]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/hrtimer.c
Merge branch 'omap-fixes' of master.kernel.org:/pub/scm/linux/kernel/git/tmlind/linux...
[mirror_ubuntu-artful-kernel.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/irq.h>
36 #include <linux/module.h>
37 #include <linux/percpu.h>
38 #include <linux/hrtimer.h>
39 #include <linux/notifier.h>
40 #include <linux/syscalls.h>
41 #include <linux/kallsyms.h>
42 #include <linux/interrupt.h>
43 #include <linux/tick.h>
44 #include <linux/seq_file.h>
45 #include <linux/err.h>
46
47 #include <asm/uaccess.h>
48
49 /**
50 * ktime_get - get the monotonic time in ktime_t format
51 *
52 * returns the time in ktime_t format
53 */
54 ktime_t ktime_get(void)
55 {
56 struct timespec now;
57
58 ktime_get_ts(&now);
59
60 return timespec_to_ktime(now);
61 }
62
63 /**
64 * ktime_get_real - get the real (wall-) time in ktime_t format
65 *
66 * returns the time in ktime_t format
67 */
68 ktime_t ktime_get_real(void)
69 {
70 struct timespec now;
71
72 getnstimeofday(&now);
73
74 return timespec_to_ktime(now);
75 }
76
77 EXPORT_SYMBOL_GPL(ktime_get_real);
78
79 /*
80 * The timer bases:
81 *
82 * Note: If we want to add new timer bases, we have to skip the two
83 * clock ids captured by the cpu-timers. We do this by holding empty
84 * entries rather than doing math adjustment of the clock ids.
85 * This ensures that we capture erroneous accesses to these clock ids
86 * rather than moving them into the range of valid clock id's.
87 */
88 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
89 {
90
91 .clock_base =
92 {
93 {
94 .index = CLOCK_REALTIME,
95 .get_time = &ktime_get_real,
96 .resolution = KTIME_LOW_RES,
97 },
98 {
99 .index = CLOCK_MONOTONIC,
100 .get_time = &ktime_get,
101 .resolution = KTIME_LOW_RES,
102 },
103 }
104 };
105
106 /**
107 * ktime_get_ts - get the monotonic clock in timespec format
108 * @ts: pointer to timespec variable
109 *
110 * The function calculates the monotonic clock from the realtime
111 * clock and the wall_to_monotonic offset and stores the result
112 * in normalized timespec format in the variable pointed to by @ts.
113 */
114 void ktime_get_ts(struct timespec *ts)
115 {
116 struct timespec tomono;
117 unsigned long seq;
118
119 do {
120 seq = read_seqbegin(&xtime_lock);
121 getnstimeofday(ts);
122 tomono = wall_to_monotonic;
123
124 } while (read_seqretry(&xtime_lock, seq));
125
126 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
127 ts->tv_nsec + tomono.tv_nsec);
128 }
129 EXPORT_SYMBOL_GPL(ktime_get_ts);
130
131 /*
132 * Get the coarse grained time at the softirq based on xtime and
133 * wall_to_monotonic.
134 */
135 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
136 {
137 ktime_t xtim, tomono;
138 struct timespec xts;
139 unsigned long seq;
140
141 do {
142 seq = read_seqbegin(&xtime_lock);
143 #ifdef CONFIG_NO_HZ
144 getnstimeofday(&xts);
145 #else
146 xts = xtime;
147 #endif
148 } while (read_seqretry(&xtime_lock, seq));
149
150 xtim = timespec_to_ktime(xts);
151 tomono = timespec_to_ktime(wall_to_monotonic);
152 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
153 base->clock_base[CLOCK_MONOTONIC].softirq_time =
154 ktime_add(xtim, tomono);
155 }
156
157 /*
158 * Helper function to check, whether the timer is running the callback
159 * function
160 */
161 static inline int hrtimer_callback_running(struct hrtimer *timer)
162 {
163 return timer->state & HRTIMER_STATE_CALLBACK;
164 }
165
166 /*
167 * Functions and macros which are different for UP/SMP systems are kept in a
168 * single place
169 */
170 #ifdef CONFIG_SMP
171
172 /*
173 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
174 * means that all timers which are tied to this base via timer->base are
175 * locked, and the base itself is locked too.
