]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/hrtimer.c
Merge branch 'for-linus' of git://gitserver.sunplusct.com/linux-2.6-score
[mirror_ubuntu-artful-kernel.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48
49 #include <asm/uaccess.h>
50
51 /*
52 * The timer bases:
53 *
54 * Note: If we want to add new timer bases, we have to skip the two
55 * clock ids captured by the cpu-timers. We do this by holding empty
56 * entries rather than doing math adjustment of the clock ids.
57 * This ensures that we capture erroneous accesses to these clock ids
58 * rather than moving them into the range of valid clock id's.
59 */
60 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
61 {
62
63 .clock_base =
64 {
65 {
66 .index = CLOCK_REALTIME,
67 .get_time = &ktime_get_real,
68 .resolution = KTIME_LOW_RES,
69 },
70 {
71 .index = CLOCK_MONOTONIC,
72 .get_time = &ktime_get,
73 .resolution = KTIME_LOW_RES,
74 },
75 }
76 };
77
78 /*
79 * Get the coarse grained time at the softirq based on xtime and
80 * wall_to_monotonic.
81 */
82 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
83 {
84 ktime_t xtim, tomono;
85 struct timespec xts, tom;
86 unsigned long seq;
87
88 do {
89 seq = read_seqbegin(&xtime_lock);
90 xts = current_kernel_time();
91 tom = wall_to_monotonic;
92 } while (read_seqretry(&xtime_lock, seq));
93
94 xtim = timespec_to_ktime(xts);
95 tomono = timespec_to_ktime(tom);
96 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
97 base->clock_base[CLOCK_MONOTONIC].softirq_time =
98 ktime_add(xtim, tomono);
99 }
100
101 /*
102 * Functions and macros which are different for UP/SMP systems are kept in a
103 * single place
104 */
105 #ifdef CONFIG_SMP
106
107 /*
108 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
109 * means that all timers which are tied to this base via timer->base are
110 * locked, and the base itself is locked too.
111 *
112 * So __run_timers/migrate_timers can safely modify all timers which could
113 * be found on the lists/queues.
114 *
115 * When the timer's base is locked, and the timer removed from list, it is
116 * possible to set timer->base = NULL and drop the lock: the timer remains
117 * locked.
118 */
119 static
120 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
121 unsigned long *flags)
122 {
123 struct hrtimer_clock_base *base;
124
125 for (;;) {
126 base = timer->base;
127 if (likely(base != NULL)) {
128 spin_lock_irqsave(&base->cpu_base->lock, *flags);
129 if (likely(base == timer->base))
130 return base;
131 /* The timer has migrated to another CPU: */
132 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
133 }
134 cpu_relax();
135 }
136 }
137
138
139 /*
140 * Get the preferred target CPU for NOHZ
141 */
142 static int hrtimer_get_target(int this_cpu, int pinned)
143 {
144 #ifdef CONFIG_NO_HZ
145 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu)) {
146 int preferred_cpu = get_nohz_load_balancer();
147
148 if (preferred_cpu >= 0)
149 return preferred_cpu;
150 }
151 #endif
152 return this_cpu;
153 }
154
155 /*
156 * With HIGHRES=y we do not migrate the timer when it is expiring
157 * before the next event on the target cpu because we cannot reprogram
158 * the target cpu hardware and we would cause it to fire late.
159 *
160 * Called with cpu_base->lock of target cpu held.
161 */
162 static int
163 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
164 {
165 #ifdef CONFIG_HIGH_RES_TIMERS
166 ktime_t expires;
167
168 if (!new_base->cpu_base->hres_active)
169 return 0;
170
171 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
172 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
173 #else
174 return 0;
175 #endif
176 }
177
178 /*
179 * Switch the timer base to the current CPU when possible.
180 */
181 static inline struct hrtimer_clock_base *
182 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
183 int pinned)
184 {
185 struct hrtimer_clock_base *new_base;
186 struct hrtimer_cpu_base *new_cpu_base;
187 int this_cpu = smp_processor_id();
188 int cpu = hrtimer_get_target(this_cpu, pinned);
189
190 again:
191 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
192 new_base = &new_cpu_base->clock_base[base->index];
193
194 if (base != new_base) {
195 /*
196 * We are trying to move timer to new_base.
197 * However we can't change timer's base while it is running,
198 * so we keep it on the same CPU. No hassle vs. reprogramming
199 * the event source in the high resolution case. The softirq
200 * code will take care of this when the timer function has
201 * completed. There is no conflict as we hold the lock until
202 * the timer is enqueued.
