]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/hrtimer.c
Input: atmel_mxt_ts - add additional bootloader addresses
[mirror_ubuntu-artful-kernel.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 /*
58 * The timer bases:
59 *
60 * There are more clockids then hrtimer bases. Thus, we index
61 * into the timer bases by the hrtimer_base_type enum. When trying
62 * to reach a base using a clockid, hrtimer_clockid_to_base()
63 * is used to convert from clockid to the proper hrtimer_base_type.
64 */
65 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
66 {
67
68 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
69 .clock_base =
70 {
71 {
72 .index = HRTIMER_BASE_MONOTONIC,
73 .clockid = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
76 },
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
81 .resolution = KTIME_LOW_RES,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 .resolution = KTIME_LOW_RES,
88 },
89 {
90 .index = HRTIMER_BASE_TAI,
91 .clockid = CLOCK_TAI,
92 .get_time = &ktime_get_clocktai,
93 .resolution = KTIME_LOW_RES,
94 },
95 }
96 };
97
98 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
100 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
101 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
102 [CLOCK_TAI] = HRTIMER_BASE_TAI,
103 };
104
105 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
106 {
107 return hrtimer_clock_to_base_table[clock_id];
108 }
109
110
111 /*
112 * Get the coarse grained time at the softirq based on xtime and
113 * wall_to_monotonic.
114 */
115 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
116 {
117 ktime_t xtim, mono, boot;
118 struct timespec xts, tom, slp;
119 s32 tai_offset;
120
121 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
122 tai_offset = timekeeping_get_tai_offset();
123
124 xtim = timespec_to_ktime(xts);
125 mono = ktime_add(xtim, timespec_to_ktime(tom));
126 boot = ktime_add(mono, timespec_to_ktime(slp));
127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
131 ktime_add(xtim, ktime_set(tai_offset, 0));
132 }
133
134 /*
135 * Functions and macros which are different for UP/SMP systems are kept in a
136 * single place
137 */
138 #ifdef CONFIG_SMP
139
140 /*
141 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
142 * means that all timers which are tied to this base via timer->base are
143 * locked, and the base itself is locked too.
144 *
145 * So __run_timers/migrate_timers can safely modify all timers which could
146 * be found on the lists/queues.
147 *
148 * When the timer's base is locked, and the timer removed from list, it is
149 * possible to set timer->base = NULL and drop the lock: the timer remains
150 * locked.
151 */
152 static
153 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
154 unsigned long *flags)
155 {
156 struct hrtimer_clock_base *base;
157
158 for (;;) {
159 base = timer->base;
160 if (likely(base != NULL)) {
161 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
162 if (likely(base == timer->base))
163 return base;
164 /* The timer has migrated to another CPU: */
165 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
166 }
167 cpu_relax();
168 }
169 }
170
171 /*
172 * With HIGHRES=y we do not migrate the timer when it is expiring
173 * before the next event on the target cpu because we cannot reprogram
174 * the target cpu hardware and we would cause it to fire late.
175 *
176 * Called with cpu_base->lock of target cpu held.
177 */
178 static int
179 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
180 {
181 #ifdef CONFIG_HIGH_RES_TIMERS
182 ktime_t expires;
183
184 if (!new_base->cpu_base->hres_active)
185 return 0;
186
187 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
188 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
189 #else
190 return 0;
191 #endif
192 }
193
194 /*
195 * Switch the timer base to the current CPU when possible.
196 */
197 static inline struct hrtimer_clock_base *
198 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
200 {
201 struct hrtimer_clock_base *new_base;
202 struct hrtimer_cpu_base *new_cpu_base;
203 int this_cpu = smp_processor_id();
204 int cpu = get_nohz_timer_target(pinned);
205 int basenum = base->index;
206
207 again:
208 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
209 new_base = &new_cpu_base->clock_base[basenum];
210
211 if (base != new_base) {
212 /*
213 * We are trying to move timer to new_base.
214 * However we can't change timer's base while it is running,
215 * so we keep it on the same CPU. No hassle vs. reprogramming
216 * the event source in the high resolution case. The softirq
217 * code will take care of this when the timer function has
218 * completed. There is no conflict as we hold the lock until
219 * the timer is enqueued.
220 */
221 if (unlikely(hrtimer_callback_running(timer)))
222 return base;
223
224 /* See the comment in lock_timer_base() */
225 timer->base = NULL;
226 raw_spin_unlock(&base->cpu_base->lock);
227 raw_spin_lock(&new_base->cpu_base->lock);
228
229 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
230 cpu = this_cpu;
231 raw_spin_unlock(&new_base->cpu_base->lock);
232 raw_spin_lock(&base->cpu_base->lock);
233 timer->base = base;
234 goto again;
235 }
236 timer->base = new_base;
237 } else {
238 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
239 cpu = this_cpu;
240 goto again;
241 }
242 }
243 return new_base;
244 }
245
246 #else /* CONFIG_SMP */
247
248 static inline struct hrtimer_clock_base *
249 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
250 {
251 struct hrtimer_clock_base *base = timer->base;
252
253 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
254
255 return base;
256 }
257
258 # define switch_hrtimer_base(t, b, p) (b)
259
260 #endif /* !CONFIG_SMP */
261
262 /*
263 * Functions for the union type storage format of ktime_t which are
264 * too large for inlining:
265 */
266 #if BITS_PER_LONG < 64
267 # ifndef CONFIG_KTIME_SCALAR
268 /**
269 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
270 * @kt: addend
271 * @nsec: the scalar nsec value to add
272 *
273 * Returns the sum of kt and nsec in ktime_t format
274 */
275 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
276 {
277 ktime_t tmp;
278
279 if (likely(nsec < NSEC_PER_SEC)) {
280 tmp.tv64 = nsec;
281 } else {
282 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
283
284 /* Make sure nsec fits into long */
285 if (unlikely(nsec > KTIME_SEC_MAX))
286 return (ktime_t){ .tv64 = KTIME_MAX };
287
288 tmp = ktime_set((long)nsec, rem);
289 }
290
291 return ktime_add(kt, tmp);
292 }
293
294 EXPORT_SYMBOL_GPL(ktime_add_ns);
295
296 /**
297 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
298 * @kt: minuend
299 * @nsec: the scalar nsec value to subtract
300 *
301 * Returns the subtraction of @nsec from @kt in ktime_t format
302 */
303 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
304 {
305 ktime_t tmp;
306
307 if (likely(nsec < NSEC_PER_SEC)) {
308 tmp.tv64 = nsec;
309 } else {
310 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