176 *
177 * So __run_timers/migrate_timers can safely modify all timers which could
178 * be found on the lists/queues.
179 *
180 * When the timer's base is locked, and the timer removed from list, it is
181 * possible to set timer->base = NULL and drop the lock: the timer remains
182 * locked.
183 */
184 static
185 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
186 unsigned long *flags)
187 {
188 struct hrtimer_clock_base *base;
189
190 for (;;) {
191 base = timer->base;
192 if (likely(base != NULL)) {
193 spin_lock_irqsave(&base->cpu_base->lock, *flags);
194 if (likely(base == timer->base))
195 return base;
196 /* The timer has migrated to another CPU: */
197 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
198 }
199 cpu_relax();
200 }
201 }
202
203 /*
204 * Switch the timer base to the current CPU when possible.
205 */
206 static inline struct hrtimer_clock_base *
207 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base)
208 {
209 struct hrtimer_clock_base *new_base;
210 struct hrtimer_cpu_base *new_cpu_base;
211
212 new_cpu_base = &__get_cpu_var(hrtimer_bases);
213 new_base = &new_cpu_base->clock_base[base->index];
214
215 if (base != new_base) {
216 /*
217 * We are trying to schedule the timer on the local CPU.
218 * However we can't change timer's base while it is running,
219 * so we keep it on the same CPU. No hassle vs. reprogramming
220 * the event source in the high resolution case. The softirq
221 * code will take care of this when the timer function has
222 * completed. There is no conflict as we hold the lock until
223 * the timer is enqueued.
224 */
225 if (unlikely(hrtimer_callback_running(timer)))
226 return base;
227
228 /* See the comment in lock_timer_base() */
229 timer->base = NULL;
230 spin_unlock(&base->cpu_base->lock);
231 spin_lock(&new_base->cpu_base->lock);
232 timer->base = new_base;
233 }
234 return new_base;
235 }
236
237 #else /* CONFIG_SMP */
238
239 static inline struct hrtimer_clock_base *
240 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
241 {
242 struct hrtimer_clock_base *base = timer->base;
243
244 spin_lock_irqsave(&base->cpu_base->lock, *flags);
245
246 return base;
247 }
248
249 # define switch_hrtimer_base(t, b) (b)
250
251 #endif /* !CONFIG_SMP */
252
253 /*
254 * Functions for the union type storage format of ktime_t which are
255 * too large for inlining:
256 */
257 #if BITS_PER_LONG < 64
258 # ifndef CONFIG_KTIME_SCALAR
259 /**
260 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
261 * @kt: addend
262 * @nsec: the scalar nsec value to add
263 *
264 * Returns the sum of kt and nsec in ktime_t format
265 */
266 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
267 {
268 ktime_t tmp;
269
270 if (likely(nsec < NSEC_PER_SEC)) {
271 tmp.tv64 = nsec;
272 } else {
273 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
274
275 tmp = ktime_set((long)nsec, rem);
276 }
277
278 return ktime_add(kt, tmp);
279 }
280 # endif /* !CONFIG_KTIME_SCALAR */
281
282 /*
283 * Divide a ktime value by a nanosecond value
284 */
285 unsigned long ktime_divns(const ktime_t kt, s64 div)
286 {
287 u64 dclc, inc, dns;
288 int sft = 0;
289
290 dclc = dns = ktime_to_ns(kt);
291 inc = div;
292 /* Make sure the divisor is less than 2^32: */
293 while (div >> 32) {
294 sft++;
295 div >>= 1;
296 }
297 dclc >>= sft;
298 do_div(dclc, (unsigned long) div);
299
300 return (unsigned long) dclc;
301 }
302 #endif /* BITS_PER_LONG >= 64 */
303
304 /* High resolution timer related functions */
305 #ifdef CONFIG_HIGH_RES_TIMERS
306
307 /*
308 * High resolution timer enabled ?
309 */
310 static int hrtimer_hres_enabled __read_mostly = 1;
311
312 /*
313 * Enable / Disable high resolution mode
314 */
315 static int __init setup_hrtimer_hres(char *str)
316 {
317 if (!strcmp(str, "off"))
318 hrtimer_hres_enabled = 0;
319 else if (!strcmp(str, "on"))
320 hrtimer_hres_enabled = 1;
321 else
322 return 0;
323 return 1;
324 }
325
326 __setup("highres=", setup_hrtimer_hres);
327
328 /*
329 * hrtimer_high_res_enabled - query, if the highres mode is enabled
330 */
331 static inline int hrtimer_is_hres_enabled(void)
332 {
333 return hrtimer_hres_enabled;
334 }
335
336 /*
337 * Is the high resolution mode active ?
