664 */
1665 if (likely(&hb1->chain != &hb2->chain)) {
1666 plist_del(&q->list, &hb1->chain);
1667 hb_waiters_dec(hb1);
1668 hb_waiters_inc(hb2);
1669 plist_add(&q->list, &hb2->chain);
1670 q->lock_ptr = &hb2->lock;
1671 }
1672 get_futex_key_refs(key2);
1673 q->key = *key2;
1674 }
1675
1676 /**
1677 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1678 * @q: the futex_q
1679 * @key: the key of the requeue target futex
1680 * @hb: the hash_bucket of the requeue target futex
1681 *
1682 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1683 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1684 * to the requeue target futex so the waiter can detect the wakeup on the right
1685 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1686 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1687 * to protect access to the pi_state to fixup the owner later. Must be called
1688 * with both q->lock_ptr and hb->lock held.
1689 */
1690 static inline
1691 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1692 struct futex_hash_bucket *hb)
1693 {
1694 get_futex_key_refs(key);
1695 q->key = *key;
1696
1697 __unqueue_futex(q);
1698
1699 WARN_ON(!q->rt_waiter);
1700 q->rt_waiter = NULL;
1701
1702 q->lock_ptr = &hb->lock;
1703
1704 wake_up_state(q->task, TASK_NORMAL);
1705 }
1706
1707 /**
1708 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1709 * @pifutex: the user address of the to futex
1710 * @hb1: the from futex hash bucket, must be locked by the caller
1711 * @hb2: the to futex hash bucket, must be locked by the caller
1712 * @key1: the from futex key
1713 * @key2: the to futex key
1714 * @ps: address to store the pi_state pointer
1715 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1716 *
1717 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1718 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1719 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1720 * hb1 and hb2 must be held by the caller.
1721 *
1722 * Return:
1723 * 0 - failed to acquire the lock atomically;
1724 * >0 - acquired the lock, return value is vpid of the top_waiter
1725 * <0 - error
1726 */
1727 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1728 struct futex_hash_bucket *hb1,
1729 struct futex_hash_bucket *hb2,
1730 union futex_key *key1, union futex_key *key2,
1731 struct futex_pi_state **ps, int set_waiters)
1732 {
1733 struct futex_q *top_waiter = NULL;
1734 u32 curval;
1735 int ret, vpid;
1736
1737 if (get_futex_value_locked(&curval, pifutex))
1738 return -EFAULT;
1739
1740 if (unlikely(should_fail_futex(true)))
1741 return -EFAULT;
1742
1743 /*
1744 * Find the top_waiter and determine if there are additional waiters.
1745 * If the caller intends to requeue more than 1 waiter to pifutex,
1746 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1747 * as we have means to handle the possible fault. If not, don't set
1748 * the bit unecessarily as it will force the subsequent unlock to enter
1749 * the kernel.
1750 */
1751 top_waiter = futex_top_waiter(hb1, key1);
1752
1753 /* There are no waiters, nothing for us to do. */
1754 if (!top_waiter)
1755 return 0;
1756
1757 /* Ensure we requeue to the expected futex. */
1758 if (!match_futex(top_waiter->requeue_pi_key, key2))
1759 return -EINVAL;
1760
1761 /*
1762 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1763 * the contended case or if set_waiters is 1. The pi_state is returned
1764 * in ps in contended cases.
1765 */
1766 vpid = task_pid_vnr(top_waiter->task);
1767 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1768 set_waiters);
1769 if (ret == 1) {
1770 requeue_pi_wake_futex(top_waiter, key2, hb2);
1771 return vpid;
1772 }
1773 return ret;
1774 }
1775
1776 /**
1777 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1778 * @uaddr1: source futex user address
1779 * @flags: futex flags (FLAGS_SHARED, etc.)
1780 * @uaddr2: target futex user address
1781 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1782 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1783 * @cmpval: @uaddr1 expected value (or %NULL)
1784 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1785 * pi futex (pi to pi requeue is not supported)
1786 *
1787 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1788 * uaddr2 atomically on behalf of the top waiter.
1789 *
1790 * Return:
1791 * >=0 - on success, the number of tasks requeued or woken;
1792 * <0 - on error
1793 */
1794 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1795 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1796 u32 *cmpval, int requeue_pi)
1797 {
1798 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1799 int drop_count = 0, task_count = 0, ret;
1800 struct futex_pi_state *pi_state = NULL;
1801 struct futex_hash_bucket *hb1, *hb2;
1802 struct futex_q *this, *next;
1803 DEFINE_WAKE_Q(wake_q);
1804
1805 if (requeue_pi) {
1806 /*
1807 * Requeue PI only works on two distinct uaddrs. This
1808 * check is only valid for private futexes. See below.
1809 */
1810 if (uaddr1 == uaddr2)
1811 return -EINVAL;
1812
1813 /*
1814 * requeue_pi requires a pi_state, try to allocate it now
1815 * without any locks in case it fails.
1816 */
1817 if (refill_pi_state_cache())
1818 return -ENOMEM;
1819 /*
1820 * requeue_pi must wake as many tasks as it can, up to nr_wake
1821 * + nr_requeue, since it acquires the rt_mutex prior to
1822 * returning to userspace, so as to not leave the rt_mutex with
1823 * waiters and no owner. However, second and third wake-ups
1824 * cannot be predicted as they involve race conditions with the
1825 * first wake and a fault while looking up the pi_state. Both
1826 * pthread_cond_signal() and pthread_cond_broadcast() should
1827 * use nr_wake=1.
1828 */
1829 if (nr_wake != 1)
1830 return -EINVAL;
1831 }
1832
1833 retry:
1834 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1835 if (unlikely(ret != 0))
1836 goto out;
1837 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1838 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1839 if (unlikely(ret != 0))
1840 goto out_put_key1;
1841
1842 /*
1843 * The check above which compares uaddrs is not sufficient for
1844 * shared futexes. We need to compare the keys:
1845 */
1846 if (requeue_pi && match_futex(&key1, &key2)) {
1847 ret = -EINVAL;
1848 goto out_put_keys;
1849 }
1850
1851 hb1 = hash_futex(&key1);
1852 hb2 = hash_futex(&key2);
1853
1854 retry_private:
1855 hb_waiters_inc(hb2);
1856 double_lock_hb(hb1, hb2);
1857
1858 if (likely(cmpval != NULL)) {
1859 u32 curval;
1860
1861 ret = get_futex_value_locked(&curval, uaddr1);
1862
1863 if (unlikely(ret)) {
1864 double_unlock_hb(hb1, hb2);
1865 hb_waiters_dec(hb2);
1866
1867 ret = get_user(curval, uaddr1);
1868 if (ret)
1869 goto out_put_keys;
1870
1871 if (!(flags & FLAGS_SHARED))
1872 goto retry_private;
1873
1874 put_futex_key(&key2);
1875 put_futex_key(&key1);
1876 goto retry;
1877 }
1878 if (curval != *cmpval) {
1879 ret = -EAGAIN;
1880 goto out_unlock;
1881 }
1882 }
1883
1884 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1885 /*
1886 * Attempt to acquire uaddr2 and wake the top waiter. If we
1887 * intend to requeue waiters, force setting the FUTEX_WAITERS
1888 * bit. We force this here where we are able to easily handle
1889 * faults rather in the requeue loop below.