203 */
204 if (unlikely(hrtimer_callback_running(timer)))
205 return base;
206
207 /* See the comment in lock_timer_base() */
208 timer->base = NULL;
209 spin_unlock(&base->cpu_base->lock);
210 spin_lock(&new_base->cpu_base->lock);
211
212 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
213 cpu = this_cpu;
214 spin_unlock(&new_base->cpu_base->lock);
215 spin_lock(&base->cpu_base->lock);
216 timer->base = base;
217 goto again;
218 }
219 timer->base = new_base;
220 }
221 return new_base;
222 }
223
224 #else /* CONFIG_SMP */
225
226 static inline struct hrtimer_clock_base *
227 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
228 {
229 struct hrtimer_clock_base *base = timer->base;
230
231 spin_lock_irqsave(&base->cpu_base->lock, *flags);
232
233 return base;
234 }
235
236 # define switch_hrtimer_base(t, b, p) (b)
237
238 #endif /* !CONFIG_SMP */
239
240 /*
241 * Functions for the union type storage format of ktime_t which are
242 * too large for inlining:
243 */
244 #if BITS_PER_LONG < 64
245 # ifndef CONFIG_KTIME_SCALAR
246 /**
247 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
248 * @kt: addend
249 * @nsec: the scalar nsec value to add
250 *
251 * Returns the sum of kt and nsec in ktime_t format
252 */
253 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
254 {
255 ktime_t tmp;
256
257 if (likely(nsec < NSEC_PER_SEC)) {
258 tmp.tv64 = nsec;
259 } else {
260 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
261
262 tmp = ktime_set((long)nsec, rem);
263 }
264
265 return ktime_add(kt, tmp);
266 }
267
268 EXPORT_SYMBOL_GPL(ktime_add_ns);
269
270 /**
271 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
272 * @kt: minuend
273 * @nsec: the scalar nsec value to subtract
274 *
275 * Returns the subtraction of @nsec from @kt in ktime_t format
276 */
277 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
278 {
279 ktime_t tmp;
280
281 if (likely(nsec < NSEC_PER_SEC)) {
282 tmp.tv64 = nsec;
283 } else {
284 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
285
286 tmp = ktime_set((long)nsec, rem);
287 }
288
289 return ktime_sub(kt, tmp);
290 }
291
292 EXPORT_SYMBOL_GPL(ktime_sub_ns);
293 # endif /* !CONFIG_KTIME_SCALAR */
294
295 /*
296 * Divide a ktime value by a nanosecond value
297 */
298 u64 ktime_divns(const ktime_t kt, s64 div)
299 {
300 u64 dclc;
301 int sft = 0;
302
303 dclc = ktime_to_ns(kt);
304 /* Make sure the divisor is less than 2^32: */
305 while (div >> 32) {
306 sft++;
307 div >>= 1;
308 }
309 dclc >>= sft;
310 do_div(dclc, (unsigned long) div);
311
312 return dclc;
313 }
314 #endif /* BITS_PER_LONG >= 64 */
315
316 /*
317 * Add two ktime values and do a safety check for overflow:
318 */
319 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
320 {
321 ktime_t res = ktime_add(lhs, rhs);
322
323 /*
324 * We use KTIME_SEC_MAX here, the maximum timeout which we can
325 * return to user space in a timespec:
326 */
327 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
328 res = ktime_set(KTIME_SEC_MAX, 0);
329
330 return res;
331 }
332
333 EXPORT_SYMBOL_GPL(ktime_add_safe);
334
335 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
336
337 static struct debug_obj_descr hrtimer_debug_descr;
338
339 /*
340 * fixup_init is called when:
341 * - an active object is initialized
342 */
343 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
344 {
345 struct hrtimer *timer = addr;
346
347 switch (state) {
348 case ODEBUG_STATE_ACTIVE:
349 hrtimer_cancel(timer);
350 debug_object_init(timer, &hrtimer_debug_descr);
351 return 1;
352 default:
353 return 0;
354 }
355 }
356
357 /*
358 * fixup_activate is called when:
359 * - an active object is activated
360 * - an unknown object is activated (might be a statically initialized object)
361 */
362 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
363 {
364 switch (state) {
365
366 case ODEBUG_STATE_NOTAVAILABLE:
367 WARN_ON_ONCE(1);
368 return 0;
369
370 case ODEBUG_STATE_ACTIVE:
371 WARN_ON(1);
372
373 default:
374 return 0;
375 }
376 }
377
378 /*
379 * fixup_free is called when:
380 * - an active object is freed
381 */
382 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
383 {
384 struct hrtimer *timer = addr;
385
386 switch (state) {
387 case ODEBUG_STATE_ACTIVE:
388 hrtimer_cancel(timer);
389 debug_object_free(timer, &hrtimer_debug_descr);
390 return 1;
391 default:
392 return 0;
393 }
394 }
395
396 static struct debug_obj_descr hrtimer_debug_descr = {
397 .name = "hrtimer",
398 .fixup_init = hrtimer_fixup_init,
399 .fixup_activate = hrtimer_fixup_activate,
400 .fixup_free = hrtimer_fixup_free,
401 };
402
403 static inline void debug_hrtimer_init(struct hrtimer *timer)
404 {
405 debug_object_init(timer, &hrtimer_debug_descr);
406 }
407
408 static inline void debug_hrtimer_activate(struct hrtimer *timer)
409 {
410 debug_object_activate(timer, &hrtimer_debug_descr);
411 }
412
413 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
414 {
415 debug_object_deactivate(timer, &hrtimer_debug_descr);
416 }
417
418 static inline void debug_hrtimer_free(struct hrtimer *timer)
419 {
420 debug_object_free(timer, &hrtimer_debug_descr);
421 }
422
423 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
424 enum hrtimer_mode mode);
425
426 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
427 enum hrtimer_mode mode)
428 {
429 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
430 __hrtimer_init(timer, clock_id, mode);
431 }
432 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
433
434 void destroy_hrtimer_on_stack(struct hrtimer *timer)
435 {
436 debug_object_free(timer, &hrtimer_debug_descr);
437 }
438
439 #else
440 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
441 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
442 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
443 #endif
444
445 /* High resolution timer related functions */
446 #ifdef CONFIG_HIGH_RES_TIMERS
447
448 /*
449 * High resolution timer enabled ?
450 */
451 static int hrtimer_hres_enabled __read_mostly = 1;
452
453 /*
454 * Enable / Disable high resolution mode
455 */
456 static int __init setup_hrtimer_hres(char *str)
457 {
458 if (!strcmp(str, "off"))
459 hrtimer_hres_enabled = 0;
460 else if (!strcmp(str, "on"))
461 hrtimer_hres_enabled = 1;
462 else
463 return 0;
464 return 1;
465 }
466
467 __setup("highres=", setup_hrtimer_hres);
468
469 /*
470 * hrtimer_high_res_enabled - query, if the highres mode is enabled
471 */
472 static inline int hrtimer_is_hres_enabled(void)
473 {
474 return hrtimer_hres_enabled;
475 }
476
477 /*
478 * Is the high resolution mode active ?