338 */
339 static inline int hrtimer_hres_active(void)
340 {
341 return __get_cpu_var(hrtimer_bases).hres_active;
342 }
343
344 /*
345 * Reprogram the event source with checking both queues for the
346 * next event
347 * Called with interrupts disabled and base->lock held
348 */
349 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
350 {
351 int i;
352 struct hrtimer_clock_base *base = cpu_base->clock_base;
353 ktime_t expires;
354
355 cpu_base->expires_next.tv64 = KTIME_MAX;
356
357 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
358 struct hrtimer *timer;
359
360 if (!base->first)
361 continue;
362 timer = rb_entry(base->first, struct hrtimer, node);
363 expires = ktime_sub(timer->expires, base->offset);
364 if (expires.tv64 < cpu_base->expires_next.tv64)
365 cpu_base->expires_next = expires;
366 }
367
368 if (cpu_base->expires_next.tv64 != KTIME_MAX)
369 tick_program_event(cpu_base->expires_next, 1);
370 }
371
372 /*
373 * Shared reprogramming for clock_realtime and clock_monotonic
374 *
375 * When a timer is enqueued and expires earlier than the already enqueued
376 * timers, we have to check, whether it expires earlier than the timer for
377 * which the clock event device was armed.
378 *
379 * Called with interrupts disabled and base->cpu_base.lock held
380 */
381 static int hrtimer_reprogram(struct hrtimer *timer,
382 struct hrtimer_clock_base *base)
383 {
384 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
385 ktime_t expires = ktime_sub(timer->expires, base->offset);
386 int res;
387
388 /*
389 * When the callback is running, we do not reprogram the clock event
390 * device. The timer callback is either running on a different CPU or
391 * the callback is executed in the hrtimer_interupt context. The
392 * reprogramming is handled either by the softirq, which called the
393 * callback or at the end of the hrtimer_interrupt.
394 */
395 if (hrtimer_callback_running(timer))
396 return 0;
397
398 if (expires.tv64 >= expires_next->tv64)
399 return 0;
400
401 /*
402 * Clockevents returns -ETIME, when the event was in the past.
403 */
404 res = tick_program_event(expires, 0);
405 if (!IS_ERR_VALUE(res))
406 *expires_next = expires;
407 return res;
408 }
409
410
411 /*
412 * Retrigger next event is called after clock was set
413 *
414 * Called with interrupts disabled via on_each_cpu()
415 */
416 static void retrigger_next_event(void *arg)
417 {
418 struct hrtimer_cpu_base *base;
419 struct timespec realtime_offset;
420 unsigned long seq;
421
422 if (!hrtimer_hres_active())
423 return;
424
425 do {
426 seq = read_seqbegin(&xtime_lock);
427 set_normalized_timespec(&realtime_offset,
428 -wall_to_monotonic.tv_sec,
429 -wall_to_monotonic.tv_nsec);
430 } while (read_seqretry(&xtime_lock, seq));
431
432 base = &__get_cpu_var(hrtimer_bases);
433
434 /* Adjust CLOCK_REALTIME offset */
435 spin_lock(&base->lock);
436 base->clock_base[CLOCK_REALTIME].offset =
437 timespec_to_ktime(realtime_offset);
438
439 hrtimer_force_reprogram(base);
440 spin_unlock(&base->lock);
441 }
442
443 /*
444 * Clock realtime was set
445 *
446 * Change the offset of the realtime clock vs. the monotonic
447 * clock.
448 *
449 * We might have to reprogram the high resolution timer interrupt. On
450 * SMP we call the architecture specific code to retrigger _all_ high
451 * resolution timer interrupts. On UP we just disable interrupts and
452 * call the high resolution interrupt code.
