]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/hrtimer.c
init/Kconfig: move the trusted keyring config option to general setup
[mirror_ubuntu-bionic-kernel.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 /*
58 * The timer bases:
59 *
60 * There are more clockids then hrtimer bases. Thus, we index
61 * into the timer bases by the hrtimer_base_type enum. When trying
62 * to reach a base using a clockid, hrtimer_clockid_to_base()
63 * is used to convert from clockid to the proper hrtimer_base_type.
64 */
65 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
66 {
67
68 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
69 .clock_base =
70 {
71 {
72 .index = HRTIMER_BASE_MONOTONIC,
73 .clockid = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
76 },
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
81 .resolution = KTIME_LOW_RES,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 .resolution = KTIME_LOW_RES,
88 },
89 {
90 .index = HRTIMER_BASE_TAI,
91 .clockid = CLOCK_TAI,
92 .get_time = &ktime_get_clocktai,
93 .resolution = KTIME_LOW_RES,
94 },
95 }
96 };
97
98 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
100 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
101 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
102 [CLOCK_TAI] = HRTIMER_BASE_TAI,
103 };
104
105 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
106 {
107 return hrtimer_clock_to_base_table[clock_id];
108 }
109
110
111 /*
112 * Get the coarse grained time at the softirq based on xtime and
113 * wall_to_monotonic.
114 */
115 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
116 {
117 ktime_t xtim, mono, boot;
118 struct timespec xts, tom, slp;
119 s32 tai_offset;
120
121 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
122 tai_offset = timekeeping_get_tai_offset();
123
124 xtim = timespec_to_ktime(xts);
125 mono = ktime_add(xtim, timespec_to_ktime(tom));
126 boot = ktime_add(mono, timespec_to_ktime(slp));
127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
131 ktime_add(xtim, ktime_set(tai_offset, 0));
132 }
133
134 /*
135 * Functions and macros which are different for UP/SMP systems are kept in a
136 * single place
137 */
138 #ifdef CONFIG_SMP
139
140 /*
141 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
142 * means that all timers which are tied to this base via timer->base are
143 * locked, and the base itself is locked too.
144 *
145 * So __run_timers/migrate_timers can safely modify all timers which could
146 * be found on the lists/queues.
147 *
148 * When the timer's base is locked, and the timer removed from list, it is
149 * possible to set timer->base = NULL and drop the lock: the timer remains
150 * locked.
151 */
152 static
153 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
154 unsigned long *flags)
155 {
156 struct hrtimer_clock_base *base;
157
158 for (;;) {
159 base = timer->base;
160 if (likely(base != NULL)) {
161 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
162 if (likely(base == timer->base))
163 return base;
164 /* The timer has migrated to another CPU: */
165 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
166 }
167 cpu_relax();
168 }
169 }
170
171 /*
172 * With HIGHRES=y we do not migrate the timer when it is expiring
173 * before the next event on the target cpu because we cannot reprogram
174 * the target cpu hardware and we would cause it to fire late.
175 *
176 * Called with cpu_base->lock of target cpu held.
177 */
178 static int
179 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
180 {
181 #ifdef CONFIG_HIGH_RES_TIMERS
182 ktime_t expires;
183
184 if (!new_base->cpu_base->hres_active)
185 return 0;
186
187 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
188 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
189 #else
190 return 0;
191 #endif
192 }
193
194 /*
195 * Switch the timer base to the current CPU when possible.
196 */
197 static inline struct hrtimer_clock_base *
198 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
200 {
201 struct hrtimer_clock_base *new_base;
202 struct hrtimer_cpu_base *new_cpu_base;
203 int this_cpu = smp_processor_id();
204 int cpu = get_nohz_timer_target(pinned);
205 int basenum = base->index;
206
207 again:
208 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
209 new_base = &new_cpu_base->clock_base[basenum];
210
211 if (base != new_base) {
212 /*
213 * We are trying to move timer to new_base.
214 * However we can't change timer's base while it is running,
215 * so we keep it on the same CPU. No hassle vs. reprogramming
216 * the event source in the high resolution case. The softirq
217 * code will take care of this when the timer function has
218 * completed. There is no conflict as we hold the lock until
219 * the timer is enqueued.
220 */
221 if (unlikely(hrtimer_callback_running(timer)))
222 return base;
223
224 /* See the comment in lock_timer_base() */
225 timer->base = NULL;
226 raw_spin_unlock(&base->cpu_base->lock);
227 raw_spin_lock(&new_base->cpu_base->lock);
228
229 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
230 cpu = this_cpu;
231 raw_spin_unlock(&new_base->cpu_base->lock);
232 raw_spin_lock(&base->cpu_base->lock);
233 timer->base = base;
234 goto again;
235 }
236 timer->base = new_base;
237 }
238 return new_base;
239 }
240
241 #else /* CONFIG_SMP */
242
243 static inline struct hrtimer_clock_base *
244 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
245 {
246 struct hrtimer_clock_base *base = timer->base;
247
248 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
249
250 return base;
251 }
252
253 # define switch_hrtimer_base(t, b, p) (b)
254
255 #endif /* !CONFIG_SMP */
256
257 /*
258 * Functions for the union type storage format of ktime_t which are
259 * too large for inlining:
260 */
261 #if BITS_PER_LONG < 64
262 # ifndef CONFIG_KTIME_SCALAR
263 /**
264 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
265 * @kt: addend
266 * @nsec: the scalar nsec value to add
267 *
268 * Returns the sum of kt and nsec in ktime_t format
269 */
270 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
271 {
272 ktime_t tmp;
273
274 if (likely(nsec < NSEC_PER_SEC)) {
275 tmp.tv64 = nsec;
276 } else {
277 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
278
279 /* Make sure nsec fits into long */
280 if (unlikely(nsec > KTIME_SEC_MAX))
281 return (ktime_t){ .tv64 = KTIME_MAX };
282
283 tmp = ktime_set((long)nsec, rem);
284 }
285
286 return ktime_add(kt, tmp);
287 }
288
289 EXPORT_SYMBOL_GPL(ktime_add_ns);
290
291 /**
292 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
293 * @kt: minuend
294 * @nsec: the scalar nsec value to subtract
295 *
296 * Returns the subtraction of @nsec from @kt in ktime_t format
297 */
298 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
299 {
300 ktime_t tmp;
301
302 if (likely(nsec < NSEC_PER_SEC)) {
303 tmp.tv64 = nsec;
304 } else {
