]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/futex.c
Merge tag 'sound-fix-3.15-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/tiwai...
[mirror_ubuntu-zesty-kernel.git] / kernel / futex.c
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
64 #include <linux/hugetlb.h>
65 #include <linux/freezer.h>
66 #include <linux/bootmem.h>
67
68 #include <asm/futex.h>
69
70 #include "locking/rtmutex_common.h"
71
72 /*
73 * Basic futex operation and ordering guarantees:
74 *
75 * The waiter reads the futex value in user space and calls
76 * futex_wait(). This function computes the hash bucket and acquires
77 * the hash bucket lock. After that it reads the futex user space value
78 * again and verifies that the data has not changed. If it has not changed
79 * it enqueues itself into the hash bucket, releases the hash bucket lock
80 * and schedules.
81 *
82 * The waker side modifies the user space value of the futex and calls
83 * futex_wake(). This function computes the hash bucket and acquires the
84 * hash bucket lock. Then it looks for waiters on that futex in the hash
85 * bucket and wakes them.
86 *
87 * In futex wake up scenarios where no tasks are blocked on a futex, taking
88 * the hb spinlock can be avoided and simply return. In order for this
89 * optimization to work, ordering guarantees must exist so that the waiter
90 * being added to the list is acknowledged when the list is concurrently being
91 * checked by the waker, avoiding scenarios like the following:
92 *
93 * CPU 0 CPU 1
94 * val = *futex;
95 * sys_futex(WAIT, futex, val);
96 * futex_wait(futex, val);
97 * uval = *futex;
98 * *futex = newval;
99 * sys_futex(WAKE, futex);
100 * futex_wake(futex);
101 * if (queue_empty())
102 * return;
103 * if (uval == val)
104 * lock(hash_bucket(futex));
105 * queue();
106 * unlock(hash_bucket(futex));
107 * schedule();
108 *
109 * This would cause the waiter on CPU 0 to wait forever because it
110 * missed the transition of the user space value from val to newval
111 * and the waker did not find the waiter in the hash bucket queue.
112 *
113 * The correct serialization ensures that a waiter either observes
114 * the changed user space value before blocking or is woken by a
115 * concurrent waker:
116 *
117 * CPU 0 CPU 1
118 * val = *futex;
119 * sys_futex(WAIT, futex, val);
120 * futex_wait(futex, val);
121 *
122 * waiters++;
123 * mb(); (A) <-- paired with -.
124 * |
125 * lock(hash_bucket(futex)); |
126 * |
127 * uval = *futex; |
128 * | *futex = newval;
129 * | sys_futex(WAKE, futex);
130 * | futex_wake(futex);
131 * |
132 * `-------> mb(); (B)
133 * if (uval == val)
134 * queue();
135 * unlock(hash_bucket(futex));
136 * schedule(); if (waiters)
137 * lock(hash_bucket(futex));
138 * wake_waiters(futex);
139 * unlock(hash_bucket(futex));
140 *
141 * Where (A) orders the waiters increment and the futex value read -- this
142 * is guaranteed by the head counter in the hb spinlock; and where (B)
143 * orders the write to futex and the waiters read -- this is done by the
144 * barriers in get_futex_key_refs(), through either ihold or atomic_inc,
145 * depending on the futex type.
146 *
147 * This yields the following case (where X:=waiters, Y:=futex):
148 *
149 * X = Y = 0
150 *
151 * w[X]=1 w[Y]=1
152 * MB MB
153 * r[Y]=y r[X]=x
154 *
155 * Which guarantees that x==0 && y==0 is impossible; which translates back into
156 * the guarantee that we cannot both miss the futex variable change and the
157 * enqueue.
158 */
159
160 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
161 int __read_mostly futex_cmpxchg_enabled;
162 #endif
163
164 /*
165 * Futex flags used to encode options to functions and preserve them across
166 * restarts.
167 */
168 #define FLAGS_SHARED 0x01
169 #define FLAGS_CLOCKRT 0x02
170 #define FLAGS_HAS_TIMEOUT 0x04
171
172 /*
173 * Priority Inheritance state:
174 */
175 struct futex_pi_state {
176 /*
177 * list of 'owned' pi_state instances - these have to be
178 * cleaned up in do_exit() if the task exits prematurely:
179 */
180 struct list_head list;
181
182 /*
183 * The PI object:
184 */
185 struct rt_mutex pi_mutex;
186
187 struct task_struct *owner;
188 atomic_t refcount;
189
190 union futex_key key;
191 };
192
193 /**
194 * struct futex_q - The hashed futex queue entry, one per waiting task
195 * @list: priority-sorted list of tasks waiting on this futex
196 * @task: the task waiting on the futex
197 * @lock_ptr: the hash bucket lock
198 * @key: the key the futex is hashed on
199 * @pi_state: optional priority inheritance state
200 * @rt_waiter: rt_waiter storage for use with requeue_pi
201 * @requeue_pi_key: the requeue_pi target futex key
202 * @bitset: bitset for the optional bitmasked wakeup
203 *
204 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
205 * we can wake only the relevant ones (hashed queues may be shared).
206 *
207 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
208 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
209 * The order of wakeup is always to make the first condition true, then
210 * the second.
211 *
212 * PI futexes are typically woken before they are removed from the hash list via
213 * the rt_mutex code. See unqueue_me_pi().
214 */
215 struct futex_q {
216 struct plist_node list;
217
218 struct task_struct *task;
219 spinlock_t *lock_ptr;
220 union futex_key key;
221 struct futex_pi_state *pi_state;
222 struct rt_mutex_waiter *rt_waiter;
223 union futex_key *requeue_pi_key;
224 u32 bitset;
225 };
226
227 static const struct futex_q futex_q_init = {
228 /* list gets initialized in queue_me()*/
229 .key = FUTEX_KEY_INIT,
230 .bitset = FUTEX_BITSET_MATCH_ANY
231 };
232
233 /*
234 * Hash buckets are shared by all the futex_keys that hash to the same
235 * location. Each key may have multiple futex_q structures, one for each task
236 * waiting on a futex.
237 */
238 struct futex_hash_bucket {
239 atomic_t waiters;
240 spinlock_t lock;
241 struct plist_head chain;
242 } ____cacheline_aligned_in_smp;
243
244 static unsigned long __read_mostly futex_hashsize;
245
246 static struct futex_hash_bucket *futex_queues;
247
248 static inline void futex_get_mm(union futex_key *key)
249 {
250 atomic_inc(&key->private.mm->mm_count);
251 /*
252 * Ensure futex_get_mm() implies a full barrier such that
253 * get_futex_key() implies a full barrier. This is relied upon
254 * as full barrier (B), see the ordering comment above.
255 */
256 smp_mb__after_atomic_inc();
257 }
258
259 /*
260 * Reflects a new waiter being added to the waitqueue.
261 */
262 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
263 {
264 #ifdef CONFIG_SMP
265 atomic_inc(&hb->waiters);
266 /*
267 * Full barrier (A), see the ordering comment above.
268 */
269 smp_mb__after_atomic_inc();
270 #endif
271 }
272
273 /*
274 * Reflects a waiter being removed from the waitqueue by wakeup
275 * paths.
276 */
277 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
278 {
279 #ifdef CONFIG_SMP
280 atomic_dec(&hb->waiters);
281 #endif
282 }
283
284 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
285 {
286 #ifdef CONFIG_SMP
287 return atomic_read(&hb->waiters);
288 #else
289 return 1;
290 #endif
291 }
292
293 /*
294 * We hash on the keys returned from get_futex_key (see below).
295 */
296 static struct futex_hash_bucket *hash_futex(union futex_key *key)
297 {
298 u32 hash = jhash2((u32*)&key->both.word,
299 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
300 key->both.offset);
301 return &futex_queues[hash & (futex_hashsize - 1)];
302 }
303
304 /*
305 * Return 1 if two futex_keys are equal, 0 otherwise.
306 */
307 static inline int match_futex(union futex_key *key1, union futex_key *key2)
308 {
309 return (key1 && key2
310 && key1->both.word == key2->both.word
311 && key1->both.ptr == key2->both.ptr
312 && key1->both.offset == key2->both.offset);
313 }
314
315 /*
316 * Take a reference to the resource addressed by a key.
317 * Can be called while holding spinlocks.
318 *
319 */
320 static void get_futex_key_refs(union futex_key *key)
321 {
322 if (!key->both.ptr)
323 return;
324
325 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
326 case FUT_OFF_INODE:
327 ihold(key->shared.inode); /* implies MB (B) */
328 break;
329 case FUT_OFF_MMSHARED:
330 futex_get_mm(key); /* implies MB (B) */
331 break;
332 }
333 }
334
335 /*
336 * Drop a reference to the resource addressed by a key.
337 * The hash bucket spinlock must not be held.
338 */
339 static void drop_futex_key_refs(union futex_key *key)
340 {
341 if (!key->both.ptr) {
342 /* If we're here then we tried to put a key we failed to get */
343 WARN_ON_ONCE(1);
344 return;
345 }
346
347 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
348 case FUT_OFF_INODE:
349 iput(key->shared.inode);
350 break;
351 case FUT_OFF_MMSHARED:
352 mmdrop(key->private.mm);
353 break;
354 }
355 }
356
357 /**
358 * get_futex_key() - Get parameters which are the keys for a futex
359 * @uaddr: virtual address of the futex
360 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
361 * @key: address where result is stored.
362 * @rw: mapping needs to be read/write (values: VERIFY_READ,
363 * VERIFY_WRITE)
364 *
365 * Return: a negative error code or 0
366 *
367 * The key words are stored in *key on success.
368 *
369 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
370 * offset_within_page). For private mappings, it's (uaddr, current->mm).
371 * We can usually work out the index without swapping in the page.
372 *
373 * lock_page() might sleep, the caller should not hold a spinlock.
374 */
375 static int
376 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
377 {
378 unsigned long address = (unsigned long)uaddr;
379 struct mm_struct *mm = current->mm;
380 struct page *page, *page_head;
381 int err, ro = 0;
382
383 /*
384 * The futex address must be "naturally" aligned.
385 */
386 key->both.offset = address % PAGE_SIZE;
387 if (unlikely((address % sizeof(u32)) != 0))
388 return -EINVAL;
389 address -= key->both.offset;
390
391 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
392 return -EFAULT;
393
394 /*
395 * PROCESS_PRIVATE futexes are fast.
396 * As the mm cannot disappear under us and the 'key' only needs
397 * virtual address, we dont even have to find the underlying vma.
398 * Note : We do have to check 'uaddr' is a valid user address,
399 * but access_ok() should be faster than find_vma()
400 */
401 if (!fshared) {
402 key->private.mm = mm;
403 key->private.address = address;
404 get_futex_key_refs(key); /* implies MB (B) */
405 return 0;
406 }
407
408 again:
409 err = get_user_pages_fast(address, 1, 1, &page);
410 /*
411 * If write access is not required (eg. FUTEX_WAIT), try
412 * and get read-only access.