311
312 tmp = ktime_set((long)nsec, rem);
313 }
314
315 return ktime_sub(kt, tmp);
316 }
317
318 EXPORT_SYMBOL_GPL(ktime_sub_ns);
319 # endif /* !CONFIG_KTIME_SCALAR */
320
321 /*
322 * Divide a ktime value by a nanosecond value
323 */
324 u64 ktime_divns(const ktime_t kt, s64 div)
325 {
326 u64 dclc;
327 int sft = 0;
328
329 dclc = ktime_to_ns(kt);
330 /* Make sure the divisor is less than 2^32: */
331 while (div >> 32) {
332 sft++;
333 div >>= 1;
334 }
335 dclc >>= sft;
336 do_div(dclc, (unsigned long) div);
337
338 return dclc;
339 }
340 #endif /* BITS_PER_LONG >= 64 */
341
342 /*
343 * Add two ktime values and do a safety check for overflow:
344 */
345 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
346 {
347 ktime_t res = ktime_add(lhs, rhs);
348
349 /*
350 * We use KTIME_SEC_MAX here, the maximum timeout which we can
351 * return to user space in a timespec:
352 */
353 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
354 res = ktime_set(KTIME_SEC_MAX, 0);
355
356 return res;
357 }
358
359 EXPORT_SYMBOL_GPL(ktime_add_safe);
360
361 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
362
363 static struct debug_obj_descr hrtimer_debug_descr;
364
365 static void *hrtimer_debug_hint(void *addr)
366 {
367 return ((struct hrtimer *) addr)->function;
368 }
369
370 /*
371 * fixup_init is called when:
372 * - an active object is initialized
373 */
374 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
375 {
376 struct hrtimer *timer = addr;
377
378 switch (state) {
379 case ODEBUG_STATE_ACTIVE:
380 hrtimer_cancel(timer);
381 debug_object_init(timer, &hrtimer_debug_descr);
382 return 1;
383 default:
384 return 0;
385 }
386 }
387
388 /*
389 * fixup_activate is called when:
390 * - an active object is activated
391 * - an unknown object is activated (might be a statically initialized object)
392 */
393 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
394 {
395 switch (state) {
396
397 case ODEBUG_STATE_NOTAVAILABLE:
398 WARN_ON_ONCE(1);
399 return 0;
400
401 case ODEBUG_STATE_ACTIVE:
402 WARN_ON(1);
403
404 default:
405 return 0;
406 }
407 }
408
409 /*
410 * fixup_free is called when:
411 * - an active object is freed
412 */
413 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
414 {
415 struct hrtimer *timer = addr;
416
417 switch (state) {
418 case ODEBUG_STATE_ACTIVE:
419 hrtimer_cancel(timer);
420 debug_object_free(timer, &hrtimer_debug_descr);
421 return 1;
422 default:
423 return 0;
424 }
425 }
426
427 static struct debug_obj_descr hrtimer_debug_descr = {
428 .name = "hrtimer",
429 .debug_hint = hrtimer_debug_hint,
430 .fixup_init = hrtimer_fixup_init,
431 .fixup_activate = hrtimer_fixup_activate,
432 .fixup_free = hrtimer_fixup_free,
433 };
434
435 static inline void debug_hrtimer_init(struct hrtimer *timer)
436 {
437 debug_object_init(timer, &hrtimer_debug_descr);
438 }
439
440 static inline void debug_hrtimer_activate(struct hrtimer *timer)
441 {
442 debug_object_activate(timer, &hrtimer_debug_descr);
443 }
444
445 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
446 {
447 debug_object_deactivate(timer, &hrtimer_debug_descr);
448 }
449
450 static inline void debug_hrtimer_free(struct hrtimer *timer)
451 {
452 debug_object_free(timer, &hrtimer_debug_descr);
453 }
454
455 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
456 enum hrtimer_mode mode);
457
458 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
459 enum hrtimer_mode mode)
460 {
461 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
462 __hrtimer_init(timer, clock_id, mode);
463 }
464 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
465
466 void destroy_hrtimer_on_stack(struct hrtimer *timer)
467 {
468 debug_object_free(timer, &hrtimer_debug_descr);
469 }
470
471 #else
472 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
473 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
474 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
475 #endif
476
477 static inline void
478 debug_init(struct hrtimer *timer, clockid_t clockid,
479 enum hrtimer_mode mode)
480 {
481 debug_hrtimer_init(timer);
482 trace_hrtimer_init(timer, clockid, mode);
483 }
484
485 static inline void debug_activate(struct hrtimer *timer)
486 {
487 debug_hrtimer_activate(timer);
488 trace_hrtimer_start(timer);
489 }
490
491 static inline void debug_deactivate(struct hrtimer *timer)
492 {
493 debug_hrtimer_deactivate(timer);
494 trace_hrtimer_cancel(timer);
495 }
496
497 /* High resolution timer related functions */
498 #ifdef CONFIG_HIGH_RES_TIMERS
499
500 /*
501 * High resolution timer enabled ?
502 */
503 static int hrtimer_hres_enabled __read_mostly = 1;
504
505 /*
506 * Enable / Disable high resolution mode
507 */
508 static int __init setup_hrtimer_hres(char *str)
509 {
510 if (!strcmp(str, "off"))
511 hrtimer_hres_enabled = 0;
512 else if (!strcmp(str, "on"))
513 hrtimer_hres_enabled = 1;
514 else
515 return 0;
516 return 1;
517 }
518
519 __setup("highres=", setup_hrtimer_hres);
520
521 /*
522 * hrtimer_high_res_enabled - query, if the highres mode is enabled
523 */
524 static inline int hrtimer_is_hres_enabled(void)
525 {
526 return hrtimer_hres_enabled;
527 }
528
529 /*
530 * Is the high resolution mode active ?
531 */
532 static inline int hrtimer_hres_active(void)
533 {
534 return __this_cpu_read(hrtimer_bases.hres_active);
535 }
536
537 /*
538 * Reprogram the event source with checking both queues for the
539 * next event
540 * Called with interrupts disabled and base->lock held
541 */
542 static void
543 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
544 {
545 int i;
546 struct hrtimer_clock_base *base = cpu_base->clock_base;
547 ktime_t expires, expires_next;
548
549 expires_next.tv64 = KTIME_MAX;
550
551 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
552 struct hrtimer *timer;
553 struct timerqueue_node *next;
554
555 next = timerqueue_getnext(&base->active);
556 if (!next)
557 continue;
558 timer = container_of(next, struct hrtimer, node);
559
560 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
561 /*
562 * clock_was_set() has changed base->offset so the
563 * result might be negative. Fix it up to prevent a
564 * false positive in clockevents_program_event()
565 */
566 if (expires.tv64 < 0)
567 expires.tv64 = 0;
568 if (expires.tv64 < expires_next.tv64)
569 expires_next = expires;
570 }
571
572 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
573 return;
574
575 cpu_base->expires_next.tv64 = expires_next.tv64;
576
577 /*
578 * If a hang was detected in the last timer interrupt then we
579 * leave the hang delay active in the hardware. We want the
580 * system to make progress. That also prevents the following
581 * scenario:
582 * T1 expires 50ms from now
583 * T2 expires 5s from now
584 *
585 * T1 is removed, so this code is called and would reprogram
586 * the hardware to 5s from now. Any hrtimer_start after that
587 * will not reprogram the hardware due to hang_detected being
588 * set. So we'd effectivly block all timers until the T2 event
589 * fires.
