]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/hrtimer.c
arm64: kernel: build MPIDR_EL1 hash function data structure
[mirror_ubuntu-zesty-kernel.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/timer.h>
50 #include <linux/freezer.h>
51
52 #include <asm/uaccess.h>
53
54 #include <trace/events/timer.h>
55
56 /*
57 * The timer bases:
58 *
59 * There are more clockids then hrtimer bases. Thus, we index
60 * into the timer bases by the hrtimer_base_type enum. When trying
61 * to reach a base using a clockid, hrtimer_clockid_to_base()
62 * is used to convert from clockid to the proper hrtimer_base_type.
63 */
64 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
65 {
66
67 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
68 .clock_base =
69 {
70 {
71 .index = HRTIMER_BASE_MONOTONIC,
72 .clockid = CLOCK_MONOTONIC,
73 .get_time = &ktime_get,
74 .resolution = KTIME_LOW_RES,
75 },
76 {
77 .index = HRTIMER_BASE_REALTIME,
78 .clockid = CLOCK_REALTIME,
79 .get_time = &ktime_get_real,
80 .resolution = KTIME_LOW_RES,
81 },
82 {
83 .index = HRTIMER_BASE_BOOTTIME,
84 .clockid = CLOCK_BOOTTIME,
85 .get_time = &ktime_get_boottime,
86 .resolution = KTIME_LOW_RES,
87 },
88 {
89 .index = HRTIMER_BASE_TAI,
90 .clockid = CLOCK_TAI,
91 .get_time = &ktime_get_clocktai,
92 .resolution = KTIME_LOW_RES,
93 },
94 }
95 };
96
97 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
98 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
99 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
100 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
101 [CLOCK_TAI] = HRTIMER_BASE_TAI,
102 };
103
104 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
105 {
106 return hrtimer_clock_to_base_table[clock_id];
107 }
108
109
110 /*
111 * Get the coarse grained time at the softirq based on xtime and
112 * wall_to_monotonic.
113 */
114 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
115 {
116 ktime_t xtim, mono, boot;
117 struct timespec xts, tom, slp;
118 s32 tai_offset;
119
120 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
121 tai_offset = timekeeping_get_tai_offset();
122
123 xtim = timespec_to_ktime(xts);
124 mono = ktime_add(xtim, timespec_to_ktime(tom));
125 boot = ktime_add(mono, timespec_to_ktime(slp));
126 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
127 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
128 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
129 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
130 ktime_add(xtim, ktime_set(tai_offset, 0));
131 }
132
133 /*
134 * Functions and macros which are different for UP/SMP systems are kept in a
135 * single place
136 */
137 #ifdef CONFIG_SMP
138
139 /*
140 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
141 * means that all timers which are tied to this base via timer->base are
142 * locked, and the base itself is locked too.
143 *
144 * So __run_timers/migrate_timers can safely modify all timers which could
145 * be found on the lists/queues.
146 *
147 * When the timer's base is locked, and the timer removed from list, it is
148 * possible to set timer->base = NULL and drop the lock: the timer remains
149 * locked.
150 */
151 static
152 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
153 unsigned long *flags)
154 {
155 struct hrtimer_clock_base *base;
156
157 for (;;) {
158 base = timer->base;
159 if (likely(base != NULL)) {
160 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
161 if (likely(base == timer->base))
162 return base;
163 /* The timer has migrated to another CPU: */
164 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
165 }
166 cpu_relax();
167 }
168 }
169
170
171 /*
172 * Get the preferred target CPU for NOHZ
173 */
174 static int hrtimer_get_target(int this_cpu, int pinned)
175 {
176 #ifdef CONFIG_NO_HZ_COMMON
177 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
178 return get_nohz_timer_target();
179 #endif
180 return this_cpu;
181 }
182
183 /*
184 * With HIGHRES=y we do not migrate the timer when it is expiring
185 * before the next event on the target cpu because we cannot reprogram
186 * the target cpu hardware and we would cause it to fire late.
187 *
188 * Called with cpu_base->lock of target cpu held.
189 */
190 static int
191 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
192 {
193 #ifdef CONFIG_HIGH_RES_TIMERS
194 ktime_t expires;
195
196 if (!new_base->cpu_base->hres_active)
197 return 0;
198
199 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
200 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
201 #else
202 return 0;
203 #endif
204 }
205
206 /*
207 * Switch the timer base to the current CPU when possible.
208 */
209 static inline struct hrtimer_clock_base *
210 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
211 int pinned)
212 {
213 struct hrtimer_clock_base *new_base;
214 struct hrtimer_cpu_base *new_cpu_base;
215 int this_cpu = smp_processor_id();
216 int cpu = hrtimer_get_target(this_cpu, pinned);
217 int basenum = base->index;
218
219 again:
220 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
221 new_base = &new_cpu_base->clock_base[basenum];
222
223 if (base != new_base) {
224 /*
225 * We are trying to move timer to new_base.
226 * However we can't change timer's base while it is running,
227 * so we keep it on the same CPU. No hassle vs. reprogramming
228 * the event source in the high resolution case. The softirq
229 * code will take care of this when the timer function has
230 * completed. There is no conflict as we hold the lock until
231 * the timer is enqueued.