479 */
480 static inline int hrtimer_hres_active(void)
481 {
482 return __get_cpu_var(hrtimer_bases).hres_active;
483 }
484
485 /*
486 * Reprogram the event source with checking both queues for the
487 * next event
488 * Called with interrupts disabled and base->lock held
489 */
490 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
491 {
492 int i;
493 struct hrtimer_clock_base *base = cpu_base->clock_base;
494 ktime_t expires;
495
496 cpu_base->expires_next.tv64 = KTIME_MAX;
497
498 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
499 struct hrtimer *timer;
500
501 if (!base->first)
502 continue;
503 timer = rb_entry(base->first, struct hrtimer, node);
504 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
505 /*
506 * clock_was_set() has changed base->offset so the
507 * result might be negative. Fix it up to prevent a
508 * false positive in clockevents_program_event()
509 */
510 if (expires.tv64 < 0)
511 expires.tv64 = 0;
512 if (expires.tv64 < cpu_base->expires_next.tv64)
513 cpu_base->expires_next = expires;
514 }
515
516 if (cpu_base->expires_next.tv64 != KTIME_MAX)
517 tick_program_event(cpu_base->expires_next, 1);
518 }
519
520 /*
521 * Shared reprogramming for clock_realtime and clock_monotonic
522 *
523 * When a timer is enqueued and expires earlier than the already enqueued
524 * timers, we have to check, whether it expires earlier than the timer for
525 * which the clock event device was armed.
526 *
527 * Called with interrupts disabled and base->cpu_base.lock held
528 */
529 static int hrtimer_reprogram(struct hrtimer *timer,
530 struct hrtimer_clock_base *base)
531 {
532 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
533 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
534 int res;
535
536 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
537
538 /*
539 * When the callback is running, we do not reprogram the clock event
540 * device. The timer callback is either running on a different CPU or
541 * the callback is executed in the hrtimer_interrupt context. The
542 * reprogramming is handled either by the softirq, which called the
543 * callback or at the end of the hrtimer_interrupt.
544 */
545 if (hrtimer_callback_running(timer))
546 return 0;
547
548 /*
549 * CLOCK_REALTIME timer might be requested with an absolute
550 * expiry time which is less than base->offset. Nothing wrong
551 * about that, just avoid to call into the tick code, which
552 * has now objections against negative expiry values.
553 */
554 if (expires.tv64 < 0)
555 return -ETIME;
556
557 if (expires.tv64 >= expires_next->tv64)
558 return 0;
559
560 /*
561 * Clockevents returns -ETIME, when the event was in the past.
562 */
563 res = tick_program_event(expires, 0);
564 if (!IS_ERR_VALUE(res))
565 *expires_next = expires;
566 return res;
567 }
568
569
570 /*
571 * Retrigger next event is called after clock was set
572 *
573 * Called with interrupts disabled via on_each_cpu()
574 */
575 static void retrigger_next_event(void *arg)
576 {
577 struct hrtimer_cpu_base *base;
578 struct timespec realtime_offset;
579 unsigned long seq;
580
581 if (!hrtimer_hres_active())
582 return;
583
584 do {
585 seq = read_seqbegin(&xtime_lock);
586 set_normalized_timespec(&realtime_offset,
587 -wall_to_monotonic.tv_sec,
588 -wall_to_monotonic.tv_nsec);
589 } while (read_seqretry(&xtime_lock, seq));
590
591 base = &__get_cpu_var(hrtimer_bases);
592
593 /* Adjust CLOCK_REALTIME offset */
594 spin_lock(&base->lock);
595 base->clock_base[CLOCK_REALTIME].offset =
596 timespec_to_ktime(realtime_offset);
597
598 hrtimer_force_reprogram(base);
599 spin_unlock(&base->lock);
600 }
601
602 /*
603 * Clock realtime was set
604 *
605 * Change the offset of the realtime clock vs. the monotonic
606 * clock.
607 *
608 * We might have to reprogram the high resolution timer interrupt. On
609 * SMP we call the architecture specific code to retrigger _all_ high
610 * resolution timer interrupts. On UP we just disable interrupts and
611 * call the high resolution interrupt code.
612 */
613 void clock_was_set(void)
614 {
615 /* Retrigger the CPU local events everywhere */
616 on_each_cpu(retrigger_next_event, NULL, 1);
617 }
618
619 /*
620 * During resume we might have to reprogram the high resolution timer
621 * interrupt (on the local CPU):
622 */
623 void hres_timers_resume(void)
624 {
625 WARN_ONCE(!irqs_disabled(),
626 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
627
628 retrigger_next_event(NULL);
629 }
630
631 /*
632 * Initialize the high resolution related parts of cpu_base
633 */
634 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
635 {
636 base->expires_next.tv64 = KTIME_MAX;
637 base->hres_active = 0;
638 }
639
640 /*
641 * Initialize the high resolution related parts of a hrtimer
642 */
643 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
644 {
645 }
646
647
648 /*
649 * When High resolution timers are active, try to reprogram. Note, that in case
650 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
651 * check happens. The timer gets enqueued into the rbtree. The reprogramming
652 * and expiry check is done in the hrtimer_interrupt or in the softirq.
653 */
654 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
655 struct hrtimer_clock_base *base,
656 int wakeup)
657 {
658 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
659 if (wakeup) {
660 spin_unlock(&base->cpu_base->lock);
661 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
662 spin_lock(&base->cpu_base->lock);
663 } else
664 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
665
666 return 1;
667 }
668
669 return 0;
670 }
671
672 /*
673 * Switch to high resolution mode
674 */
675 static int hrtimer_switch_to_hres(void)
676 {
677 int cpu = smp_processor_id();
678 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
679 unsigned long flags;
680
681 if (base->hres_active)
682 return 1;
683
684 local_irq_save(flags);
685
686 if (tick_init_highres()) {
687 local_irq_restore(flags);
688 printk(KERN_WARNING "Could not switch to high resolution "
689 "mode on CPU %d\n", cpu);
690 return 0;
691 }
692 base->hres_active = 1;
693 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
694 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
695
696 tick_setup_sched_timer();
697
698 /* "Retrigger" the interrupt to get things going */
699 retrigger_next_event(NULL);
700 local_irq_restore(flags);
701 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
702 smp_processor_id());
703 return 1;
704 }
705
706 #else
707
708 static inline int hrtimer_hres_active(void) { return 0; }
709 static inline int hrtimer_is_hres_enabled(void) { return 0; }
710 static inline int hrtimer_switch_to_hres(void) { return 0; }
711 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
712 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
713 struct hrtimer_clock_base *base,
714 int wakeup)
715 {
716 return 0;
717 }
718 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
719 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
720
721 #endif /* CONFIG_HIGH_RES_TIMERS */
722
723 #ifdef CONFIG_TIMER_STATS
724 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
725 {
726 if (timer->start_site)
727 return;
728
729 timer->start_site = addr;
730 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
731 timer->start_pid = current->pid;
732 }
733 #endif
734
735 /*
736 * Counterpart to lock_hrtimer_base above:
737 */
738 static inline
739 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
740 {
741 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
742 }
743
744 /**
745 * hrtimer_forward - forward the timer expiry
746 * @timer: hrtimer to forward
747 * @now: forward past this time
748 * @interval: the interval to forward
749 *
750 * Forward the timer expiry so it will expire in the future.