1890 */
1891 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1892 &key2, &pi_state, nr_requeue);
1893
1894 /*
1895 * At this point the top_waiter has either taken uaddr2 or is
1896 * waiting on it. If the former, then the pi_state will not
1897 * exist yet, look it up one more time to ensure we have a
1898 * reference to it. If the lock was taken, ret contains the
1899 * vpid of the top waiter task.
1900 * If the lock was not taken, we have pi_state and an initial
1901 * refcount on it. In case of an error we have nothing.
1902 */
1903 if (ret > 0) {
1904 WARN_ON(pi_state);
1905 drop_count++;
1906 task_count++;
1907 /*
1908 * If we acquired the lock, then the user space value
1909 * of uaddr2 should be vpid. It cannot be changed by
1910 * the top waiter as it is blocked on hb2 lock if it
1911 * tries to do so. If something fiddled with it behind
1912 * our back the pi state lookup might unearth it. So
1913 * we rather use the known value than rereading and
1914 * handing potential crap to lookup_pi_state.
1915 *
1916 * If that call succeeds then we have pi_state and an
1917 * initial refcount on it.
1918 */
1919 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1920 }
1921
1922 switch (ret) {
1923 case 0:
1924 /* We hold a reference on the pi state. */
1925 break;
1926
1927 /* If the above failed, then pi_state is NULL */
1928 case -EFAULT:
1929 double_unlock_hb(hb1, hb2);
1930 hb_waiters_dec(hb2);
1931 put_futex_key(&key2);
1932 put_futex_key(&key1);
1933 ret = fault_in_user_writeable(uaddr2);
1934 if (!ret)
1935 goto retry;
1936 goto out;
1937 case -EAGAIN:
1938 /*
1939 * Two reasons for this:
1940 * - Owner is exiting and we just wait for the
1941 * exit to complete.
1942 * - The user space value changed.
1943 */
1944 double_unlock_hb(hb1, hb2);
1945 hb_waiters_dec(hb2);
1946 put_futex_key(&key2);
1947 put_futex_key(&key1);
1948 cond_resched();
1949 goto retry;
1950 default:
1951 goto out_unlock;
1952 }
1953 }
1954
1955 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1956 if (task_count - nr_wake >= nr_requeue)
1957 break;
1958
1959 if (!match_futex(&this->key, &key1))
1960 continue;
1961
1962 /*
1963 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1964 * be paired with each other and no other futex ops.
1965 *
1966 * We should never be requeueing a futex_q with a pi_state,
1967 * which is awaiting a futex_unlock_pi().
1968 */
1969 if ((requeue_pi && !this->rt_waiter) ||
1970 (!requeue_pi && this->rt_waiter) ||
1971 this->pi_state) {
1972 ret = -EINVAL;
1973 break;
1974 }
1975
1976 /*
1977 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1978 * lock, we already woke the top_waiter. If not, it will be
1979 * woken by futex_unlock_pi().
1980 */
1981 if (++task_count <= nr_wake && !requeue_pi) {
1982 mark_wake_futex(&wake_q, this);
1983 continue;
1984 }
1985
1986 /* Ensure we requeue to the expected futex for requeue_pi. */
1987 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1988 ret = -EINVAL;
1989 break;
1990 }
1991
1992 /*
1993 * Requeue nr_requeue waiters and possibly one more in the case
1994 * of requeue_pi if we couldn't acquire the lock atomically.
1995 */
1996 if (requeue_pi) {
1997 /*
1998 * Prepare the waiter to take the rt_mutex. Take a
1999 * refcount on the pi_state and store the pointer in
2000 * the futex_q object of the waiter.
2001 */
2002 get_pi_state(pi_state);
2003 this->pi_state = pi_state;
2004 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2005 this->rt_waiter,
2006 this->task);
2007 if (ret == 1) {
2008 /*
2009 * We got the lock. We do neither drop the
2010 * refcount on pi_state nor clear
2011 * this->pi_state because the waiter needs the
2012 * pi_state for cleaning up the user space
2013 * value. It will drop the refcount after
2014 * doing so.
2015 */
2016 requeue_pi_wake_futex(this, &key2, hb2);
2017 drop_count++;
2018 continue;
2019 } else if (ret) {
2020 /*
2021 * rt_mutex_start_proxy_lock() detected a
2022 * potential deadlock when we tried to queue
2023 * that waiter. Drop the pi_state reference
2024 * which we took above and remove the pointer
2025 * to the state from the waiters futex_q
2026 * object.
2027 */
2028 this->pi_state = NULL;
2029 put_pi_state(pi_state);
2030 /*
2031 * We stop queueing more waiters and let user
2032 * space deal with the mess.
2033 */
2034 break;
2035 }
2036 }
2037 requeue_futex(this, hb1, hb2, &key2);
2038 drop_count++;
2039 }
2040
2041 /*
2042 * We took an extra initial reference to the pi_state either
2043 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2044 * need to drop it here again.
2045 */
2046 put_pi_state(pi_state);
2047
2048 out_unlock:
2049 double_unlock_hb(hb1, hb2);
2050 wake_up_q(&wake_q);
2051 hb_waiters_dec(hb2);
2052
2053 /*
2054 * drop_futex_key_refs() must be called outside the spinlocks. During
2055 * the requeue we moved futex_q's from the hash bucket at key1 to the
2056 * one at key2 and updated their key pointer. We no longer need to
2057 * hold the references to key1.
2058 */
2059 while (--drop_count >= 0)
2060 drop_futex_key_refs(&key1);
2061
2062 out_put_keys:
2063 put_futex_key(&key2);
2064 out_put_key1:
2065 put_futex_key(&key1);
2066 out:
2067 return ret ? ret : task_count;
2068 }
2069
2070 /* The key must be already stored in q->key. */
2071 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2072 __acquires(&hb->lock)
2073 {
2074 struct futex_hash_bucket *hb;
2075
2076 hb = hash_futex(&q->key);
2077
2078 /*
2079 * Increment the counter before taking the lock so that
2080 * a potential waker won't miss a to-be-slept task that is
2081 * waiting for the spinlock. This is safe as all queue_lock()
2082 * users end up calling queue_me(). Similarly, for housekeeping,
2083 * decrement the counter at queue_unlock() when some error has
2084 * occurred and we don't end up adding the task to the list.
2085 */
2086 hb_waiters_inc(hb);
2087
2088 q->lock_ptr = &hb->lock;
2089
2090 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2091 return hb;
2092 }
2093
2094 static inline void
2095 queue_unlock(struct futex_hash_bucket *hb)
2096 __releases(&hb->lock)
2097 {
2098 spin_unlock(&hb->lock);
2099 hb_waiters_dec(hb);
2100 }
2101
2102 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2103 {
2104 int prio;
2105
2106 /*
2107 * The priority used to register this element is
2108 * - either the real thread-priority for the real-time threads
2109 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2110 * - or MAX_RT_PRIO for non-RT threads.