413 */
414 if (err == -EFAULT && rw == VERIFY_READ) {
415 err = get_user_pages_fast(address, 1, 0, &page);
416 ro = 1;
417 }
418 if (err < 0)
419 return err;
420 else
421 err = 0;
422
423 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
424 page_head = page;
425 if (unlikely(PageTail(page))) {
426 put_page(page);
427 /* serialize against __split_huge_page_splitting() */
428 local_irq_disable();
429 if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
430 page_head = compound_head(page);
431 /*
432 * page_head is valid pointer but we must pin
433 * it before taking the PG_lock and/or
434 * PG_compound_lock. The moment we re-enable
435 * irqs __split_huge_page_splitting() can
436 * return and the head page can be freed from
437 * under us. We can't take the PG_lock and/or
438 * PG_compound_lock on a page that could be
439 * freed from under us.
440 */
441 if (page != page_head) {
442 get_page(page_head);
443 put_page(page);
444 }
445 local_irq_enable();
446 } else {
447 local_irq_enable();
448 goto again;
449 }
450 }
451 #else
452 page_head = compound_head(page);
453 if (page != page_head) {
454 get_page(page_head);
455 put_page(page);
456 }
457 #endif
458
459 lock_page(page_head);
460
461 /*
462 * If page_head->mapping is NULL, then it cannot be a PageAnon
463 * page; but it might be the ZERO_PAGE or in the gate area or
464 * in a special mapping (all cases which we are happy to fail);
465 * or it may have been a good file page when get_user_pages_fast
466 * found it, but truncated or holepunched or subjected to
467 * invalidate_complete_page2 before we got the page lock (also
468 * cases which we are happy to fail). And we hold a reference,
469 * so refcount care in invalidate_complete_page's remove_mapping
470 * prevents drop_caches from setting mapping to NULL beneath us.
471 *
472 * The case we do have to guard against is when memory pressure made
473 * shmem_writepage move it from filecache to swapcache beneath us:
474 * an unlikely race, but we do need to retry for page_head->mapping.
475 */
476 if (!page_head->mapping) {
477 int shmem_swizzled = PageSwapCache(page_head);
478 unlock_page(page_head);
479 put_page(page_head);
480 if (shmem_swizzled)
481 goto again;
482 return -EFAULT;
483 }
484
485 /*
486 * Private mappings are handled in a simple way.
487 *
488 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
489 * it's a read-only handle, it's expected that futexes attach to
490 * the object not the particular process.
491 */
492 if (PageAnon(page_head)) {
493 /*
494 * A RO anonymous page will never change and thus doesn't make
495 * sense for futex operations.
496 */
497 if (ro) {
498 err = -EFAULT;
499 goto out;
500 }
501
502 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
503 key->private.mm = mm;
504 key->private.address = address;
505 } else {
506 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
507 key->shared.inode = page_head->mapping->host;
508 key->shared.pgoff = basepage_index(page);
509 }
510
511 get_futex_key_refs(key); /* implies MB (B) */
512
513 out:
514 unlock_page(page_head);
515 put_page(page_head);
516 return err;
517 }
518
519 static inline void put_futex_key(union futex_key *key)
520 {
521 drop_futex_key_refs(key);
522 }
523
524 /**
525 * fault_in_user_writeable() - Fault in user address and verify RW access
526 * @uaddr: pointer to faulting user space address
527 *
528 * Slow path to fixup the fault we just took in the atomic write
529 * access to @uaddr.
530 *
531 * We have no generic implementation of a non-destructive write to the
532 * user address. We know that we faulted in the atomic pagefault
533 * disabled section so we can as well avoid the #PF overhead by
534 * calling get_user_pages() right away.
535 */
536 static int fault_in_user_writeable(u32 __user *uaddr)
537 {
538 struct mm_struct *mm = current->mm;
539 int ret;
540
541 down_read(&mm->mmap_sem);
542 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
543 FAULT_FLAG_WRITE);
544 up_read(&mm->mmap_sem);
545
546 return ret < 0 ? ret : 0;
547 }
548
549 /**
550 * futex_top_waiter() - Return the highest priority waiter on a futex
551 * @hb: the hash bucket the futex_q's reside in
552 * @key: the futex key (to distinguish it from other futex futex_q's)
553 *
554 * Must be called with the hb lock held.
555 */
556 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
557 union futex_key *key)
558 {
559 struct futex_q *this;
560
561 plist_for_each_entry(this, &hb->chain, list) {
562 if (match_futex(&this->key, key))
563 return this;
564 }
565 return NULL;
566 }
567
568 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
569 u32 uval, u32 newval)
570 {
571 int ret;
572
573 pagefault_disable();
574 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
575 pagefault_enable();
576
577 return ret;
578 }
579
580 static int get_futex_value_locked(u32 *dest, u32 __user *from)
581 {
582 int ret;
583
584 pagefault_disable();
585 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
586 pagefault_enable();
587
588 return ret ? -EFAULT : 0;
589 }
590
591
592 /*
593 * PI code:
594 */
595 static int refill_pi_state_cache(void)
596 {
597 struct futex_pi_state *pi_state;
598
599 if (likely(current->pi_state_cache))
600 return 0;
601
602 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
603
604 if (!pi_state)
605 return -ENOMEM;
606
607 INIT_LIST_HEAD(&pi_state->list);
608 /* pi_mutex gets initialized later */
609 pi_state->owner = NULL;
610 atomic_set(&pi_state->refcount, 1);
611 pi_state->key = FUTEX_KEY_INIT;
612
613 current->pi_state_cache = pi_state;
614
615 return 0;
616 }
617
618 static struct futex_pi_state * alloc_pi_state(void)
619 {
620 struct futex_pi_state *pi_state = current->pi_state_cache;
621
622 WARN_ON(!pi_state);
623 current->pi_state_cache = NULL;
624
625 return pi_state;
626 }
627
628 static void free_pi_state(struct futex_pi_state *pi_state)
629 {
630 if (!atomic_dec_and_test(&pi_state->refcount))
631 return;
632
633 /*
634 * If pi_state->owner is NULL, the owner is most probably dying
635 * and has cleaned up the pi_state already
636 */
637 if (pi_state->owner) {
638 raw_spin_lock_irq(&pi_state->owner->pi_lock);
639 list_del_init(&pi_state->list);
640 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
641
642 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
643 }
644
645 if (current->pi_state_cache)
646 kfree(pi_state);
647 else {
648 /*
649 * pi_state->list is already empty.
650 * clear pi_state->owner.
651 * refcount is at 0 - put it back to 1.
652 */
653 pi_state->owner = NULL;
654 atomic_set(&pi_state->refcount, 1);
655 current->pi_state_cache = pi_state;
656 }
657 }
658
659 /*
660 * Look up the task based on what TID userspace gave us.
661 * We dont trust it.
662 */
663 static struct task_struct * futex_find_get_task(pid_t pid)
664 {
665 struct task_struct *p;
666
667 rcu_read_lock();
668 p = find_task_by_vpid(pid);
669 if (p)
670 get_task_struct(p);
671
672 rcu_read_unlock();
673
674 return p;
675 }
676
677 /*
678 * This task is holding PI mutexes at exit time => bad.
679 * Kernel cleans up PI-state, but userspace is likely hosed.
680 * (Robust-futex cleanup is separate and might save the day for userspace.)
681 */
682 void exit_pi_state_list(struct task_struct *curr)
683 {
684 struct list_head *next, *head = &curr->pi_state_list;
685 struct futex_pi_state *pi_state;
686 struct futex_hash_bucket *hb;
687 union futex_key key = FUTEX_KEY_INIT;
688
689 if (!futex_cmpxchg_enabled)
690 return;
691 /*
692 * We are a ZOMBIE and nobody can enqueue itself on
693 * pi_state_list anymore, but we have to be careful
694 * versus waiters unqueueing themselves:
695 */
696 raw_spin_lock_irq(&curr->pi_lock);
697 while (!list_empty(head)) {
698
699 next = head->next;
700 pi_state = list_entry(next, struct futex_pi_state, list);
701 key = pi_state->key;
702 hb = hash_futex(&key);
703 raw_spin_unlock_irq(&curr->pi_lock);
704
705 spin_lock(&hb->lock);
706
707 raw_spin_lock_irq(&curr->pi_lock);
708 /*
709 * We dropped the pi-lock, so re-check whether this
710 * task still owns the PI-state:
711 */
712 if (head->next != next) {
713 spin_unlock(&hb->lock);
714 continue;
715 }
716
717 WARN_ON(pi_state->owner != curr);
718 WARN_ON(list_empty(&pi_state->list));
719 list_del_init(&pi_state->list);
720 pi_state->owner = NULL;
721 raw_spin_unlock_irq(&curr->pi_lock);
722
723 rt_mutex_unlock(&pi_state->pi_mutex);
724
725 spin_unlock(&hb->lock);
726
727 raw_spin_lock_irq(&curr->pi_lock);
728 }
729 raw_spin_unlock_irq(&curr->pi_lock);
730 }
731
732 static int
733 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
734 union futex_key *key, struct futex_pi_state **ps)
735 {
736 struct futex_pi_state *pi_state = NULL;
737 struct futex_q *this, *next;
738 struct task_struct *p;
739 pid_t pid = uval & FUTEX_TID_MASK;
740
741 plist_for_each_entry_safe(this, next, &hb->chain, list) {
742 if (match_futex(&this->key, key)) {
743 /*
744 * Another waiter already exists - bump up
745 * the refcount and return its pi_state:
746 */
747 pi_state = this->pi_state;
748 /*
749 * Userspace might have messed up non-PI and PI futexes
750 */
751 if (unlikely(!pi_state))
752 return -EINVAL;
753
754 WARN_ON(!atomic_read(&pi_state->refcount));
755
756 /*
757 * When pi_state->owner is NULL then the owner died
758 * and another waiter is on the fly. pi_state->owner
759 * is fixed up by the task which acquires
760 * pi_state->rt_mutex.
761 *
762 * We do not check for pid == 0 which can happen when
763 * the owner died and robust_list_exit() cleared the
764 * TID.
765 */
766 if (pid && pi_state->owner) {
767 /*
768 * Bail out if user space manipulated the
769 * futex value.