751 * Returns the number of overruns.
752 */
753 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
754 {
755 u64 orun = 1;
756 ktime_t delta;
757
758 delta = ktime_sub(now, hrtimer_get_expires(timer));
759
760 if (delta.tv64 < 0)
761 return 0;
762
763 if (interval.tv64 < timer->base->resolution.tv64)
764 interval.tv64 = timer->base->resolution.tv64;
765
766 if (unlikely(delta.tv64 >= interval.tv64)) {
767 s64 incr = ktime_to_ns(interval);
768
769 orun = ktime_divns(delta, incr);
770 hrtimer_add_expires_ns(timer, incr * orun);
771 if (hrtimer_get_expires_tv64(timer) > now.tv64)
772 return orun;
773 /*
774 * This (and the ktime_add() below) is the
775 * correction for exact:
776 */
777 orun++;
778 }
779 hrtimer_add_expires(timer, interval);
780
781 return orun;
782 }
783 EXPORT_SYMBOL_GPL(hrtimer_forward);
784
785 /*
786 * enqueue_hrtimer - internal function to (re)start a timer
787 *
788 * The timer is inserted in expiry order. Insertion into the
789 * red black tree is O(log(n)). Must hold the base lock.
790 *
791 * Returns 1 when the new timer is the leftmost timer in the tree.
792 */
793 static int enqueue_hrtimer(struct hrtimer *timer,
794 struct hrtimer_clock_base *base)
795 {
796 struct rb_node **link = &base->active.rb_node;
797 struct rb_node *parent = NULL;
798 struct hrtimer *entry;
799 int leftmost = 1;
800
801 debug_hrtimer_activate(timer);
802
803 /*
804 * Find the right place in the rbtree:
805 */
806 while (*link) {
807 parent = *link;
808 entry = rb_entry(parent, struct hrtimer, node);
809 /*
810 * We dont care about collisions. Nodes with
811 * the same expiry time stay together.
812 */
813 if (hrtimer_get_expires_tv64(timer) <
814 hrtimer_get_expires_tv64(entry)) {
815 link = &(*link)->rb_left;
816 } else {
817 link = &(*link)->rb_right;
818 leftmost = 0;
819 }
820 }
821
822 /*
823 * Insert the timer to the rbtree and check whether it
824 * replaces the first pending timer
825 */
826 if (leftmost)
827 base->first = &timer->node;
828
829 rb_link_node(&timer->node, parent, link);
830 rb_insert_color(&timer->node, &base->active);
831 /*
832 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
833 * state of a possibly running callback.
834 */
835 timer->state |= HRTIMER_STATE_ENQUEUED;
836
837 return leftmost;
838 }
839
840 /*
841 * __remove_hrtimer - internal function to remove a timer
842 *
843 * Caller must hold the base lock.
844 *
845 * High resolution timer mode reprograms the clock event device when the
846 * timer is the one which expires next. The caller can disable this by setting
847 * reprogram to zero. This is useful, when the context does a reprogramming
848 * anyway (e.g. timer interrupt)
849 */
850 static void __remove_hrtimer(struct hrtimer *timer,
851 struct hrtimer_clock_base *base,
852 unsigned long newstate, int reprogram)
853 {
854 if (timer->state & HRTIMER_STATE_ENQUEUED) {
855 /*
856 * Remove the timer from the rbtree and replace the
857 * first entry pointer if necessary.
858 */
859 if (base->first == &timer->node) {
860 base->first = rb_next(&timer->node);
861 /* Reprogram the clock event device. if enabled */
862 if (reprogram && hrtimer_hres_active())
863 hrtimer_force_reprogram(base->cpu_base);
864 }
865 rb_erase(&timer->node, &base->active);
866 }
867 timer->state = newstate;
868 }
869
870 /*
871 * remove hrtimer, called with base lock held
872 */
873 static inline int
874 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
875 {
876 if (hrtimer_is_queued(timer)) {
877 int reprogram;
878
879 /*
880 * Remove the timer and force reprogramming when high
881 * resolution mode is active and the timer is on the current
882 * CPU. If we remove a timer on another CPU, reprogramming is
883 * skipped. The interrupt event on this CPU is fired and
884 * reprogramming happens in the interrupt handler. This is a
885 * rare case and less expensive than a smp call.
886 */
887 debug_hrtimer_deactivate(timer);
888 timer_stats_hrtimer_clear_start_info(timer);
889 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
890 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
891 reprogram);
892 return 1;
893 }
894 return 0;
895 }
896
897 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
898 unsigned long delta_ns, const enum hrtimer_mode mode,
899 int wakeup)
900 {
901 struct hrtimer_clock_base *base, *new_base;
902 unsigned long flags;
903 int ret, leftmost;
904
905 base = lock_hrtimer_base(timer, &flags);
906
907 /* Remove an active timer from the queue: */
908 ret = remove_hrtimer(timer, base);
909
910 /* Switch the timer base, if necessary: */
911 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
912
913 if (mode & HRTIMER_MODE_REL) {
914 tim = ktime_add_safe(tim, new_base->get_time());
915 /*
916 * CONFIG_TIME_LOW_RES is a temporary way for architectures
917 * to signal that they simply return xtime in
918 * do_gettimeoffset(). In this case we want to round up by
919 * resolution when starting a relative timer, to avoid short
920 * timeouts. This will go away with the GTOD framework.
921 */
922 #ifdef CONFIG_TIME_LOW_RES
923 tim = ktime_add_safe(tim, base->resolution);
924 #endif
925 }
926
927 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
928
929 timer_stats_hrtimer_set_start_info(timer);
930
931 leftmost = enqueue_hrtimer(timer, new_base);
932
933 /*
934 * Only allow reprogramming if the new base is on this CPU.