2111 * Thus, all RT-threads are woken first in priority order, and
2112 * the others are woken last, in FIFO order.
2113 */
2114 prio = min(current->normal_prio, MAX_RT_PRIO);
2115
2116 plist_node_init(&q->list, prio);
2117 plist_add(&q->list, &hb->chain);
2118 q->task = current;
2119 }
2120
2121 /**
2122 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2123 * @q: The futex_q to enqueue
2124 * @hb: The destination hash bucket
2125 *
2126 * The hb->lock must be held by the caller, and is released here. A call to
2127 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2128 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2129 * or nothing if the unqueue is done as part of the wake process and the unqueue
2130 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2131 * an example).
2132 */
2133 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2134 __releases(&hb->lock)
2135 {
2136 __queue_me(q, hb);
2137 spin_unlock(&hb->lock);
2138 }
2139
2140 /**
2141 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2142 * @q: The futex_q to unqueue
2143 *
2144 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2145 * be paired with exactly one earlier call to queue_me().
2146 *
2147 * Return:
2148 * 1 - if the futex_q was still queued (and we removed unqueued it);
2149 * 0 - if the futex_q was already removed by the waking thread
2150 */
2151 static int unqueue_me(struct futex_q *q)
2152 {
2153 spinlock_t *lock_ptr;
2154 int ret = 0;
2155
2156 /* In the common case we don't take the spinlock, which is nice. */
2157 retry:
2158 /*
2159 * q->lock_ptr can change between this read and the following spin_lock.
2160 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2161 * optimizing lock_ptr out of the logic below.
2162 */
2163 lock_ptr = READ_ONCE(q->lock_ptr);
2164 if (lock_ptr != NULL) {
2165 spin_lock(lock_ptr);
2166 /*
2167 * q->lock_ptr can change between reading it and
2168 * spin_lock(), causing us to take the wrong lock. This
2169 * corrects the race condition.
2170 *
2171 * Reasoning goes like this: if we have the wrong lock,
2172 * q->lock_ptr must have changed (maybe several times)
2173 * between reading it and the spin_lock(). It can
2174 * change again after the spin_lock() but only if it was
2175 * already changed before the spin_lock(). It cannot,
2176 * however, change back to the original value. Therefore
2177 * we can detect whether we acquired the correct lock.
2178 */
2179 if (unlikely(lock_ptr != q->lock_ptr)) {
2180 spin_unlock(lock_ptr);
2181 goto retry;
2182 }
2183 __unqueue_futex(q);
2184
2185 BUG_ON(q->pi_state);
2186
2187 spin_unlock(lock_ptr);
2188 ret = 1;
2189 }
2190
2191 drop_futex_key_refs(&q->key);
2192 return ret;
2193 }
2194
2195 /*
2196 * PI futexes can not be requeued and must remove themself from the
2197 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2198 * and dropped here.
2199 */
2200 static void unqueue_me_pi(struct futex_q *q)
2201 __releases(q->lock_ptr)
2202 {
2203 __unqueue_futex(q);
2204
2205 BUG_ON(!q->pi_state);
2206 put_pi_state(q->pi_state);
2207 q->pi_state = NULL;
2208
2209 spin_unlock(q->lock_ptr);
2210 }
2211
2212 /*
2213 * Fixup the pi_state owner with the new owner.
2214 *
2215 * Must be called with hash bucket lock held and mm->sem held for non
2216 * private futexes.
2217 */
2218 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2219 struct task_struct *newowner)
2220 {
2221 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2222 struct futex_pi_state *pi_state = q->pi_state;
2223 u32 uval, uninitialized_var(curval), newval;
2224 struct task_struct *oldowner;
2225 int ret;
2226
2227 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2228
2229 oldowner = pi_state->owner;
2230 /* Owner died? */
2231 if (!pi_state->owner)
2232 newtid |= FUTEX_OWNER_DIED;
2233
2234 /*
2235 * We are here either because we stole the rtmutex from the
2236 * previous highest priority waiter or we are the highest priority
2237 * waiter but have failed to get the rtmutex the first time.
2238 *
2239 * We have to replace the newowner TID in the user space variable.
2240 * This must be atomic as we have to preserve the owner died bit here.
2241 *
2242 * Note: We write the user space value _before_ changing the pi_state
2243 * because we can fault here. Imagine swapped out pages or a fork
2244 * that marked all the anonymous memory readonly for cow.
2245 *
2246 * Modifying pi_state _before_ the user space value would leave the
2247 * pi_state in an inconsistent state when we fault here, because we
2248 * need to drop the locks to handle the fault. This might be observed
2249 * in the PID check in lookup_pi_state.
2250 */
2251 retry:
2252 if (get_futex_value_locked(&uval, uaddr))
2253 goto handle_fault;
2254
2255 for (;;) {
2256 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2257
2258 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2259 goto handle_fault;
2260 if (curval == uval)
2261 break;
2262 uval = curval;
2263 }
2264
2265 /*
2266 * We fixed up user space. Now we need to fix the pi_state
2267 * itself.
2268 */
2269 if (pi_state->owner != NULL) {
2270 raw_spin_lock(&pi_state->owner->pi_lock);
2271 WARN_ON(list_empty(&pi_state->list));
2272 list_del_init(&pi_state->list);
2273 raw_spin_unlock(&pi_state->owner->pi_lock);
2274 }
2275
2276 pi_state->owner = newowner;
2277
2278 raw_spin_lock(&newowner->pi_lock);
2279 WARN_ON(!list_empty(&pi_state->list));
2280 list_add(&pi_state->list, &newowner->pi_state_list);
2281 raw_spin_unlock(&newowner->pi_lock);
2282 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2283
2284 return 0;
2285
2286 /*
2287 * To handle the page fault we need to drop the locks here. That gives
2288 * the other task (either the highest priority waiter itself or the
2289 * task which stole the rtmutex) the chance to try the fixup of the
2290 * pi_state. So once we are back from handling the fault we need to
2291 * check the pi_state after reacquiring the locks and before trying to
2292 * do another fixup. When the fixup has been done already we simply
2293 * return.
2294 *
2295 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2296 * drop hb->lock since the caller owns the hb -> futex_q relation.
2297 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2298 */
2299 handle_fault:
2300 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2301 spin_unlock(q->lock_ptr);
2302
2303 ret = fault_in_user_writeable(uaddr);
2304
2305 spin_lock(q->lock_ptr);
2306 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2307
2308 /*
2309 * Check if someone else fixed it for us:
2310 */
2311 if (pi_state->owner != oldowner) {
2312 ret = 0;
2313 goto out_unlock;
2314 }
2315
2316 if (ret)
2317 goto out_unlock;
2318
2319 goto retry;
2320
2321 out_unlock:
2322 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2323 return ret;
2324 }
2325
2326 static long futex_wait_restart(struct restart_block *restart);
2327
2328 /**
2329 * fixup_owner() - Post lock pi_state and corner case management
2330 * @uaddr: user address of the futex
2331 * @q: futex_q (contains pi_state and access to the rt_mutex)
2332 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2333 *
2334 * After attempting to lock an rt_mutex, this function is called to cleanup
2335 * the pi_state owner as well as handle race conditions that may allow us to
2336 * acquire the lock. Must be called with the hb lock held.