305 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
306
307 tmp = ktime_set((long)nsec, rem);
308 }
309
310 return ktime_sub(kt, tmp);
311 }
312
313 EXPORT_SYMBOL_GPL(ktime_sub_ns);
314 # endif /* !CONFIG_KTIME_SCALAR */
315
316 /*
317 * Divide a ktime value by a nanosecond value
318 */
319 u64 ktime_divns(const ktime_t kt, s64 div)
320 {
321 u64 dclc;
322 int sft = 0;
323
324 dclc = ktime_to_ns(kt);
325 /* Make sure the divisor is less than 2^32: */
326 while (div >> 32) {
327 sft++;
328 div >>= 1;
329 }
330 dclc >>= sft;
331 do_div(dclc, (unsigned long) div);
332
333 return dclc;
334 }
335 #endif /* BITS_PER_LONG >= 64 */
336
337 /*
338 * Add two ktime values and do a safety check for overflow:
339 */
340 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
341 {
342 ktime_t res = ktime_add(lhs, rhs);
343
344 /*
345 * We use KTIME_SEC_MAX here, the maximum timeout which we can
346 * return to user space in a timespec:
347 */
348 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
349 res = ktime_set(KTIME_SEC_MAX, 0);
350
351 return res;
352 }
353
354 EXPORT_SYMBOL_GPL(ktime_add_safe);
355
356 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
357
358 static struct debug_obj_descr hrtimer_debug_descr;
359
360 static void *hrtimer_debug_hint(void *addr)
361 {
362 return ((struct hrtimer *) addr)->function;
363 }
364
365 /*
366 * fixup_init is called when:
367 * - an active object is initialized
368 */
369 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
370 {
371 struct hrtimer *timer = addr;
372
373 switch (state) {
374 case ODEBUG_STATE_ACTIVE:
375 hrtimer_cancel(timer);
376 debug_object_init(timer, &hrtimer_debug_descr);
377 return 1;
378 default:
379 return 0;
380 }
381 }
382
383 /*
384 * fixup_activate is called when:
385 * - an active object is activated
386 * - an unknown object is activated (might be a statically initialized object)
387 */
388 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
389 {
390 switch (state) {
391
392 case ODEBUG_STATE_NOTAVAILABLE:
393 WARN_ON_ONCE(1);
394 return 0;
395
396 case ODEBUG_STATE_ACTIVE:
397 WARN_ON(1);
398
399 default:
400 return 0;
401 }
402 }
403
404 /*
405 * fixup_free is called when:
406 * - an active object is freed
407 */
408 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
409 {
410 struct hrtimer *timer = addr;
411
412 switch (state) {
413 case ODEBUG_STATE_ACTIVE:
414 hrtimer_cancel(timer);
415 debug_object_free(timer, &hrtimer_debug_descr);
416 return 1;
417 default:
418 return 0;
419 }
420 }
421
422 static struct debug_obj_descr hrtimer_debug_descr = {
423 .name = "hrtimer",
424 .debug_hint = hrtimer_debug_hint,
425 .fixup_init = hrtimer_fixup_init,
426 .fixup_activate = hrtimer_fixup_activate,
427 .fixup_free = hrtimer_fixup_free,
428 };
429
430 static inline void debug_hrtimer_init(struct hrtimer *timer)
431 {
432 debug_object_init(timer, &hrtimer_debug_descr);
433 }
434
435 static inline void debug_hrtimer_activate(struct hrtimer *timer)
436 {
437 debug_object_activate(timer, &hrtimer_debug_descr);
438 }
439
440 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
441 {
442 debug_object_deactivate(timer, &hrtimer_debug_descr);
443 }
444
445 static inline void debug_hrtimer_free(struct hrtimer *timer)
446 {
447 debug_object_free(timer, &hrtimer_debug_descr);
448 }
449
450 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
451 enum hrtimer_mode mode);
452
453 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
454 enum hrtimer_mode mode)
455 {
456 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
457 __hrtimer_init(timer, clock_id, mode);
458 }
459 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
460
461 void destroy_hrtimer_on_stack(struct hrtimer *timer)
462 {
463 debug_object_free(timer, &hrtimer_debug_descr);
464 }
465
466 #else
467 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
468 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
469 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
470 #endif
471
472 static inline void
473 debug_init(struct hrtimer *timer, clockid_t clockid,
474 enum hrtimer_mode mode)
475 {
476 debug_hrtimer_init(timer);
477 trace_hrtimer_init(timer, clockid, mode);
478 }
479
480 static inline void debug_activate(struct hrtimer *timer)
481 {
482 debug_hrtimer_activate(timer);
483 trace_hrtimer_start(timer);
484 }
485
486 static inline void debug_deactivate(struct hrtimer *timer)
487 {
488 debug_hrtimer_deactivate(timer);
489 trace_hrtimer_cancel(timer);
490 }
491
492 /* High resolution timer related functions */
493 #ifdef CONFIG_HIGH_RES_TIMERS
494
495 /*
496 * High resolution timer enabled ?
497 */
498 static int hrtimer_hres_enabled __read_mostly = 1;
499
500 /*
501 * Enable / Disable high resolution mode
502 */
503 static int __init setup_hrtimer_hres(char *str)
504 {
505 if (!strcmp(str, "off"))
506 hrtimer_hres_enabled = 0;
507 else if (!strcmp(str, "on"))
508 hrtimer_hres_enabled = 1;
509 else
510 return 0;
511 return 1;
512 }
513
514 __setup("highres=", setup_hrtimer_hres);
515
516 /*
517 * hrtimer_high_res_enabled - query, if the highres mode is enabled
518 */
519 static inline int hrtimer_is_hres_enabled(void)
520 {
521 return hrtimer_hres_enabled;
522 }
523
524 /*
525 * Is the high resolution mode active ?
526 */
527 static inline int hrtimer_hres_active(void)
528 {
529 return __this_cpu_read(hrtimer_bases.hres_active);
530 }
531
532 /*
533 * Reprogram the event source with checking both queues for the
534 * next event
535 * Called with interrupts disabled and base->lock held
536 */
537 static void
538 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
539 {
540 int i;
541 struct hrtimer_clock_base *base = cpu_base->clock_base;
542 ktime_t expires, expires_next;
543
544 expires_next.tv64 = KTIME_MAX;
545
546 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
547 struct hrtimer *timer;
548 struct timerqueue_node *next;
549
550 next = timerqueue_getnext(&base->active);
551 if (!next)
552 continue;
553 timer = container_of(next, struct hrtimer, node);
554
555 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
556 /*
557 * clock_was_set() has changed base->offset so the
558 * result might be negative. Fix it up to prevent a
559 * false positive in clockevents_program_event()
560 */
561 if (expires.tv64 < 0)
562 expires.tv64 = 0;
563 if (expires.tv64 < expires_next.tv64)
564 expires_next = expires;
565 }
566
567 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
568 return;
569
570 cpu_base->expires_next.tv64 = expires_next.tv64;
571
572 if (cpu_base->expires_next.tv64 != KTIME_MAX)
573 tick_program_event(cpu_base->expires_next, 1);
574 }
575
576 /*
577 * Shared reprogramming for clock_realtime and clock_monotonic
578 *
579 * When a timer is enqueued and expires earlier than the already enqueued
580 * timers, we have to check, whether it expires earlier than the timer for
581 * which the clock event device was armed.