232 */
233 if (unlikely(hrtimer_callback_running(timer)))
234 return base;
235
236 /* See the comment in lock_timer_base() */
237 timer->base = NULL;
238 raw_spin_unlock(&base->cpu_base->lock);
239 raw_spin_lock(&new_base->cpu_base->lock);
240
241 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
242 cpu = this_cpu;
243 raw_spin_unlock(&new_base->cpu_base->lock);
244 raw_spin_lock(&base->cpu_base->lock);
245 timer->base = base;
246 goto again;
247 }
248 timer->base = new_base;
249 }
250 return new_base;
251 }
252
253 #else /* CONFIG_SMP */
254
255 static inline struct hrtimer_clock_base *
256 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
257 {
258 struct hrtimer_clock_base *base = timer->base;
259
260 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
261
262 return base;
263 }
264
265 # define switch_hrtimer_base(t, b, p) (b)
266
267 #endif /* !CONFIG_SMP */
268
269 /*
270 * Functions for the union type storage format of ktime_t which are
271 * too large for inlining:
272 */
273 #if BITS_PER_LONG < 64
274 # ifndef CONFIG_KTIME_SCALAR
275 /**
276 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
277 * @kt: addend
278 * @nsec: the scalar nsec value to add
279 *
280 * Returns the sum of kt and nsec in ktime_t format
281 */
282 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
283 {
284 ktime_t tmp;
285
286 if (likely(nsec < NSEC_PER_SEC)) {
287 tmp.tv64 = nsec;
288 } else {
289 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
290
291 /* Make sure nsec fits into long */
292 if (unlikely(nsec > KTIME_SEC_MAX))
293 return (ktime_t){ .tv64 = KTIME_MAX };
294
295 tmp = ktime_set((long)nsec, rem);
296 }
297
298 return ktime_add(kt, tmp);
299 }
300
301 EXPORT_SYMBOL_GPL(ktime_add_ns);
302
303 /**
304 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
305 * @kt: minuend
306 * @nsec: the scalar nsec value to subtract
307 *
308 * Returns the subtraction of @nsec from @kt in ktime_t format
309 */
310 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
311 {
312 ktime_t tmp;
313
314 if (likely(nsec < NSEC_PER_SEC)) {
315 tmp.tv64 = nsec;
316 } else {
317 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
318
319 tmp = ktime_set((long)nsec, rem);
320 }
321
322 return ktime_sub(kt, tmp);
323 }
324
325 EXPORT_SYMBOL_GPL(ktime_sub_ns);
326 # endif /* !CONFIG_KTIME_SCALAR */
327
328 /*
329 * Divide a ktime value by a nanosecond value
330 */
331 u64 ktime_divns(const ktime_t kt, s64 div)
332 {
333 u64 dclc;
334 int sft = 0;
335
336 dclc = ktime_to_ns(kt);
337 /* Make sure the divisor is less than 2^32: */
338 while (div >> 32) {
339 sft++;
340 div >>= 1;
341 }
342 dclc >>= sft;
343 do_div(dclc, (unsigned long) div);
344
345 return dclc;
346 }
347 #endif /* BITS_PER_LONG >= 64 */
348
349 /*
350 * Add two ktime values and do a safety check for overflow:
351 */
352 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
353 {
354 ktime_t res = ktime_add(lhs, rhs);
355
356 /*
357 * We use KTIME_SEC_MAX here, the maximum timeout which we can
358 * return to user space in a timespec:
359 */
360 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
361 res = ktime_set(KTIME_SEC_MAX, 0);
362
363 return res;
364 }
365
366 EXPORT_SYMBOL_GPL(ktime_add_safe);
367
368 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
369
370 static struct debug_obj_descr hrtimer_debug_descr;
371
372 static void *hrtimer_debug_hint(void *addr)
373 {
374 return ((struct hrtimer *) addr)->function;
375 }
376
377 /*
378 * fixup_init is called when:
379 * - an active object is initialized
380 */
381 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
382 {
383 struct hrtimer *timer = addr;
384
385 switch (state) {
386 case ODEBUG_STATE_ACTIVE:
387 hrtimer_cancel(timer);
388 debug_object_init(timer, &hrtimer_debug_descr);
389 return 1;
390 default:
391 return 0;
392 }
393 }
394
395 /*
396 * fixup_activate is called when:
397 * - an active object is activated
398 * - an unknown object is activated (might be a statically initialized object)
399 */
400 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
401 {
402 switch (state) {
403
404 case ODEBUG_STATE_NOTAVAILABLE:
405 WARN_ON_ONCE(1);
406 return 0;
407
408 case ODEBUG_STATE_ACTIVE:
409 WARN_ON(1);
410
411 default:
412 return 0;
413 }
414 }
415
416 /*
417 * fixup_free is called when:
418 * - an active object is freed
419 */
420 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
421 {
422 struct hrtimer *timer = addr;
423
424 switch (state) {
425 case ODEBUG_STATE_ACTIVE:
426 hrtimer_cancel(timer);
427 debug_object_free(timer, &hrtimer_debug_descr);
428 return 1;
429 default:
430 return 0;
431 }
432 }
433
434 static struct debug_obj_descr hrtimer_debug_descr = {
435 .name = "hrtimer",
436 .debug_hint = hrtimer_debug_hint,
437 .fixup_init = hrtimer_fixup_init,
438 .fixup_activate = hrtimer_fixup_activate,
439 .fixup_free = hrtimer_fixup_free,
440 };
441
442 static inline void debug_hrtimer_init(struct hrtimer *timer)
443 {
444 debug_object_init(timer, &hrtimer_debug_descr);
445 }
446
447 static inline void debug_hrtimer_activate(struct hrtimer *timer)
448 {
449 debug_object_activate(timer, &hrtimer_debug_descr);
450 }
451
452 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
453 {
454 debug_object_deactivate(timer, &hrtimer_debug_descr);
455 }
456
457 static inline void debug_hrtimer_free(struct hrtimer *timer)
458 {
459 debug_object_free(timer, &hrtimer_debug_descr);
460 }
461
462 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
463 enum hrtimer_mode mode);
464
465 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
466 enum hrtimer_mode mode)
467 {
468 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
469 __hrtimer_init(timer, clock_id, mode);
470 }
471 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
472
473 void destroy_hrtimer_on_stack(struct hrtimer *timer)
474 {
475 debug_object_free(timer, &hrtimer_debug_descr);
476 }
477
478 #else
479 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
480 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
481 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
482 #endif
483
484 static inline void
485 debug_init(struct hrtimer *timer, clockid_t clockid,
486 enum hrtimer_mode mode)
487 {
488 debug_hrtimer_init(timer);
489 trace_hrtimer_init(timer, clockid, mode);
490 }
491
492 static inline void debug_activate(struct hrtimer *timer)
493 {
494 debug_hrtimer_activate(timer);
495 trace_hrtimer_start(timer);
496 }
497
498 static inline void debug_deactivate(struct hrtimer *timer)
499 {
500 debug_hrtimer_deactivate(timer);
501 trace_hrtimer_cancel(timer);
502 }
503
504 /* High resolution timer related functions */
505 #ifdef CONFIG_HIGH_RES_TIMERS
506
507 /*
508 * High resolution timer enabled ?
509 */
510 static int hrtimer_hres_enabled __read_mostly = 1;
511
512 /*
513 * Enable / Disable high resolution mode
514 */
515 static int __init setup_hrtimer_hres(char *str)
516 {
517 if (!strcmp(str, "off"))
518 hrtimer_hres_enabled = 0;
519 else if (!strcmp(str, "on"))
520 hrtimer_hres_enabled = 1;
521 else
522 return 0;
523 return 1;
524 }
525
526 __setup("highres=", setup_hrtimer_hres);
527
528 /*
529 * hrtimer_high_res_enabled - query, if the highres mode is enabled
530 */
531 static inline int hrtimer_is_hres_enabled(void)
532 {
533 return hrtimer_hres_enabled;
534 }
535
536 /*
537 * Is the high resolution mode active ?