770 */
771 if (pid != task_pid_vnr(pi_state->owner))
772 return -EINVAL;
773 }
774
775 atomic_inc(&pi_state->refcount);
776 *ps = pi_state;
777
778 return 0;
779 }
780 }
781
782 /*
783 * We are the first waiter - try to look up the real owner and attach
784 * the new pi_state to it, but bail out when TID = 0
785 */
786 if (!pid)
787 return -ESRCH;
788 p = futex_find_get_task(pid);
789 if (!p)
790 return -ESRCH;
791
792 /*
793 * We need to look at the task state flags to figure out,
794 * whether the task is exiting. To protect against the do_exit
795 * change of the task flags, we do this protected by
796 * p->pi_lock:
797 */
798 raw_spin_lock_irq(&p->pi_lock);
799 if (unlikely(p->flags & PF_EXITING)) {
800 /*
801 * The task is on the way out. When PF_EXITPIDONE is
802 * set, we know that the task has finished the
803 * cleanup:
804 */
805 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
806
807 raw_spin_unlock_irq(&p->pi_lock);
808 put_task_struct(p);
809 return ret;
810 }
811
812 pi_state = alloc_pi_state();
813
814 /*
815 * Initialize the pi_mutex in locked state and make 'p'
816 * the owner of it:
817 */
818 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
819
820 /* Store the key for possible exit cleanups: */
821 pi_state->key = *key;
822
823 WARN_ON(!list_empty(&pi_state->list));
824 list_add(&pi_state->list, &p->pi_state_list);
825 pi_state->owner = p;
826 raw_spin_unlock_irq(&p->pi_lock);
827
828 put_task_struct(p);
829
830 *ps = pi_state;
831
832 return 0;
833 }
834
835 /**
836 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
837 * @uaddr: the pi futex user address
838 * @hb: the pi futex hash bucket
839 * @key: the futex key associated with uaddr and hb
840 * @ps: the pi_state pointer where we store the result of the
841 * lookup
842 * @task: the task to perform the atomic lock work for. This will
843 * be "current" except in the case of requeue pi.
844 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
845 *
846 * Return:
847 * 0 - ready to wait;
848 * 1 - acquired the lock;
849 * <0 - error
850 *
851 * The hb->lock and futex_key refs shall be held by the caller.
852 */
853 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
854 union futex_key *key,
855 struct futex_pi_state **ps,
856 struct task_struct *task, int set_waiters)
857 {
858 int lock_taken, ret, force_take = 0;
859 u32 uval, newval, curval, vpid = task_pid_vnr(task);
860
861 retry:
862 ret = lock_taken = 0;
863
864 /*
865 * To avoid races, we attempt to take the lock here again
866 * (by doing a 0 -> TID atomic cmpxchg), while holding all
867 * the locks. It will most likely not succeed.
868 */
869 newval = vpid;
870 if (set_waiters)
871 newval |= FUTEX_WAITERS;
872
873 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
874 return -EFAULT;
875
876 /*
877 * Detect deadlocks.
878 */
879 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
880 return -EDEADLK;
881
882 /*
883 * Surprise - we got the lock. Just return to userspace:
884 */
885 if (unlikely(!curval))
886 return 1;
887
888 uval = curval;
889
890 /*
891 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
892 * to wake at the next unlock.
893 */
894 newval = curval | FUTEX_WAITERS;
895
896 /*
897 * Should we force take the futex? See below.
898 */
899 if (unlikely(force_take)) {
900 /*
901 * Keep the OWNER_DIED and the WAITERS bit and set the
902 * new TID value.
903 */
904 newval = (curval & ~FUTEX_TID_MASK) | vpid;
905 force_take = 0;
906 lock_taken = 1;
907 }
908
909 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
910 return -EFAULT;
911 if (unlikely(curval != uval))
912 goto retry;
913
914 /*
915 * We took the lock due to forced take over.
916 */
917 if (unlikely(lock_taken))
918 return 1;
919
920 /*
921 * We dont have the lock. Look up the PI state (or create it if
922 * we are the first waiter):
923 */
924 ret = lookup_pi_state(uval, hb, key, ps);
925
926 if (unlikely(ret)) {
927 switch (ret) {
928 case -ESRCH:
929 /*
930 * We failed to find an owner for this
931 * futex. So we have no pi_state to block
932 * on. This can happen in two cases:
933 *
934 * 1) The owner died
935 * 2) A stale FUTEX_WAITERS bit
936 *
937 * Re-read the futex value.
938 */
939 if (get_futex_value_locked(&curval, uaddr))
940 return -EFAULT;
941
942 /*
943 * If the owner died or we have a stale
944 * WAITERS bit the owner TID in the user space
945 * futex is 0.
946 */
947 if (!(curval & FUTEX_TID_MASK)) {
948 force_take = 1;
949 goto retry;
950 }
951 default:
952 break;
953 }
954 }
955
956 return ret;
957 }
958
959 /**
960 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
961 * @q: The futex_q to unqueue
962 *
963 * The q->lock_ptr must not be NULL and must be held by the caller.
964 */
965 static void __unqueue_futex(struct futex_q *q)
966 {
967 struct futex_hash_bucket *hb;
968
969 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
970 || WARN_ON(plist_node_empty(&q->list)))
971 return;
972
973 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
974 plist_del(&q->list, &hb->chain);
975 hb_waiters_dec(hb);
976 }
977
978 /*
979 * The hash bucket lock must be held when this is called.
980 * Afterwards, the futex_q must not be accessed.
981 */
982 static void wake_futex(struct futex_q *q)
983 {
984 struct task_struct *p = q->task;
985
986 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
987 return;
988
989 /*
990 * We set q->lock_ptr = NULL _before_ we wake up the task. If
991 * a non-futex wake up happens on another CPU then the task
992 * might exit and p would dereference a non-existing task
993 * struct. Prevent this by holding a reference on p across the
994 * wake up.
995 */
996 get_task_struct(p);
997
998 __unqueue_futex(q);
999 /*
1000 * The waiting task can free the futex_q as soon as
1001 * q->lock_ptr = NULL is written, without taking any locks. A
1002 * memory barrier is required here to prevent the following
1003 * store to lock_ptr from getting ahead of the plist_del.
1004 */
1005 smp_wmb();
1006 q->lock_ptr = NULL;
1007
1008 wake_up_state(p, TASK_NORMAL);
1009 put_task_struct(p);
1010 }
1011
1012 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
1013 {
1014 struct task_struct *new_owner;
1015 struct futex_pi_state *pi_state = this->pi_state;
1016 u32 uninitialized_var(curval), newval;
1017
1018 if (!pi_state)
1019 return -EINVAL;
1020
1021 /*
1022 * If current does not own the pi_state then the futex is
1023 * inconsistent and user space fiddled with the futex value.
1024 */
1025 if (pi_state->owner != current)
1026 return -EINVAL;
1027
1028 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1029 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1030
1031 /*
1032 * It is possible that the next waiter (the one that brought
1033 * this owner to the kernel) timed out and is no longer
1034 * waiting on the lock.
1035 */
1036 if (!new_owner)
1037 new_owner = this->task;
1038
1039 /*
1040 * We pass it to the next owner. (The WAITERS bit is always
1041 * kept enabled while there is PI state around. We must also
1042 * preserve the owner died bit.)
1043 */
1044 if (!(uval & FUTEX_OWNER_DIED)) {
1045 int ret = 0;
1046
1047 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1048
1049 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1050 ret = -EFAULT;
1051 else if (curval != uval)
1052 ret = -EINVAL;
1053 if (ret) {
1054 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1055 return ret;
1056 }
1057 }
1058
1059 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1060 WARN_ON(list_empty(&pi_state->list));
1061 list_del_init(&pi_state->list);
1062 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1063
1064 raw_spin_lock_irq(&new_owner->pi_lock);
1065 WARN_ON(!list_empty(&pi_state->list));
1066 list_add(&pi_state->list, &new_owner->pi_state_list);
1067 pi_state->owner = new_owner;
1068 raw_spin_unlock_irq(&new_owner->pi_lock);
1069
1070 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1071 rt_mutex_unlock(&pi_state->pi_mutex);
1072
1073 return 0;
1074 }
1075
1076 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1077 {
1078 u32 uninitialized_var(oldval);
1079
1080 /*
1081 * There is no waiter, so we unlock the futex. The owner died
1082 * bit has not to be preserved here. We are the owner:
1083 */
1084 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1085 return -EFAULT;
1086 if (oldval != uval)
1087 return -EAGAIN;
1088
1089 return 0;
1090 }
1091
1092 /*
1093 * Express the locking dependencies for lockdep:
1094 */
1095 static inline void
1096 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1097 {
1098 if (hb1 <= hb2) {
1099 spin_lock(&hb1->lock);
1100 if (hb1 < hb2)
1101 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1102 } else { /* hb1 > hb2 */
1103 spin_lock(&hb2->lock);
1104 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1105 }
1106 }
1107
1108 static inline void
1109 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1110 {
1111 spin_unlock(&hb1->lock);
1112 if (hb1 != hb2)
1113 spin_unlock(&hb2->lock);
1114 }
1115
1116 /*
1117 * Wake up waiters matching bitset queued on this futex (uaddr).