582 *
583 * Called with interrupts disabled and base->cpu_base.lock held
584 */
585 static int hrtimer_reprogram(struct hrtimer *timer,
586 struct hrtimer_clock_base *base)
587 {
588 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
589 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
590 int res;
591
592 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
593
594 /*
595 * When the callback is running, we do not reprogram the clock event
596 * device. The timer callback is either running on a different CPU or
597 * the callback is executed in the hrtimer_interrupt context. The
598 * reprogramming is handled either by the softirq, which called the
599 * callback or at the end of the hrtimer_interrupt.
600 */
601 if (hrtimer_callback_running(timer))
602 return 0;
603
604 /*
605 * CLOCK_REALTIME timer might be requested with an absolute
606 * expiry time which is less than base->offset. Nothing wrong
607 * about that, just avoid to call into the tick code, which
608 * has now objections against negative expiry values.
609 */
610 if (expires.tv64 < 0)
611 return -ETIME;
612
613 if (expires.tv64 >= cpu_base->expires_next.tv64)
614 return 0;
615
616 /*
617 * If a hang was detected in the last timer interrupt then we
618 * do not schedule a timer which is earlier than the expiry
619 * which we enforced in the hang detection. We want the system
620 * to make progress.
621 */
622 if (cpu_base->hang_detected)
623 return 0;
624
625 /*
626 * Clockevents returns -ETIME, when the event was in the past.
627 */
628 res = tick_program_event(expires, 0);
629 if (!IS_ERR_VALUE(res))
630 cpu_base->expires_next = expires;
631 return res;
632 }
633
634 /*
635 * Initialize the high resolution related parts of cpu_base
636 */
637 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
638 {
639 base->expires_next.tv64 = KTIME_MAX;
640 base->hres_active = 0;
641 }
642
643 /*
644 * When High resolution timers are active, try to reprogram. Note, that in case
645 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
646 * check happens. The timer gets enqueued into the rbtree. The reprogramming
647 * and expiry check is done in the hrtimer_interrupt or in the softirq.
648 */
649 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
650 struct hrtimer_clock_base *base)
651 {
652 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
653 }
654
655 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
656 {
657 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
658 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
659 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
660
661 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
662 }
663
664 /*
665 * Retrigger next event is called after clock was set
666 *
667 * Called with interrupts disabled via on_each_cpu()
668 */
669 static void retrigger_next_event(void *arg)
670 {
671 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
672
673 if (!hrtimer_hres_active())
674 return;
675
676 raw_spin_lock(&base->lock);
677 hrtimer_update_base(base);
678 hrtimer_force_reprogram(base, 0);
679 raw_spin_unlock(&base->lock);
680 }
681
682 /*
683 * Switch to high resolution mode
684 */
685 static int hrtimer_switch_to_hres(void)
686 {
687 int i, cpu = smp_processor_id();
688 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
689 unsigned long flags;
690
691 if (base->hres_active)
692 return 1;
693
694 local_irq_save(flags);
695
696 if (tick_init_highres()) {
697 local_irq_restore(flags);
698 printk(KERN_WARNING "Could not switch to high resolution "
699 "mode on CPU %d\n", cpu);
700 return 0;
701 }
702 base->hres_active = 1;
703 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
704 base->clock_base[i].resolution = KTIME_HIGH_RES;
705
706 tick_setup_sched_timer();
707 /* "Retrigger" the interrupt to get things going */
708 retrigger_next_event(NULL);
709 local_irq_restore(flags);
710 return 1;
711 }
712
713 static void clock_was_set_work(struct work_struct *work)
714 {
715 clock_was_set();
716 }
717
718 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
719
720 /*
721 * Called from timekeeping and resume code to reprogramm the hrtimer
722 * interrupt device on all cpus.
723 */
724 void clock_was_set_delayed(void)
725 {
726 schedule_work(&hrtimer_work);
727 }
728
729 #else
730
731 static inline int hrtimer_hres_active(void) { return 0; }
732 static inline int hrtimer_is_hres_enabled(void) { return 0; }
733 static inline int hrtimer_switch_to_hres(void) { return 0; }
734 static inline void
735 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
736 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
737 struct hrtimer_clock_base *base)
738 {
739 return 0;
740 }
741 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
742 static inline void retrigger_next_event(void *arg) { }
743
744 #endif /* CONFIG_HIGH_RES_TIMERS */
745
746 /*
747 * Clock realtime was set
748 *
749 * Change the offset of the realtime clock vs. the monotonic
750 * clock.
751 *
752 * We might have to reprogram the high resolution timer interrupt. On
753 * SMP we call the architecture specific code to retrigger _all_ high
754 * resolution timer interrupts. On UP we just disable interrupts and
755 * call the high resolution interrupt code.
756 */
757 void clock_was_set(void)
758 {
759 #ifdef CONFIG_HIGH_RES_TIMERS
760 /* Retrigger the CPU local events everywhere */
761 on_each_cpu(retrigger_next_event, NULL, 1);
762 #endif
763 timerfd_clock_was_set();
764 }
765
766 /*
767 * During resume we might have to reprogram the high resolution timer
768 * interrupt on all online CPUs. However, all other CPUs will be
769 * stopped with IRQs interrupts disabled so the clock_was_set() call
770 * must be deferred.
771 */
772 void hrtimers_resume(void)
773 {
774 WARN_ONCE(!irqs_disabled(),
775 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
776
777 /* Retrigger on the local CPU */
778 retrigger_next_event(NULL);
779 /* And schedule a retrigger for all others */
780 clock_was_set_delayed();
781 }
782
783 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
784 {
785 #ifdef CONFIG_TIMER_STATS
786 if (timer->start_site)
787 return;
788 timer->start_site = __builtin_return_address(0);
789 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
790 timer->start_pid = current->pid;
791 #endif
792 }
793
794 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
795 {
796 #ifdef CONFIG_TIMER_STATS
797 timer->start_site = NULL;
798 #endif
799 }
800
801 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
802 {
803 #ifdef CONFIG_TIMER_STATS
804 if (likely(!timer_stats_active))
805 return;
806 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
807 timer->function, timer->start_comm, 0);
808 #endif
809 }
810
811 /*
812 * Counterpart to lock_hrtimer_base above:
813 */
814 static inline
815 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
816 {
817 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
818 }
819
820 /**
821 * hrtimer_forward - forward the timer expiry
822 * @timer: hrtimer to forward
823 * @now: forward past this time
824 * @interval: the interval to forward
825 *
826 * Forward the timer expiry so it will expire in the future.