538 */
539 static inline int hrtimer_hres_active(void)
540 {
541 return __this_cpu_read(hrtimer_bases.hres_active);
542 }
543
544 /*
545 * Reprogram the event source with checking both queues for the
546 * next event
547 * Called with interrupts disabled and base->lock held
548 */
549 static void
550 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
551 {
552 int i;
553 struct hrtimer_clock_base *base = cpu_base->clock_base;
554 ktime_t expires, expires_next;
555
556 expires_next.tv64 = KTIME_MAX;
557
558 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
559 struct hrtimer *timer;
560 struct timerqueue_node *next;
561
562 next = timerqueue_getnext(&base->active);
563 if (!next)
564 continue;
565 timer = container_of(next, struct hrtimer, node);
566
567 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
568 /*
569 * clock_was_set() has changed base->offset so the
570 * result might be negative. Fix it up to prevent a
571 * false positive in clockevents_program_event()
572 */
573 if (expires.tv64 < 0)
574 expires.tv64 = 0;
575 if (expires.tv64 < expires_next.tv64)
576 expires_next = expires;
577 }
578
579 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
580 return;
581
582 cpu_base->expires_next.tv64 = expires_next.tv64;
583
584 if (cpu_base->expires_next.tv64 != KTIME_MAX)
585 tick_program_event(cpu_base->expires_next, 1);
586 }
587
588 /*
589 * Shared reprogramming for clock_realtime and clock_monotonic
590 *
591 * When a timer is enqueued and expires earlier than the already enqueued
592 * timers, we have to check, whether it expires earlier than the timer for
593 * which the clock event device was armed.
594 *
595 * Called with interrupts disabled and base->cpu_base.lock held
596 */
597 static int hrtimer_reprogram(struct hrtimer *timer,
598 struct hrtimer_clock_base *base)
599 {
600 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
601 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
602 int res;
603
604 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
605
606 /*
607 * When the callback is running, we do not reprogram the clock event
608 * device. The timer callback is either running on a different CPU or
609 * the callback is executed in the hrtimer_interrupt context. The
610 * reprogramming is handled either by the softirq, which called the
611 * callback or at the end of the hrtimer_interrupt.
612 */
613 if (hrtimer_callback_running(timer))
614 return 0;
615
616 /*
617 * CLOCK_REALTIME timer might be requested with an absolute
618 * expiry time which is less than base->offset. Nothing wrong
619 * about that, just avoid to call into the tick code, which
620 * has now objections against negative expiry values.
621 */
622 if (expires.tv64 < 0)
623 return -ETIME;
624
625 if (expires.tv64 >= cpu_base->expires_next.tv64)
626 return 0;
627
628 /*
629 * If a hang was detected in the last timer interrupt then we
630 * do not schedule a timer which is earlier than the expiry
631 * which we enforced in the hang detection. We want the system
632 * to make progress.
633 */
634 if (cpu_base->hang_detected)
635 return 0;
636
637 /*
638 * Clockevents returns -ETIME, when the event was in the past.
639 */
640 res = tick_program_event(expires, 0);
641 if (!IS_ERR_VALUE(res))
642 cpu_base->expires_next = expires;
643 return res;
644 }
645
646 /*
647 * Initialize the high resolution related parts of cpu_base
648 */
649 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
650 {
651 base->expires_next.tv64 = KTIME_MAX;
652 base->hres_active = 0;
653 }
654
655 /*
656 * When High resolution timers are active, try to reprogram. Note, that in case
657 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
658 * check happens. The timer gets enqueued into the rbtree. The reprogramming
659 * and expiry check is done in the hrtimer_interrupt or in the softirq.
660 */
661 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
662 struct hrtimer_clock_base *base)
663 {
664 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
665 }
666
667 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
668 {
669 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
670 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
671 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
672
673 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
674 }
675
676 /*
677 * Retrigger next event is called after clock was set
678 *
679 * Called with interrupts disabled via on_each_cpu()
680 */
681 static void retrigger_next_event(void *arg)
682 {
683 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
684
685 if (!hrtimer_hres_active())
686 return;
687
688 raw_spin_lock(&base->lock);
689 hrtimer_update_base(base);
690 hrtimer_force_reprogram(base, 0);
691 raw_spin_unlock(&base->lock);
692 }
693
694 /*
695 * Switch to high resolution mode
696 */
697 static int hrtimer_switch_to_hres(void)
698 {
699 int i, cpu = smp_processor_id();
700 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
701 unsigned long flags;
702
703 if (base->hres_active)
704 return 1;
705
706 local_irq_save(flags);
707
708 if (tick_init_highres()) {
709 local_irq_restore(flags);
710 printk(KERN_WARNING "Could not switch to high resolution "
711 "mode on CPU %d\n", cpu);
712 return 0;
713 }
714 base->hres_active = 1;
715 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
716 base->clock_base[i].resolution = KTIME_HIGH_RES;
717
718 tick_setup_sched_timer();
719 /* "Retrigger" the interrupt to get things going */
720 retrigger_next_event(NULL);
721 local_irq_restore(flags);
722 return 1;
723 }
724
725 static void clock_was_set_work(struct work_struct *work)
726 {
727 clock_was_set();
728 }
729
730 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
731
732 /*
733 * Called from timekeeping and resume code to reprogramm the hrtimer
734 * interrupt device on all cpus.
735 */
736 void clock_was_set_delayed(void)
737 {
738 schedule_work(&hrtimer_work);
739 }
740
741 #else
742
743 static inline int hrtimer_hres_active(void) { return 0; }
744 static inline int hrtimer_is_hres_enabled(void) { return 0; }
745 static inline int hrtimer_switch_to_hres(void) { return 0; }
746 static inline void
747 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
748 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
749 struct hrtimer_clock_base *base)
750 {
751 return 0;
752 }
753 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
754 static inline void retrigger_next_event(void *arg) { }
755
756 #endif /* CONFIG_HIGH_RES_TIMERS */
757
758 /*
759 * Clock realtime was set
760 *
761 * Change the offset of the realtime clock vs. the monotonic
762 * clock.
763 *
764 * We might have to reprogram the high resolution timer interrupt. On
765 * SMP we call the architecture specific code to retrigger _all_ high
766 * resolution timer interrupts. On UP we just disable interrupts and
767 * call the high resolution interrupt code.
768 */
769 void clock_was_set(void)
770 {
771 #ifdef CONFIG_HIGH_RES_TIMERS
772 /* Retrigger the CPU local events everywhere */
773 on_each_cpu(retrigger_next_event, NULL, 1);
774 #endif
775 timerfd_clock_was_set();
776 }
777
778 /*
779 * During resume we might have to reprogram the high resolution timer
780 * interrupt on all online CPUs. However, all other CPUs will be
781 * stopped with IRQs interrupts disabled so the clock_was_set() call
782 * must be deferred.