453 */
454 void clock_was_set(void)
455 {
456 /* Retrigger the CPU local events everywhere */
457 on_each_cpu(retrigger_next_event, NULL, 0, 1);
458 }
459
460 /*
461 * Check, whether the timer is on the callback pending list
462 */
463 static inline int hrtimer_cb_pending(const struct hrtimer *timer)
464 {
465 return timer->state & HRTIMER_STATE_PENDING;
466 }
467
468 /*
469 * Remove a timer from the callback pending list
470 */
471 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer)
472 {
473 list_del_init(&timer->cb_entry);
474 }
475
476 /*
477 * Initialize the high resolution related parts of cpu_base
478 */
479 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
480 {
481 base->expires_next.tv64 = KTIME_MAX;
482 base->hres_active = 0;
483 INIT_LIST_HEAD(&base->cb_pending);
484 }
485
486 /*
487 * Initialize the high resolution related parts of a hrtimer
488 */
489 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
490 {
491 INIT_LIST_HEAD(&timer->cb_entry);
492 }
493
494 /*
495 * When High resolution timers are active, try to reprogram. Note, that in case
496 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
497 * check happens. The timer gets enqueued into the rbtree. The reprogramming
498 * and expiry check is done in the hrtimer_interrupt or in the softirq.
499 */
500 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
501 struct hrtimer_clock_base *base)
502 {
503 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
504
505 /* Timer is expired, act upon the callback mode */
506 switch(timer->cb_mode) {
507 case HRTIMER_CB_IRQSAFE_NO_RESTART:
508 /*
509 * We can call the callback from here. No restart
510 * happens, so no danger of recursion
511 */
512 BUG_ON(timer->function(timer) != HRTIMER_NORESTART);
513 return 1;
514 case HRTIMER_CB_IRQSAFE_NO_SOFTIRQ:
515 /*
516 * This is solely for the sched tick emulation with
517 * dynamic tick support to ensure that we do not
518 * restart the tick right on the edge and end up with
519 * the tick timer in the softirq ! The calling site
520 * takes care of this.
521 */
522 return 1;
523 case HRTIMER_CB_IRQSAFE:
524 case HRTIMER_CB_SOFTIRQ:
525 /*
526 * Move everything else into the softirq pending list !
527 */
528 list_add_tail(&timer->cb_entry,
529 &base->cpu_base->cb_pending);
530 timer->state = HRTIMER_STATE_PENDING;
531 raise_softirq(HRTIMER_SOFTIRQ);
532 return 1;
533 default:
534 BUG();
535 }
536 }
537 return 0;
538 }
539
540 /*
541 * Switch to high resolution mode
542 */
543 static int hrtimer_switch_to_hres(void)
544 {
545 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
546 unsigned long flags;
547
548 if (base->hres_active)
549 return 1;
550
551 local_irq_save(flags);
552
553 if (tick_init_highres()) {
554 local_irq_restore(flags);
555 return 0;
556 }
557 base->hres_active = 1;
558 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
559 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
560
561 tick_setup_sched_timer();
562
563 /* "Retrigger" the interrupt to get things going */
564 retrigger_next_event(NULL);
565 local_irq_restore(flags);
566 printk(KERN_INFO "Switched to high resolution mode on CPU %d\n",
567 smp_processor_id());
568 return 1;
569 }
570
571 #else
572
573 static inline int hrtimer_hres_active(void) { return 0; }
574 static inline int hrtimer_is_hres_enabled(void) { return 0; }
575 static inline int hrtimer_switch_to_hres(void) { return 0; }
576 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
577 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
578 struct hrtimer_clock_base *base)
579 {
580 return 0;
581 }
582 static inline int hrtimer_cb_pending(struct hrtimer *timer) { return 0; }
583 static inline void hrtimer_remove_cb_pending(struct hrtimer *timer) { }
584 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
585 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
586
587 #endif /* CONFIG_HIGH_RES_TIMERS */
588
589 #ifdef CONFIG_TIMER_STATS
590 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
591 {
592 if (timer->start_site)
593 return;
594
595 timer->start_site = addr;
596 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
597 timer->start_pid = current->pid;
598 }
599 #endif
600
601 /*
602 * Counterpart to lock_timer_base above:
603 */
604 static inline
605 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
606 {
607 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
608 }
609
610 /**
611 * hrtimer_forward - forward the timer expiry
612 * @timer: hrtimer to forward
613 * @now: forward past this time
614 * @interval: the interval to forward
615 *
616 * Forward the timer expiry so it will expire in the future.