827 * Returns the number of overruns.
828 */
829 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
830 {
831 u64 orun = 1;
832 ktime_t delta;
833
834 delta = ktime_sub(now, hrtimer_get_expires(timer));
835
836 if (delta.tv64 < 0)
837 return 0;
838
839 if (interval.tv64 < timer->base->resolution.tv64)
840 interval.tv64 = timer->base->resolution.tv64;
841
842 if (unlikely(delta.tv64 >= interval.tv64)) {
843 s64 incr = ktime_to_ns(interval);
844
845 orun = ktime_divns(delta, incr);
846 hrtimer_add_expires_ns(timer, incr * orun);
847 if (hrtimer_get_expires_tv64(timer) > now.tv64)
848 return orun;
849 /*
850 * This (and the ktime_add() below) is the
851 * correction for exact:
852 */
853 orun++;
854 }
855 hrtimer_add_expires(timer, interval);
856
857 return orun;
858 }
859 EXPORT_SYMBOL_GPL(hrtimer_forward);
860
861 /*
862 * enqueue_hrtimer - internal function to (re)start a timer
863 *
864 * The timer is inserted in expiry order. Insertion into the
865 * red black tree is O(log(n)). Must hold the base lock.
866 *
867 * Returns 1 when the new timer is the leftmost timer in the tree.
868 */
869 static int enqueue_hrtimer(struct hrtimer *timer,
870 struct hrtimer_clock_base *base)
871 {
872 debug_activate(timer);
873
874 timerqueue_add(&base->active, &timer->node);
875 base->cpu_base->active_bases |= 1 << base->index;
876
877 /*
878 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
879 * state of a possibly running callback.
880 */
881 timer->state |= HRTIMER_STATE_ENQUEUED;
882
883 return (&timer->node == base->active.next);
884 }
885
886 /*
887 * __remove_hrtimer - internal function to remove a timer
888 *
889 * Caller must hold the base lock.
890 *
891 * High resolution timer mode reprograms the clock event device when the
892 * timer is the one which expires next. The caller can disable this by setting
893 * reprogram to zero. This is useful, when the context does a reprogramming
894 * anyway (e.g. timer interrupt)
895 */
896 static void __remove_hrtimer(struct hrtimer *timer,
897 struct hrtimer_clock_base *base,
898 unsigned long newstate, int reprogram)
899 {
900 struct timerqueue_node *next_timer;
901 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
902 goto out;
903
904 next_timer = timerqueue_getnext(&base->active);
905 timerqueue_del(&base->active, &timer->node);
906 if (&timer->node == next_timer) {
907 #ifdef CONFIG_HIGH_RES_TIMERS
908 /* Reprogram the clock event device. if enabled */
909 if (reprogram && hrtimer_hres_active()) {
910 ktime_t expires;
911
912 expires = ktime_sub(hrtimer_get_expires(timer),
913 base->offset);
914 if (base->cpu_base->expires_next.tv64 == expires.tv64)
915 hrtimer_force_reprogram(base->cpu_base, 1);
916 }
917 #endif
918 }
919 if (!timerqueue_getnext(&base->active))
920 base->cpu_base->active_bases &= ~(1 << base->index);
921 out:
922 timer->state = newstate;
923 }
924
925 /*
926 * remove hrtimer, called with base lock held
927 */
928 static inline int
929 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
930 {
931 if (hrtimer_is_queued(timer)) {
932 unsigned long state;
933 int reprogram;
934
935 /*
936 * Remove the timer and force reprogramming when high
937 * resolution mode is active and the timer is on the current
938 * CPU. If we remove a timer on another CPU, reprogramming is
939 * skipped. The interrupt event on this CPU is fired and
940 * reprogramming happens in the interrupt handler. This is a
941 * rare case and less expensive than a smp call.
942 */
943 debug_deactivate(timer);
944 timer_stats_hrtimer_clear_start_info(timer);
945 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
946 /*
947 * We must preserve the CALLBACK state flag here,
948 * otherwise we could move the timer base in
949 * switch_hrtimer_base.
950 */
951 state = timer->state & HRTIMER_STATE_CALLBACK;
952 __remove_hrtimer(timer, base, state, reprogram);
953 return 1;
954 }
955 return 0;
956 }
957
958 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
959 unsigned long delta_ns, const enum hrtimer_mode mode,
960 int wakeup)
961 {
962 struct hrtimer_clock_base *base, *new_base;
963 unsigned long flags;
964 int ret, leftmost;
965
966 base = lock_hrtimer_base(timer, &flags);
967
968 /* Remove an active timer from the queue: */
969 ret = remove_hrtimer(timer, base);
970
971 /* Switch the timer base, if necessary: */
972 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
973
974 if (mode & HRTIMER_MODE_REL) {
975 tim = ktime_add_safe(tim, new_base->get_time());
976 /*
977 * CONFIG_TIME_LOW_RES is a temporary way for architectures
978 * to signal that they simply return xtime in
979 * do_gettimeoffset(). In this case we want to round up by
980 * resolution when starting a relative timer, to avoid short
981 * timeouts. This will go away with the GTOD framework.
982 */
983 #ifdef CONFIG_TIME_LOW_RES
984 tim = ktime_add_safe(tim, base->resolution);
985 #endif
986 }
987
988 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
989
990 timer_stats_hrtimer_set_start_info(timer);
991
992 leftmost = enqueue_hrtimer(timer, new_base);
993
994 /*
995 * Only allow reprogramming if the new base is on this CPU.
996 * (it might still be on another CPU if the timer was pending)
997 *
998 * XXX send_remote_softirq() ?
999 */
1000 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1001 && hrtimer_enqueue_reprogram(timer, new_base)) {
1002 if (wakeup) {
1003 /*
1004 * We need to drop cpu_base->lock to avoid a
1005 * lock ordering issue vs. rq->lock.