783 */
784 void hrtimers_resume(void)
785 {
786 WARN_ONCE(!irqs_disabled(),
787 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
788
789 /* Retrigger on the local CPU */
790 retrigger_next_event(NULL);
791 /* And schedule a retrigger for all others */
792 clock_was_set_delayed();
793 }
794
795 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
796 {
797 #ifdef CONFIG_TIMER_STATS
798 if (timer->start_site)
799 return;
800 timer->start_site = __builtin_return_address(0);
801 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
802 timer->start_pid = current->pid;
803 #endif
804 }
805
806 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
807 {
808 #ifdef CONFIG_TIMER_STATS
809 timer->start_site = NULL;
810 #endif
811 }
812
813 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
814 {
815 #ifdef CONFIG_TIMER_STATS
816 if (likely(!timer_stats_active))
817 return;
818 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
819 timer->function, timer->start_comm, 0);
820 #endif
821 }
822
823 /*
824 * Counterpart to lock_hrtimer_base above:
825 */
826 static inline
827 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
828 {
829 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
830 }
831
832 /**
833 * hrtimer_forward - forward the timer expiry
834 * @timer: hrtimer to forward
835 * @now: forward past this time
836 * @interval: the interval to forward
837 *
838 * Forward the timer expiry so it will expire in the future.
839 * Returns the number of overruns.
840 */
841 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
842 {
843 u64 orun = 1;
844 ktime_t delta;
845
846 delta = ktime_sub(now, hrtimer_get_expires(timer));
847
848 if (delta.tv64 < 0)
849 return 0;
850
851 if (interval.tv64 < timer->base->resolution.tv64)
852 interval.tv64 = timer->base->resolution.tv64;
853
854 if (unlikely(delta.tv64 >= interval.tv64)) {
855 s64 incr = ktime_to_ns(interval);
856
857 orun = ktime_divns(delta, incr);
858 hrtimer_add_expires_ns(timer, incr * orun);
859 if (hrtimer_get_expires_tv64(timer) > now.tv64)
860 return orun;
861 /*
862 * This (and the ktime_add() below) is the
863 * correction for exact:
864 */
865 orun++;
866 }
867 hrtimer_add_expires(timer, interval);
868
869 return orun;
870 }
871 EXPORT_SYMBOL_GPL(hrtimer_forward);
872
873 /*
874 * enqueue_hrtimer - internal function to (re)start a timer
875 *
876 * The timer is inserted in expiry order. Insertion into the
877 * red black tree is O(log(n)). Must hold the base lock.
878 *
879 * Returns 1 when the new timer is the leftmost timer in the tree.
880 */
881 static int enqueue_hrtimer(struct hrtimer *timer,
882 struct hrtimer_clock_base *base)
883 {
884 debug_activate(timer);
885
886 timerqueue_add(&base->active, &timer->node);
887 base->cpu_base->active_bases |= 1 << base->index;
888
889 /*
890 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
891 * state of a possibly running callback.
892 */
893 timer->state |= HRTIMER_STATE_ENQUEUED;
894
895 return (&timer->node == base->active.next);
896 }
897
898 /*
899 * __remove_hrtimer - internal function to remove a timer
900 *
901 * Caller must hold the base lock.
902 *
903 * High resolution timer mode reprograms the clock event device when the
904 * timer is the one which expires next. The caller can disable this by setting
905 * reprogram to zero. This is useful, when the context does a reprogramming
906 * anyway (e.g. timer interrupt)
907 */
908 static void __remove_hrtimer(struct hrtimer *timer,
909 struct hrtimer_clock_base *base,
910 unsigned long newstate, int reprogram)
911 {
912 struct timerqueue_node *next_timer;
913 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
914 goto out;
915
916 next_timer = timerqueue_getnext(&base->active);
917 timerqueue_del(&base->active, &timer->node);
918 if (&timer->node == next_timer) {
919 #ifdef CONFIG_HIGH_RES_TIMERS
920 /* Reprogram the clock event device. if enabled */
921 if (reprogram && hrtimer_hres_active()) {
922 ktime_t expires;
923
924 expires = ktime_sub(hrtimer_get_expires(timer),
925 base->offset);
926 if (base->cpu_base->expires_next.tv64 == expires.tv64)
927 hrtimer_force_reprogram(base->cpu_base, 1);
928 }
929 #endif
930 }
931 if (!timerqueue_getnext(&base->active))
932 base->cpu_base->active_bases &= ~(1 << base->index);
933 out:
934 timer->state = newstate;
935 }
936
937 /*
938 * remove hrtimer, called with base lock held
939 */
940 static inline int
941 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
942 {
943 if (hrtimer_is_queued(timer)) {
944 unsigned long state;
945 int reprogram;
946
947 /*
948 * Remove the timer and force reprogramming when high
949 * resolution mode is active and the timer is on the current
950 * CPU. If we remove a timer on another CPU, reprogramming is
951 * skipped. The interrupt event on this CPU is fired and
952 * reprogramming happens in the interrupt handler. This is a
953 * rare case and less expensive than a smp call.
954 */
955 debug_deactivate(timer);
956 timer_stats_hrtimer_clear_start_info(timer);
957 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
958 /*
959 * We must preserve the CALLBACK state flag here,
960 * otherwise we could move the timer base in
961 * switch_hrtimer_base.
962 */
963 state = timer->state & HRTIMER_STATE_CALLBACK;
964 __remove_hrtimer(timer, base, state, reprogram);
965 return 1;
966 }
967 return 0;
968 }
969
970 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
971 unsigned long delta_ns, const enum hrtimer_mode mode,
972 int wakeup)
973 {
974 struct hrtimer_clock_base *base, *new_base;
975 unsigned long flags;
976 int ret, leftmost;
977
978 base = lock_hrtimer_base(timer, &flags);
979
980 /* Remove an active timer from the queue: */
981 ret = remove_hrtimer(timer, base);
982
983 /* Switch the timer base, if necessary: */
984 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
985
986 if (mode & HRTIMER_MODE_REL) {
987 tim = ktime_add_safe(tim, new_base->get_time());
988 /*
989 * CONFIG_TIME_LOW_RES is a temporary way for architectures
990 * to signal that they simply return xtime in
991 * do_gettimeoffset(). In this case we want to round up by
992 * resolution when starting a relative timer, to avoid short
993 * timeouts. This will go away with the GTOD framework.
994 */
995 #ifdef CONFIG_TIME_LOW_RES
996 tim = ktime_add_safe(tim, base->resolution);
997 #endif
998 }
999
1000 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1001
1002 timer_stats_hrtimer_set_start_info(timer);
1003
1004 leftmost = enqueue_hrtimer(timer, new_base);
1005
1006 /*
1007 * Only allow reprogramming if the new base is on this CPU.