590 */
591 if (cpu_base->hang_detected)
592 return;
593
594 if (cpu_base->expires_next.tv64 != KTIME_MAX)
595 tick_program_event(cpu_base->expires_next, 1);
596 }
597
598 /*
599 * Shared reprogramming for clock_realtime and clock_monotonic
600 *
601 * When a timer is enqueued and expires earlier than the already enqueued
602 * timers, we have to check, whether it expires earlier than the timer for
603 * which the clock event device was armed.
604 *
605 * Called with interrupts disabled and base->cpu_base.lock held
606 */
607 static int hrtimer_reprogram(struct hrtimer *timer,
608 struct hrtimer_clock_base *base)
609 {
610 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
611 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
612 int res;
613
614 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
615
616 /*
617 * When the callback is running, we do not reprogram the clock event
618 * device. The timer callback is either running on a different CPU or
619 * the callback is executed in the hrtimer_interrupt context. The
620 * reprogramming is handled either by the softirq, which called the
621 * callback or at the end of the hrtimer_interrupt.
622 */
623 if (hrtimer_callback_running(timer))
624 return 0;
625
626 /*
627 * CLOCK_REALTIME timer might be requested with an absolute
628 * expiry time which is less than base->offset. Nothing wrong
629 * about that, just avoid to call into the tick code, which
630 * has now objections against negative expiry values.
631 */
632 if (expires.tv64 < 0)
633 return -ETIME;
634
635 if (expires.tv64 >= cpu_base->expires_next.tv64)
636 return 0;
637
638 /*
639 * If a hang was detected in the last timer interrupt then we
640 * do not schedule a timer which is earlier than the expiry
641 * which we enforced in the hang detection. We want the system
642 * to make progress.
643 */
644 if (cpu_base->hang_detected)
645 return 0;
646
647 /*
648 * Clockevents returns -ETIME, when the event was in the past.
649 */
650 res = tick_program_event(expires, 0);
651 if (!IS_ERR_VALUE(res))
652 cpu_base->expires_next = expires;
653 return res;
654 }
655
656 /*
657 * Initialize the high resolution related parts of cpu_base
658 */
659 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
660 {
661 base->expires_next.tv64 = KTIME_MAX;
662 base->hres_active = 0;
663 }
664
665 /*
666 * When High resolution timers are active, try to reprogram. Note, that in case
667 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
668 * check happens. The timer gets enqueued into the rbtree. The reprogramming
669 * and expiry check is done in the hrtimer_interrupt or in the softirq.
670 */
671 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
672 struct hrtimer_clock_base *base)
673 {
674 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
675 }
676
677 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
678 {
679 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
680 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
681 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
682
683 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
684 }
685
686 /*
687 * Retrigger next event is called after clock was set
688 *
689 * Called with interrupts disabled via on_each_cpu()
690 */
691 static void retrigger_next_event(void *arg)
692 {
693 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
694
695 if (!hrtimer_hres_active())
696 return;
697
698 raw_spin_lock(&base->lock);
699 hrtimer_update_base(base);
700 hrtimer_force_reprogram(base, 0);
701 raw_spin_unlock(&base->lock);
702 }
703
704 /*
705 * Switch to high resolution mode
706 */
707 static int hrtimer_switch_to_hres(void)
708 {
709 int i, cpu = smp_processor_id();
710 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
711 unsigned long flags;
712
713 if (base->hres_active)
714 return 1;
715
716 local_irq_save(flags);
717
718 if (tick_init_highres()) {
719 local_irq_restore(flags);
720 printk(KERN_WARNING "Could not switch to high resolution "
721 "mode on CPU %d\n", cpu);
722 return 0;
723 }
724 base->hres_active = 1;
725 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
726 base->clock_base[i].resolution = KTIME_HIGH_RES;
727
728 tick_setup_sched_timer();
729 /* "Retrigger" the interrupt to get things going */
730 retrigger_next_event(NULL);
731 local_irq_restore(flags);
732 return 1;
733 }
734
735 static void clock_was_set_work(struct work_struct *work)
736 {
737 clock_was_set();
738 }
739
740 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
741
742 /*
743 * Called from timekeeping and resume code to reprogramm the hrtimer
744 * interrupt device on all cpus.
745 */
746 void clock_was_set_delayed(void)
747 {
748 schedule_work(&hrtimer_work);
749 }
750
751 #else
752
753 static inline int hrtimer_hres_active(void) { return 0; }
754 static inline int hrtimer_is_hres_enabled(void) { return 0; }
755 static inline int hrtimer_switch_to_hres(void) { return 0; }
756 static inline void
757 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
758 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
759 struct hrtimer_clock_base *base)
760 {
761 return 0;
762 }
763 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
764 static inline void retrigger_next_event(void *arg) { }
765
766 #endif /* CONFIG_HIGH_RES_TIMERS */
767
768 /*
769 * Clock realtime was set
770 *
771 * Change the offset of the realtime clock vs. the monotonic
772 * clock.
773 *
774 * We might have to reprogram the high resolution timer interrupt. On
775 * SMP we call the architecture specific code to retrigger _all_ high
776 * resolution timer interrupts. On UP we just disable interrupts and
777 * call the high resolution interrupt code.
778 */
779 void clock_was_set(void)
780 {
781 #ifdef CONFIG_HIGH_RES_TIMERS
782 /* Retrigger the CPU local events everywhere */
783 on_each_cpu(retrigger_next_event, NULL, 1);
784 #endif
785 timerfd_clock_was_set();
786 }
787
788 /*
789 * During resume we might have to reprogram the high resolution timer
790 * interrupt on all online CPUs. However, all other CPUs will be
791 * stopped with IRQs interrupts disabled so the clock_was_set() call
792 * must be deferred.