1006 */
1007 raw_spin_unlock(&new_base->cpu_base->lock);
1008 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1009 local_irq_restore(flags);
1010 return ret;
1011 } else {
1012 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1013 }
1014 }
1015
1016 unlock_hrtimer_base(timer, &flags);
1017
1018 return ret;
1019 }
1020
1021 /**
1022 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1023 * @timer: the timer to be added
1024 * @tim: expiry time
1025 * @delta_ns: "slack" range for the timer
1026 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1027 * relative (HRTIMER_MODE_REL)
1028 *
1029 * Returns:
1030 * 0 on success
1031 * 1 when the timer was active
1032 */
1033 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1034 unsigned long delta_ns, const enum hrtimer_mode mode)
1035 {
1036 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1037 }
1038 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1039
1040 /**
1041 * hrtimer_start - (re)start an hrtimer on the current CPU
1042 * @timer: the timer to be added
1043 * @tim: expiry time
1044 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1045 * relative (HRTIMER_MODE_REL)
1046 *
1047 * Returns:
1048 * 0 on success
1049 * 1 when the timer was active
1050 */
1051 int
1052 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1053 {
1054 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1055 }
1056 EXPORT_SYMBOL_GPL(hrtimer_start);
1057
1058
1059 /**
1060 * hrtimer_try_to_cancel - try to deactivate a timer
1061 * @timer: hrtimer to stop
1062 *
1063 * Returns:
1064 * 0 when the timer was not active
1065 * 1 when the timer was active
1066 * -1 when the timer is currently excuting the callback function and
1067 * cannot be stopped
1068 */
1069 int hrtimer_try_to_cancel(struct hrtimer *timer)
1070 {
1071 struct hrtimer_clock_base *base;
1072 unsigned long flags;
1073 int ret = -1;
1074
1075 base = lock_hrtimer_base(timer, &flags);
1076
1077 if (!hrtimer_callback_running(timer))
1078 ret = remove_hrtimer(timer, base);
1079
1080 unlock_hrtimer_base(timer, &flags);
1081
1082 return ret;
1083
1084 }
1085 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1086
1087 /**
1088 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1089 * @timer: the timer to be cancelled
1090 *
1091 * Returns:
1092 * 0 when the timer was not active
1093 * 1 when the timer was active
1094 */
1095 int hrtimer_cancel(struct hrtimer *timer)
1096 {
1097 for (;;) {
1098 int ret = hrtimer_try_to_cancel(timer);
1099
1100 if (ret >= 0)
1101 return ret;
1102 cpu_relax();
1103 }
1104 }
1105 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1106
1107 /**
1108 * hrtimer_get_remaining - get remaining time for the timer
1109 * @timer: the timer to read
1110 */
1111 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1112 {
1113 unsigned long flags;
1114 ktime_t rem;
1115
1116 lock_hrtimer_base(timer, &flags);
1117 rem = hrtimer_expires_remaining(timer);
1118 unlock_hrtimer_base(timer, &flags);
1119
1120 return rem;
1121 }
1122 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1123
1124 #ifdef CONFIG_NO_HZ_COMMON
1125 /**
1126 * hrtimer_get_next_event - get the time until next expiry event
1127 *
1128 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1129 * is pending.
1130 */
1131 ktime_t hrtimer_get_next_event(void)
1132 {
1133 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1134 struct hrtimer_clock_base *base = cpu_base->clock_base;
1135 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1136 unsigned long flags;
1137 int i;
1138
1139 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1140
1141 if (!hrtimer_hres_active()) {
1142 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1143 struct hrtimer *timer;
1144 struct timerqueue_node *next;
1145
1146 next = timerqueue_getnext(&base->active);
1147 if (!next)
1148 continue;
1149
1150 timer = container_of(next, struct hrtimer, node);
1151 delta.tv64 = hrtimer_get_expires_tv64(timer);
1152 delta = ktime_sub(delta, base->get_time());
1153 if (delta.tv64 < mindelta.tv64)
1154 mindelta.tv64 = delta.tv64;
1155 }
1156 }
1157
1158 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1159
1160 if (mindelta.tv64 < 0)
1161 mindelta.tv64 = 0;
1162 return mindelta;
1163 }
1164 #endif
1165
1166 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1167 enum hrtimer_mode mode)
1168 {
1169 struct hrtimer_cpu_base *cpu_base;
1170 int base;
1171
1172 memset(timer, 0, sizeof(struct hrtimer));
1173
1174 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1175
1176 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1177 clock_id = CLOCK_MONOTONIC;
1178
1179 base = hrtimer_clockid_to_base(clock_id);
1180 timer->base = &cpu_base->clock_base[base];
1181 timerqueue_init(&timer->node);
1182
1183 #ifdef CONFIG_TIMER_STATS
1184 timer->start_site = NULL;
1185 timer->start_pid = -1;
1186 memset(timer->start_comm, 0, TASK_COMM_LEN);
1187 #endif
1188 }
1189
1190 /**
1191 * hrtimer_init - initialize a timer to the given clock
1192 * @timer: the timer to be initialized
1193 * @clock_id: the clock to be used
1194 * @mode: timer mode abs/rel
1195 */
1196 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1197 enum hrtimer_mode mode)
1198 {
1199 debug_init(timer, clock_id, mode);
1200 __hrtimer_init(timer, clock_id, mode);
1201 }
1202 EXPORT_SYMBOL_GPL(hrtimer_init);
1203
1204 /**
1205 * hrtimer_get_res - get the timer resolution for a clock
1206 * @which_clock: which clock to query
1207 * @tp: pointer to timespec variable to store the resolution
1208 *
1209 * Store the resolution of the clock selected by @which_clock in the
1210 * variable pointed to by @tp.
1211 */
1212 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1213 {
1214 struct hrtimer_cpu_base *cpu_base;
1215 int base = hrtimer_clockid_to_base(which_clock);
1216
1217 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1218 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1219
1220 return 0;
1221 }
1222 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1223
1224 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1225 {
1226 struct hrtimer_clock_base *base = timer->base;
1227 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1228 enum hrtimer_restart (*fn)(struct hrtimer *);
1229 int restart;
1230
1231 WARN_ON(!irqs_disabled());
1232
1233 debug_deactivate(timer);
1234 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1235 timer_stats_account_hrtimer(timer);
1236 fn = timer->function;
1237
1238 /*
1239 * Because we run timers from hardirq context, there is no chance
1240 * they get migrated to another cpu, therefore its safe to unlock
1241 * the timer base.