1118 */
1119 static int
1120 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1121 {
1122 struct futex_hash_bucket *hb;
1123 struct futex_q *this, *next;
1124 union futex_key key = FUTEX_KEY_INIT;
1125 int ret;
1126
1127 if (!bitset)
1128 return -EINVAL;
1129
1130 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1131 if (unlikely(ret != 0))
1132 goto out;
1133
1134 hb = hash_futex(&key);
1135
1136 /* Make sure we really have tasks to wakeup */
1137 if (!hb_waiters_pending(hb))
1138 goto out_put_key;
1139
1140 spin_lock(&hb->lock);
1141
1142 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1143 if (match_futex (&this->key, &key)) {
1144 if (this->pi_state || this->rt_waiter) {
1145 ret = -EINVAL;
1146 break;
1147 }
1148
1149 /* Check if one of the bits is set in both bitsets */
1150 if (!(this->bitset & bitset))
1151 continue;
1152
1153 wake_futex(this);
1154 if (++ret >= nr_wake)
1155 break;
1156 }
1157 }
1158
1159 spin_unlock(&hb->lock);
1160 out_put_key:
1161 put_futex_key(&key);
1162 out:
1163 return ret;
1164 }
1165
1166 /*
1167 * Wake up all waiters hashed on the physical page that is mapped
1168 * to this virtual address:
1169 */
1170 static int
1171 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1172 int nr_wake, int nr_wake2, int op)
1173 {
1174 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1175 struct futex_hash_bucket *hb1, *hb2;
1176 struct futex_q *this, *next;
1177 int ret, op_ret;
1178
1179 retry:
1180 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1181 if (unlikely(ret != 0))
1182 goto out;
1183 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1184 if (unlikely(ret != 0))
1185 goto out_put_key1;
1186
1187 hb1 = hash_futex(&key1);
1188 hb2 = hash_futex(&key2);
1189
1190 retry_private:
1191 double_lock_hb(hb1, hb2);
1192 op_ret = futex_atomic_op_inuser(op, uaddr2);
1193 if (unlikely(op_ret < 0)) {
1194
1195 double_unlock_hb(hb1, hb2);
1196
1197 #ifndef CONFIG_MMU
1198 /*
1199 * we don't get EFAULT from MMU faults if we don't have an MMU,
1200 * but we might get them from range checking
1201 */
1202 ret = op_ret;
1203 goto out_put_keys;
1204 #endif
1205
1206 if (unlikely(op_ret != -EFAULT)) {
1207 ret = op_ret;
1208 goto out_put_keys;
1209 }
1210
1211 ret = fault_in_user_writeable(uaddr2);
1212 if (ret)
1213 goto out_put_keys;
1214
1215 if (!(flags & FLAGS_SHARED))
1216 goto retry_private;
1217
1218 put_futex_key(&key2);
1219 put_futex_key(&key1);
1220 goto retry;
1221 }
1222
1223 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1224 if (match_futex (&this->key, &key1)) {
1225 if (this->pi_state || this->rt_waiter) {
1226 ret = -EINVAL;
1227 goto out_unlock;
1228 }
1229 wake_futex(this);
1230 if (++ret >= nr_wake)
1231 break;
1232 }
1233 }
1234
1235 if (op_ret > 0) {
1236 op_ret = 0;
1237 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1238 if (match_futex (&this->key, &key2)) {
1239 if (this->pi_state || this->rt_waiter) {
1240 ret = -EINVAL;
1241 goto out_unlock;
1242 }
1243 wake_futex(this);
1244 if (++op_ret >= nr_wake2)
1245 break;
1246 }
1247 }
1248 ret += op_ret;
1249 }
1250
1251 out_unlock:
1252 double_unlock_hb(hb1, hb2);
1253 out_put_keys:
1254 put_futex_key(&key2);
1255 out_put_key1:
1256 put_futex_key(&key1);
1257 out:
1258 return ret;
1259 }
1260
1261 /**
1262 * requeue_futex() - Requeue a futex_q from one hb to another
1263 * @q: the futex_q to requeue
1264 * @hb1: the source hash_bucket
1265 * @hb2: the target hash_bucket
1266 * @key2: the new key for the requeued futex_q
1267 */
1268 static inline
1269 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1270 struct futex_hash_bucket *hb2, union futex_key *key2)
1271 {
1272
1273 /*
1274 * If key1 and key2 hash to the same bucket, no need to
1275 * requeue.
1276 */
1277 if (likely(&hb1->chain != &hb2->chain)) {
1278 plist_del(&q->list, &hb1->chain);
1279 hb_waiters_dec(hb1);
1280 plist_add(&q->list, &hb2->chain);
1281 hb_waiters_inc(hb2);
1282 q->lock_ptr = &hb2->lock;
1283 }
1284 get_futex_key_refs(key2);
1285 q->key = *key2;
1286 }
1287
1288 /**
1289 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1290 * @q: the futex_q
1291 * @key: the key of the requeue target futex
1292 * @hb: the hash_bucket of the requeue target futex
1293 *
1294 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1295 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1296 * to the requeue target futex so the waiter can detect the wakeup on the right
1297 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1298 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1299 * to protect access to the pi_state to fixup the owner later. Must be called
1300 * with both q->lock_ptr and hb->lock held.
1301 */
1302 static inline
1303 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1304 struct futex_hash_bucket *hb)
1305 {
1306 get_futex_key_refs(key);
1307 q->key = *key;
1308
1309 __unqueue_futex(q);
1310
1311 WARN_ON(!q->rt_waiter);
1312 q->rt_waiter = NULL;
1313
1314 q->lock_ptr = &hb->lock;
1315
1316 wake_up_state(q->task, TASK_NORMAL);
1317 }
1318
1319 /**
1320 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1321 * @pifutex: the user address of the to futex
1322 * @hb1: the from futex hash bucket, must be locked by the caller
1323 * @hb2: the to futex hash bucket, must be locked by the caller
1324 * @key1: the from futex key
1325 * @key2: the to futex key
1326 * @ps: address to store the pi_state pointer
1327 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1328 *
1329 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1330 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1331 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1332 * hb1 and hb2 must be held by the caller.
1333 *
1334 * Return:
1335 * 0 - failed to acquire the lock atomically;
1336 * 1 - acquired the lock;
1337 * <0 - error
1338 */
1339 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1340 struct futex_hash_bucket *hb1,
1341 struct futex_hash_bucket *hb2,
1342 union futex_key *key1, union futex_key *key2,
1343 struct futex_pi_state **ps, int set_waiters)
1344 {
1345 struct futex_q *top_waiter = NULL;
1346 u32 curval;
1347 int ret;
1348
1349 if (get_futex_value_locked(&curval, pifutex))
1350 return -EFAULT;
1351
1352 /*
1353 * Find the top_waiter and determine if there are additional waiters.
1354 * If the caller intends to requeue more than 1 waiter to pifutex,
1355 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1356 * as we have means to handle the possible fault. If not, don't set
1357 * the bit unecessarily as it will force the subsequent unlock to enter
1358 * the kernel.
1359 */
1360 top_waiter = futex_top_waiter(hb1, key1);
1361
1362 /* There are no waiters, nothing for us to do. */
1363 if (!top_waiter)
1364 return 0;
1365
1366 /* Ensure we requeue to the expected futex. */
1367 if (!match_futex(top_waiter->requeue_pi_key, key2))
1368 return -EINVAL;
1369
1370 /*
1371 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1372 * the contended case or if set_waiters is 1. The pi_state is returned
1373 * in ps in contended cases.
1374 */
1375 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1376 set_waiters);
1377 if (ret == 1)
1378 requeue_pi_wake_futex(top_waiter, key2, hb2);
1379
1380 return ret;
1381 }
1382
1383 /**
1384 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1385 * @uaddr1: source futex user address
1386 * @flags: futex flags (FLAGS_SHARED, etc.)
1387 * @uaddr2: target futex user address
1388 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1389 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1390 * @cmpval: @uaddr1 expected value (or %NULL)
1391 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1392 * pi futex (pi to pi requeue is not supported)
1393 *
1394 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1395 * uaddr2 atomically on behalf of the top waiter.
1396 *
1397 * Return:
1398 * >=0 - on success, the number of tasks requeued or woken;
1399 * <0 - on error
1400 */
1401 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1402 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1403 u32 *cmpval, int requeue_pi)
1404 {
1405 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1406 int drop_count = 0, task_count = 0, ret;
1407 struct futex_pi_state *pi_state = NULL;
1408 struct futex_hash_bucket *hb1, *hb2;
1409 struct futex_q *this, *next;
1410 u32 curval2;
1411
1412 if (requeue_pi) {
1413 /*
1414 * requeue_pi requires a pi_state, try to allocate it now
1415 * without any locks in case it fails.
1416 */
1417 if (refill_pi_state_cache())
1418 return -ENOMEM;
1419 /*
1420 * requeue_pi must wake as many tasks as it can, up to nr_wake
1421 * + nr_requeue, since it acquires the rt_mutex prior to
1422 * returning to userspace, so as to not leave the rt_mutex with
1423 * waiters and no owner. However, second and third wake-ups
1424 * cannot be predicted as they involve race conditions with the
1425 * first wake and a fault while looking up the pi_state. Both
1426 * pthread_cond_signal() and pthread_cond_broadcast() should
1427 * use nr_wake=1.
1428 */
1429 if (nr_wake != 1)
1430 return -EINVAL;
1431 }
1432
1433 retry:
1434 if (pi_state != NULL) {
1435 /*
1436 * We will have to lookup the pi_state again, so free this one
1437 * to keep the accounting correct.
1438 */
1439 free_pi_state(pi_state);
1440 pi_state = NULL;
1441 }
1442
1443 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1444 if (unlikely(ret != 0))
1445 goto out;
1446 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1447 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1448 if (unlikely(ret != 0))
1449 goto out_put_key1;
1450
1451 hb1 = hash_futex(&key1);
1452 hb2 = hash_futex(&key2);
1453
1454 retry_private:
1455 hb_waiters_inc(hb2);
1456 double_lock_hb(hb1, hb2);
1457
1458 if (likely(cmpval != NULL)) {
1459 u32 curval;
1460
1461 ret = get_futex_value_locked(&curval, uaddr1);
1462
1463 if (unlikely(ret)) {
1464 double_unlock_hb(hb1, hb2);
1465 hb_waiters_dec(hb2);
1466
1467 ret = get_user(curval, uaddr1);
1468 if (ret)
1469 goto out_put_keys;
1470
1471 if (!(flags & FLAGS_SHARED))
1472 goto retry_private;
1473
1474 put_futex_key(&key2);
1475 put_futex_key(&key1);
1476 goto retry;
1477 }
1478 if (curval != *cmpval) {
1479 ret = -EAGAIN;
1480 goto out_unlock;
1481 }
1482 }
1483
1484 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1485 /*
1486 * Attempt to acquire uaddr2 and wake the top waiter. If we
1487 * intend to requeue waiters, force setting the FUTEX_WAITERS
1488 * bit. We force this here where we are able to easily handle
1489 * faults rather in the requeue loop below.
1490 */
1491 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1492 &key2, &pi_state, nr_requeue);
1493
1494 /*
1495 * At this point the top_waiter has either taken uaddr2 or is
1496 * waiting on it. If the former, then the pi_state will not
1497 * exist yet, look it up one more time to ensure we have a
1498 * reference to it.
1499 */
1500 if (ret == 1) {
1501 WARN_ON(pi_state);
1502 drop_count++;
1503 task_count++;
1504 ret = get_futex_value_locked(&curval2, uaddr2);
1505 if (!ret)
1506 ret = lookup_pi_state(curval2, hb2, &key2,
1507 &pi_state);
1508 }
1509
1510 switch (ret) {
1511 case 0:
1512 break;
1513 case -EFAULT:
1514 double_unlock_hb(hb1, hb2);
1515 hb_waiters_dec(hb2);
1516 put_futex_key(&key2);
1517 put_futex_key(&key1);
1518 ret = fault_in_user_writeable(uaddr2);
1519 if (!ret)
1520 goto retry;
1521 goto out;
1522 case -EAGAIN:
1523 /* The owner was exiting, try again. */
1524 double_unlock_hb(hb1, hb2);
1525 hb_waiters_dec(hb2);
1526 put_futex_key(&key2);
1527 put_futex_key(&key1);
1528 cond_resched();
1529 goto retry;
1530 default:
1531 goto out_unlock;
1532 }
1533 }
1534
1535 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1536 if (task_count - nr_wake >= nr_requeue)
1537 break;
1538
1539 if (!match_futex(&this->key, &key1))
1540 continue;
1541
1542 /*
1543 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1544 * be paired with each other and no other futex ops.