1008 * (it might still be on another CPU if the timer was pending)
1009 *
1010 * XXX send_remote_softirq() ?
1011 */
1012 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1013 && hrtimer_enqueue_reprogram(timer, new_base)) {
1014 if (wakeup) {
1015 /*
1016 * We need to drop cpu_base->lock to avoid a
1017 * lock ordering issue vs. rq->lock.
1018 */
1019 raw_spin_unlock(&new_base->cpu_base->lock);
1020 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1021 local_irq_restore(flags);
1022 return ret;
1023 } else {
1024 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1025 }
1026 }
1027
1028 unlock_hrtimer_base(timer, &flags);
1029
1030 return ret;
1031 }
1032
1033 /**
1034 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1035 * @timer: the timer to be added
1036 * @tim: expiry time
1037 * @delta_ns: "slack" range for the timer
1038 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1039 * relative (HRTIMER_MODE_REL)
1040 *
1041 * Returns:
1042 * 0 on success
1043 * 1 when the timer was active
1044 */
1045 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1046 unsigned long delta_ns, const enum hrtimer_mode mode)
1047 {
1048 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1049 }
1050 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1051
1052 /**
1053 * hrtimer_start - (re)start an hrtimer on the current CPU
1054 * @timer: the timer to be added
1055 * @tim: expiry time
1056 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1057 * relative (HRTIMER_MODE_REL)
1058 *
1059 * Returns:
1060 * 0 on success
1061 * 1 when the timer was active
1062 */
1063 int
1064 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1065 {
1066 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1067 }
1068 EXPORT_SYMBOL_GPL(hrtimer_start);
1069
1070
1071 /**
1072 * hrtimer_try_to_cancel - try to deactivate a timer
1073 * @timer: hrtimer to stop
1074 *
1075 * Returns:
1076 * 0 when the timer was not active
1077 * 1 when the timer was active
1078 * -1 when the timer is currently excuting the callback function and
1079 * cannot be stopped
1080 */
1081 int hrtimer_try_to_cancel(struct hrtimer *timer)
1082 {
1083 struct hrtimer_clock_base *base;
1084 unsigned long flags;
1085 int ret = -1;
1086
1087 base = lock_hrtimer_base(timer, &flags);
1088
1089 if (!hrtimer_callback_running(timer))
1090 ret = remove_hrtimer(timer, base);
1091
1092 unlock_hrtimer_base(timer, &flags);
1093
1094 return ret;
1095
1096 }
1097 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1098
1099 /**
1100 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1101 * @timer: the timer to be cancelled
1102 *
1103 * Returns:
1104 * 0 when the timer was not active
1105 * 1 when the timer was active
1106 */
1107 int hrtimer_cancel(struct hrtimer *timer)
1108 {
1109 for (;;) {
1110 int ret = hrtimer_try_to_cancel(timer);
1111
1112 if (ret >= 0)
1113 return ret;
1114 cpu_relax();
1115 }
1116 }
1117 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1118
1119 /**
1120 * hrtimer_get_remaining - get remaining time for the timer
1121 * @timer: the timer to read
1122 */
1123 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1124 {
1125 unsigned long flags;
1126 ktime_t rem;
1127
1128 lock_hrtimer_base(timer, &flags);
1129 rem = hrtimer_expires_remaining(timer);
1130 unlock_hrtimer_base(timer, &flags);
1131
1132 return rem;
1133 }
1134 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1135
1136 #ifdef CONFIG_NO_HZ_COMMON
1137 /**
1138 * hrtimer_get_next_event - get the time until next expiry event
1139 *
1140 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1141 * is pending.
1142 */
1143 ktime_t hrtimer_get_next_event(void)
1144 {
1145 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1146 struct hrtimer_clock_base *base = cpu_base->clock_base;
1147 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1148 unsigned long flags;
1149 int i;
1150
1151 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1152
1153 if (!hrtimer_hres_active()) {
1154 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1155 struct hrtimer *timer;
1156 struct timerqueue_node *next;
1157
1158 next = timerqueue_getnext(&base->active);
1159 if (!next)
1160 continue;
1161
1162 timer = container_of(next, struct hrtimer, node);
1163 delta.tv64 = hrtimer_get_expires_tv64(timer);
1164 delta = ktime_sub(delta, base->get_time());
1165 if (delta.tv64 < mindelta.tv64)
1166 mindelta.tv64 = delta.tv64;
1167 }
1168 }
1169
1170 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1171
1172 if (mindelta.tv64 < 0)
1173 mindelta.tv64 = 0;
1174 return mindelta;
1175 }
1176 #endif
1177
1178 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1179 enum hrtimer_mode mode)
1180 {
1181 struct hrtimer_cpu_base *cpu_base;
1182 int base;
1183
1184 memset(timer, 0, sizeof(struct hrtimer));
1185
1186 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1187
1188 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1189 clock_id = CLOCK_MONOTONIC;
1190
1191 base = hrtimer_clockid_to_base(clock_id);
1192 timer->base = &cpu_base->clock_base[base];
1193 timerqueue_init(&timer->node);
1194
1195 #ifdef CONFIG_TIMER_STATS
1196 timer->start_site = NULL;
1197 timer->start_pid = -1;
1198 memset(timer->start_comm, 0, TASK_COMM_LEN);
1199 #endif
1200 }
1201
1202 /**
1203 * hrtimer_init - initialize a timer to the given clock
1204 * @timer: the timer to be initialized
1205 * @clock_id: the clock to be used
1206 * @mode: timer mode abs/rel
1207 */
1208 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1209 enum hrtimer_mode mode)
1210 {
1211 debug_init(timer, clock_id, mode);
1212 __hrtimer_init(timer, clock_id, mode);
1213 }
1214 EXPORT_SYMBOL_GPL(hrtimer_init);
1215
1216 /**
1217 * hrtimer_get_res - get the timer resolution for a clock
1218 * @which_clock: which clock to query
1219 * @tp: pointer to timespec variable to store the resolution
1220 *
1221 * Store the resolution of the clock selected by @which_clock in the
1222 * variable pointed to by @tp.
1223 */
1224 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1225 {
1226 struct hrtimer_cpu_base *cpu_base;
1227 int base = hrtimer_clockid_to_base(which_clock);
1228
1229 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1230 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1231
1232 return 0;
1233 }
1234 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1235
1236 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1237 {
1238 struct hrtimer_clock_base *base = timer->base;
1239 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1240 enum hrtimer_restart (*fn)(struct hrtimer *);
1241 int restart;
1242
1243 WARN_ON(!irqs_disabled());
1244
1245 debug_deactivate(timer);
1246 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1247 timer_stats_account_hrtimer(timer);
1248 fn = timer->function;
1249
1250 /*
1251 * Because we run timers from hardirq context, there is no chance
1252 * they get migrated to another cpu, therefore its safe to unlock
1253 * the timer base.