617 * Returns the number of overruns.
618 */
619 unsigned long
620 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
621 {
622 unsigned long orun = 1;
623 ktime_t delta;
624
625 delta = ktime_sub(now, timer->expires);
626
627 if (delta.tv64 < 0)
628 return 0;
629
630 if (interval.tv64 < timer->base->resolution.tv64)
631 interval.tv64 = timer->base->resolution.tv64;
632
633 if (unlikely(delta.tv64 >= interval.tv64)) {
634 s64 incr = ktime_to_ns(interval);
635
636 orun = ktime_divns(delta, incr);
637 timer->expires = ktime_add_ns(timer->expires, incr * orun);
638 if (timer->expires.tv64 > now.tv64)
639 return orun;
640 /*
641 * This (and the ktime_add() below) is the
642 * correction for exact:
643 */
644 orun++;
645 }
646 timer->expires = ktime_add(timer->expires, interval);
647
648 return orun;
649 }
650
651 /*
652 * enqueue_hrtimer - internal function to (re)start a timer
653 *
654 * The timer is inserted in expiry order. Insertion into the
655 * red black tree is O(log(n)). Must hold the base lock.
656 */
657 static void enqueue_hrtimer(struct hrtimer *timer,
658 struct hrtimer_clock_base *base, int reprogram)
659 {
660 struct rb_node **link = &base->active.rb_node;
661 struct rb_node *parent = NULL;
662 struct hrtimer *entry;
663
664 /*
665 * Find the right place in the rbtree:
666 */
667 while (*link) {
668 parent = *link;
669 entry = rb_entry(parent, struct hrtimer, node);
670 /*
671 * We dont care about collisions. Nodes with
672 * the same expiry time stay together.
673 */
674 if (timer->expires.tv64 < entry->expires.tv64)
675 link = &(*link)->rb_left;
676 else
677 link = &(*link)->rb_right;
678 }
679
680 /*
681 * Insert the timer to the rbtree and check whether it
682 * replaces the first pending timer
683 */
684 if (!base->first || timer->expires.tv64 <
685 rb_entry(base->first, struct hrtimer, node)->expires.tv64) {
686 /*
687 * Reprogram the clock event device. When the timer is already
688 * expired hrtimer_enqueue_reprogram has either called the
689 * callback or added it to the pending list and raised the
690 * softirq.
691 *
692 * This is a NOP for !HIGHRES
693 */
694 if (reprogram && hrtimer_enqueue_reprogram(timer, base))
695 return;
696
697 base->first = &timer->node;
698 }
699
700 rb_link_node(&timer->node, parent, link);
701 rb_insert_color(&timer->node, &base->active);
702 /*
703 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
704 * state of a possibly running callback.
705 */
706 timer->state |= HRTIMER_STATE_ENQUEUED;
707 }
708
709 /*
710 * __remove_hrtimer - internal function to remove a timer
711 *
712 * Caller must hold the base lock.
713 *
714 * High resolution timer mode reprograms the clock event device when the
715 * timer is the one which expires next. The caller can disable this by setting
716 * reprogram to zero. This is useful, when the context does a reprogramming
717 * anyway (e.g. timer interrupt)
718 */
719 static void __remove_hrtimer(struct hrtimer *timer,
720 struct hrtimer_clock_base *base,
721 unsigned long newstate, int reprogram)
722 {
723 /* High res. callback list. NOP for !HIGHRES */
724 if (hrtimer_cb_pending(timer))
725 hrtimer_remove_cb_pending(timer);
726 else {
727 /*
728 * Remove the timer from the rbtree and replace the
729 * first entry pointer if necessary.
730 */
731 if (base->first == &timer->node) {
732 base->first = rb_next(&timer->node);
733 /* Reprogram the clock event device. if enabled */
734 if (reprogram && hrtimer_hres_active())
735 hrtimer_force_reprogram(base->cpu_base);
736 }
737 rb_erase(&timer->node, &base->active);
738 }
739 timer->state = newstate;
740 }
741
742 /*
743 * remove hrtimer, called with base lock held
744 */
745 static inline int
746 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
747 {
748 if (hrtimer_is_queued(timer)) {
749 int reprogram;
750
751 /*
752 * Remove the timer and force reprogramming when high
753 * resolution mode is active and the timer is on the current
754 * CPU. If we remove a timer on another CPU, reprogramming is
755 * skipped. The interrupt event on this CPU is fired and
756 * reprogramming happens in the interrupt handler. This is a
757 * rare case and less expensive than a smp call.