935 * (it might still be on another CPU if the timer was pending)
936 *
937 * XXX send_remote_softirq() ?
938 */
939 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
940 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
941
942 unlock_hrtimer_base(timer, &flags);
943
944 return ret;
945 }
946
947 /**
948 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
949 * @timer: the timer to be added
950 * @tim: expiry time
951 * @delta_ns: "slack" range for the timer
952 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
953 *
954 * Returns:
955 * 0 on success
956 * 1 when the timer was active
957 */
958 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
959 unsigned long delta_ns, const enum hrtimer_mode mode)
960 {
961 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
962 }
963 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
964
965 /**
966 * hrtimer_start - (re)start an hrtimer on the current CPU
967 * @timer: the timer to be added
968 * @tim: expiry time
969 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
970 *
971 * Returns:
972 * 0 on success
973 * 1 when the timer was active
974 */
975 int
976 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
977 {
978 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
979 }
980 EXPORT_SYMBOL_GPL(hrtimer_start);
981
982
983 /**
984 * hrtimer_try_to_cancel - try to deactivate a timer
985 * @timer: hrtimer to stop
986 *
987 * Returns:
988 * 0 when the timer was not active
989 * 1 when the timer was active
990 * -1 when the timer is currently excuting the callback function and
991 * cannot be stopped
992 */
993 int hrtimer_try_to_cancel(struct hrtimer *timer)
994 {
995 struct hrtimer_clock_base *base;
996 unsigned long flags;
997 int ret = -1;
998
999 base = lock_hrtimer_base(timer, &flags);
1000
1001 if (!hrtimer_callback_running(timer))
1002 ret = remove_hrtimer(timer, base);
1003
1004 unlock_hrtimer_base(timer, &flags);
1005
1006 return ret;
1007
1008 }
1009 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1010
1011 /**
1012 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1013 * @timer: the timer to be cancelled
1014 *
1015 * Returns:
1016 * 0 when the timer was not active
1017 * 1 when the timer was active
1018 */
1019 int hrtimer_cancel(struct hrtimer *timer)
1020 {
1021 for (;;) {
1022 int ret = hrtimer_try_to_cancel(timer);
1023
1024 if (ret >= 0)
1025 return ret;
1026 cpu_relax();
1027 }
1028 }
1029 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1030
1031 /**
1032 * hrtimer_get_remaining - get remaining time for the timer
1033 * @timer: the timer to read
1034 */
1035 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1036 {
1037 struct hrtimer_clock_base *base;
1038 unsigned long flags;
1039 ktime_t rem;
1040
1041 base = lock_hrtimer_base(timer, &flags);
1042 rem = hrtimer_expires_remaining(timer);
1043 unlock_hrtimer_base(timer, &flags);
1044
1045 return rem;
1046 }
1047 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1048
1049 #ifdef CONFIG_NO_HZ
1050 /**
1051 * hrtimer_get_next_event - get the time until next expiry event
1052 *
1053 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1054 * is pending.
1055 */
1056 ktime_t hrtimer_get_next_event(void)
1057 {
1058 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1059 struct hrtimer_clock_base *base = cpu_base->clock_base;
1060 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1061 unsigned long flags;
1062 int i;
1063
1064 spin_lock_irqsave(&cpu_base->lock, flags);
1065
1066 if (!hrtimer_hres_active()) {
1067 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1068 struct hrtimer *timer;
1069
1070 if (!base->first)
1071 continue;
1072
1073 timer = rb_entry(base->first, struct hrtimer, node);
1074 delta.tv64 = hrtimer_get_expires_tv64(timer);
1075 delta = ktime_sub(delta, base->get_time());
1076 if (delta.tv64 < mindelta.tv64)
1077 mindelta.tv64 = delta.tv64;
1078 }
1079 }
1080
1081 spin_unlock_irqrestore(&cpu_base->lock, flags);
1082
1083 if (mindelta.tv64 < 0)
1084 mindelta.tv64 = 0;
1085 return mindelta;
1086 }
1087 #endif
1088
1089 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1090 enum hrtimer_mode mode)
1091 {
1092 struct hrtimer_cpu_base *cpu_base;
1093
1094 memset(timer, 0, sizeof(struct hrtimer));
1095
1096 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1097
1098 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1099 clock_id = CLOCK_MONOTONIC;
1100
1101 timer->base = &cpu_base->clock_base[clock_id];
1102 hrtimer_init_timer_hres(timer);
1103
1104 #ifdef CONFIG_TIMER_STATS
1105 timer->start_site = NULL;
1106 timer->start_pid = -1;
1107 memset(timer->start_comm, 0, TASK_COMM_LEN);
1108 #endif
1109 }
1110
1111 /**
1112 * hrtimer_init - initialize a timer to the given clock
1113 * @timer: the timer to be initialized
1114 * @clock_id: the clock to be used
1115 * @mode: timer mode abs/rel
1116 */
1117 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1118 enum hrtimer_mode mode)
1119 {
1120 debug_hrtimer_init(timer);
1121 __hrtimer_init(timer, clock_id, mode);
1122 }
1123 EXPORT_SYMBOL_GPL(hrtimer_init);
1124
1125 /**
1126 * hrtimer_get_res - get the timer resolution for a clock
1127 * @which_clock: which clock to query
1128 * @tp: pointer to timespec variable to store the resolution
1129 *
1130 * Store the resolution of the clock selected by @which_clock in the
1131 * variable pointed to by @tp.
1132 */
1133 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1134 {
1135 struct hrtimer_cpu_base *cpu_base;
1136
1137 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1138 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1139
1140 return 0;
1141 }
1142 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1143
1144 static void __run_hrtimer(struct hrtimer *timer)
1145 {
1146 struct hrtimer_clock_base *base = timer->base;
1147 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1148 enum hrtimer_restart (*fn)(struct hrtimer *);
1149 int restart;
1150
1151 WARN_ON(!irqs_disabled());
1152
1153 debug_hrtimer_deactivate(timer);
1154 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1155 timer_stats_account_hrtimer(timer);
1156 fn = timer->function;
1157
1158 /*
1159 * Because we run timers from hardirq context, there is no chance
1160 * they get migrated to another cpu, therefore its safe to unlock
1161 * the timer base.