1254 */
1255 raw_spin_unlock(&cpu_base->lock);
1256 trace_hrtimer_expire_entry(timer, now);
1257 restart = fn(timer);
1258 trace_hrtimer_expire_exit(timer);
1259 raw_spin_lock(&cpu_base->lock);
1260
1261 /*
1262 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1263 * we do not reprogramm the event hardware. Happens either in
1264 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1265 */
1266 if (restart != HRTIMER_NORESTART) {
1267 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1268 enqueue_hrtimer(timer, base);
1269 }
1270
1271 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1272
1273 timer->state &= ~HRTIMER_STATE_CALLBACK;
1274 }
1275
1276 #ifdef CONFIG_HIGH_RES_TIMERS
1277
1278 /*
1279 * High resolution timer interrupt
1280 * Called with interrupts disabled
1281 */
1282 void hrtimer_interrupt(struct clock_event_device *dev)
1283 {
1284 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1285 ktime_t expires_next, now, entry_time, delta;
1286 int i, retries = 0;
1287
1288 BUG_ON(!cpu_base->hres_active);
1289 cpu_base->nr_events++;
1290 dev->next_event.tv64 = KTIME_MAX;
1291
1292 raw_spin_lock(&cpu_base->lock);
1293 entry_time = now = hrtimer_update_base(cpu_base);
1294 retry:
1295 expires_next.tv64 = KTIME_MAX;
1296 /*
1297 * We set expires_next to KTIME_MAX here with cpu_base->lock
1298 * held to prevent that a timer is enqueued in our queue via
1299 * the migration code. This does not affect enqueueing of
1300 * timers which run their callback and need to be requeued on
1301 * this CPU.
1302 */
1303 cpu_base->expires_next.tv64 = KTIME_MAX;
1304
1305 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1306 struct hrtimer_clock_base *base;
1307 struct timerqueue_node *node;
1308 ktime_t basenow;
1309
1310 if (!(cpu_base->active_bases & (1 << i)))
1311 continue;
1312
1313 base = cpu_base->clock_base + i;
1314 basenow = ktime_add(now, base->offset);
1315
1316 while ((node = timerqueue_getnext(&base->active))) {
1317 struct hrtimer *timer;
1318
1319 timer = container_of(node, struct hrtimer, node);
1320
1321 /*
1322 * The immediate goal for using the softexpires is
1323 * minimizing wakeups, not running timers at the
1324 * earliest interrupt after their soft expiration.
1325 * This allows us to avoid using a Priority Search
1326 * Tree, which can answer a stabbing querry for
1327 * overlapping intervals and instead use the simple
1328 * BST we already have.
1329 * We don't add extra wakeups by delaying timers that
1330 * are right-of a not yet expired timer, because that
1331 * timer will have to trigger a wakeup anyway.
1332 */
1333
1334 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1335 ktime_t expires;
1336
1337 expires = ktime_sub(hrtimer_get_expires(timer),
1338 base->offset);
1339 if (expires.tv64 < 0)
1340 expires.tv64 = KTIME_MAX;
1341 if (expires.tv64 < expires_next.tv64)
1342 expires_next = expires;
1343 break;
1344 }
1345
1346 __run_hrtimer(timer, &basenow);
1347 }
1348 }
1349
1350 /*
1351 * Store the new expiry value so the migration code can verify
1352 * against it.
1353 */
1354 cpu_base->expires_next = expires_next;
1355 raw_spin_unlock(&cpu_base->lock);
1356
1357 /* Reprogramming necessary ? */
1358 if (expires_next.tv64 == KTIME_MAX ||
1359 !tick_program_event(expires_next, 0)) {
1360 cpu_base->hang_detected = 0;
1361 return;
1362 }
1363
1364 /*
1365 * The next timer was already expired due to:
1366 * - tracing
1367 * - long lasting callbacks
1368 * - being scheduled away when running in a VM
1369 *
1370 * We need to prevent that we loop forever in the hrtimer
1371 * interrupt routine. We give it 3 attempts to avoid
1372 * overreacting on some spurious event.
1373 *
1374 * Acquire base lock for updating the offsets and retrieving
1375 * the current time.
1376 */
1377 raw_spin_lock(&cpu_base->lock);
1378 now = hrtimer_update_base(cpu_base);
1379 cpu_base->nr_retries++;
1380 if (++retries < 3)
1381 goto retry;
1382 /*
1383 * Give the system a chance to do something else than looping
1384 * here. We stored the entry time, so we know exactly how long
1385 * we spent here. We schedule the next event this amount of
1386 * time away.
1387 */
1388 cpu_base->nr_hangs++;
1389 cpu_base->hang_detected = 1;
1390 raw_spin_unlock(&cpu_base->lock);
1391 delta = ktime_sub(now, entry_time);
1392 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1393 cpu_base->max_hang_time = delta;
1394 /*
1395 * Limit it to a sensible value as we enforce a longer
1396 * delay. Give the CPU at least 100ms to catch up.
1397 */
1398 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1399 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1400 else
1401 expires_next = ktime_add(now, delta);
1402 tick_program_event(expires_next, 1);
1403 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1404 ktime_to_ns(delta));
1405 }
1406
1407 /*
1408 * local version of hrtimer_peek_ahead_timers() called with interrupts
1409 * disabled.
1410 */
1411 static void __hrtimer_peek_ahead_timers(void)
1412 {
1413 struct tick_device *td;
1414
1415 if (!hrtimer_hres_active())
1416 return;
1417
1418 td = &__get_cpu_var(tick_cpu_device);
1419 if (td && td->evtdev)
1420 hrtimer_interrupt(td->evtdev);
1421 }
1422
1423 /**
1424 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1425 *
1426 * hrtimer_peek_ahead_timers will peek at the timer queue of
1427 * the current cpu and check if there are any timers for which
1428 * the soft expires time has passed. If any such timers exist,
1429 * they are run immediately and then removed from the timer queue.
1430 *
1431 */
1432 void hrtimer_peek_ahead_timers(void)
1433 {
1434 unsigned long flags;
1435
1436 local_irq_save(flags);
1437 __hrtimer_peek_ahead_timers();
1438 local_irq_restore(flags);
1439 }
1440
1441 static void run_hrtimer_softirq(struct softirq_action *h)
1442 {
1443 hrtimer_peek_ahead_timers();
1444 }
1445
1446 #else /* CONFIG_HIGH_RES_TIMERS */
1447
1448 static inline void __hrtimer_peek_ahead_timers(void) { }
1449
1450 #endif /* !CONFIG_HIGH_RES_TIMERS */
1451
1452 /*
1453 * Called from timer softirq every jiffy, expire hrtimers:
1454 *
1455 * For HRT its the fall back code to run the softirq in the timer
1456 * softirq context in case the hrtimer initialization failed or has
1457 * not been done yet.