758 */
759 timer_stats_hrtimer_clear_start_info(timer);
760 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
761 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
762 reprogram);
763 return 1;
764 }
765 return 0;
766 }
767
768 /**
769 * hrtimer_start - (re)start an relative timer on the current CPU
770 * @timer: the timer to be added
771 * @tim: expiry time
772 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
773 *
774 * Returns:
775 * 0 on success
776 * 1 when the timer was active
777 */
778 int
779 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
780 {
781 struct hrtimer_clock_base *base, *new_base;
782 unsigned long flags;
783 int ret;
784
785 base = lock_hrtimer_base(timer, &flags);
786
787 /* Remove an active timer from the queue: */
788 ret = remove_hrtimer(timer, base);
789
790 /* Switch the timer base, if necessary: */
791 new_base = switch_hrtimer_base(timer, base);
792
793 if (mode == HRTIMER_MODE_REL) {
794 tim = ktime_add(tim, new_base->get_time());
795 /*
796 * CONFIG_TIME_LOW_RES is a temporary way for architectures
797 * to signal that they simply return xtime in
798 * do_gettimeoffset(). In this case we want to round up by
799 * resolution when starting a relative timer, to avoid short
800 * timeouts. This will go away with the GTOD framework.
801 */
802 #ifdef CONFIG_TIME_LOW_RES
803 tim = ktime_add(tim, base->resolution);
804 #endif
805 }
806 timer->expires = tim;
807
808 timer_stats_hrtimer_set_start_info(timer);
809
810 enqueue_hrtimer(timer, new_base, base == new_base);
811
812 unlock_hrtimer_base(timer, &flags);
813
814 return ret;
815 }
816 EXPORT_SYMBOL_GPL(hrtimer_start);
817
818 /**
819 * hrtimer_try_to_cancel - try to deactivate a timer
820 * @timer: hrtimer to stop
821 *
822 * Returns:
823 * 0 when the timer was not active
824 * 1 when the timer was active
825 * -1 when the timer is currently excuting the callback function and
826 * cannot be stopped
827 */
828 int hrtimer_try_to_cancel(struct hrtimer *timer)
829 {
830 struct hrtimer_clock_base *base;
831 unsigned long flags;
832 int ret = -1;
833
834 base = lock_hrtimer_base(timer, &flags);
835
836 if (!hrtimer_callback_running(timer))
837 ret = remove_hrtimer(timer, base);
838
839 unlock_hrtimer_base(timer, &flags);
840
841 return ret;
842
843 }
844 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
845
846 /**
847 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
848 * @timer: the timer to be cancelled
849 *
850 * Returns:
851 * 0 when the timer was not active
852 * 1 when the timer was active
853 */
854 int hrtimer_cancel(struct hrtimer *timer)
855 {
856 for (;;) {
857 int ret = hrtimer_try_to_cancel(timer);
858
859 if (ret >= 0)
860 return ret;
861 cpu_relax();
862 }
863 }
864 EXPORT_SYMBOL_GPL(hrtimer_cancel);
865
866 /**
867 * hrtimer_get_remaining - get remaining time for the timer
868 * @timer: the timer to read
869 */
870 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
871 {
872 struct hrtimer_clock_base *base;
873 unsigned long flags;
874 ktime_t rem;
875
876 base = lock_hrtimer_base(timer, &flags);
877 rem = ktime_sub(timer->expires, base->get_time());
878 unlock_hrtimer_base(timer, &flags);
879
880 return rem;
881 }
882 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
883
884 #if defined(CONFIG_NO_IDLE_HZ) || defined(CONFIG_NO_HZ)
885 /**
886 * hrtimer_get_next_event - get the time until next expiry event
887 *
888 * Returns the delta to the next expiry event or KTIME_MAX if no timer
889 * is pending.