2337 *
2338 * Return:
2339 * 1 - success, lock taken;
2340 * 0 - success, lock not taken;
2341 * <0 - on error (-EFAULT)
2342 */
2343 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2344 {
2345 int ret = 0;
2346
2347 if (locked) {
2348 /*
2349 * Got the lock. We might not be the anticipated owner if we
2350 * did a lock-steal - fix up the PI-state in that case:
2351 *
2352 * We can safely read pi_state->owner without holding wait_lock
2353 * because we now own the rt_mutex, only the owner will attempt
2354 * to change it.
2355 */
2356 if (q->pi_state->owner != current)
2357 ret = fixup_pi_state_owner(uaddr, q, current);
2358 goto out;
2359 }
2360
2361 /*
2362 * Paranoia check. If we did not take the lock, then we should not be
2363 * the owner of the rt_mutex.
2364 */
2365 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2366 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2367 "pi-state %p\n", ret,
2368 q->pi_state->pi_mutex.owner,
2369 q->pi_state->owner);
2370 }
2371
2372 out:
2373 return ret ? ret : locked;
2374 }
2375
2376 /**
2377 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2378 * @hb: the futex hash bucket, must be locked by the caller
2379 * @q: the futex_q to queue up on
2380 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2381 */
2382 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2383 struct hrtimer_sleeper *timeout)
2384 {
2385 /*
2386 * The task state is guaranteed to be set before another task can
2387 * wake it. set_current_state() is implemented using smp_store_mb() and
2388 * queue_me() calls spin_unlock() upon completion, both serializing
2389 * access to the hash list and forcing another memory barrier.
2390 */
2391 set_current_state(TASK_INTERRUPTIBLE);
2392 queue_me(q, hb);
2393
2394 /* Arm the timer */
2395 if (timeout)
2396 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2397
2398 /*
2399 * If we have been removed from the hash list, then another task
2400 * has tried to wake us, and we can skip the call to schedule().
2401 */
2402 if (likely(!plist_node_empty(&q->list))) {
2403 /*
2404 * If the timer has already expired, current will already be
2405 * flagged for rescheduling. Only call schedule if there
2406 * is no timeout, or if it has yet to expire.
2407 */
2408 if (!timeout || timeout->task)
2409 freezable_schedule();
2410 }
2411 __set_current_state(TASK_RUNNING);
2412 }
2413
2414 /**
2415 * futex_wait_setup() - Prepare to wait on a futex
2416 * @uaddr: the futex userspace address
2417 * @val: the expected value
2418 * @flags: futex flags (FLAGS_SHARED, etc.)
2419 * @q: the associated futex_q
2420 * @hb: storage for hash_bucket pointer to be returned to caller
2421 *
2422 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2423 * compare it with the expected value. Handle atomic faults internally.
2424 * Return with the hb lock held and a q.key reference on success, and unlocked
2425 * with no q.key reference on failure.
2426 *
2427 * Return:
2428 * 0 - uaddr contains val and hb has been locked;
2429 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2430 */
2431 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2432 struct futex_q *q, struct futex_hash_bucket **hb)
2433 {
2434 u32 uval;
2435 int ret;
2436
2437 /*
2438 * Access the page AFTER the hash-bucket is locked.
2439 * Order is important:
2440 *
2441 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2442 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2443 *
2444 * The basic logical guarantee of a futex is that it blocks ONLY
2445 * if cond(var) is known to be true at the time of blocking, for
2446 * any cond. If we locked the hash-bucket after testing *uaddr, that
2447 * would open a race condition where we could block indefinitely with
2448 * cond(var) false, which would violate the guarantee.
2449 *
2450 * On the other hand, we insert q and release the hash-bucket only
2451 * after testing *uaddr. This guarantees that futex_wait() will NOT
2452 * absorb a wakeup if *uaddr does not match the desired values
2453 * while the syscall executes.
2454 */
2455 retry:
2456 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2457 if (unlikely(ret != 0))
2458 return ret;
2459
2460 retry_private:
2461 *hb = queue_lock(q);
2462
2463 ret = get_futex_value_locked(&uval, uaddr);
2464
2465 if (ret) {
2466 queue_unlock(*hb);
2467
2468 ret = get_user(uval, uaddr);
2469 if (ret)
2470 goto out;
2471
2472 if (!(flags & FLAGS_SHARED))
2473 goto retry_private;
2474
2475 put_futex_key(&q->key);
2476 goto retry;
2477 }
2478
2479 if (uval != val) {
2480 queue_unlock(*hb);
2481 ret = -EWOULDBLOCK;
2482 }
2483
2484 out:
2485 if (ret)
2486 put_futex_key(&q->key);
2487 return ret;
2488 }
2489
2490 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2491 ktime_t *abs_time, u32 bitset)
2492 {
2493 struct hrtimer_sleeper timeout, *to = NULL;
2494 struct restart_block *restart;
2495 struct futex_hash_bucket *hb;
2496 struct futex_q q = futex_q_init;
2497 int ret;
2498
2499 if (!bitset)
2500 return -EINVAL;
2501 q.bitset = bitset;
2502
2503 if (abs_time) {
2504 to = &timeout;
2505
2506 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2507 CLOCK_REALTIME : CLOCK_MONOTONIC,
2508 HRTIMER_MODE_ABS);
2509 hrtimer_init_sleeper(to, current);
2510 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2511 current->timer_slack_ns);
2512 }
2513
2514 retry:
2515 /*
2516 * Prepare to wait on uaddr. On success, holds hb lock and increments
2517 * q.key refs.
2518 */
2519 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2520 if (ret)
2521 goto out;
2522
2523 /* queue_me and wait for wakeup, timeout, or a signal. */
2524 futex_wait_queue_me(hb, &q, to);
2525
2526 /* If we were woken (and unqueued), we succeeded, whatever. */
2527 ret = 0;
2528 /* unqueue_me() drops q.key ref */
2529 if (!unqueue_me(&q))
2530 goto out;
2531 ret = -ETIMEDOUT;
2532 if (to && !to->task)
2533 goto out;
2534
2535 /*
2536 * We expect signal_pending(current), but we might be the
2537 * victim of a spurious wakeup as well.