1242 */
1243 raw_spin_unlock(&cpu_base->lock);
1244 trace_hrtimer_expire_entry(timer, now);
1245 restart = fn(timer);
1246 trace_hrtimer_expire_exit(timer);
1247 raw_spin_lock(&cpu_base->lock);
1248
1249 /*
1250 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1251 * we do not reprogramm the event hardware. Happens either in
1252 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1253 */
1254 if (restart != HRTIMER_NORESTART) {
1255 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1256 enqueue_hrtimer(timer, base);
1257 }
1258
1259 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1260
1261 timer->state &= ~HRTIMER_STATE_CALLBACK;
1262 }
1263
1264 #ifdef CONFIG_HIGH_RES_TIMERS
1265
1266 /*
1267 * High resolution timer interrupt
1268 * Called with interrupts disabled
1269 */
1270 void hrtimer_interrupt(struct clock_event_device *dev)
1271 {
1272 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1273 ktime_t expires_next, now, entry_time, delta;
1274 int i, retries = 0;
1275
1276 BUG_ON(!cpu_base->hres_active);
1277 cpu_base->nr_events++;
1278 dev->next_event.tv64 = KTIME_MAX;
1279
1280 raw_spin_lock(&cpu_base->lock);
1281 entry_time = now = hrtimer_update_base(cpu_base);
1282 retry:
1283 expires_next.tv64 = KTIME_MAX;
1284 /*
1285 * We set expires_next to KTIME_MAX here with cpu_base->lock
1286 * held to prevent that a timer is enqueued in our queue via
1287 * the migration code. This does not affect enqueueing of
1288 * timers which run their callback and need to be requeued on
1289 * this CPU.
1290 */
1291 cpu_base->expires_next.tv64 = KTIME_MAX;
1292
1293 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1294 struct hrtimer_clock_base *base;
1295 struct timerqueue_node *node;
1296 ktime_t basenow;
1297
1298 if (!(cpu_base->active_bases & (1 << i)))
1299 continue;
1300
1301 base = cpu_base->clock_base + i;
1302 basenow = ktime_add(now, base->offset);
1303
1304 while ((node = timerqueue_getnext(&base->active))) {
1305 struct hrtimer *timer;
1306
1307 timer = container_of(node, struct hrtimer, node);
1308
1309 /*
1310 * The immediate goal for using the softexpires is
1311 * minimizing wakeups, not running timers at the
1312 * earliest interrupt after their soft expiration.
1313 * This allows us to avoid using a Priority Search
1314 * Tree, which can answer a stabbing querry for
1315 * overlapping intervals and instead use the simple
1316 * BST we already have.
1317 * We don't add extra wakeups by delaying timers that
1318 * are right-of a not yet expired timer, because that
1319 * timer will have to trigger a wakeup anyway.
1320 */
1321
1322 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1323 ktime_t expires;
1324
1325 expires = ktime_sub(hrtimer_get_expires(timer),
1326 base->offset);
1327 if (expires.tv64 < 0)
1328 expires.tv64 = KTIME_MAX;
1329 if (expires.tv64 < expires_next.tv64)
1330 expires_next = expires;
1331 break;
1332 }
1333
1334 __run_hrtimer(timer, &basenow);
1335 }
1336 }
1337
1338 /*
1339 * Store the new expiry value so the migration code can verify
1340 * against it.
1341 */
1342 cpu_base->expires_next = expires_next;
1343 raw_spin_unlock(&cpu_base->lock);
1344
1345 /* Reprogramming necessary ? */
1346 if (expires_next.tv64 == KTIME_MAX ||
1347 !tick_program_event(expires_next, 0)) {
1348 cpu_base->hang_detected = 0;
1349 return;
1350 }
1351
1352 /*
1353 * The next timer was already expired due to:
1354 * - tracing
1355 * - long lasting callbacks
1356 * - being scheduled away when running in a VM
1357 *
1358 * We need to prevent that we loop forever in the hrtimer
1359 * interrupt routine. We give it 3 attempts to avoid
1360 * overreacting on some spurious event.
1361 *
1362 * Acquire base lock for updating the offsets and retrieving
1363 * the current time.
1364 */
1365 raw_spin_lock(&cpu_base->lock);
1366 now = hrtimer_update_base(cpu_base);
1367 cpu_base->nr_retries++;
1368 if (++retries < 3)
1369 goto retry;
1370 /*
1371 * Give the system a chance to do something else than looping
1372 * here. We stored the entry time, so we know exactly how long
1373 * we spent here. We schedule the next event this amount of
1374 * time away.
1375 */
1376 cpu_base->nr_hangs++;
1377 cpu_base->hang_detected = 1;
1378 raw_spin_unlock(&cpu_base->lock);
1379 delta = ktime_sub(now, entry_time);
1380 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1381 cpu_base->max_hang_time = delta;
1382 /*
1383 * Limit it to a sensible value as we enforce a longer
1384 * delay. Give the CPU at least 100ms to catch up.
1385 */
1386 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1387 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1388 else
1389 expires_next = ktime_add(now, delta);
1390 tick_program_event(expires_next, 1);
1391 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1392 ktime_to_ns(delta));
1393 }
1394
1395 /*
1396 * local version of hrtimer_peek_ahead_timers() called with interrupts
1397 * disabled.
1398 */
1399 static void __hrtimer_peek_ahead_timers(void)
1400 {
1401 struct tick_device *td;
1402
1403 if (!hrtimer_hres_active())
1404 return;
1405
1406 td = &__get_cpu_var(tick_cpu_device);
1407 if (td && td->evtdev)
1408 hrtimer_interrupt(td->evtdev);
1409 }
1410
1411 /**
1412 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1413 *
1414 * hrtimer_peek_ahead_timers will peek at the timer queue of
1415 * the current cpu and check if there are any timers for which
1416 * the soft expires time has passed. If any such timers exist,
1417 * they are run immediately and then removed from the timer queue.
1418 *
1419 */
1420 void hrtimer_peek_ahead_timers(void)
1421 {
1422 unsigned long flags;
1423
1424 local_irq_save(flags);
1425 __hrtimer_peek_ahead_timers();
1426 local_irq_restore(flags);
1427 }
1428
1429 static void run_hrtimer_softirq(struct softirq_action *h)
1430 {
1431 hrtimer_peek_ahead_timers();
1432 }
1433
1434 #else /* CONFIG_HIGH_RES_TIMERS */
1435
1436 static inline void __hrtimer_peek_ahead_timers(void) { }
1437
1438 #endif /* !CONFIG_HIGH_RES_TIMERS */
1439
1440 /*
1441 * Called from timer softirq every jiffy, expire hrtimers:
1442 *
1443 * For HRT its the fall back code to run the softirq in the timer
1444 * softirq context in case the hrtimer initialization failed or has
1445 * not been done yet.