1545 *
1546 * We should never be requeueing a futex_q with a pi_state,
1547 * which is awaiting a futex_unlock_pi().
1548 */
1549 if ((requeue_pi && !this->rt_waiter) ||
1550 (!requeue_pi && this->rt_waiter) ||
1551 this->pi_state) {
1552 ret = -EINVAL;
1553 break;
1554 }
1555
1556 /*
1557 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1558 * lock, we already woke the top_waiter. If not, it will be
1559 * woken by futex_unlock_pi().
1560 */
1561 if (++task_count <= nr_wake && !requeue_pi) {
1562 wake_futex(this);
1563 continue;
1564 }
1565
1566 /* Ensure we requeue to the expected futex for requeue_pi. */
1567 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1568 ret = -EINVAL;
1569 break;
1570 }
1571
1572 /*
1573 * Requeue nr_requeue waiters and possibly one more in the case
1574 * of requeue_pi if we couldn't acquire the lock atomically.
1575 */
1576 if (requeue_pi) {
1577 /* Prepare the waiter to take the rt_mutex. */
1578 atomic_inc(&pi_state->refcount);
1579 this->pi_state = pi_state;
1580 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1581 this->rt_waiter,
1582 this->task, 1);
1583 if (ret == 1) {
1584 /* We got the lock. */
1585 requeue_pi_wake_futex(this, &key2, hb2);
1586 drop_count++;
1587 continue;
1588 } else if (ret) {
1589 /* -EDEADLK */
1590 this->pi_state = NULL;
1591 free_pi_state(pi_state);
1592 goto out_unlock;
1593 }
1594 }
1595 requeue_futex(this, hb1, hb2, &key2);
1596 drop_count++;
1597 }
1598
1599 out_unlock:
1600 double_unlock_hb(hb1, hb2);
1601 hb_waiters_dec(hb2);
1602
1603 /*
1604 * drop_futex_key_refs() must be called outside the spinlocks. During
1605 * the requeue we moved futex_q's from the hash bucket at key1 to the
1606 * one at key2 and updated their key pointer. We no longer need to
1607 * hold the references to key1.
1608 */
1609 while (--drop_count >= 0)
1610 drop_futex_key_refs(&key1);
1611
1612 out_put_keys:
1613 put_futex_key(&key2);
1614 out_put_key1:
1615 put_futex_key(&key1);
1616 out:
1617 if (pi_state != NULL)
1618 free_pi_state(pi_state);
1619 return ret ? ret : task_count;
1620 }
1621
1622 /* The key must be already stored in q->key. */
1623 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1624 __acquires(&hb->lock)
1625 {
1626 struct futex_hash_bucket *hb;
1627
1628 hb = hash_futex(&q->key);
1629
1630 /*
1631 * Increment the counter before taking the lock so that
1632 * a potential waker won't miss a to-be-slept task that is
1633 * waiting for the spinlock. This is safe as all queue_lock()
1634 * users end up calling queue_me(). Similarly, for housekeeping,
1635 * decrement the counter at queue_unlock() when some error has
1636 * occurred and we don't end up adding the task to the list.
1637 */
1638 hb_waiters_inc(hb);
1639
1640 q->lock_ptr = &hb->lock;
1641
1642 spin_lock(&hb->lock); /* implies MB (A) */
1643 return hb;
1644 }
1645
1646 static inline void
1647 queue_unlock(struct futex_hash_bucket *hb)
1648 __releases(&hb->lock)
1649 {
1650 spin_unlock(&hb->lock);
1651 hb_waiters_dec(hb);
1652 }
1653
1654 /**
1655 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1656 * @q: The futex_q to enqueue
1657 * @hb: The destination hash bucket
1658 *
1659 * The hb->lock must be held by the caller, and is released here. A call to
1660 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1661 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1662 * or nothing if the unqueue is done as part of the wake process and the unqueue
1663 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1664 * an example).
1665 */
1666 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1667 __releases(&hb->lock)
1668 {
1669 int prio;
1670
1671 /*
1672 * The priority used to register this element is
1673 * - either the real thread-priority for the real-time threads
1674 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1675 * - or MAX_RT_PRIO for non-RT threads.
1676 * Thus, all RT-threads are woken first in priority order, and
1677 * the others are woken last, in FIFO order.
1678 */
1679 prio = min(current->normal_prio, MAX_RT_PRIO);
1680
1681 plist_node_init(&q->list, prio);
1682 plist_add(&q->list, &hb->chain);
1683 q->task = current;
1684 spin_unlock(&hb->lock);
1685 }
1686
1687 /**
1688 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1689 * @q: The futex_q to unqueue
1690 *
1691 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1692 * be paired with exactly one earlier call to queue_me().
1693 *
1694 * Return:
1695 * 1 - if the futex_q was still queued (and we removed unqueued it);
1696 * 0 - if the futex_q was already removed by the waking thread
1697 */
1698 static int unqueue_me(struct futex_q *q)
1699 {
1700 spinlock_t *lock_ptr;
1701 int ret = 0;
1702
1703 /* In the common case we don't take the spinlock, which is nice. */
1704 retry:
1705 lock_ptr = q->lock_ptr;
1706 barrier();
1707 if (lock_ptr != NULL) {
1708 spin_lock(lock_ptr);
1709 /*
1710 * q->lock_ptr can change between reading it and
1711 * spin_lock(), causing us to take the wrong lock. This
1712 * corrects the race condition.
1713 *
1714 * Reasoning goes like this: if we have the wrong lock,
1715 * q->lock_ptr must have changed (maybe several times)
1716 * between reading it and the spin_lock(). It can
1717 * change again after the spin_lock() but only if it was
1718 * already changed before the spin_lock(). It cannot,
1719 * however, change back to the original value. Therefore
1720 * we can detect whether we acquired the correct lock.
1721 */
1722 if (unlikely(lock_ptr != q->lock_ptr)) {
1723 spin_unlock(lock_ptr);
1724 goto retry;
1725 }
1726 __unqueue_futex(q);
1727
1728 BUG_ON(q->pi_state);
1729
1730 spin_unlock(lock_ptr);
1731 ret = 1;
1732 }
1733
1734 drop_futex_key_refs(&q->key);
1735 return ret;
1736 }
1737
1738 /*
1739 * PI futexes can not be requeued and must remove themself from the
1740 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1741 * and dropped here.
1742 */
1743 static void unqueue_me_pi(struct futex_q *q)
1744 __releases(q->lock_ptr)
1745 {
1746 __unqueue_futex(q);
1747
1748 BUG_ON(!q->pi_state);
1749 free_pi_state(q->pi_state);
1750 q->pi_state = NULL;
1751
1752 spin_unlock(q->lock_ptr);
1753 }
1754
1755 /*
1756 * Fixup the pi_state owner with the new owner.
1757 *
1758 * Must be called with hash bucket lock held and mm->sem held for non
1759 * private futexes.
1760 */
1761 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1762 struct task_struct *newowner)
1763 {
1764 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1765 struct futex_pi_state *pi_state = q->pi_state;
1766 struct task_struct *oldowner = pi_state->owner;
1767 u32 uval, uninitialized_var(curval), newval;
1768 int ret;
1769
1770 /* Owner died? */
1771 if (!pi_state->owner)
1772 newtid |= FUTEX_OWNER_DIED;
1773
1774 /*
1775 * We are here either because we stole the rtmutex from the
1776 * previous highest priority waiter or we are the highest priority
1777 * waiter but failed to get the rtmutex the first time.
1778 * We have to replace the newowner TID in the user space variable.
1779 * This must be atomic as we have to preserve the owner died bit here.
1780 *
1781 * Note: We write the user space value _before_ changing the pi_state
1782 * because we can fault here. Imagine swapped out pages or a fork
1783 * that marked all the anonymous memory readonly for cow.
1784 *
1785 * Modifying pi_state _before_ the user space value would
1786 * leave the pi_state in an inconsistent state when we fault
1787 * here, because we need to drop the hash bucket lock to
1788 * handle the fault. This might be observed in the PID check
1789 * in lookup_pi_state.
1790 */
1791 retry:
1792 if (get_futex_value_locked(&uval, uaddr))
1793 goto handle_fault;
1794
1795 while (1) {
1796 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1797
1798 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1799 goto handle_fault;
1800 if (curval == uval)
1801 break;
1802 uval = curval;
1803 }
1804
1805 /*
1806 * We fixed up user space. Now we need to fix the pi_state
1807 * itself.
1808 */
1809 if (pi_state->owner != NULL) {
1810 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1811 WARN_ON(list_empty(&pi_state->list));
1812 list_del_init(&pi_state->list);
1813 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1814 }
1815
1816 pi_state->owner = newowner;
1817
1818 raw_spin_lock_irq(&newowner->pi_lock);
1819 WARN_ON(!list_empty(&pi_state->list));
1820 list_add(&pi_state->list, &newowner->pi_state_list);
1821 raw_spin_unlock_irq(&newowner->pi_lock);
1822 return 0;
1823
1824 /*
1825 * To handle the page fault we need to drop the hash bucket
1826 * lock here. That gives the other task (either the highest priority
1827 * waiter itself or the task which stole the rtmutex) the
1828 * chance to try the fixup of the pi_state. So once we are
1829 * back from handling the fault we need to check the pi_state
1830 * after reacquiring the hash bucket lock and before trying to
1831 * do another fixup. When the fixup has been done already we
1832 * simply return.
1833 */
1834 handle_fault:
1835 spin_unlock(q->lock_ptr);
1836
1837 ret = fault_in_user_writeable(uaddr);
1838
1839 spin_lock(q->lock_ptr);
1840
1841 /*
1842 * Check if someone else fixed it for us:
1843 */
1844 if (pi_state->owner != oldowner)
1845 return 0;
1846
1847 if (ret)
1848 return ret;
1849
1850 goto retry;
1851 }
1852
1853 static long futex_wait_restart(struct restart_block *restart);
1854
1855 /**
1856 * fixup_owner() - Post lock pi_state and corner case management
1857 * @uaddr: user address of the futex
1858 * @q: futex_q (contains pi_state and access to the rt_mutex)
1859 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1860 *
1861 * After attempting to lock an rt_mutex, this function is called to cleanup
1862 * the pi_state owner as well as handle race conditions that may allow us to
1863 * acquire the lock. Must be called with the hb lock held.
1864 *
1865 * Return:
1866 * 1 - success, lock taken;
1867 * 0 - success, lock not taken;
1868 * <0 - on error (-EFAULT)
1869 */
1870 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1871 {
1872 struct task_struct *owner;
1873 int ret = 0;
1874
1875 if (locked) {
1876 /*
1877 * Got the lock. We might not be the anticipated owner if we
1878 * did a lock-steal - fix up the PI-state in that case:
1879 */
1880 if (q->pi_state->owner != current)
1881 ret = fixup_pi_state_owner(uaddr, q, current);
1882 goto out;
1883 }
1884
1885 /*
1886 * Catch the rare case, where the lock was released when we were on the
1887 * way back before we locked the hash bucket.