793 */
794 void hrtimers_resume(void)
795 {
796 WARN_ONCE(!irqs_disabled(),
797 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
798
799 /* Retrigger on the local CPU */
800 retrigger_next_event(NULL);
801 /* And schedule a retrigger for all others */
802 clock_was_set_delayed();
803 }
804
805 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
806 {
807 #ifdef CONFIG_TIMER_STATS
808 if (timer->start_site)
809 return;
810 timer->start_site = __builtin_return_address(0);
811 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
812 timer->start_pid = current->pid;
813 #endif
814 }
815
816 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
817 {
818 #ifdef CONFIG_TIMER_STATS
819 timer->start_site = NULL;
820 #endif
821 }
822
823 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
824 {
825 #ifdef CONFIG_TIMER_STATS
826 if (likely(!timer_stats_active))
827 return;
828 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
829 timer->function, timer->start_comm, 0);
830 #endif
831 }
832
833 /*
834 * Counterpart to lock_hrtimer_base above:
835 */
836 static inline
837 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
838 {
839 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
840 }
841
842 /**
843 * hrtimer_forward - forward the timer expiry
844 * @timer: hrtimer to forward
845 * @now: forward past this time
846 * @interval: the interval to forward
847 *
848 * Forward the timer expiry so it will expire in the future.
849 * Returns the number of overruns.
850 */
851 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
852 {
853 u64 orun = 1;
854 ktime_t delta;
855
856 delta = ktime_sub(now, hrtimer_get_expires(timer));
857
858 if (delta.tv64 < 0)
859 return 0;
860
861 if (interval.tv64 < timer->base->resolution.tv64)
862 interval.tv64 = timer->base->resolution.tv64;
863
864 if (unlikely(delta.tv64 >= interval.tv64)) {
865 s64 incr = ktime_to_ns(interval);
866
867 orun = ktime_divns(delta, incr);
868 hrtimer_add_expires_ns(timer, incr * orun);
869 if (hrtimer_get_expires_tv64(timer) > now.tv64)
870 return orun;
871 /*
872 * This (and the ktime_add() below) is the
873 * correction for exact:
874 */
875 orun++;
876 }
877 hrtimer_add_expires(timer, interval);
878
879 return orun;
880 }
881 EXPORT_SYMBOL_GPL(hrtimer_forward);
882
883 /*
884 * enqueue_hrtimer - internal function to (re)start a timer
885 *
886 * The timer is inserted in expiry order. Insertion into the
887 * red black tree is O(log(n)). Must hold the base lock.
888 *
889 * Returns 1 when the new timer is the leftmost timer in the tree.
890 */
891 static int enqueue_hrtimer(struct hrtimer *timer,
892 struct hrtimer_clock_base *base)
893 {
894 debug_activate(timer);
895
896 timerqueue_add(&base->active, &timer->node);
897 base->cpu_base->active_bases |= 1 << base->index;
898
899 /*
900 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
901 * state of a possibly running callback.
902 */
903 timer->state |= HRTIMER_STATE_ENQUEUED;
904
905 return (&timer->node == base->active.next);
906 }
907
908 /*
909 * __remove_hrtimer - internal function to remove a timer
910 *
911 * Caller must hold the base lock.
912 *
913 * High resolution timer mode reprograms the clock event device when the
914 * timer is the one which expires next. The caller can disable this by setting
915 * reprogram to zero. This is useful, when the context does a reprogramming
916 * anyway (e.g. timer interrupt)
917 */
918 static void __remove_hrtimer(struct hrtimer *timer,
919 struct hrtimer_clock_base *base,
920 unsigned long newstate, int reprogram)
921 {
922 struct timerqueue_node *next_timer;
923 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
924 goto out;
925
926 next_timer = timerqueue_getnext(&base->active);
927 timerqueue_del(&base->active, &timer->node);
928 if (&timer->node == next_timer) {
929 #ifdef CONFIG_HIGH_RES_TIMERS
930 /* Reprogram the clock event device. if enabled */
931 if (reprogram && hrtimer_hres_active()) {
932 ktime_t expires;
933
934 expires = ktime_sub(hrtimer_get_expires(timer),
935 base->offset);
936 if (base->cpu_base->expires_next.tv64 == expires.tv64)
937 hrtimer_force_reprogram(base->cpu_base, 1);
938 }
939 #endif
940 }
941 if (!timerqueue_getnext(&base->active))
942 base->cpu_base->active_bases &= ~(1 << base->index);
943 out:
944 timer->state = newstate;
945 }
946
947 /*
948 * remove hrtimer, called with base lock held
949 */
950 static inline int
951 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
952 {
953 if (hrtimer_is_queued(timer)) {
954 unsigned long state;
955 int reprogram;
956
957 /*
958 * Remove the timer and force reprogramming when high
959 * resolution mode is active and the timer is on the current
960 * CPU. If we remove a timer on another CPU, reprogramming is
961 * skipped. The interrupt event on this CPU is fired and
962 * reprogramming happens in the interrupt handler. This is a
963 * rare case and less expensive than a smp call.
964 */
965 debug_deactivate(timer);
966 timer_stats_hrtimer_clear_start_info(timer);
967 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
968 /*
969 * We must preserve the CALLBACK state flag here,
970 * otherwise we could move the timer base in
971 * switch_hrtimer_base.
972 */
973 state = timer->state & HRTIMER_STATE_CALLBACK;
974 __remove_hrtimer(timer, base, state, reprogram);
975 return 1;
976 }
977 return 0;
978 }
979
980 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
981 unsigned long delta_ns, const enum hrtimer_mode mode,
982 int wakeup)
983 {
984 struct hrtimer_clock_base *base, *new_base;
985 unsigned long flags;
986 int ret, leftmost;
987
988 base = lock_hrtimer_base(timer, &flags);
989
990 /* Remove an active timer from the queue: */
991 ret = remove_hrtimer(timer, base);
992
993 /* Switch the timer base, if necessary: */
994 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
995
996 if (mode & HRTIMER_MODE_REL) {
997 tim = ktime_add_safe(tim, new_base->get_time());
998 /*
999 * CONFIG_TIME_LOW_RES is a temporary way for architectures
1000 * to signal that they simply return xtime in
1001 * do_gettimeoffset(). In this case we want to round up by
1002 * resolution when starting a relative timer, to avoid short
1003 * timeouts. This will go away with the GTOD framework.
1004 */
1005 #ifdef CONFIG_TIME_LOW_RES
1006 tim = ktime_add_safe(tim, base->resolution);
1007 #endif
1008 }
1009
1010 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1011
1012 timer_stats_hrtimer_set_start_info(timer);
1013
1014 leftmost = enqueue_hrtimer(timer, new_base);
1015
1016 /*
1017 * Only allow reprogramming if the new base is on this CPU.
1018 * (it might still be on another CPU if the timer was pending)
1019 *
1020 * XXX send_remote_softirq() ?