1162 */
1163 spin_unlock(&cpu_base->lock);
1164 restart = fn(timer);
1165 spin_lock(&cpu_base->lock);
1166
1167 /*
1168 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1169 * we do not reprogramm the event hardware. Happens either in
1170 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1171 */
1172 if (restart != HRTIMER_NORESTART) {
1173 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1174 enqueue_hrtimer(timer, base);
1175 }
1176 timer->state &= ~HRTIMER_STATE_CALLBACK;
1177 }
1178
1179 #ifdef CONFIG_HIGH_RES_TIMERS
1180
1181 static int force_clock_reprogram;
1182
1183 /*
1184 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1185 * is hanging, which could happen with something that slows the interrupt
1186 * such as the tracing. Then we force the clock reprogramming for each future
1187 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1188 * threshold that we will overwrite.
1189 * The next tick event will be scheduled to 3 times we currently spend on
1190 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1191 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1192 * let it running without serious starvation.
1193 */
1194
1195 static inline void
1196 hrtimer_interrupt_hanging(struct clock_event_device *dev,
1197 ktime_t try_time)
1198 {
1199 force_clock_reprogram = 1;
1200 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1201 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1202 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1203 }
1204 /*
1205 * High resolution timer interrupt
1206 * Called with interrupts disabled
1207 */
1208 void hrtimer_interrupt(struct clock_event_device *dev)
1209 {
1210 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1211 struct hrtimer_clock_base *base;
1212 ktime_t expires_next, now;
1213 int nr_retries = 0;
1214 int i;
1215
1216 BUG_ON(!cpu_base->hres_active);
1217 cpu_base->nr_events++;
1218 dev->next_event.tv64 = KTIME_MAX;
1219
1220 retry:
1221 /* 5 retries is enough to notice a hang */
1222 if (!(++nr_retries % 5))
1223 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1224
1225 now = ktime_get();
1226
1227 expires_next.tv64 = KTIME_MAX;
1228
1229 spin_lock(&cpu_base->lock);
1230 /*
1231 * We set expires_next to KTIME_MAX here with cpu_base->lock
1232 * held to prevent that a timer is enqueued in our queue via
1233 * the migration code. This does not affect enqueueing of
1234 * timers which run their callback and need to be requeued on
1235 * this CPU.
1236 */
1237 cpu_base->expires_next.tv64 = KTIME_MAX;
1238
1239 base = cpu_base->clock_base;
1240
1241 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1242 ktime_t basenow;
1243 struct rb_node *node;
1244
1245 basenow = ktime_add(now, base->offset);
1246
1247 while ((node = base->first)) {
1248 struct hrtimer *timer;
1249
1250 timer = rb_entry(node, struct hrtimer, node);
1251
1252 /*
1253 * The immediate goal for using the softexpires is
1254 * minimizing wakeups, not running timers at the
1255 * earliest interrupt after their soft expiration.
1256 * This allows us to avoid using a Priority Search
1257 * Tree, which can answer a stabbing querry for
1258 * overlapping intervals and instead use the simple
1259 * BST we already have.
1260 * We don't add extra wakeups by delaying timers that
1261 * are right-of a not yet expired timer, because that
1262 * timer will have to trigger a wakeup anyway.
1263 */
1264
1265 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1266 ktime_t expires;
1267
1268 expires = ktime_sub(hrtimer_get_expires(timer),
1269 base->offset);
1270 if (expires.tv64 < expires_next.tv64)
1271 expires_next = expires;
1272 break;
1273 }
1274
1275 __run_hrtimer(timer);
1276 }
1277 base++;
1278 }
1279
1280 /*
1281 * Store the new expiry value so the migration code can verify
1282 * against it.
1283 */
1284 cpu_base->expires_next = expires_next;
1285 spin_unlock(&cpu_base->lock);
1286
1287 /* Reprogramming necessary ? */
1288 if (expires_next.tv64 != KTIME_MAX) {
1289 if (tick_program_event(expires_next, force_clock_reprogram))
1290 goto retry;
1291 }
1292 }
1293
1294 /*
1295 * local version of hrtimer_peek_ahead_timers() called with interrupts
1296 * disabled.
1297 */
1298 static void __hrtimer_peek_ahead_timers(void)
1299 {
1300 struct tick_device *td;
1301
1302 if (!hrtimer_hres_active())
1303 return;
1304
1305 td = &__get_cpu_var(tick_cpu_device);
1306 if (td && td->evtdev)
1307 hrtimer_interrupt(td->evtdev);
1308 }
1309
1310 /**
1311 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1312 *
1313 * hrtimer_peek_ahead_timers will peek at the timer queue of
1314 * the current cpu and check if there are any timers for which
1315 * the soft expires time has passed. If any such timers exist,
1316 * they are run immediately and then removed from the timer queue.
1317 *
1318 */
1319 void hrtimer_peek_ahead_timers(void)
1320 {
1321 unsigned long flags;
1322
1323 local_irq_save(flags);
1324 __hrtimer_peek_ahead_timers();
1325 local_irq_restore(flags);
1326 }
1327
1328 static void run_hrtimer_softirq(struct softirq_action *h)
1329 {
1330 hrtimer_peek_ahead_timers();
1331 }
1332
1333 #else /* CONFIG_HIGH_RES_TIMERS */
1334
1335 static inline void __hrtimer_peek_ahead_timers(void) { }
1336
1337 #endif /* !CONFIG_HIGH_RES_TIMERS */
1338
1339 /*
1340 * Called from timer softirq every jiffy, expire hrtimers:
1341 *
1342 * For HRT its the fall back code to run the softirq in the timer
1343 * softirq context in case the hrtimer initialization failed or has
1344 * not been done yet.