1888 */
1889 if (q->pi_state->owner == current) {
1890 /*
1891 * Try to get the rt_mutex now. This might fail as some other
1892 * task acquired the rt_mutex after we removed ourself from the
1893 * rt_mutex waiters list.
1894 */
1895 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1896 locked = 1;
1897 goto out;
1898 }
1899
1900 /*
1901 * pi_state is incorrect, some other task did a lock steal and
1902 * we returned due to timeout or signal without taking the
1903 * rt_mutex. Too late.
1904 */
1905 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1906 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1907 if (!owner)
1908 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1909 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1910 ret = fixup_pi_state_owner(uaddr, q, owner);
1911 goto out;
1912 }
1913
1914 /*
1915 * Paranoia check. If we did not take the lock, then we should not be
1916 * the owner of the rt_mutex.
1917 */
1918 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1919 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1920 "pi-state %p\n", ret,
1921 q->pi_state->pi_mutex.owner,
1922 q->pi_state->owner);
1923
1924 out:
1925 return ret ? ret : locked;
1926 }
1927
1928 /**
1929 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1930 * @hb: the futex hash bucket, must be locked by the caller
1931 * @q: the futex_q to queue up on
1932 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1933 */
1934 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1935 struct hrtimer_sleeper *timeout)
1936 {
1937 /*
1938 * The task state is guaranteed to be set before another task can
1939 * wake it. set_current_state() is implemented using set_mb() and
1940 * queue_me() calls spin_unlock() upon completion, both serializing
1941 * access to the hash list and forcing another memory barrier.
1942 */
1943 set_current_state(TASK_INTERRUPTIBLE);
1944 queue_me(q, hb);
1945
1946 /* Arm the timer */
1947 if (timeout) {
1948 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1949 if (!hrtimer_active(&timeout->timer))
1950 timeout->task = NULL;
1951 }
1952
1953 /*
1954 * If we have been removed from the hash list, then another task
1955 * has tried to wake us, and we can skip the call to schedule().
1956 */
1957 if (likely(!plist_node_empty(&q->list))) {
1958 /*
1959 * If the timer has already expired, current will already be
1960 * flagged for rescheduling. Only call schedule if there
1961 * is no timeout, or if it has yet to expire.
1962 */
1963 if (!timeout || timeout->task)
1964 freezable_schedule();
1965 }
1966 __set_current_state(TASK_RUNNING);
1967 }
1968
1969 /**
1970 * futex_wait_setup() - Prepare to wait on a futex
1971 * @uaddr: the futex userspace address
1972 * @val: the expected value
1973 * @flags: futex flags (FLAGS_SHARED, etc.)
1974 * @q: the associated futex_q
1975 * @hb: storage for hash_bucket pointer to be returned to caller
1976 *
1977 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1978 * compare it with the expected value. Handle atomic faults internally.
1979 * Return with the hb lock held and a q.key reference on success, and unlocked
1980 * with no q.key reference on failure.
1981 *
1982 * Return:
1983 * 0 - uaddr contains val and hb has been locked;
1984 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1985 */
1986 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1987 struct futex_q *q, struct futex_hash_bucket **hb)
1988 {
1989 u32 uval;
1990 int ret;
1991
1992 /*
1993 * Access the page AFTER the hash-bucket is locked.
1994 * Order is important:
1995 *
1996 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1997 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1998 *
1999 * The basic logical guarantee of a futex is that it blocks ONLY
2000 * if cond(var) is known to be true at the time of blocking, for
2001 * any cond. If we locked the hash-bucket after testing *uaddr, that
2002 * would open a race condition where we could block indefinitely with
2003 * cond(var) false, which would violate the guarantee.
2004 *
2005 * On the other hand, we insert q and release the hash-bucket only
2006 * after testing *uaddr. This guarantees that futex_wait() will NOT
2007 * absorb a wakeup if *uaddr does not match the desired values
2008 * while the syscall executes.
2009 */
2010 retry:
2011 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2012 if (unlikely(ret != 0))
2013 return ret;
2014
2015 retry_private:
2016 *hb = queue_lock(q);
2017
2018 ret = get_futex_value_locked(&uval, uaddr);
2019
2020 if (ret) {
2021 queue_unlock(*hb);
2022
2023 ret = get_user(uval, uaddr);
2024 if (ret)
2025 goto out;
2026
2027 if (!(flags & FLAGS_SHARED))
2028 goto retry_private;
2029
2030 put_futex_key(&q->key);
2031 goto retry;
2032 }
2033
2034 if (uval != val) {
2035 queue_unlock(*hb);
2036 ret = -EWOULDBLOCK;
2037 }
2038
2039 out:
2040 if (ret)
2041 put_futex_key(&q->key);
2042 return ret;
2043 }
2044
2045 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2046 ktime_t *abs_time, u32 bitset)
2047 {
2048 struct hrtimer_sleeper timeout, *to = NULL;
2049 struct restart_block *restart;
2050 struct futex_hash_bucket *hb;
2051 struct futex_q q = futex_q_init;
2052 int ret;
2053
2054 if (!bitset)
2055 return -EINVAL;
2056 q.bitset = bitset;
2057
2058 if (abs_time) {
2059 to = &timeout;
2060
2061 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2062 CLOCK_REALTIME : CLOCK_MONOTONIC,
2063 HRTIMER_MODE_ABS);
2064 hrtimer_init_sleeper(to, current);
2065 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2066 current->timer_slack_ns);
2067 }
2068
2069 retry:
2070 /*
2071 * Prepare to wait on uaddr. On success, holds hb lock and increments
2072 * q.key refs.
2073 */
2074 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2075 if (ret)
2076 goto out;
2077
2078 /* queue_me and wait for wakeup, timeout, or a signal. */
2079 futex_wait_queue_me(hb, &q, to);
2080
2081 /* If we were woken (and unqueued), we succeeded, whatever. */
2082 ret = 0;
2083 /* unqueue_me() drops q.key ref */
2084 if (!unqueue_me(&q))
2085 goto out;
2086 ret = -ETIMEDOUT;
2087 if (to && !to->task)
2088 goto out;
2089
2090 /*
2091 * We expect signal_pending(current), but we might be the
2092 * victim of a spurious wakeup as well.
2093 */
2094 if (!signal_pending(current))
2095 goto retry;
2096
2097 ret = -ERESTARTSYS;
2098 if (!abs_time)
2099 goto out;
2100
2101 restart = &current_thread_info()->restart_block;
2102 restart->fn = futex_wait_restart;
2103 restart->futex.uaddr = uaddr;
2104 restart->futex.val = val;
2105 restart->futex.time = abs_time->tv64;
2106 restart->futex.bitset = bitset;
2107 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2108
2109 ret = -ERESTART_RESTARTBLOCK;
2110
2111 out:
2112 if (to) {
2113 hrtimer_cancel(&to->timer);
2114 destroy_hrtimer_on_stack(&to->timer);
2115 }
2116 return ret;
2117 }
2118
2119
2120 static long futex_wait_restart(struct restart_block *restart)
2121 {
2122 u32 __user *uaddr = restart->futex.uaddr;
2123 ktime_t t, *tp = NULL;
2124
2125 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2126 t.tv64 = restart->futex.time;
2127 tp = &t;
2128 }
2129 restart->fn = do_no_restart_syscall;
2130
2131 return (long)futex_wait(uaddr, restart->futex.flags,
2132 restart->futex.val, tp, restart->futex.bitset);
2133 }
2134
2135
2136 /*
2137 * Userspace tried a 0 -> TID atomic transition of the futex value
2138 * and failed. The kernel side here does the whole locking operation:
2139 * if there are waiters then it will block, it does PI, etc. (Due to
2140 * races the kernel might see a 0 value of the futex too.)
2141 */
2142 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2143 ktime_t *time, int trylock)
2144 {
2145 struct hrtimer_sleeper timeout, *to = NULL;
2146 struct futex_hash_bucket *hb;
2147 struct futex_q q = futex_q_init;
2148 int res, ret;
2149
2150 if (refill_pi_state_cache())
2151 return -ENOMEM;
2152
2153 if (time) {
2154 to = &timeout;
2155 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2156 HRTIMER_MODE_ABS);
2157 hrtimer_init_sleeper(to, current);
2158 hrtimer_set_expires(&to->timer, *time);
2159 }
2160
2161 retry:
2162 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2163 if (unlikely(ret != 0))
2164 goto out;
2165
2166 retry_private:
2167 hb = queue_lock(&q);
2168
2169 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2170 if (unlikely(ret)) {
2171 switch (ret) {
2172 case 1:
2173 /* We got the lock. */
2174 ret = 0;
2175 goto out_unlock_put_key;
2176 case -EFAULT:
2177 goto uaddr_faulted;
2178 case -EAGAIN:
2179 /*
2180 * Task is exiting and we just wait for the
2181 * exit to complete.
2182 */
2183 queue_unlock(hb);
2184 put_futex_key(&q.key);
2185 cond_resched();
2186 goto retry;
2187 default:
2188 goto out_unlock_put_key;
2189 }
2190 }
2191
2192 /*
2193 * Only actually queue now that the atomic ops are done:
2194 */
2195 queue_me(&q, hb);
2196
2197 WARN_ON(!q.pi_state);
2198 /*
2199 * Block on the PI mutex:
2200 */
2201 if (!trylock)
2202 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2203 else {
2204 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2205 /* Fixup the trylock return value: */
2206 ret = ret ? 0 : -EWOULDBLOCK;
2207 }
2208
2209 spin_lock(q.lock_ptr);
2210 /*
2211 * Fixup the pi_state owner and possibly acquire the lock if we
2212 * haven't already.
2213 */
2214 res = fixup_owner(uaddr, &q, !ret);
2215 /*
2216 * If fixup_owner() returned an error, proprogate that. If it acquired
2217 * the lock, clear our -ETIMEDOUT or -EINTR.
2218 */
2219 if (res)
2220 ret = (res < 0) ? res : 0;
2221
2222 /*
2223 * If fixup_owner() faulted and was unable to handle the fault, unlock
2224 * it and return the fault to userspace.