1458 */
1459 void hrtimer_run_pending(void)
1460 {
1461 if (hrtimer_hres_active())
1462 return;
1463
1464 /*
1465 * This _is_ ugly: We have to check in the softirq context,
1466 * whether we can switch to highres and / or nohz mode. The
1467 * clocksource switch happens in the timer interrupt with
1468 * xtime_lock held. Notification from there only sets the
1469 * check bit in the tick_oneshot code, otherwise we might
1470 * deadlock vs. xtime_lock.
1471 */
1472 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1473 hrtimer_switch_to_hres();
1474 }
1475
1476 /*
1477 * Called from hardirq context every jiffy
1478 */
1479 void hrtimer_run_queues(void)
1480 {
1481 struct timerqueue_node *node;
1482 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1483 struct hrtimer_clock_base *base;
1484 int index, gettime = 1;
1485
1486 if (hrtimer_hres_active())
1487 return;
1488
1489 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1490 base = &cpu_base->clock_base[index];
1491 if (!timerqueue_getnext(&base->active))
1492 continue;
1493
1494 if (gettime) {
1495 hrtimer_get_softirq_time(cpu_base);
1496 gettime = 0;
1497 }
1498
1499 raw_spin_lock(&cpu_base->lock);
1500
1501 while ((node = timerqueue_getnext(&base->active))) {
1502 struct hrtimer *timer;
1503
1504 timer = container_of(node, struct hrtimer, node);
1505 if (base->softirq_time.tv64 <=
1506 hrtimer_get_expires_tv64(timer))
1507 break;
1508
1509 __run_hrtimer(timer, &base->softirq_time);
1510 }
1511 raw_spin_unlock(&cpu_base->lock);
1512 }
1513 }
1514
1515 /*
1516 * Sleep related functions:
1517 */
1518 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1519 {
1520 struct hrtimer_sleeper *t =
1521 container_of(timer, struct hrtimer_sleeper, timer);
1522 struct task_struct *task = t->task;
1523
1524 t->task = NULL;
1525 if (task)
1526 wake_up_process(task);
1527
1528 return HRTIMER_NORESTART;
1529 }
1530
1531 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1532 {
1533 sl->timer.function = hrtimer_wakeup;
1534 sl->task = task;
1535 }
1536 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1537
1538 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1539 {
1540 hrtimer_init_sleeper(t, current);
1541
1542 do {
1543 set_current_state(TASK_INTERRUPTIBLE);
1544 hrtimer_start_expires(&t->timer, mode);
1545 if (!hrtimer_active(&t->timer))
1546 t->task = NULL;
1547
1548 if (likely(t->task))
1549 freezable_schedule();
1550
1551 hrtimer_cancel(&t->timer);
1552 mode = HRTIMER_MODE_ABS;
1553
1554 } while (t->task && !signal_pending(current));
1555
1556 __set_current_state(TASK_RUNNING);
1557
1558 return t->task == NULL;
1559 }
1560
1561 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1562 {
1563 struct timespec rmt;
1564 ktime_t rem;
1565
1566 rem = hrtimer_expires_remaining(timer);
1567 if (rem.tv64 <= 0)
1568 return 0;
1569 rmt = ktime_to_timespec(rem);
1570
1571 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1572 return -EFAULT;
1573
1574 return 1;
1575 }
1576
1577 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1578 {
1579 struct hrtimer_sleeper t;
1580 struct timespec __user *rmtp;
1581 int ret = 0;
1582
1583 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1584 HRTIMER_MODE_ABS);
1585 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1586
1587 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1588 goto out;
1589
1590 rmtp = restart->nanosleep.rmtp;
1591 if (rmtp) {
1592 ret = update_rmtp(&t.timer, rmtp);
1593 if (ret <= 0)
1594 goto out;
1595 }
1596
1597 /* The other values in restart are already filled in */
1598 ret = -ERESTART_RESTARTBLOCK;
1599 out:
1600 destroy_hrtimer_on_stack(&t.timer);
1601 return ret;
1602 }
1603
1604 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1605 const enum hrtimer_mode mode, const clockid_t clockid)
1606 {
1607 struct restart_block *restart;
1608 struct hrtimer_sleeper t;
1609 int ret = 0;
1610 unsigned long slack;
1611
1612 slack = current->timer_slack_ns;
1613 if (rt_task(current))
1614 slack = 0;
1615
1616 hrtimer_init_on_stack(&t.timer, clockid, mode);
1617 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1618 if (do_nanosleep(&t, mode))
1619 goto out;
1620
1621 /* Absolute timers do not update the rmtp value and restart: */
1622 if (mode == HRTIMER_MODE_ABS) {
1623 ret = -ERESTARTNOHAND;
1624 goto out;
1625 }
1626
1627 if (rmtp) {
1628 ret = update_rmtp(&t.timer, rmtp);
1629 if (ret <= 0)
1630 goto out;
1631 }
1632
1633 restart = &current_thread_info()->restart_block;
1634 restart->fn = hrtimer_nanosleep_restart;
1635 restart->nanosleep.clockid = t.timer.base->clockid;
1636 restart->nanosleep.rmtp = rmtp;
1637 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1638
1639 ret = -ERESTART_RESTARTBLOCK;
1640 out:
1641 destroy_hrtimer_on_stack(&t.timer);
1642 return ret;
1643 }
1644
1645 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1646 struct timespec __user *, rmtp)
1647 {
1648 struct timespec tu;
1649
1650 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1651 return -EFAULT;
1652
1653 if (!timespec_valid(&tu))
1654 return -EINVAL;
1655
1656 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1657 }
1658
1659 /*
1660 * Functions related to boot-time initialization:
1661 */
1662 static void init_hrtimers_cpu(int cpu)
1663 {
1664 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1665 int i;
1666
1667 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1668 cpu_base->clock_base[i].cpu_base = cpu_base;
1669 timerqueue_init_head(&cpu_base->clock_base[i].active);
1670 }
1671
1672 hrtimer_init_hres(cpu_base);
1673 }
1674
1675 #ifdef CONFIG_HOTPLUG_CPU
1676
1677 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1678 struct hrtimer_clock_base *new_base)
1679 {
1680 struct hrtimer *timer;
1681 struct timerqueue_node *node;
1682
1683 while ((node = timerqueue_getnext(&old_base->active))) {
1684 timer = container_of(node, struct hrtimer, node);
1685 BUG_ON(hrtimer_callback_running(timer));
1686 debug_deactivate(timer);
1687
1688 /*
1689 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1690 * timer could be seen as !active and just vanish away
1691 * under us on another CPU
1692 */
1693 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1694 timer->base = new_base;
1695 /*
1696 * Enqueue the timers on the new cpu. This does not
1697 * reprogram the event device in case the timer
1698 * expires before the earliest on this CPU, but we run
1699 * hrtimer_interrupt after we migrated everything to
1700 * sort out already expired timers and reprogram the
1701 * event device.