1021 */
1022 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1023 && hrtimer_enqueue_reprogram(timer, new_base)) {
1024 if (wakeup) {
1025 /*
1026 * We need to drop cpu_base->lock to avoid a
1027 * lock ordering issue vs. rq->lock.
1028 */
1029 raw_spin_unlock(&new_base->cpu_base->lock);
1030 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1031 local_irq_restore(flags);
1032 return ret;
1033 } else {
1034 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1035 }
1036 }
1037
1038 unlock_hrtimer_base(timer, &flags);
1039
1040 return ret;
1041 }
1042
1043 /**
1044 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1045 * @timer: the timer to be added
1046 * @tim: expiry time
1047 * @delta_ns: "slack" range for the timer
1048 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1049 * relative (HRTIMER_MODE_REL)
1050 *
1051 * Returns:
1052 * 0 on success
1053 * 1 when the timer was active
1054 */
1055 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1056 unsigned long delta_ns, const enum hrtimer_mode mode)
1057 {
1058 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1059 }
1060 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1061
1062 /**
1063 * hrtimer_start - (re)start an hrtimer on the current CPU
1064 * @timer: the timer to be added
1065 * @tim: expiry time
1066 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1067 * relative (HRTIMER_MODE_REL)
1068 *
1069 * Returns:
1070 * 0 on success
1071 * 1 when the timer was active
1072 */
1073 int
1074 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1075 {
1076 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1077 }
1078 EXPORT_SYMBOL_GPL(hrtimer_start);
1079
1080
1081 /**
1082 * hrtimer_try_to_cancel - try to deactivate a timer
1083 * @timer: hrtimer to stop
1084 *
1085 * Returns:
1086 * 0 when the timer was not active
1087 * 1 when the timer was active
1088 * -1 when the timer is currently excuting the callback function and
1089 * cannot be stopped
1090 */
1091 int hrtimer_try_to_cancel(struct hrtimer *timer)
1092 {
1093 struct hrtimer_clock_base *base;
1094 unsigned long flags;
1095 int ret = -1;
1096
1097 base = lock_hrtimer_base(timer, &flags);
1098
1099 if (!hrtimer_callback_running(timer))
1100 ret = remove_hrtimer(timer, base);
1101
1102 unlock_hrtimer_base(timer, &flags);
1103
1104 return ret;
1105
1106 }
1107 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1108
1109 /**
1110 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1111 * @timer: the timer to be cancelled
1112 *
1113 * Returns:
1114 * 0 when the timer was not active
1115 * 1 when the timer was active
1116 */
1117 int hrtimer_cancel(struct hrtimer *timer)
1118 {
1119 for (;;) {
1120 int ret = hrtimer_try_to_cancel(timer);
1121
1122 if (ret >= 0)
1123 return ret;
1124 cpu_relax();
1125 }
1126 }
1127 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1128
1129 /**
1130 * hrtimer_get_remaining - get remaining time for the timer
1131 * @timer: the timer to read
1132 */
1133 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1134 {
1135 unsigned long flags;
1136 ktime_t rem;
1137
1138 lock_hrtimer_base(timer, &flags);
1139 rem = hrtimer_expires_remaining(timer);
1140 unlock_hrtimer_base(timer, &flags);
1141
1142 return rem;
1143 }
1144 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1145
1146 #ifdef CONFIG_NO_HZ_COMMON
1147 /**
1148 * hrtimer_get_next_event - get the time until next expiry event
1149 *
1150 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1151 * is pending.
1152 */
1153 ktime_t hrtimer_get_next_event(void)
1154 {
1155 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1156 struct hrtimer_clock_base *base = cpu_base->clock_base;
1157 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1158 unsigned long flags;
1159 int i;
1160
1161 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1162
1163 if (!hrtimer_hres_active()) {
1164 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1165 struct hrtimer *timer;
1166 struct timerqueue_node *next;
1167
1168 next = timerqueue_getnext(&base->active);
1169 if (!next)
1170 continue;
1171
1172 timer = container_of(next, struct hrtimer, node);
1173 delta.tv64 = hrtimer_get_expires_tv64(timer);
1174 delta = ktime_sub(delta, base->get_time());
1175 if (delta.tv64 < mindelta.tv64)
1176 mindelta.tv64 = delta.tv64;
1177 }
1178 }
1179
1180 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1181
1182 if (mindelta.tv64 < 0)
1183 mindelta.tv64 = 0;
1184 return mindelta;
1185 }
1186 #endif
1187
1188 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1189 enum hrtimer_mode mode)
1190 {
1191 struct hrtimer_cpu_base *cpu_base;
1192 int base;
1193
1194 memset(timer, 0, sizeof(struct hrtimer));
1195
1196 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1197
1198 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1199 clock_id = CLOCK_MONOTONIC;
1200
1201 base = hrtimer_clockid_to_base(clock_id);
1202 timer->base = &cpu_base->clock_base[base];
1203 timerqueue_init(&timer->node);
1204
1205 #ifdef CONFIG_TIMER_STATS
1206 timer->start_site = NULL;
1207 timer->start_pid = -1;
1208 memset(timer->start_comm, 0, TASK_COMM_LEN);
1209 #endif
1210 }
1211
1212 /**
1213 * hrtimer_init - initialize a timer to the given clock
1214 * @timer: the timer to be initialized
1215 * @clock_id: the clock to be used
1216 * @mode: timer mode abs/rel
1217 */
1218 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1219 enum hrtimer_mode mode)
1220 {
1221 debug_init(timer, clock_id, mode);
1222 __hrtimer_init(timer, clock_id, mode);
1223 }
1224 EXPORT_SYMBOL_GPL(hrtimer_init);
1225
1226 /**
1227 * hrtimer_get_res - get the timer resolution for a clock
1228 * @which_clock: which clock to query
1229 * @tp: pointer to timespec variable to store the resolution
1230 *
1231 * Store the resolution of the clock selected by @which_clock in the
1232 * variable pointed to by @tp.
1233 */
1234 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1235 {
1236 struct hrtimer_cpu_base *cpu_base;
1237 int base = hrtimer_clockid_to_base(which_clock);
1238
1239 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1240 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1241
1242 return 0;
1243 }
1244 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1245
1246 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1247 {
1248 struct hrtimer_clock_base *base = timer->base;
1249 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1250 enum hrtimer_restart (*fn)(struct hrtimer *);
1251 int restart;
1252
1253 WARN_ON(!irqs_disabled());
1254
1255 debug_deactivate(timer);
1256 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1257 timer_stats_account_hrtimer(timer);
1258 fn = timer->function;
1259
1260 /*
1261 * Because we run timers from hardirq context, there is no chance
1262 * they get migrated to another cpu, therefore its safe to unlock
1263 * the timer base.