2538 */
2539 if (!signal_pending(current))
2540 goto retry;
2541
2542 ret = -ERESTARTSYS;
2543 if (!abs_time)
2544 goto out;
2545
2546 restart = &current->restart_block;
2547 restart->fn = futex_wait_restart;
2548 restart->futex.uaddr = uaddr;
2549 restart->futex.val = val;
2550 restart->futex.time = *abs_time;
2551 restart->futex.bitset = bitset;
2552 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2553
2554 ret = -ERESTART_RESTARTBLOCK;
2555
2556 out:
2557 if (to) {
2558 hrtimer_cancel(&to->timer);
2559 destroy_hrtimer_on_stack(&to->timer);
2560 }
2561 return ret;
2562 }
2563
2564
2565 static long futex_wait_restart(struct restart_block *restart)
2566 {
2567 u32 __user *uaddr = restart->futex.uaddr;
2568 ktime_t t, *tp = NULL;
2569
2570 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2571 t = restart->futex.time;
2572 tp = &t;
2573 }
2574 restart->fn = do_no_restart_syscall;
2575
2576 return (long)futex_wait(uaddr, restart->futex.flags,
2577 restart->futex.val, tp, restart->futex.bitset);
2578 }
2579
2580
2581 /*
2582 * Userspace tried a 0 -> TID atomic transition of the futex value
2583 * and failed. The kernel side here does the whole locking operation:
2584 * if there are waiters then it will block as a consequence of relying
2585 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2586 * a 0 value of the futex too.).
2587 *
2588 * Also serves as futex trylock_pi()'ing, and due semantics.
2589 */
2590 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2591 ktime_t *time, int trylock)
2592 {
2593 struct hrtimer_sleeper timeout, *to = NULL;
2594 struct futex_pi_state *pi_state = NULL;
2595 struct rt_mutex_waiter rt_waiter;
2596 struct futex_hash_bucket *hb;
2597 struct futex_q q = futex_q_init;
2598 int res, ret;
2599
2600 if (refill_pi_state_cache())
2601 return -ENOMEM;
2602
2603 if (time) {
2604 to = &timeout;
2605 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2606 HRTIMER_MODE_ABS);
2607 hrtimer_init_sleeper(to, current);
2608 hrtimer_set_expires(&to->timer, *time);
2609 }
2610
2611 retry:
2612 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2613 if (unlikely(ret != 0))
2614 goto out;
2615
2616 retry_private:
2617 hb = queue_lock(&q);
2618
2619 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2620 if (unlikely(ret)) {
2621 /*
2622 * Atomic work succeeded and we got the lock,
2623 * or failed. Either way, we do _not_ block.
2624 */
2625 switch (ret) {
2626 case 1:
2627 /* We got the lock. */
2628 ret = 0;
2629 goto out_unlock_put_key;
2630 case -EFAULT:
2631 goto uaddr_faulted;
2632 case -EAGAIN:
2633 /*
2634 * Two reasons for this:
2635 * - Task is exiting and we just wait for the
2636 * exit to complete.
2637 * - The user space value changed.
2638 */
2639 queue_unlock(hb);
2640 put_futex_key(&q.key);
2641 cond_resched();
2642 goto retry;
2643 default:
2644 goto out_unlock_put_key;
2645 }
2646 }
2647
2648 WARN_ON(!q.pi_state);
2649
2650 /*
2651 * Only actually queue now that the atomic ops are done:
2652 */
2653 __queue_me(&q, hb);
2654
2655 if (trylock) {
2656 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2657 /* Fixup the trylock return value: */
2658 ret = ret ? 0 : -EWOULDBLOCK;
2659 goto no_block;
2660 }
2661
2662 /*
2663 * We must add ourselves to the rt_mutex waitlist while holding hb->lock
2664 * such that the hb and rt_mutex wait lists match.
2665 */
2666 rt_mutex_init_waiter(&rt_waiter);
2667 ret = rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2668 if (ret) {
2669 if (ret == 1)
2670 ret = 0;
2671
2672 goto no_block;
2673 }
2674
2675 spin_unlock(q.lock_ptr);
2676
2677 if (unlikely(to))
2678 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2679
2680 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2681
2682 spin_lock(q.lock_ptr);
2683 /*
2684 * If we failed to acquire the lock (signal/timeout), we must
2685 * first acquire the hb->lock before removing the lock from the
2686 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2687 * wait lists consistent.
2688 */
2689 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2690 ret = 0;
2691
2692 no_block:
2693 /*
2694 * Fixup the pi_state owner and possibly acquire the lock if we
2695 * haven't already.
2696 */
2697 res = fixup_owner(uaddr, &q, !ret);
2698 /*
2699 * If fixup_owner() returned an error, proprogate that. If it acquired
2700 * the lock, clear our -ETIMEDOUT or -EINTR.
2701 */
2702 if (res)
2703 ret = (res < 0) ? res : 0;
2704
2705 /*
2706 * If fixup_owner() faulted and was unable to handle the fault, unlock
2707 * it and return the fault to userspace.
2708 */
2709 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2710 pi_state = q.pi_state;
2711 get_pi_state(pi_state);
2712 }
2713
2714 /* Unqueue and drop the lock */
2715 unqueue_me_pi(&q);
2716
2717 if (pi_state) {
2718 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2719 put_pi_state(pi_state);
2720 }
2721
2722 goto out_put_key;
2723
2724 out_unlock_put_key:
2725 queue_unlock(hb);
2726
2727 out_put_key:
2728 put_futex_key(&q.key);
2729 out:
2730 if (to)
2731 destroy_hrtimer_on_stack(&to->timer);
2732 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2733
2734 uaddr_faulted:
2735 queue_unlock(hb);
2736
2737 ret = fault_in_user_writeable(uaddr);
2738 if (ret)
2739 goto out_put_key;
2740
2741 if (!(flags & FLAGS_SHARED))
2742 goto retry_private;
2743
2744 put_futex_key(&q.key);
2745 goto retry;
2746 }
2747
2748 /*
2749 * Userspace attempted a TID -> 0 atomic transition, and failed.
2750 * This is the in-kernel slowpath: we look up the PI state (if any),
2751 * and do the rt-mutex unlock.
2752 */
2753 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2754 {
2755 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
2756 union futex_key key = FUTEX_KEY_INIT;
2757 struct futex_hash_bucket *hb;
2758 struct futex_q *top_waiter;
2759 int ret;
2760
2761 retry:
2762 if (get_user(uval, uaddr))
2763 return -EFAULT;
2764 /*
2765 * We release only a lock we actually own:
2766 */
2767 if ((uval & FUTEX_TID_MASK) != vpid)
2768 return -EPERM;
2769
2770 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2771 if (ret)
2772 return ret;
2773
2774 hb = hash_futex(&key);
2775 spin_lock(&hb->lock);
2776
2777 /*
2778 * Check waiters first. We do not trust user space values at
2779 * all and we at least want to know if user space fiddled
2780 * with the futex value instead of blindly unlocking.
2781 */
2782 top_waiter = futex_top_waiter(hb, &key);
2783 if (top_waiter) {
2784 struct futex_pi_state *pi_state = top_waiter->pi_state;
2785
2786 ret = -EINVAL;
2787 if (!pi_state)
2788 goto out_unlock;
2789
2790 /*
2791 * If current does not own the pi_state then the futex is
2792 * inconsistent and user space fiddled with the futex value.
2793 */
2794 if (pi_state->owner != current)
2795 goto out_unlock;
2796
2797 /*
2798 * Grab a reference on the pi_state and drop hb->lock.
2799 *
2800 * The reference ensures pi_state lives, dropping the hb->lock
2801 * is tricky.. wake_futex_pi() will take rt_mutex::wait_lock to
2802 * close the races against futex_lock_pi(), but in case of
2803 * _any_ fail we'll abort and retry the whole deal.