1702 */
1703 enqueue_hrtimer(timer, new_base);
1704
1705 /* Clear the migration state bit */
1706 timer->state &= ~HRTIMER_STATE_MIGRATE;
1707 }
1708 }
1709
1710 static void migrate_hrtimers(int scpu)
1711 {
1712 struct hrtimer_cpu_base *old_base, *new_base;
1713 int i;
1714
1715 BUG_ON(cpu_online(scpu));
1716 tick_cancel_sched_timer(scpu);
1717
1718 local_irq_disable();
1719 old_base = &per_cpu(hrtimer_bases, scpu);
1720 new_base = &__get_cpu_var(hrtimer_bases);
1721 /*
1722 * The caller is globally serialized and nobody else
1723 * takes two locks at once, deadlock is not possible.
1724 */
1725 raw_spin_lock(&new_base->lock);
1726 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1727
1728 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1729 migrate_hrtimer_list(&old_base->clock_base[i],
1730 &new_base->clock_base[i]);
1731 }
1732
1733 raw_spin_unlock(&old_base->lock);
1734 raw_spin_unlock(&new_base->lock);
1735
1736 /* Check, if we got expired work to do */
1737 __hrtimer_peek_ahead_timers();
1738 local_irq_enable();
1739 }
1740
1741 #endif /* CONFIG_HOTPLUG_CPU */
1742
1743 static int hrtimer_cpu_notify(struct notifier_block *self,
1744 unsigned long action, void *hcpu)
1745 {
1746 int scpu = (long)hcpu;
1747
1748 switch (action) {
1749
1750 case CPU_UP_PREPARE:
1751 case CPU_UP_PREPARE_FROZEN:
1752 init_hrtimers_cpu(scpu);
1753 break;
1754
1755 #ifdef CONFIG_HOTPLUG_CPU
1756 case CPU_DYING:
1757 case CPU_DYING_FROZEN:
1758 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1759 break;
1760 case CPU_DEAD:
1761 case CPU_DEAD_FROZEN:
1762 {
1763 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1764 migrate_hrtimers(scpu);
1765 break;
1766 }
1767 #endif
1768
1769 default:
1770 break;
1771 }
1772
1773 return NOTIFY_OK;
1774 }
1775
1776 static struct notifier_block hrtimers_nb = {
1777 .notifier_call = hrtimer_cpu_notify,
1778 };
1779
1780 void __init hrtimers_init(void)
1781 {
1782 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1783 (void *)(long)smp_processor_id());
1784 register_cpu_notifier(&hrtimers_nb);
1785 #ifdef CONFIG_HIGH_RES_TIMERS
1786 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1787 #endif
1788 }
1789
1790 /**
1791 * schedule_hrtimeout_range_clock - sleep until timeout
1792 * @expires: timeout value (ktime_t)
1793 * @delta: slack in expires timeout (ktime_t)
1794 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1795 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1796 */
1797 int __sched
1798 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1799 const enum hrtimer_mode mode, int clock)
1800 {
1801 struct hrtimer_sleeper t;
1802
1803 /*
1804 * Optimize when a zero timeout value is given. It does not
1805 * matter whether this is an absolute or a relative time.
1806 */
1807 if (expires && !expires->tv64) {
1808 __set_current_state(TASK_RUNNING);
1809 return 0;
1810 }
1811
1812 /*
1813 * A NULL parameter means "infinite"
1814 */
1815 if (!expires) {
1816 schedule();
1817 __set_current_state(TASK_RUNNING);
1818 return -EINTR;
1819 }
1820
1821 hrtimer_init_on_stack(&t.timer, clock, mode);
1822 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1823
1824 hrtimer_init_sleeper(&t, current);
1825
1826 hrtimer_start_expires(&t.timer, mode);
1827 if (!hrtimer_active(&t.timer))
1828 t.task = NULL;
1829
1830 if (likely(t.task))
1831 schedule();
1832
1833 hrtimer_cancel(&t.timer);
1834 destroy_hrtimer_on_stack(&t.timer);
1835
1836 __set_current_state(TASK_RUNNING);
1837
1838 return !t.task ? 0 : -EINTR;
1839 }
1840
1841 /**
1842 * schedule_hrtimeout_range - sleep until timeout
1843 * @expires: timeout value (ktime_t)
1844 * @delta: slack in expires timeout (ktime_t)
1845 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1846 *
1847 * Make the current task sleep until the given expiry time has
1848 * elapsed. The routine will return immediately unless
1849 * the current task state has been set (see set_current_state()).
1850 *
1851 * The @delta argument gives the kernel the freedom to schedule the
1852 * actual wakeup to a time that is both power and performance friendly.
1853 * The kernel give the normal best effort behavior for "@expires+@delta",
1854 * but may decide to fire the timer earlier, but no earlier than @expires.
1855 *
1856 * You can set the task state as follows -
1857 *
1858 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1859 * pass before the routine returns.
1860 *
1861 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1862 * delivered to the current task.
1863 *
1864 * The current task state is guaranteed to be TASK_RUNNING when this
1865 * routine returns.
1866 *
1867 * Returns 0 when the timer has expired otherwise -EINTR
1868 */
1869 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1870 const enum hrtimer_mode mode)
1871 {
1872 return schedule_hrtimeout_range_clock(expires, delta, mode,
1873 CLOCK_MONOTONIC);
1874 }
1875 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1876
1877 /**
1878 * schedule_hrtimeout - sleep until timeout
1879 * @expires: timeout value (ktime_t)
1880 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1881 *
1882 * Make the current task sleep until the given expiry time has
1883 * elapsed. The routine will return immediately unless
1884 * the current task state has been set (see set_current_state()).
1885 *
1886 * You can set the task state as follows -
1887 *
1888 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1889 * pass before the routine returns.
1890 *
1891 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1892 * delivered to the current task.
1893 *
1894 * The current task state is guaranteed to be TASK_RUNNING when this
1895 * routine returns.
1896 *
1897 * Returns 0 when the timer has expired otherwise -EINTR
1898 */
1899 int __sched schedule_hrtimeout(ktime_t *expires,
1900 const enum hrtimer_mode mode)
1901 {
1902 return schedule_hrtimeout_range(expires, 0, mode);
1903 }
1904 EXPORT_SYMBOL_GPL(schedule_hrtimeout);