1446 */
1447 void hrtimer_run_pending(void)
1448 {
1449 if (hrtimer_hres_active())
1450 return;
1451
1452 /*
1453 * This _is_ ugly: We have to check in the softirq context,
1454 * whether we can switch to highres and / or nohz mode. The
1455 * clocksource switch happens in the timer interrupt with
1456 * xtime_lock held. Notification from there only sets the
1457 * check bit in the tick_oneshot code, otherwise we might
1458 * deadlock vs. xtime_lock.
1459 */
1460 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1461 hrtimer_switch_to_hres();
1462 }
1463
1464 /*
1465 * Called from hardirq context every jiffy
1466 */
1467 void hrtimer_run_queues(void)
1468 {
1469 struct timerqueue_node *node;
1470 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1471 struct hrtimer_clock_base *base;
1472 int index, gettime = 1;
1473
1474 if (hrtimer_hres_active())
1475 return;
1476
1477 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1478 base = &cpu_base->clock_base[index];
1479 if (!timerqueue_getnext(&base->active))
1480 continue;
1481
1482 if (gettime) {
1483 hrtimer_get_softirq_time(cpu_base);
1484 gettime = 0;
1485 }
1486
1487 raw_spin_lock(&cpu_base->lock);
1488
1489 while ((node = timerqueue_getnext(&base->active))) {
1490 struct hrtimer *timer;
1491
1492 timer = container_of(node, struct hrtimer, node);
1493 if (base->softirq_time.tv64 <=
1494 hrtimer_get_expires_tv64(timer))
1495 break;
1496
1497 __run_hrtimer(timer, &base->softirq_time);
1498 }
1499 raw_spin_unlock(&cpu_base->lock);
1500 }
1501 }
1502
1503 /*
1504 * Sleep related functions:
1505 */
1506 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1507 {
1508 struct hrtimer_sleeper *t =
1509 container_of(timer, struct hrtimer_sleeper, timer);
1510 struct task_struct *task = t->task;
1511
1512 t->task = NULL;
1513 if (task)
1514 wake_up_process(task);
1515
1516 return HRTIMER_NORESTART;
1517 }
1518
1519 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1520 {
1521 sl->timer.function = hrtimer_wakeup;
1522 sl->task = task;
1523 }
1524 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1525
1526 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1527 {
1528 hrtimer_init_sleeper(t, current);
1529
1530 do {
1531 set_current_state(TASK_INTERRUPTIBLE);
1532 hrtimer_start_expires(&t->timer, mode);
1533 if (!hrtimer_active(&t->timer))
1534 t->task = NULL;
1535
1536 if (likely(t->task))
1537 freezable_schedule();
1538
1539 hrtimer_cancel(&t->timer);
1540 mode = HRTIMER_MODE_ABS;
1541
1542 } while (t->task && !signal_pending(current));
1543
1544 __set_current_state(TASK_RUNNING);
1545
1546 return t->task == NULL;
1547 }
1548
1549 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1550 {
1551 struct timespec rmt;
1552 ktime_t rem;
1553
1554 rem = hrtimer_expires_remaining(timer);
1555 if (rem.tv64 <= 0)
1556 return 0;
1557 rmt = ktime_to_timespec(rem);
1558
1559 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1560 return -EFAULT;
1561
1562 return 1;
1563 }
1564
1565 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1566 {
1567 struct hrtimer_sleeper t;
1568 struct timespec __user *rmtp;
1569 int ret = 0;
1570
1571 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1572 HRTIMER_MODE_ABS);
1573 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1574
1575 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1576 goto out;
1577
1578 rmtp = restart->nanosleep.rmtp;
1579 if (rmtp) {
1580 ret = update_rmtp(&t.timer, rmtp);
1581 if (ret <= 0)
1582 goto out;
1583 }
1584
1585 /* The other values in restart are already filled in */
1586 ret = -ERESTART_RESTARTBLOCK;
1587 out:
1588 destroy_hrtimer_on_stack(&t.timer);
1589 return ret;
1590 }
1591
1592 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1593 const enum hrtimer_mode mode, const clockid_t clockid)
1594 {
1595 struct restart_block *restart;
1596 struct hrtimer_sleeper t;
1597 int ret = 0;
1598 unsigned long slack;
1599
1600 slack = current->timer_slack_ns;
1601 if (dl_task(current) || rt_task(current))
1602 slack = 0;
1603
1604 hrtimer_init_on_stack(&t.timer, clockid, mode);
1605 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1606 if (do_nanosleep(&t, mode))
1607 goto out;
1608
1609 /* Absolute timers do not update the rmtp value and restart: */
1610 if (mode == HRTIMER_MODE_ABS) {
1611 ret = -ERESTARTNOHAND;
1612 goto out;
1613 }
1614
1615 if (rmtp) {
1616 ret = update_rmtp(&t.timer, rmtp);
1617 if (ret <= 0)
1618 goto out;
1619 }
1620
1621 restart = &current_thread_info()->restart_block;
1622 restart->fn = hrtimer_nanosleep_restart;
1623 restart->nanosleep.clockid = t.timer.base->clockid;
1624 restart->nanosleep.rmtp = rmtp;
1625 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1626
1627 ret = -ERESTART_RESTARTBLOCK;
1628 out:
1629 destroy_hrtimer_on_stack(&t.timer);
1630 return ret;
1631 }
1632
1633 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1634 struct timespec __user *, rmtp)
1635 {
1636 struct timespec tu;
1637
1638 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1639 return -EFAULT;
1640
1641 if (!timespec_valid(&tu))
1642 return -EINVAL;
1643
1644 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1645 }
1646
1647 /*
1648 * Functions related to boot-time initialization:
1649 */
1650 static void init_hrtimers_cpu(int cpu)
1651 {
1652 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1653 int i;
1654
1655 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1656 cpu_base->clock_base[i].cpu_base = cpu_base;
1657 timerqueue_init_head(&cpu_base->clock_base[i].active);
1658 }
1659
1660 hrtimer_init_hres(cpu_base);
1661 }
1662
1663 #ifdef CONFIG_HOTPLUG_CPU
1664
1665 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1666 struct hrtimer_clock_base *new_base)
1667 {
1668 struct hrtimer *timer;
1669 struct timerqueue_node *node;
1670
1671 while ((node = timerqueue_getnext(&old_base->active))) {
1672 timer = container_of(node, struct hrtimer, node);
1673 BUG_ON(hrtimer_callback_running(timer));
1674 debug_deactivate(timer);
1675
1676 /*
1677 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1678 * timer could be seen as !active and just vanish away
1679 * under us on another CPU
1680 */
1681 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1682 timer->base = new_base;
1683 /*
1684 * Enqueue the timers on the new cpu. This does not
1685 * reprogram the event device in case the timer
1686 * expires before the earliest on this CPU, but we run
1687 * hrtimer_interrupt after we migrated everything to
1688 * sort out already expired timers and reprogram the
1689 * event device.