2804 */
2805 get_pi_state(pi_state);
2806 spin_unlock(&hb->lock);
2807
2808 ret = wake_futex_pi(uaddr, uval, pi_state);
2809
2810 put_pi_state(pi_state);
2811
2812 /*
2813 * Success, we're done! No tricky corner cases.
2814 */
2815 if (!ret)
2816 goto out_putkey;
2817 /*
2818 * The atomic access to the futex value generated a
2819 * pagefault, so retry the user-access and the wakeup:
2820 */
2821 if (ret == -EFAULT)
2822 goto pi_faulted;
2823 /*
2824 * A unconditional UNLOCK_PI op raced against a waiter
2825 * setting the FUTEX_WAITERS bit. Try again.
2826 */
2827 if (ret == -EAGAIN) {
2828 put_futex_key(&key);
2829 goto retry;
2830 }
2831 /*
2832 * wake_futex_pi has detected invalid state. Tell user
2833 * space.
2834 */
2835 goto out_putkey;
2836 }
2837
2838 /*
2839 * We have no kernel internal state, i.e. no waiters in the
2840 * kernel. Waiters which are about to queue themselves are stuck
2841 * on hb->lock. So we can safely ignore them. We do neither
2842 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2843 * owner.
2844 */
2845 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2846 spin_unlock(&hb->lock);
2847 goto pi_faulted;
2848 }
2849
2850 /*
2851 * If uval has changed, let user space handle it.
2852 */
2853 ret = (curval == uval) ? 0 : -EAGAIN;
2854
2855 out_unlock:
2856 spin_unlock(&hb->lock);
2857 out_putkey:
2858 put_futex_key(&key);
2859 return ret;
2860
2861 pi_faulted:
2862 put_futex_key(&key);
2863
2864 ret = fault_in_user_writeable(uaddr);
2865 if (!ret)
2866 goto retry;
2867
2868 return ret;
2869 }
2870
2871 /**
2872 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2873 * @hb: the hash_bucket futex_q was original enqueued on
2874 * @q: the futex_q woken while waiting to be requeued
2875 * @key2: the futex_key of the requeue target futex
2876 * @timeout: the timeout associated with the wait (NULL if none)
2877 *
2878 * Detect if the task was woken on the initial futex as opposed to the requeue
2879 * target futex. If so, determine if it was a timeout or a signal that caused
2880 * the wakeup and return the appropriate error code to the caller. Must be
2881 * called with the hb lock held.
2882 *
2883 * Return:
2884 * 0 = no early wakeup detected;
2885 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2886 */
2887 static inline
2888 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2889 struct futex_q *q, union futex_key *key2,
2890 struct hrtimer_sleeper *timeout)
2891 {
2892 int ret = 0;
2893
2894 /*
2895 * With the hb lock held, we avoid races while we process the wakeup.
2896 * We only need to hold hb (and not hb2) to ensure atomicity as the
2897 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2898 * It can't be requeued from uaddr2 to something else since we don't
2899 * support a PI aware source futex for requeue.
2900 */
2901 if (!match_futex(&q->key, key2)) {
2902 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2903 /*
2904 * We were woken prior to requeue by a timeout or a signal.
2905 * Unqueue the futex_q and determine which it was.
2906 */
2907 plist_del(&q->list, &hb->chain);
2908 hb_waiters_dec(hb);
2909
2910 /* Handle spurious wakeups gracefully */
2911 ret = -EWOULDBLOCK;
2912 if (timeout && !timeout->task)
2913 ret = -ETIMEDOUT;
2914 else if (signal_pending(current))
2915 ret = -ERESTARTNOINTR;
2916 }
2917 return ret;
2918 }
2919
2920 /**
2921 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2922 * @uaddr: the futex we initially wait on (non-pi)
2923 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2924 * the same type, no requeueing from private to shared, etc.
2925 * @val: the expected value of uaddr
2926 * @abs_time: absolute timeout
2927 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2928 * @uaddr2: the pi futex we will take prior to returning to user-space
2929 *
2930 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2931 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2932 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2933 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2934 * without one, the pi logic would not know which task to boost/deboost, if
2935 * there was a need to.
2936 *
2937 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2938 * via the following--
2939 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2940 * 2) wakeup on uaddr2 after a requeue
2941 * 3) signal
2942 * 4) timeout
2943 *
2944 * If 3, cleanup and return -ERESTARTNOINTR.
2945 *
2946 * If 2, we may then block on trying to take the rt_mutex and return via:
2947 * 5) successful lock
2948 * 6) signal
2949 * 7) timeout
2950 * 8) other lock acquisition failure
2951 *
2952 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2953 *
2954 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2955 *
2956 * Return:
2957 * 0 - On success;
2958 * <0 - On error
2959 */
2960 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2961 u32 val, ktime_t *abs_time, u32 bitset,
2962 u32 __user *uaddr2)
2963 {
2964 struct hrtimer_sleeper timeout, *to = NULL;
2965 struct futex_pi_state *pi_state = NULL;
2966 struct rt_mutex_waiter rt_waiter;
2967 struct futex_hash_bucket *hb;
2968 union futex_key key2 = FUTEX_KEY_INIT;
2969 struct futex_q q = futex_q_init;
2970 int res, ret;
2971
2972 if (uaddr == uaddr2)
2973 return -EINVAL;
2974
2975 if (!bitset)
2976 return -EINVAL;
2977
2978 if (abs_time) {
2979 to = &timeout;
2980 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2981 CLOCK_REALTIME : CLOCK_MONOTONIC,
2982 HRTIMER_MODE_ABS);
2983 hrtimer_init_sleeper(to, current);
2984 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2985 current->timer_slack_ns);
2986 }
2987
2988 /*
2989 * The waiter is allocated on our stack, manipulated by the requeue
2990 * code while we sleep on uaddr.
2991 */
2992 rt_mutex_init_waiter(&rt_waiter);
2993
2994 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2995 if (unlikely(ret != 0))
2996 goto out;
2997
2998 q.bitset = bitset;
2999 q.rt_waiter = &rt_waiter;
3000 q.requeue_pi_key = &key2;
3001
3002 /*
3003 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3004 * count.
3005 */
3006 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3007 if (ret)
3008 goto out_key2;
3009
3010 /*
3011 * The check above which compares uaddrs is not sufficient for
3012 * shared futexes. We need to compare the keys:
3013 */
3014 if (match_futex(&q.key, &key2)) {
3015 queue_unlock(hb);
3016 ret = -EINVAL;
3017 goto out_put_keys;
3018 }
3019
3020 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3021 futex_wait_queue_me(hb, &q, to);
3022
3023 spin_lock(&hb->lock);
3024 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3025 spin_unlock(&hb->lock);
3026 if (ret)
3027 goto out_put_keys;
3028
3029 /*
3030 * In order for us to be here, we know our q.key == key2, and since
3031 * we took the hb->lock above, we also know that futex_requeue() has
3032 * completed and we no longer have to concern ourselves with a wakeup
3033 * race with the atomic proxy lock acquisition by the requeue code. The
3034 * futex_requeue dropped our key1 reference and incremented our key2
3035 * reference count.