1345 */
1346 void hrtimer_run_pending(void)
1347 {
1348 if (hrtimer_hres_active())
1349 return;
1350
1351 /*
1352 * This _is_ ugly: We have to check in the softirq context,
1353 * whether we can switch to highres and / or nohz mode. The
1354 * clocksource switch happens in the timer interrupt with
1355 * xtime_lock held. Notification from there only sets the
1356 * check bit in the tick_oneshot code, otherwise we might
1357 * deadlock vs. xtime_lock.
1358 */
1359 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1360 hrtimer_switch_to_hres();
1361 }
1362
1363 /*
1364 * Called from hardirq context every jiffy
1365 */
1366 void hrtimer_run_queues(void)
1367 {
1368 struct rb_node *node;
1369 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1370 struct hrtimer_clock_base *base;
1371 int index, gettime = 1;
1372
1373 if (hrtimer_hres_active())
1374 return;
1375
1376 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1377 base = &cpu_base->clock_base[index];
1378
1379 if (!base->first)
1380 continue;
1381
1382 if (gettime) {
1383 hrtimer_get_softirq_time(cpu_base);
1384 gettime = 0;
1385 }
1386
1387 spin_lock(&cpu_base->lock);
1388
1389 while ((node = base->first)) {
1390 struct hrtimer *timer;
1391
1392 timer = rb_entry(node, struct hrtimer, node);
1393 if (base->softirq_time.tv64 <=
1394 hrtimer_get_expires_tv64(timer))
1395 break;
1396
1397 __run_hrtimer(timer);
1398 }
1399 spin_unlock(&cpu_base->lock);
1400 }
1401 }
1402
1403 /*
1404 * Sleep related functions:
1405 */
1406 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1407 {
1408 struct hrtimer_sleeper *t =
1409 container_of(timer, struct hrtimer_sleeper, timer);
1410 struct task_struct *task = t->task;
1411
1412 t->task = NULL;
1413 if (task)
1414 wake_up_process(task);
1415
1416 return HRTIMER_NORESTART;
1417 }
1418
1419 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1420 {
1421 sl->timer.function = hrtimer_wakeup;
1422 sl->task = task;
1423 }
1424 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1425
1426 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1427 {
1428 hrtimer_init_sleeper(t, current);
1429
1430 do {
1431 set_current_state(TASK_INTERRUPTIBLE);
1432 hrtimer_start_expires(&t->timer, mode);
1433 if (!hrtimer_active(&t->timer))
1434 t->task = NULL;
1435
1436 if (likely(t->task))
1437 schedule();
1438
1439 hrtimer_cancel(&t->timer);
1440 mode = HRTIMER_MODE_ABS;
1441
1442 } while (t->task && !signal_pending(current));
1443
1444 __set_current_state(TASK_RUNNING);
1445
1446 return t->task == NULL;
1447 }
1448
1449 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1450 {
1451 struct timespec rmt;
1452 ktime_t rem;
1453
1454 rem = hrtimer_expires_remaining(timer);
1455 if (rem.tv64 <= 0)
1456 return 0;
1457 rmt = ktime_to_timespec(rem);
1458
1459 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1460 return -EFAULT;
1461
1462 return 1;
1463 }
1464
1465 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1466 {
1467 struct hrtimer_sleeper t;
1468 struct timespec __user *rmtp;
1469 int ret = 0;
1470
1471 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1472 HRTIMER_MODE_ABS);
1473 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1474
1475 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1476 goto out;
1477
1478 rmtp = restart->nanosleep.rmtp;
1479 if (rmtp) {
1480 ret = update_rmtp(&t.timer, rmtp);
1481 if (ret <= 0)
1482 goto out;
1483 }
1484
1485 /* The other values in restart are already filled in */
1486 ret = -ERESTART_RESTARTBLOCK;
1487 out:
1488 destroy_hrtimer_on_stack(&t.timer);
1489 return ret;
1490 }
1491
1492 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1493 const enum hrtimer_mode mode, const clockid_t clockid)
1494 {
1495 struct restart_block *restart;
1496 struct hrtimer_sleeper t;
1497 int ret = 0;
1498 unsigned long slack;
1499
1500 slack = current->timer_slack_ns;
1501 if (rt_task(current))
1502 slack = 0;
1503
1504 hrtimer_init_on_stack(&t.timer, clockid, mode);
1505 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1506 if (do_nanosleep(&t, mode))
1507 goto out;
1508
1509 /* Absolute timers do not update the rmtp value and restart: */
1510 if (mode == HRTIMER_MODE_ABS) {
1511 ret = -ERESTARTNOHAND;
1512 goto out;
1513 }
1514
1515 if (rmtp) {
1516 ret = update_rmtp(&t.timer, rmtp);
1517 if (ret <= 0)
1518 goto out;
1519 }
1520
1521 restart = &current_thread_info()->restart_block;
1522 restart->fn = hrtimer_nanosleep_restart;
1523 restart->nanosleep.index = t.timer.base->index;
1524 restart->nanosleep.rmtp = rmtp;
1525 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1526
1527 ret = -ERESTART_RESTARTBLOCK;
1528 out:
1529 destroy_hrtimer_on_stack(&t.timer);
1530 return ret;
1531 }
1532
1533 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1534 struct timespec __user *, rmtp)
1535 {
1536 struct timespec tu;
1537
1538 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1539 return -EFAULT;
1540
1541 if (!timespec_valid(&tu))
1542 return -EINVAL;
1543
1544 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1545 }
1546
1547 /*
1548 * Functions related to boot-time initialization:
1549 */
1550 static void __cpuinit init_hrtimers_cpu(int cpu)
1551 {
1552 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1553 int i;
1554
1555 spin_lock_init(&cpu_base->lock);
1556
1557 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1558 cpu_base->clock_base[i].cpu_base = cpu_base;
1559
1560 hrtimer_init_hres(cpu_base);
1561 }
1562
1563 #ifdef CONFIG_HOTPLUG_CPU
1564
1565 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1566 struct hrtimer_clock_base *new_base)
1567 {
1568 struct hrtimer *timer;
1569 struct rb_node *node;
1570
1571 while ((node = rb_first(&old_base->active))) {
1572 timer = rb_entry(node, struct hrtimer, node);
1573 BUG_ON(hrtimer_callback_running(timer));
1574 debug_hrtimer_deactivate(timer);
1575
1576 /*
1577 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1578 * timer could be seen as !active and just vanish away
1579 * under us on another CPU
1580 */
1581 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1582 timer->base = new_base;
1583 /*
1584 * Enqueue the timers on the new cpu. This does not
1585 * reprogram the event device in case the timer
1586 * expires before the earliest on this CPU, but we run
1587 * hrtimer_interrupt after we migrated everything to
1588 * sort out already expired timers and reprogram the
1589 * event device.