1690 */
1691 enqueue_hrtimer(timer, new_base);
1692
1693 /* Clear the migration state bit */
1694 timer->state &= ~HRTIMER_STATE_MIGRATE;
1695 }
1696 }
1697
1698 static void migrate_hrtimers(int scpu)
1699 {
1700 struct hrtimer_cpu_base *old_base, *new_base;
1701 int i;
1702
1703 BUG_ON(cpu_online(scpu));
1704 tick_cancel_sched_timer(scpu);
1705
1706 local_irq_disable();
1707 old_base = &per_cpu(hrtimer_bases, scpu);
1708 new_base = &__get_cpu_var(hrtimer_bases);
1709 /*
1710 * The caller is globally serialized and nobody else
1711 * takes two locks at once, deadlock is not possible.
1712 */
1713 raw_spin_lock(&new_base->lock);
1714 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1715
1716 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1717 migrate_hrtimer_list(&old_base->clock_base[i],
1718 &new_base->clock_base[i]);
1719 }
1720
1721 raw_spin_unlock(&old_base->lock);
1722 raw_spin_unlock(&new_base->lock);
1723
1724 /* Check, if we got expired work to do */
1725 __hrtimer_peek_ahead_timers();
1726 local_irq_enable();
1727 }
1728
1729 #endif /* CONFIG_HOTPLUG_CPU */
1730
1731 static int hrtimer_cpu_notify(struct notifier_block *self,
1732 unsigned long action, void *hcpu)
1733 {
1734 int scpu = (long)hcpu;
1735
1736 switch (action) {
1737
1738 case CPU_UP_PREPARE:
1739 case CPU_UP_PREPARE_FROZEN:
1740 init_hrtimers_cpu(scpu);
1741 break;
1742
1743 #ifdef CONFIG_HOTPLUG_CPU
1744 case CPU_DYING:
1745 case CPU_DYING_FROZEN:
1746 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1747 break;
1748 case CPU_DEAD:
1749 case CPU_DEAD_FROZEN:
1750 {
1751 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1752 migrate_hrtimers(scpu);
1753 break;
1754 }
1755 #endif
1756
1757 default:
1758 break;
1759 }
1760
1761 return NOTIFY_OK;
1762 }
1763
1764 static struct notifier_block hrtimers_nb = {
1765 .notifier_call = hrtimer_cpu_notify,
1766 };
1767
1768 void __init hrtimers_init(void)
1769 {
1770 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1771 (void *)(long)smp_processor_id());
1772 register_cpu_notifier(&hrtimers_nb);
1773 #ifdef CONFIG_HIGH_RES_TIMERS
1774 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1775 #endif
1776 }
1777
1778 /**
1779 * schedule_hrtimeout_range_clock - sleep until timeout
1780 * @expires: timeout value (ktime_t)
1781 * @delta: slack in expires timeout (ktime_t)
1782 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1783 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1784 */
1785 int __sched
1786 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1787 const enum hrtimer_mode mode, int clock)
1788 {
1789 struct hrtimer_sleeper t;
1790
1791 /*
1792 * Optimize when a zero timeout value is given. It does not
1793 * matter whether this is an absolute or a relative time.
1794 */
1795 if (expires && !expires->tv64) {
1796 __set_current_state(TASK_RUNNING);
1797 return 0;
1798 }
1799
1800 /*
1801 * A NULL parameter means "infinite"
1802 */
1803 if (!expires) {
1804 schedule();
1805 __set_current_state(TASK_RUNNING);
1806 return -EINTR;
1807 }
1808
1809 hrtimer_init_on_stack(&t.timer, clock, mode);
1810 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1811
1812 hrtimer_init_sleeper(&t, current);
1813
1814 hrtimer_start_expires(&t.timer, mode);
1815 if (!hrtimer_active(&t.timer))
1816 t.task = NULL;
1817
1818 if (likely(t.task))
1819 schedule();
1820
1821 hrtimer_cancel(&t.timer);
1822 destroy_hrtimer_on_stack(&t.timer);
1823
1824 __set_current_state(TASK_RUNNING);
1825
1826 return !t.task ? 0 : -EINTR;
1827 }
1828
1829 /**
1830 * schedule_hrtimeout_range - sleep until timeout
1831 * @expires: timeout value (ktime_t)
1832 * @delta: slack in expires timeout (ktime_t)
1833 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1834 *
1835 * Make the current task sleep until the given expiry time has
1836 * elapsed. The routine will return immediately unless
1837 * the current task state has been set (see set_current_state()).
1838 *
1839 * The @delta argument gives the kernel the freedom to schedule the
1840 * actual wakeup to a time that is both power and performance friendly.
1841 * The kernel give the normal best effort behavior for "@expires+@delta",
1842 * but may decide to fire the timer earlier, but no earlier than @expires.
1843 *
1844 * You can set the task state as follows -
1845 *
1846 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1847 * pass before the routine returns.
1848 *
1849 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1850 * delivered to the current task.
1851 *
1852 * The current task state is guaranteed to be TASK_RUNNING when this
1853 * routine returns.
1854 *
1855 * Returns 0 when the timer has expired otherwise -EINTR
1856 */
1857 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1858 const enum hrtimer_mode mode)
1859 {
1860 return schedule_hrtimeout_range_clock(expires, delta, mode,
1861 CLOCK_MONOTONIC);
1862 }
1863 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1864
1865 /**
1866 * schedule_hrtimeout - sleep until timeout
1867 * @expires: timeout value (ktime_t)
1868 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1869 *
1870 * Make the current task sleep until the given expiry time has
1871 * elapsed. The routine will return immediately unless
1872 * the current task state has been set (see set_current_state()).
1873 *
1874 * You can set the task state as follows -
1875 *
1876 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1877 * pass before the routine returns.
1878 *
1879 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1880 * delivered to the current task.
1881 *
1882 * The current task state is guaranteed to be TASK_RUNNING when this
1883 * routine returns.
1884 *
1885 * Returns 0 when the timer has expired otherwise -EINTR
1886 */
1887 int __sched schedule_hrtimeout(ktime_t *expires,
1888 const enum hrtimer_mode mode)
1889 {
1890 return schedule_hrtimeout_range(expires, 0, mode);
1891 }
1892 EXPORT_SYMBOL_GPL(schedule_hrtimeout);