3036 */
3037
3038 /* Check if the requeue code acquired the second futex for us. */
3039 if (!q.rt_waiter) {
3040 /*
3041 * Got the lock. We might not be the anticipated owner if we
3042 * did a lock-steal - fix up the PI-state in that case.
3043 */
3044 if (q.pi_state && (q.pi_state->owner != current)) {
3045 spin_lock(q.lock_ptr);
3046 ret = fixup_pi_state_owner(uaddr2, &q, current);
3047 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3048 pi_state = q.pi_state;
3049 get_pi_state(pi_state);
3050 }
3051 /*
3052 * Drop the reference to the pi state which
3053 * the requeue_pi() code acquired for us.
3054 */
3055 put_pi_state(q.pi_state);
3056 spin_unlock(q.lock_ptr);
3057 }
3058 } else {
3059 struct rt_mutex *pi_mutex;
3060
3061 /*
3062 * We have been woken up by futex_unlock_pi(), a timeout, or a
3063 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3064 * the pi_state.
3065 */
3066 WARN_ON(!q.pi_state);
3067 pi_mutex = &q.pi_state->pi_mutex;
3068 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3069
3070 spin_lock(q.lock_ptr);
3071 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3072 ret = 0;
3073
3074 debug_rt_mutex_free_waiter(&rt_waiter);
3075 /*
3076 * Fixup the pi_state owner and possibly acquire the lock if we
3077 * haven't already.
3078 */
3079 res = fixup_owner(uaddr2, &q, !ret);
3080 /*
3081 * If fixup_owner() returned an error, proprogate that. If it
3082 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3083 */
3084 if (res)
3085 ret = (res < 0) ? res : 0;
3086
3087 /*
3088 * If fixup_pi_state_owner() faulted and was unable to handle
3089 * the fault, unlock the rt_mutex and return the fault to
3090 * userspace.
3091 */
3092 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3093 pi_state = q.pi_state;
3094 get_pi_state(pi_state);
3095 }
3096
3097 /* Unqueue and drop the lock. */
3098 unqueue_me_pi(&q);
3099 }
3100
3101 if (pi_state) {
3102 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3103 put_pi_state(pi_state);
3104 }
3105
3106 if (ret == -EINTR) {
3107 /*
3108 * We've already been requeued, but cannot restart by calling
3109 * futex_lock_pi() directly. We could restart this syscall, but
3110 * it would detect that the user space "val" changed and return
3111 * -EWOULDBLOCK. Save the overhead of the restart and return
3112 * -EWOULDBLOCK directly.
3113 */
3114 ret = -EWOULDBLOCK;
3115 }
3116
3117 out_put_keys:
3118 put_futex_key(&q.key);
3119 out_key2:
3120 put_futex_key(&key2);
3121
3122 out:
3123 if (to) {
3124 hrtimer_cancel(&to->timer);
3125 destroy_hrtimer_on_stack(&to->timer);
3126 }
3127 return ret;
3128 }
3129
3130 /*
3131 * Support for robust futexes: the kernel cleans up held futexes at
3132 * thread exit time.
3133 *
3134 * Implementation: user-space maintains a per-thread list of locks it
3135 * is holding. Upon do_exit(), the kernel carefully walks this list,
3136 * and marks all locks that are owned by this thread with the
3137 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3138 * always manipulated with the lock held, so the list is private and
3139 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3140 * field, to allow the kernel to clean up if the thread dies after
3141 * acquiring the lock, but just before it could have added itself to
3142 * the list. There can only be one such pending lock.
3143 */
3144
3145 /**
3146 * sys_set_robust_list() - Set the robust-futex list head of a task
3147 * @head: pointer to the list-head
3148 * @len: length of the list-head, as userspace expects
3149 */
3150 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3151 size_t, len)
3152 {
3153 if (!futex_cmpxchg_enabled)
3154 return -ENOSYS;
3155 /*
3156 * The kernel knows only one size for now:
3157 */
3158 if (unlikely(len != sizeof(*head)))
3159 return -EINVAL;
3160
3161 current->robust_list = head;
3162
3163 return 0;
3164 }
3165
3166 /**
3167 * sys_get_robust_list() - Get the robust-futex list head of a task
3168 * @pid: pid of the process [zero for current task]
3169 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3170 * @len_ptr: pointer to a length field, the kernel fills in the header size
3171 */
3172 SYSCALL_DEFINE3(get_robust_list, int, pid,
3173 struct robust_list_head __user * __user *, head_ptr,
3174 size_t __user *, len_ptr)
3175 {
3176 struct robust_list_head __user *head;
3177 unsigned long ret;
3178 struct task_struct *p;
3179
3180 if (!futex_cmpxchg_enabled)
3181 return -ENOSYS;
3182
3183 rcu_read_lock();
3184
3185 ret = -ESRCH;
3186 if (!pid)
3187 p = current;
3188 else {
3189 p = find_task_by_vpid(pid);
3190 if (!p)
3191 goto err_unlock;
3192 }
3193
3194 ret = -EPERM;
3195 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3196 goto err_unlock;
3197
3198 head = p->robust_list;
3199 rcu_read_unlock();
3200
3201 if (put_user(sizeof(*head), len_ptr))
3202 return -EFAULT;
3203 return put_user(head, head_ptr);
3204
3205 err_unlock:
3206 rcu_read_unlock();
3207
3208 return ret;
3209 }
3210
3211 /*
3212 * Process a futex-list entry, check whether it's owned by the
3213 * dying task, and do notification if so:
3214 */
3215 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3216 {
3217 u32 uval, uninitialized_var(nval), mval;
3218
3219 retry:
3220 if (get_user(uval, uaddr))
3221 return -1;
3222
3223 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3224 /*
3225 * Ok, this dying thread is truly holding a futex
3226 * of interest. Set the OWNER_DIED bit atomically
3227 * via cmpxchg, and if the value had FUTEX_WAITERS
3228 * set, wake up a waiter (if any). (We have to do a
3229 * futex_wake() even if OWNER_DIED is already set -
3230 * to handle the rare but possible case of recursive
3231 * thread-death.) The rest of the cleanup is done in
3232 * userspace.
3233 */
3234 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3235 /*
3236 * We are not holding a lock here, but we want to have
3237 * the pagefault_disable/enable() protection because
3238 * we want to handle the fault gracefully. If the
3239 * access fails we try to fault in the futex with R/W
3240 * verification via get_user_pages. get_user() above
3241 * does not guarantee R/W access. If that fails we
3242 * give up and leave the futex locked.