1264 */
1265 raw_spin_unlock(&cpu_base->lock);
1266 trace_hrtimer_expire_entry(timer, now);
1267 restart = fn(timer);
1268 trace_hrtimer_expire_exit(timer);
1269 raw_spin_lock(&cpu_base->lock);
1270
1271 /*
1272 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1273 * we do not reprogramm the event hardware. Happens either in
1274 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1275 */
1276 if (restart != HRTIMER_NORESTART) {
1277 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1278 enqueue_hrtimer(timer, base);
1279 }
1280
1281 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1282
1283 timer->state &= ~HRTIMER_STATE_CALLBACK;
1284 }
1285
1286 #ifdef CONFIG_HIGH_RES_TIMERS
1287
1288 /*
1289 * High resolution timer interrupt
1290 * Called with interrupts disabled
1291 */
1292 void hrtimer_interrupt(struct clock_event_device *dev)
1293 {
1294 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1295 ktime_t expires_next, now, entry_time, delta;
1296 int i, retries = 0;
1297
1298 BUG_ON(!cpu_base->hres_active);
1299 cpu_base->nr_events++;
1300 dev->next_event.tv64 = KTIME_MAX;
1301
1302 raw_spin_lock(&cpu_base->lock);
1303 entry_time = now = hrtimer_update_base(cpu_base);
1304 retry:
1305 expires_next.tv64 = KTIME_MAX;
1306 /*
1307 * We set expires_next to KTIME_MAX here with cpu_base->lock
1308 * held to prevent that a timer is enqueued in our queue via
1309 * the migration code. This does not affect enqueueing of
1310 * timers which run their callback and need to be requeued on
1311 * this CPU.
1312 */
1313 cpu_base->expires_next.tv64 = KTIME_MAX;
1314
1315 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1316 struct hrtimer_clock_base *base;
1317 struct timerqueue_node *node;
1318 ktime_t basenow;
1319
1320 if (!(cpu_base->active_bases & (1 << i)))
1321 continue;
1322
1323 base = cpu_base->clock_base + i;
1324 basenow = ktime_add(now, base->offset);
1325
1326 while ((node = timerqueue_getnext(&base->active))) {
1327 struct hrtimer *timer;
1328
1329 timer = container_of(node, struct hrtimer, node);
1330
1331 /*
1332 * The immediate goal for using the softexpires is
1333 * minimizing wakeups, not running timers at the
1334 * earliest interrupt after their soft expiration.
1335 * This allows us to avoid using a Priority Search
1336 * Tree, which can answer a stabbing querry for
1337 * overlapping intervals and instead use the simple
1338 * BST we already have.
1339 * We don't add extra wakeups by delaying timers that
1340 * are right-of a not yet expired timer, because that
1341 * timer will have to trigger a wakeup anyway.
1342 */
1343
1344 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1345 ktime_t expires;
1346
1347 expires = ktime_sub(hrtimer_get_expires(timer),
1348 base->offset);
1349 if (expires.tv64 < 0)
1350 expires.tv64 = KTIME_MAX;
1351 if (expires.tv64 < expires_next.tv64)
1352 expires_next = expires;
1353 break;
1354 }
1355
1356 __run_hrtimer(timer, &basenow);
1357 }
1358 }
1359
1360 /*
1361 * Store the new expiry value so the migration code can verify
1362 * against it.
1363 */
1364 cpu_base->expires_next = expires_next;
1365 raw_spin_unlock(&cpu_base->lock);
1366
1367 /* Reprogramming necessary ? */
1368 if (expires_next.tv64 == KTIME_MAX ||
1369 !tick_program_event(expires_next, 0)) {
1370 cpu_base->hang_detected = 0;
1371 return;
1372 }
1373
1374 /*
1375 * The next timer was already expired due to:
1376 * - tracing
1377 * - long lasting callbacks
1378 * - being scheduled away when running in a VM
1379 *
1380 * We need to prevent that we loop forever in the hrtimer
1381 * interrupt routine. We give it 3 attempts to avoid
1382 * overreacting on some spurious event.
1383 *
1384 * Acquire base lock for updating the offsets and retrieving
1385 * the current time.
1386 */
1387 raw_spin_lock(&cpu_base->lock);
1388 now = hrtimer_update_base(cpu_base);
1389 cpu_base->nr_retries++;
1390 if (++retries < 3)
1391 goto retry;
1392 /*
1393 * Give the system a chance to do something else than looping
1394 * here. We stored the entry time, so we know exactly how long
1395 * we spent here. We schedule the next event this amount of
1396 * time away.
1397 */
1398 cpu_base->nr_hangs++;
1399 cpu_base->hang_detected = 1;
1400 raw_spin_unlock(&cpu_base->lock);
1401 delta = ktime_sub(now, entry_time);
1402 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1403 cpu_base->max_hang_time = delta;
1404 /*
1405 * Limit it to a sensible value as we enforce a longer
1406 * delay. Give the CPU at least 100ms to catch up.
1407 */
1408 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1409 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1410 else
1411 expires_next = ktime_add(now, delta);
1412 tick_program_event(expires_next, 1);
1413 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1414 ktime_to_ns(delta));
1415 }
1416
1417 /*
1418 * local version of hrtimer_peek_ahead_timers() called with interrupts
1419 * disabled.
1420 */
1421 static void __hrtimer_peek_ahead_timers(void)
1422 {
1423 struct tick_device *td;
1424
1425 if (!hrtimer_hres_active())
1426 return;
1427
1428 td = &__get_cpu_var(tick_cpu_device);
1429 if (td && td->evtdev)
1430 hrtimer_interrupt(td->evtdev);
1431 }
1432
1433 /**
1434 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1435 *
1436 * hrtimer_peek_ahead_timers will peek at the timer queue of
1437 * the current cpu and check if there are any timers for which
1438 * the soft expires time has passed. If any such timers exist,
1439 * they are run immediately and then removed from the timer queue.
1440 *
1441 */
1442 void hrtimer_peek_ahead_timers(void)
1443 {
1444 unsigned long flags;
1445
1446 local_irq_save(flags);
1447 __hrtimer_peek_ahead_timers();
1448 local_irq_restore(flags);
1449 }
1450
1451 static void run_hrtimer_softirq(struct softirq_action *h)
1452 {
1453 hrtimer_peek_ahead_timers();
1454 }
1455
1456 #else /* CONFIG_HIGH_RES_TIMERS */
1457
1458 static inline void __hrtimer_peek_ahead_timers(void) { }
1459
1460 #endif /* !CONFIG_HIGH_RES_TIMERS */
1461
1462 /*
1463 * Called from timer softirq every jiffy, expire hrtimers:
1464 *
1465 * For HRT its the fall back code to run the softirq in the timer
1466 * softirq context in case the hrtimer initialization failed or has
1467 * not been done yet.