2225 */
2226 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2227 rt_mutex_unlock(&q.pi_state->pi_mutex);
2228
2229 /* Unqueue and drop the lock */
2230 unqueue_me_pi(&q);
2231
2232 goto out_put_key;
2233
2234 out_unlock_put_key:
2235 queue_unlock(hb);
2236
2237 out_put_key:
2238 put_futex_key(&q.key);
2239 out:
2240 if (to)
2241 destroy_hrtimer_on_stack(&to->timer);
2242 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2243
2244 uaddr_faulted:
2245 queue_unlock(hb);
2246
2247 ret = fault_in_user_writeable(uaddr);
2248 if (ret)
2249 goto out_put_key;
2250
2251 if (!(flags & FLAGS_SHARED))
2252 goto retry_private;
2253
2254 put_futex_key(&q.key);
2255 goto retry;
2256 }
2257
2258 /*
2259 * Userspace attempted a TID -> 0 atomic transition, and failed.
2260 * This is the in-kernel slowpath: we look up the PI state (if any),
2261 * and do the rt-mutex unlock.
2262 */
2263 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2264 {
2265 struct futex_hash_bucket *hb;
2266 struct futex_q *this, *next;
2267 union futex_key key = FUTEX_KEY_INIT;
2268 u32 uval, vpid = task_pid_vnr(current);
2269 int ret;
2270
2271 retry:
2272 if (get_user(uval, uaddr))
2273 return -EFAULT;
2274 /*
2275 * We release only a lock we actually own:
2276 */
2277 if ((uval & FUTEX_TID_MASK) != vpid)
2278 return -EPERM;
2279
2280 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2281 if (unlikely(ret != 0))
2282 goto out;
2283
2284 hb = hash_futex(&key);
2285 spin_lock(&hb->lock);
2286
2287 /*
2288 * To avoid races, try to do the TID -> 0 atomic transition
2289 * again. If it succeeds then we can return without waking
2290 * anyone else up:
2291 */
2292 if (!(uval & FUTEX_OWNER_DIED) &&
2293 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2294 goto pi_faulted;
2295 /*
2296 * Rare case: we managed to release the lock atomically,
2297 * no need to wake anyone else up:
2298 */
2299 if (unlikely(uval == vpid))
2300 goto out_unlock;
2301
2302 /*
2303 * Ok, other tasks may need to be woken up - check waiters
2304 * and do the wakeup if necessary:
2305 */
2306 plist_for_each_entry_safe(this, next, &hb->chain, list) {
2307 if (!match_futex (&this->key, &key))
2308 continue;
2309 ret = wake_futex_pi(uaddr, uval, this);
2310 /*
2311 * The atomic access to the futex value
2312 * generated a pagefault, so retry the
2313 * user-access and the wakeup:
2314 */
2315 if (ret == -EFAULT)
2316 goto pi_faulted;
2317 goto out_unlock;
2318 }
2319 /*
2320 * No waiters - kernel unlocks the futex:
2321 */
2322 if (!(uval & FUTEX_OWNER_DIED)) {
2323 ret = unlock_futex_pi(uaddr, uval);
2324 if (ret == -EFAULT)
2325 goto pi_faulted;
2326 }
2327
2328 out_unlock:
2329 spin_unlock(&hb->lock);
2330 put_futex_key(&key);
2331
2332 out:
2333 return ret;
2334
2335 pi_faulted:
2336 spin_unlock(&hb->lock);
2337 put_futex_key(&key);
2338
2339 ret = fault_in_user_writeable(uaddr);
2340 if (!ret)
2341 goto retry;
2342
2343 return ret;
2344 }
2345
2346 /**
2347 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2348 * @hb: the hash_bucket futex_q was original enqueued on
2349 * @q: the futex_q woken while waiting to be requeued
2350 * @key2: the futex_key of the requeue target futex
2351 * @timeout: the timeout associated with the wait (NULL if none)
2352 *
2353 * Detect if the task was woken on the initial futex as opposed to the requeue
2354 * target futex. If so, determine if it was a timeout or a signal that caused
2355 * the wakeup and return the appropriate error code to the caller. Must be
2356 * called with the hb lock held.
2357 *
2358 * Return:
2359 * 0 = no early wakeup detected;
2360 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2361 */
2362 static inline
2363 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2364 struct futex_q *q, union futex_key *key2,
2365 struct hrtimer_sleeper *timeout)
2366 {
2367 int ret = 0;
2368
2369 /*
2370 * With the hb lock held, we avoid races while we process the wakeup.
2371 * We only need to hold hb (and not hb2) to ensure atomicity as the
2372 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2373 * It can't be requeued from uaddr2 to something else since we don't
2374 * support a PI aware source futex for requeue.
2375 */
2376 if (!match_futex(&q->key, key2)) {
2377 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2378 /*
2379 * We were woken prior to requeue by a timeout or a signal.
2380 * Unqueue the futex_q and determine which it was.
2381 */
2382 plist_del(&q->list, &hb->chain);
2383 hb_waiters_dec(hb);
2384
2385 /* Handle spurious wakeups gracefully */
2386 ret = -EWOULDBLOCK;
2387 if (timeout && !timeout->task)
2388 ret = -ETIMEDOUT;
2389 else if (signal_pending(current))
2390 ret = -ERESTARTNOINTR;
2391 }
2392 return ret;
2393 }
2394
2395 /**
2396 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2397 * @uaddr: the futex we initially wait on (non-pi)
2398 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2399 * the same type, no requeueing from private to shared, etc.
2400 * @val: the expected value of uaddr
2401 * @abs_time: absolute timeout
2402 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2403 * @uaddr2: the pi futex we will take prior to returning to user-space
2404 *
2405 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2406 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2407 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2408 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2409 * without one, the pi logic would not know which task to boost/deboost, if
2410 * there was a need to.
2411 *
2412 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2413 * via the following--
2414 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2415 * 2) wakeup on uaddr2 after a requeue
2416 * 3) signal
2417 * 4) timeout
2418 *
2419 * If 3, cleanup and return -ERESTARTNOINTR.
2420 *
2421 * If 2, we may then block on trying to take the rt_mutex and return via:
2422 * 5) successful lock
2423 * 6) signal
2424 * 7) timeout
2425 * 8) other lock acquisition failure
2426 *
2427 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2428 *
2429 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2430 *
2431 * Return:
2432 * 0 - On success;
2433 * <0 - On error
2434 */
2435 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2436 u32 val, ktime_t *abs_time, u32 bitset,
2437 u32 __user *uaddr2)
2438 {
2439 struct hrtimer_sleeper timeout, *to = NULL;
2440 struct rt_mutex_waiter rt_waiter;
2441 struct rt_mutex *pi_mutex = NULL;
2442 struct futex_hash_bucket *hb;
2443 union futex_key key2 = FUTEX_KEY_INIT;
2444 struct futex_q q = futex_q_init;
2445 int res, ret;
2446
2447 if (uaddr == uaddr2)
2448 return -EINVAL;
2449
2450 if (!bitset)
2451 return -EINVAL;
2452
2453 if (abs_time) {
2454 to = &timeout;
2455 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2456 CLOCK_REALTIME : CLOCK_MONOTONIC,
2457 HRTIMER_MODE_ABS);
2458 hrtimer_init_sleeper(to, current);
2459 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2460 current->timer_slack_ns);
2461 }
2462
2463 /*
2464 * The waiter is allocated on our stack, manipulated by the requeue
2465 * code while we sleep on uaddr.
2466 */
2467 debug_rt_mutex_init_waiter(&rt_waiter);
2468 RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2469 RB_CLEAR_NODE(&rt_waiter.tree_entry);
2470 rt_waiter.task = NULL;
2471
2472 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2473 if (unlikely(ret != 0))
2474 goto out;
2475
2476 q.bitset = bitset;
2477 q.rt_waiter = &rt_waiter;
2478 q.requeue_pi_key = &key2;
2479
2480 /*
2481 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2482 * count.
2483 */
2484 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2485 if (ret)
2486 goto out_key2;
2487
2488 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2489 futex_wait_queue_me(hb, &q, to);
2490
2491 spin_lock(&hb->lock);
2492 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2493 spin_unlock(&hb->lock);
2494 if (ret)
2495 goto out_put_keys;
2496
2497 /*
2498 * In order for us to be here, we know our q.key == key2, and since
2499 * we took the hb->lock above, we also know that futex_requeue() has
2500 * completed and we no longer have to concern ourselves with a wakeup
2501 * race with the atomic proxy lock acquisition by the requeue code. The
2502 * futex_requeue dropped our key1 reference and incremented our key2
2503 * reference count.
2504 */
2505
2506 /* Check if the requeue code acquired the second futex for us. */
2507 if (!q.rt_waiter) {
2508 /*
2509 * Got the lock. We might not be the anticipated owner if we
2510 * did a lock-steal - fix up the PI-state in that case.
2511 */
2512 if (q.pi_state && (q.pi_state->owner != current)) {
2513 spin_lock(q.lock_ptr);
2514 ret = fixup_pi_state_owner(uaddr2, &q, current);
2515 spin_unlock(q.lock_ptr);
2516 }
2517 } else {
2518 /*
2519 * We have been woken up by futex_unlock_pi(), a timeout, or a
2520 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2521 * the pi_state.
2522 */
2523 WARN_ON(!q.pi_state);
2524 pi_mutex = &q.pi_state->pi_mutex;
2525 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2526 debug_rt_mutex_free_waiter(&rt_waiter);
2527
2528 spin_lock(q.lock_ptr);
2529 /*
2530 * Fixup the pi_state owner and possibly acquire the lock if we
2531 * haven't already.
2532 */
2533 res = fixup_owner(uaddr2, &q, !ret);
2534 /*
2535 * If fixup_owner() returned an error, proprogate that. If it
2536 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2537 */
2538 if (res)
2539 ret = (res < 0) ? res : 0;
2540
2541 /* Unqueue and drop the lock. */
2542 unqueue_me_pi(&q);
2543 }
2544
2545 /*
2546 * If fixup_pi_state_owner() faulted and was unable to handle the
2547 * fault, unlock the rt_mutex and return the fault to userspace.
2548 */
2549 if (ret == -EFAULT) {
2550 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2551 rt_mutex_unlock(pi_mutex);
2552 } else if (ret == -EINTR) {
2553 /*
2554 * We've already been requeued, but cannot restart by calling
2555 * futex_lock_pi() directly. We could restart this syscall, but
2556 * it would detect that the user space "val" changed and return
2557 * -EWOULDBLOCK. Save the overhead of the restart and return
2558 * -EWOULDBLOCK directly.
2559 */
2560 ret = -EWOULDBLOCK;
2561 }
2562
2563 out_put_keys:
2564 put_futex_key(&q.key);
2565 out_key2:
2566 put_futex_key(&key2);
2567
2568 out:
2569 if (to) {
2570 hrtimer_cancel(&to->timer);
2571 destroy_hrtimer_on_stack(&to->timer);
2572 }
2573 return ret;
2574 }
2575
2576 /*
2577 * Support for robust futexes: the kernel cleans up held futexes at
2578 * thread exit time.