1590 */
1591 enqueue_hrtimer(timer, new_base);
1592
1593 /* Clear the migration state bit */
1594 timer->state &= ~HRTIMER_STATE_MIGRATE;
1595 }
1596 }
1597
1598 static void migrate_hrtimers(int scpu)
1599 {
1600 struct hrtimer_cpu_base *old_base, *new_base;
1601 int i;
1602
1603 BUG_ON(cpu_online(scpu));
1604 tick_cancel_sched_timer(scpu);
1605
1606 local_irq_disable();
1607 old_base = &per_cpu(hrtimer_bases, scpu);
1608 new_base = &__get_cpu_var(hrtimer_bases);
1609 /*
1610 * The caller is globally serialized and nobody else
1611 * takes two locks at once, deadlock is not possible.
1612 */
1613 spin_lock(&new_base->lock);
1614 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1615
1616 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1617 migrate_hrtimer_list(&old_base->clock_base[i],
1618 &new_base->clock_base[i]);
1619 }
1620
1621 spin_unlock(&old_base->lock);
1622 spin_unlock(&new_base->lock);
1623
1624 /* Check, if we got expired work to do */
1625 __hrtimer_peek_ahead_timers();
1626 local_irq_enable();
1627 }
1628
1629 #endif /* CONFIG_HOTPLUG_CPU */
1630
1631 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1632 unsigned long action, void *hcpu)
1633 {
1634 int scpu = (long)hcpu;
1635
1636 switch (action) {
1637
1638 case CPU_UP_PREPARE:
1639 case CPU_UP_PREPARE_FROZEN:
1640 init_hrtimers_cpu(scpu);
1641 break;
1642
1643 #ifdef CONFIG_HOTPLUG_CPU
1644 case CPU_DYING:
1645 case CPU_DYING_FROZEN:
1646 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1647 break;
1648 case CPU_DEAD:
1649 case CPU_DEAD_FROZEN:
1650 {
1651 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1652 migrate_hrtimers(scpu);
1653 break;
1654 }
1655 #endif
1656
1657 default:
1658 break;
1659 }
1660
1661 return NOTIFY_OK;
1662 }
1663
1664 static struct notifier_block __cpuinitdata hrtimers_nb = {
1665 .notifier_call = hrtimer_cpu_notify,
1666 };
1667
1668 void __init hrtimers_init(void)
1669 {
1670 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1671 (void *)(long)smp_processor_id());
1672 register_cpu_notifier(&hrtimers_nb);
1673 #ifdef CONFIG_HIGH_RES_TIMERS
1674 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1675 #endif
1676 }
1677
1678 /**
1679 * schedule_hrtimeout_range - sleep until timeout
1680 * @expires: timeout value (ktime_t)
1681 * @delta: slack in expires timeout (ktime_t)
1682 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1683 *
1684 * Make the current task sleep until the given expiry time has
1685 * elapsed. The routine will return immediately unless
1686 * the current task state has been set (see set_current_state()).
1687 *
1688 * The @delta argument gives the kernel the freedom to schedule the
1689 * actual wakeup to a time that is both power and performance friendly.
1690 * The kernel give the normal best effort behavior for "@expires+@delta",
1691 * but may decide to fire the timer earlier, but no earlier than @expires.
1692 *
1693 * You can set the task state as follows -
1694 *
1695 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1696 * pass before the routine returns.
1697 *
1698 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1699 * delivered to the current task.
1700 *
1701 * The current task state is guaranteed to be TASK_RUNNING when this
1702 * routine returns.
1703 *
1704 * Returns 0 when the timer has expired otherwise -EINTR
1705 */
1706 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1707 const enum hrtimer_mode mode)
1708 {
1709 struct hrtimer_sleeper t;
1710
1711 /*
1712 * Optimize when a zero timeout value is given. It does not
1713 * matter whether this is an absolute or a relative time.
1714 */
1715 if (expires && !expires->tv64) {
1716 __set_current_state(TASK_RUNNING);
1717 return 0;
1718 }
1719
1720 /*
1721 * A NULL parameter means "inifinte"
1722 */
1723 if (!expires) {
1724 schedule();
1725 __set_current_state(TASK_RUNNING);
1726 return -EINTR;
1727 }
1728
1729 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1730 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1731
1732 hrtimer_init_sleeper(&t, current);
1733
1734 hrtimer_start_expires(&t.timer, mode);
1735 if (!hrtimer_active(&t.timer))
1736 t.task = NULL;
1737
1738 if (likely(t.task))
1739 schedule();
1740
1741 hrtimer_cancel(&t.timer);
1742 destroy_hrtimer_on_stack(&t.timer);
1743
1744 __set_current_state(TASK_RUNNING);
1745
1746 return !t.task ? 0 : -EINTR;
1747 }
1748 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1749
1750 /**
1751 * schedule_hrtimeout - sleep until timeout
1752 * @expires: timeout value (ktime_t)
1753 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1754 *
1755 * Make the current task sleep until the given expiry time has
1756 * elapsed. The routine will return immediately unless
1757 * the current task state has been set (see set_current_state()).
1758 *
1759 * You can set the task state as follows -
1760 *
1761 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1762 * pass before the routine returns.
1763 *
1764 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1765 * delivered to the current task.
1766 *
1767 * The current task state is guaranteed to be TASK_RUNNING when this
1768 * routine returns.
1769 *
1770 * Returns 0 when the timer has expired otherwise -EINTR
1771 */
1772 int __sched schedule_hrtimeout(ktime_t *expires,
1773 const enum hrtimer_mode mode)
1774 {
1775 return schedule_hrtimeout_range(expires, 0, mode);
1776 }
1777 EXPORT_SYMBOL_GPL(schedule_hrtimeout);