1468 */
1469 void hrtimer_run_pending(void)
1470 {
1471 if (hrtimer_hres_active())
1472 return;
1473
1474 /*
1475 * This _is_ ugly: We have to check in the softirq context,
1476 * whether we can switch to highres and / or nohz mode. The
1477 * clocksource switch happens in the timer interrupt with
1478 * xtime_lock held. Notification from there only sets the
1479 * check bit in the tick_oneshot code, otherwise we might
1480 * deadlock vs. xtime_lock.
1481 */
1482 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1483 hrtimer_switch_to_hres();
1484 }
1485
1486 /*
1487 * Called from hardirq context every jiffy
1488 */
1489 void hrtimer_run_queues(void)
1490 {
1491 struct timerqueue_node *node;
1492 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1493 struct hrtimer_clock_base *base;
1494 int index, gettime = 1;
1495
1496 if (hrtimer_hres_active())
1497 return;
1498
1499 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1500 base = &cpu_base->clock_base[index];
1501 if (!timerqueue_getnext(&base->active))
1502 continue;
1503
1504 if (gettime) {
1505 hrtimer_get_softirq_time(cpu_base);
1506 gettime = 0;
1507 }
1508
1509 raw_spin_lock(&cpu_base->lock);
1510
1511 while ((node = timerqueue_getnext(&base->active))) {
1512 struct hrtimer *timer;
1513
1514 timer = container_of(node, struct hrtimer, node);
1515 if (base->softirq_time.tv64 <=
1516 hrtimer_get_expires_tv64(timer))
1517 break;
1518
1519 __run_hrtimer(timer, &base->softirq_time);
1520 }
1521 raw_spin_unlock(&cpu_base->lock);
1522 }
1523 }
1524
1525 /*
1526 * Sleep related functions:
1527 */
1528 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1529 {
1530 struct hrtimer_sleeper *t =
1531 container_of(timer, struct hrtimer_sleeper, timer);
1532 struct task_struct *task = t->task;
1533
1534 t->task = NULL;
1535 if (task)
1536 wake_up_process(task);
1537
1538 return HRTIMER_NORESTART;
1539 }
1540
1541 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1542 {
1543 sl->timer.function = hrtimer_wakeup;
1544 sl->task = task;
1545 }
1546 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1547
1548 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1549 {
1550 hrtimer_init_sleeper(t, current);
1551
1552 do {
1553 set_current_state(TASK_INTERRUPTIBLE);
1554 hrtimer_start_expires(&t->timer, mode);
1555 if (!hrtimer_active(&t->timer))
1556 t->task = NULL;
1557
1558 if (likely(t->task))
1559 freezable_schedule();
1560
1561 hrtimer_cancel(&t->timer);
1562 mode = HRTIMER_MODE_ABS;
1563
1564 } while (t->task && !signal_pending(current));
1565
1566 __set_current_state(TASK_RUNNING);
1567
1568 return t->task == NULL;
1569 }
1570
1571 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1572 {
1573 struct timespec rmt;
1574 ktime_t rem;
1575
1576 rem = hrtimer_expires_remaining(timer);
1577 if (rem.tv64 <= 0)
1578 return 0;
1579 rmt = ktime_to_timespec(rem);
1580
1581 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1582 return -EFAULT;
1583
1584 return 1;
1585 }
1586
1587 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1588 {
1589 struct hrtimer_sleeper t;
1590 struct timespec __user *rmtp;
1591 int ret = 0;
1592
1593 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1594 HRTIMER_MODE_ABS);
1595 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1596
1597 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1598 goto out;
1599
1600 rmtp = restart->nanosleep.rmtp;
1601 if (rmtp) {
1602 ret = update_rmtp(&t.timer, rmtp);
1603 if (ret <= 0)
1604 goto out;
1605 }
1606
1607 /* The other values in restart are already filled in */
1608 ret = -ERESTART_RESTARTBLOCK;
1609 out:
1610 destroy_hrtimer_on_stack(&t.timer);
1611 return ret;
1612 }
1613
1614 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1615 const enum hrtimer_mode mode, const clockid_t clockid)
1616 {
1617 struct restart_block *restart;
1618 struct hrtimer_sleeper t;
1619 int ret = 0;
1620 unsigned long slack;
1621
1622 slack = current->timer_slack_ns;
1623 if (dl_task(current) || rt_task(current))
1624 slack = 0;
1625
1626 hrtimer_init_on_stack(&t.timer, clockid, mode);
1627 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1628 if (do_nanosleep(&t, mode))
1629 goto out;
1630
1631 /* Absolute timers do not update the rmtp value and restart: */
1632 if (mode == HRTIMER_MODE_ABS) {
1633 ret = -ERESTARTNOHAND;
1634 goto out;
1635 }
1636
1637 if (rmtp) {
1638 ret = update_rmtp(&t.timer, rmtp);
1639 if (ret <= 0)
1640 goto out;
1641 }
1642
1643 restart = &current_thread_info()->restart_block;
1644 restart->fn = hrtimer_nanosleep_restart;
1645 restart->nanosleep.clockid = t.timer.base->clockid;
1646 restart->nanosleep.rmtp = rmtp;
1647 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1648
1649 ret = -ERESTART_RESTARTBLOCK;
1650 out:
1651 destroy_hrtimer_on_stack(&t.timer);
1652 return ret;
1653 }
1654
1655 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1656 struct timespec __user *, rmtp)
1657 {
1658 struct timespec tu;
1659
1660 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1661 return -EFAULT;
1662
1663 if (!timespec_valid(&tu))
1664 return -EINVAL;
1665
1666 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1667 }
1668
1669 /*
1670 * Functions related to boot-time initialization:
1671 */
1672 static void init_hrtimers_cpu(int cpu)
1673 {
1674 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1675 int i;
1676
1677 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1678 cpu_base->clock_base[i].cpu_base = cpu_base;
1679 timerqueue_init_head(&cpu_base->clock_base[i].active);
1680 }
1681
1682 hrtimer_init_hres(cpu_base);
1683 }
1684
1685 #ifdef CONFIG_HOTPLUG_CPU
1686
1687 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1688 struct hrtimer_clock_base *new_base)
1689 {
1690 struct hrtimer *timer;
1691 struct timerqueue_node *node;
1692
1693 while ((node = timerqueue_getnext(&old_base->active))) {
1694 timer = container_of(node, struct hrtimer, node);
1695 BUG_ON(hrtimer_callback_running(timer));
1696 debug_deactivate(timer);
1697
1698 /*
1699 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1700 * timer could be seen as !active and just vanish away
1701 * under us on another CPU
1702 */
1703 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1704 timer->base = new_base;
1705 /*
1706 * Enqueue the timers on the new cpu. This does not
1707 * reprogram the event device in case the timer
1708 * expires before the earliest on this CPU, but we run
1709 * hrtimer_interrupt after we migrated everything to
1710 * sort out already expired timers and reprogram the
1711 * event device.