2579 *
2580 * Implementation: user-space maintains a per-thread list of locks it
2581 * is holding. Upon do_exit(), the kernel carefully walks this list,
2582 * and marks all locks that are owned by this thread with the
2583 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2584 * always manipulated with the lock held, so the list is private and
2585 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2586 * field, to allow the kernel to clean up if the thread dies after
2587 * acquiring the lock, but just before it could have added itself to
2588 * the list. There can only be one such pending lock.
2589 */
2590
2591 /**
2592 * sys_set_robust_list() - Set the robust-futex list head of a task
2593 * @head: pointer to the list-head
2594 * @len: length of the list-head, as userspace expects
2595 */
2596 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2597 size_t, len)
2598 {
2599 if (!futex_cmpxchg_enabled)
2600 return -ENOSYS;
2601 /*
2602 * The kernel knows only one size for now:
2603 */
2604 if (unlikely(len != sizeof(*head)))
2605 return -EINVAL;
2606
2607 current->robust_list = head;
2608
2609 return 0;
2610 }
2611
2612 /**
2613 * sys_get_robust_list() - Get the robust-futex list head of a task
2614 * @pid: pid of the process [zero for current task]
2615 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2616 * @len_ptr: pointer to a length field, the kernel fills in the header size
2617 */
2618 SYSCALL_DEFINE3(get_robust_list, int, pid,
2619 struct robust_list_head __user * __user *, head_ptr,
2620 size_t __user *, len_ptr)
2621 {
2622 struct robust_list_head __user *head;
2623 unsigned long ret;
2624 struct task_struct *p;
2625
2626 if (!futex_cmpxchg_enabled)
2627 return -ENOSYS;
2628
2629 rcu_read_lock();
2630
2631 ret = -ESRCH;
2632 if (!pid)
2633 p = current;
2634 else {
2635 p = find_task_by_vpid(pid);
2636 if (!p)
2637 goto err_unlock;
2638 }
2639
2640 ret = -EPERM;
2641 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2642 goto err_unlock;
2643
2644 head = p->robust_list;
2645 rcu_read_unlock();
2646
2647 if (put_user(sizeof(*head), len_ptr))
2648 return -EFAULT;
2649 return put_user(head, head_ptr);
2650
2651 err_unlock:
2652 rcu_read_unlock();
2653
2654 return ret;
2655 }
2656
2657 /*
2658 * Process a futex-list entry, check whether it's owned by the
2659 * dying task, and do notification if so:
2660 */
2661 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2662 {
2663 u32 uval, uninitialized_var(nval), mval;
2664
2665 retry:
2666 if (get_user(uval, uaddr))
2667 return -1;
2668
2669 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2670 /*
2671 * Ok, this dying thread is truly holding a futex
2672 * of interest. Set the OWNER_DIED bit atomically
2673 * via cmpxchg, and if the value had FUTEX_WAITERS
2674 * set, wake up a waiter (if any). (We have to do a
2675 * futex_wake() even if OWNER_DIED is already set -
2676 * to handle the rare but possible case of recursive
2677 * thread-death.) The rest of the cleanup is done in
2678 * userspace.
2679 */
2680 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2681 /*
2682 * We are not holding a lock here, but we want to have
2683 * the pagefault_disable/enable() protection because
2684 * we want to handle the fault gracefully. If the
2685 * access fails we try to fault in the futex with R/W
2686 * verification via get_user_pages. get_user() above
2687 * does not guarantee R/W access. If that fails we
2688 * give up and leave the futex locked.
2689 */
2690 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2691 if (fault_in_user_writeable(uaddr))
2692 return -1;
2693 goto retry;
2694 }
2695 if (nval != uval)
2696 goto retry;
2697
2698 /*
2699 * Wake robust non-PI futexes here. The wakeup of
2700 * PI futexes happens in exit_pi_state():
2701 */
2702 if (!pi && (uval & FUTEX_WAITERS))
2703 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2704 }
2705 return 0;
2706 }
2707
2708 /*
2709 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2710 */
2711 static inline int fetch_robust_entry(struct robust_list __user **entry,
2712 struct robust_list __user * __user *head,
2713 unsigned int *pi)
2714 {
2715 unsigned long uentry;
2716
2717 if (get_user(uentry, (unsigned long __user *)head))
2718 return -EFAULT;
2719
2720 *entry = (void __user *)(uentry & ~1UL);
2721 *pi = uentry & 1;
2722
2723 return 0;
2724 }
2725
2726 /*
2727 * Walk curr->robust_list (very carefully, it's a userspace list!)
2728 * and mark any locks found there dead, and notify any waiters.
2729 *
2730 * We silently return on any sign of list-walking problem.
2731 */
2732 void exit_robust_list(struct task_struct *curr)
2733 {
2734 struct robust_list_head __user *head = curr->robust_list;
2735 struct robust_list __user *entry, *next_entry, *pending;
2736 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2737 unsigned int uninitialized_var(next_pi);
2738 unsigned long futex_offset;
2739 int rc;
2740
2741 if (!futex_cmpxchg_enabled)
2742 return;
2743
2744 /*
2745 * Fetch the list head (which was registered earlier, via
2746 * sys_set_robust_list()):
2747 */
2748 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2749 return;
2750 /*
2751 * Fetch the relative futex offset:
2752 */
2753 if (get_user(futex_offset, &head->futex_offset))
2754 return;
2755 /*
2756 * Fetch any possibly pending lock-add first, and handle it
2757 * if it exists:
2758 */
2759 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2760 return;
2761
2762 next_entry = NULL; /* avoid warning with gcc */
2763 while (entry != &head->list) {
2764 /*
2765 * Fetch the next entry in the list before calling
2766 * handle_futex_death:
2767 */
2768 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2769 /*
2770 * A pending lock might already be on the list, so
2771 * don't process it twice:
2772 */
2773 if (entry != pending)
2774 if (handle_futex_death((void __user *)entry + futex_offset,
2775 curr, pi))
2776 return;
2777 if (rc)
2778 return;
2779 entry = next_entry;
2780 pi = next_pi;
2781 /*
2782 * Avoid excessively long or circular lists:
2783 */
2784 if (!--limit)
2785 break;
2786
2787 cond_resched();
2788 }
2789
2790 if (pending)
2791 handle_futex_death((void __user *)pending + futex_offset,
2792 curr, pip);
2793 }
2794
2795 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2796 u32 __user *uaddr2, u32 val2, u32 val3)
2797 {
2798 int cmd = op & FUTEX_CMD_MASK;
2799 unsigned int flags = 0;
2800
2801 if (!(op & FUTEX_PRIVATE_FLAG))
2802 flags |= FLAGS_SHARED;
2803
2804 if (op & FUTEX_CLOCK_REALTIME) {
2805 flags |= FLAGS_CLOCKRT;
2806 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2807 return -ENOSYS;
2808 }
2809
2810 switch (cmd) {
2811 case FUTEX_LOCK_PI:
2812 case FUTEX_UNLOCK_PI:
2813 case FUTEX_TRYLOCK_PI:
2814 case FUTEX_WAIT_REQUEUE_PI:
2815 case FUTEX_CMP_REQUEUE_PI:
2816 if (!futex_cmpxchg_enabled)
2817 return -ENOSYS;
2818 }
2819
2820 switch (cmd) {
2821 case FUTEX_WAIT:
2822 val3 = FUTEX_BITSET_MATCH_ANY;
2823 case FUTEX_WAIT_BITSET:
2824 return futex_wait(uaddr, flags, val, timeout, val3);
2825 case FUTEX_WAKE:
2826 val3 = FUTEX_BITSET_MATCH_ANY;
2827 case FUTEX_WAKE_BITSET:
2828 return futex_wake(uaddr, flags, val, val3);
2829 case FUTEX_REQUEUE:
2830 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2831 case FUTEX_CMP_REQUEUE:
2832 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2833 case FUTEX_WAKE_OP:
2834 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2835 case FUTEX_LOCK_PI:
2836 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2837 case FUTEX_UNLOCK_PI:
2838 return futex_unlock_pi(uaddr, flags);
2839 case FUTEX_TRYLOCK_PI:
2840 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2841 case FUTEX_WAIT_REQUEUE_PI:
2842 val3 = FUTEX_BITSET_MATCH_ANY;
2843 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2844 uaddr2);
2845 case FUTEX_CMP_REQUEUE_PI:
2846 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2847 }
2848 return -ENOSYS;
2849 }
2850
2851
2852 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2853 struct timespec __user *, utime, u32 __user *, uaddr2,
2854 u32, val3)
2855 {
2856 struct timespec ts;
2857 ktime_t t, *tp = NULL;
2858 u32 val2 = 0;
2859 int cmd = op & FUTEX_CMD_MASK;
2860
2861 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2862 cmd == FUTEX_WAIT_BITSET ||
2863 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2864 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2865 return -EFAULT;
2866 if (!timespec_valid(&ts))
2867 return -EINVAL;
2868
2869 t = timespec_to_ktime(ts);
2870 if (cmd == FUTEX_WAIT)
2871 t = ktime_add_safe(ktime_get(), t);
2872 tp = &t;
2873 }
2874 /*
2875 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2876 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2877 */
2878 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2879 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2880 val2 = (u32) (unsigned long) utime;
2881
2882 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2883 }
2884
2885 static void __init futex_detect_cmpxchg(void)
2886 {
2887 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
2888 u32 curval;
2889
2890 /*
2891 * This will fail and we want it. Some arch implementations do
2892 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2893 * functionality. We want to know that before we call in any
2894 * of the complex code paths. Also we want to prevent
2895 * registration of robust lists in that case. NULL is
2896 * guaranteed to fault and we get -EFAULT on functional
2897 * implementation, the non-functional ones will return
2898 * -ENOSYS.
2899 */
2900 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2901 futex_cmpxchg_enabled = 1;
2902 #endif
2903 }
2904
2905 static int __init futex_init(void)
2906 {
2907 unsigned int futex_shift;
2908 unsigned long i;
2909
2910 #if CONFIG_BASE_SMALL
2911 futex_hashsize = 16;
2912 #else
2913 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
2914 #endif
2915
2916 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
2917 futex_hashsize, 0,
2918 futex_hashsize < 256 ? HASH_SMALL : 0,
2919 &futex_shift, NULL,
2920 futex_hashsize, futex_hashsize);
2921 futex_hashsize = 1UL << futex_shift;
2922
2923 futex_detect_cmpxchg();
2924
2925 for (i = 0; i < futex_hashsize; i++) {
2926 atomic_set(&futex_queues[i].waiters, 0);
2927 plist_head_init(&futex_queues[i].chain);
2928 spin_lock_init(&futex_queues[i].lock);
2929 }
2930
2931 return 0;
2932 }
2933 __initcall(futex_init);