3243 */
3244 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3245 if (fault_in_user_writeable(uaddr))
3246 return -1;
3247 goto retry;
3248 }
3249 if (nval != uval)
3250 goto retry;
3251
3252 /*
3253 * Wake robust non-PI futexes here. The wakeup of
3254 * PI futexes happens in exit_pi_state():
3255 */
3256 if (!pi && (uval & FUTEX_WAITERS))
3257 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3258 }
3259 return 0;
3260 }
3261
3262 /*
3263 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3264 */
3265 static inline int fetch_robust_entry(struct robust_list __user **entry,
3266 struct robust_list __user * __user *head,
3267 unsigned int *pi)
3268 {
3269 unsigned long uentry;
3270
3271 if (get_user(uentry, (unsigned long __user *)head))
3272 return -EFAULT;
3273
3274 *entry = (void __user *)(uentry & ~1UL);
3275 *pi = uentry & 1;
3276
3277 return 0;
3278 }
3279
3280 /*
3281 * Walk curr->robust_list (very carefully, it's a userspace list!)
3282 * and mark any locks found there dead, and notify any waiters.
3283 *
3284 * We silently return on any sign of list-walking problem.
3285 */
3286 void exit_robust_list(struct task_struct *curr)
3287 {
3288 struct robust_list_head __user *head = curr->robust_list;
3289 struct robust_list __user *entry, *next_entry, *pending;
3290 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3291 unsigned int uninitialized_var(next_pi);
3292 unsigned long futex_offset;
3293 int rc;
3294
3295 if (!futex_cmpxchg_enabled)
3296 return;
3297
3298 /*
3299 * Fetch the list head (which was registered earlier, via
3300 * sys_set_robust_list()):
3301 */
3302 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3303 return;
3304 /*
3305 * Fetch the relative futex offset:
3306 */
3307 if (get_user(futex_offset, &head->futex_offset))
3308 return;
3309 /*
3310 * Fetch any possibly pending lock-add first, and handle it
3311 * if it exists:
3312 */
3313 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3314 return;
3315
3316 next_entry = NULL; /* avoid warning with gcc */
3317 while (entry != &head->list) {
3318 /*
3319 * Fetch the next entry in the list before calling
3320 * handle_futex_death:
3321 */
3322 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3323 /*
3324 * A pending lock might already be on the list, so
3325 * don't process it twice:
3326 */
3327 if (entry != pending)
3328 if (handle_futex_death((void __user *)entry + futex_offset,
3329 curr, pi))
3330 return;
3331 if (rc)
3332 return;
3333 entry = next_entry;
3334 pi = next_pi;
3335 /*
3336 * Avoid excessively long or circular lists:
3337 */
3338 if (!--limit)
3339 break;
3340
3341 cond_resched();
3342 }
3343
3344 if (pending)
3345 handle_futex_death((void __user *)pending + futex_offset,
3346 curr, pip);
3347 }
3348
3349 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3350 u32 __user *uaddr2, u32 val2, u32 val3)
3351 {
3352 int cmd = op & FUTEX_CMD_MASK;
3353 unsigned int flags = 0;
3354
3355 if (!(op & FUTEX_PRIVATE_FLAG))
3356 flags |= FLAGS_SHARED;
3357
3358 if (op & FUTEX_CLOCK_REALTIME) {
3359 flags |= FLAGS_CLOCKRT;
3360 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3361 cmd != FUTEX_WAIT_REQUEUE_PI)
3362 return -ENOSYS;
3363 }
3364
3365 switch (cmd) {
3366 case FUTEX_LOCK_PI:
3367 case FUTEX_UNLOCK_PI:
3368 case FUTEX_TRYLOCK_PI:
3369 case FUTEX_WAIT_REQUEUE_PI:
3370 case FUTEX_CMP_REQUEUE_PI:
3371 if (!futex_cmpxchg_enabled)
3372 return -ENOSYS;
3373 }
3374
3375 switch (cmd) {
3376 case FUTEX_WAIT:
3377 val3 = FUTEX_BITSET_MATCH_ANY;
3378 case FUTEX_WAIT_BITSET:
3379 return futex_wait(uaddr, flags, val, timeout, val3);
3380 case FUTEX_WAKE:
3381 val3 = FUTEX_BITSET_MATCH_ANY;
3382 case FUTEX_WAKE_BITSET:
3383 return futex_wake(uaddr, flags, val, val3);
3384 case FUTEX_REQUEUE:
3385 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3386 case FUTEX_CMP_REQUEUE:
3387 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3388 case FUTEX_WAKE_OP:
3389 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3390 case FUTEX_LOCK_PI:
3391 return futex_lock_pi(uaddr, flags, timeout, 0);
3392 case FUTEX_UNLOCK_PI:
3393 return futex_unlock_pi(uaddr, flags);
3394 case FUTEX_TRYLOCK_PI:
3395 return futex_lock_pi(uaddr, flags, NULL, 1);
3396 case FUTEX_WAIT_REQUEUE_PI:
3397 val3 = FUTEX_BITSET_MATCH_ANY;
3398 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3399 uaddr2);
3400 case FUTEX_CMP_REQUEUE_PI:
3401 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3402 }
3403 return -ENOSYS;
3404 }
3405
3406
3407 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3408 struct timespec __user *, utime, u32 __user *, uaddr2,
3409 u32, val3)
3410 {
3411 struct timespec ts;
3412 ktime_t t, *tp = NULL;
3413 u32 val2 = 0;
3414 int cmd = op & FUTEX_CMD_MASK;
3415
3416 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3417 cmd == FUTEX_WAIT_BITSET ||
3418 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3419 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3420 return -EFAULT;
3421 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3422 return -EFAULT;
3423 if (!timespec_valid(&ts))
3424 return -EINVAL;
3425
3426 t = timespec_to_ktime(ts);
3427 if (cmd == FUTEX_WAIT)
3428 t = ktime_add_safe(ktime_get(), t);
3429 tp = &t;
3430 }
3431 /*
3432 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3433 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3434 */
3435 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3436 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3437 val2 = (u32) (unsigned long) utime;
3438
3439 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3440 }
3441
3442 static void __init futex_detect_cmpxchg(void)
3443 {
3444 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3445 u32 curval;
3446
3447 /*
3448 * This will fail and we want it. Some arch implementations do
3449 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3450 * functionality. We want to know that before we call in any
3451 * of the complex code paths. Also we want to prevent
3452 * registration of robust lists in that case. NULL is
3453 * guaranteed to fault and we get -EFAULT on functional
3454 * implementation, the non-functional ones will return
3455 * -ENOSYS.
3456 */
3457 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3458 futex_cmpxchg_enabled = 1;
3459 #endif
3460 }
3461
3462 static int __init futex_init(void)
3463 {
3464 unsigned int futex_shift;
3465 unsigned long i;
3466
3467 #if CONFIG_BASE_SMALL
3468 futex_hashsize = 16;
3469 #else
3470 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3471 #endif
3472
3473 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3474 futex_hashsize, 0,
3475 futex_hashsize < 256 ? HASH_SMALL : 0,
3476 &futex_shift, NULL,
3477 futex_hashsize, futex_hashsize);
3478 futex_hashsize = 1UL << futex_shift;
3479
3480 futex_detect_cmpxchg();
3481
3482 for (i = 0; i < futex_hashsize; i++) {
3483 atomic_set(&futex_queues[i].waiters, 0);
3484 plist_head_init(&futex_queues[i].chain);
3485 spin_lock_init(&futex_queues[i].lock);
3486 }
3487
3488 return 0;
3489 }
3490 core_initcall(futex_init);