1712 */
1713 enqueue_hrtimer(timer, new_base);
1714
1715 /* Clear the migration state bit */
1716 timer->state &= ~HRTIMER_STATE_MIGRATE;
1717 }
1718 }
1719
1720 static void migrate_hrtimers(int scpu)
1721 {
1722 struct hrtimer_cpu_base *old_base, *new_base;
1723 int i;
1724
1725 BUG_ON(cpu_online(scpu));
1726 tick_cancel_sched_timer(scpu);
1727
1728 local_irq_disable();
1729 old_base = &per_cpu(hrtimer_bases, scpu);
1730 new_base = &__get_cpu_var(hrtimer_bases);
1731 /*
1732 * The caller is globally serialized and nobody else
1733 * takes two locks at once, deadlock is not possible.
1734 */
1735 raw_spin_lock(&new_base->lock);
1736 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1737
1738 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1739 migrate_hrtimer_list(&old_base->clock_base[i],
1740 &new_base->clock_base[i]);
1741 }
1742
1743 raw_spin_unlock(&old_base->lock);
1744 raw_spin_unlock(&new_base->lock);
1745
1746 /* Check, if we got expired work to do */
1747 __hrtimer_peek_ahead_timers();
1748 local_irq_enable();
1749 }
1750
1751 #endif /* CONFIG_HOTPLUG_CPU */
1752
1753 static int hrtimer_cpu_notify(struct notifier_block *self,
1754 unsigned long action, void *hcpu)
1755 {
1756 int scpu = (long)hcpu;
1757
1758 switch (action) {
1759
1760 case CPU_UP_PREPARE:
1761 case CPU_UP_PREPARE_FROZEN:
1762 init_hrtimers_cpu(scpu);
1763 break;
1764
1765 #ifdef CONFIG_HOTPLUG_CPU
1766 case CPU_DYING:
1767 case CPU_DYING_FROZEN:
1768 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1769 break;
1770 case CPU_DEAD:
1771 case CPU_DEAD_FROZEN:
1772 {
1773 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1774 migrate_hrtimers(scpu);
1775 break;
1776 }
1777 #endif
1778
1779 default:
1780 break;
1781 }
1782
1783 return NOTIFY_OK;
1784 }
1785
1786 static struct notifier_block hrtimers_nb = {
1787 .notifier_call = hrtimer_cpu_notify,
1788 };
1789
1790 void __init hrtimers_init(void)
1791 {
1792 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1793 (void *)(long)smp_processor_id());
1794 register_cpu_notifier(&hrtimers_nb);
1795 #ifdef CONFIG_HIGH_RES_TIMERS
1796 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1797 #endif
1798 }
1799
1800 /**
1801 * schedule_hrtimeout_range_clock - sleep until timeout
1802 * @expires: timeout value (ktime_t)
1803 * @delta: slack in expires timeout (ktime_t)
1804 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1805 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1806 */
1807 int __sched
1808 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1809 const enum hrtimer_mode mode, int clock)
1810 {
1811 struct hrtimer_sleeper t;
1812
1813 /*
1814 * Optimize when a zero timeout value is given. It does not
1815 * matter whether this is an absolute or a relative time.
1816 */
1817 if (expires && !expires->tv64) {
1818 __set_current_state(TASK_RUNNING);
1819 return 0;
1820 }
1821
1822 /*
1823 * A NULL parameter means "infinite"
1824 */
1825 if (!expires) {
1826 schedule();
1827 __set_current_state(TASK_RUNNING);
1828 return -EINTR;
1829 }
1830
1831 hrtimer_init_on_stack(&t.timer, clock, mode);
1832 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1833
1834 hrtimer_init_sleeper(&t, current);
1835
1836 hrtimer_start_expires(&t.timer, mode);
1837 if (!hrtimer_active(&t.timer))
1838 t.task = NULL;
1839
1840 if (likely(t.task))
1841 schedule();
1842
1843 hrtimer_cancel(&t.timer);
1844 destroy_hrtimer_on_stack(&t.timer);
1845
1846 __set_current_state(TASK_RUNNING);
1847
1848 return !t.task ? 0 : -EINTR;
1849 }
1850
1851 /**
1852 * schedule_hrtimeout_range - sleep until timeout
1853 * @expires: timeout value (ktime_t)
1854 * @delta: slack in expires timeout (ktime_t)
1855 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1856 *
1857 * Make the current task sleep until the given expiry time has
1858 * elapsed. The routine will return immediately unless
1859 * the current task state has been set (see set_current_state()).
1860 *
1861 * The @delta argument gives the kernel the freedom to schedule the
1862 * actual wakeup to a time that is both power and performance friendly.
1863 * The kernel give the normal best effort behavior for "@expires+@delta",
1864 * but may decide to fire the timer earlier, but no earlier than @expires.
1865 *
1866 * You can set the task state as follows -
1867 *
1868 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1869 * pass before the routine returns.
1870 *
1871 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1872 * delivered to the current task.
1873 *
1874 * The current task state is guaranteed to be TASK_RUNNING when this
1875 * routine returns.
1876 *
1877 * Returns 0 when the timer has expired otherwise -EINTR
1878 */
1879 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1880 const enum hrtimer_mode mode)
1881 {
1882 return schedule_hrtimeout_range_clock(expires, delta, mode,
1883 CLOCK_MONOTONIC);
1884 }
1885 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1886
1887 /**
1888 * schedule_hrtimeout - sleep until timeout
1889 * @expires: timeout value (ktime_t)
1890 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1891 *
1892 * Make the current task sleep until the given expiry time has
1893 * elapsed. The routine will return immediately unless
1894 * the current task state has been set (see set_current_state()).
1895 *
1896 * You can set the task state as follows -
1897 *
1898 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1899 * pass before the routine returns.
1900 *
1901 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1902 * delivered to the current task.
1903 *
1904 * The current task state is guaranteed to be TASK_RUNNING when this
1905 * routine returns.
1906 *
1907 * Returns 0 when the timer has expired otherwise -EINTR
1908 */
1909 int __sched schedule_hrtimeout(ktime_t *expires,
1910 const enum hrtimer_mode mode)
1911 {
1912 return schedule_hrtimeout_range(expires, 0, mode);
1913 }
1914 EXPORT_SYMBOL_GPL(schedule_hrtimeout);