890 */
891 ktime_t hrtimer_get_next_event(void)
892 {
893 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
894 struct hrtimer_clock_base *base = cpu_base->clock_base;
895 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
896 unsigned long flags;
897 int i;
898
899 spin_lock_irqsave(&cpu_base->lock, flags);
900
901 if (!hrtimer_hres_active()) {
902 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
903 struct hrtimer *timer;
904
905 if (!base->first)
906 continue;
907
908 timer = rb_entry(base->first, struct hrtimer, node);
909 delta.tv64 = timer->expires.tv64;
910 delta = ktime_sub(delta, base->get_time());
911 if (delta.tv64 < mindelta.tv64)
912 mindelta.tv64 = delta.tv64;
913 }
914 }
915
916 spin_unlock_irqrestore(&cpu_base->lock, flags);
917
918 if (mindelta.tv64 < 0)
919 mindelta.tv64 = 0;
920 return mindelta;
921 }
922 #endif
923
924 /**
925 * hrtimer_init - initialize a timer to the given clock
926 * @timer: the timer to be initialized
927 * @clock_id: the clock to be used
928 * @mode: timer mode abs/rel
929 */
930 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
931 enum hrtimer_mode mode)
932 {
933 struct hrtimer_cpu_base *cpu_base;
934
935 memset(timer, 0, sizeof(struct hrtimer));
936
937 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
938
939 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
940 clock_id = CLOCK_MONOTONIC;
941
942 timer->base = &cpu_base->clock_base[clock_id];
943 hrtimer_init_timer_hres(timer);
944
945 #ifdef CONFIG_TIMER_STATS
946 timer->start_site = NULL;
947 timer->start_pid = -1;
948 memset(timer->start_comm, 0, TASK_COMM_LEN);
949 #endif
950 }
951 EXPORT_SYMBOL_GPL(hrtimer_init);
952
953 /**
954 * hrtimer_get_res - get the timer resolution for a clock
955 * @which_clock: which clock to query
956 * @tp: pointer to timespec variable to store the resolution
957 *
958 * Store the resolution of the clock selected by @which_clock in the
959 * variable pointed to by @tp.
960 */
961 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
962 {
963 struct hrtimer_cpu_base *cpu_base;
964
965 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
966 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
967
968 return 0;
969 }
970 EXPORT_SYMBOL_GPL(hrtimer_get_res);
971
972 #ifdef CONFIG_HIGH_RES_TIMERS
973
974 /*
975 * High resolution timer interrupt
976 * Called with interrupts disabled
977 */
978 void hrtimer_interrupt(struct clock_event_device *dev)
979 {
980 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
981 struct hrtimer_clock_base *base;
982 ktime_t expires_next, now;
983 int i, raise = 0;
984
985 BUG_ON(!cpu_base->hres_active);
986 cpu_base->nr_events++;
987 dev->next_event.tv64 = KTIME_MAX;
988
989 retry:
990 now = ktime_get();
991
992 expires_next.tv64 = KTIME_MAX;
993
994 base = cpu_base->clock_base;
995
996 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
997 ktime_t basenow;
998 struct rb_node *node;
999
1000 spin_lock(&cpu_base->lock);
1001
1002 basenow = ktime_add(now, base->offset);
1003
1004 while ((node = base->first)) {
1005 struct hrtimer *timer;
1006
1007 timer = rb_entry(node, struct hrtimer, node);
1008
1009 if (basenow.tv64 < timer->expires.tv64) {
1010 ktime_t expires;
1011
1012 expires = ktime_sub(timer->expires,
1013 base->offset);
1014 if (expires.tv64 < expires_next.tv64)
1015 expires_next = expires;
1016 break;
1017 }
1018
1019 /* Move softirq callbacks to the pending list */
1020 if (timer->cb_mode == HRTIMER_CB_SOFTIRQ) {
1021 __remove_hrtimer(timer, base,
1022 HRTIMER_STATE_PENDING, 0);
1023 list_add_tail(&timer->cb_entry,
1024 &base->cpu_base->cb_pending);
1025 raise = 1;
1026 continue;
1027 }
1028
1029 __remove_hrtimer(timer, base,
1030 HRTIMER_STATE_CALLBACK, 0);
1031 timer_stats_account_hrtimer(timer);
1032
1033 /*
1034 * Note: We clear the CALLBACK bit after
1035 * enqueue_hrtimer to avoid reprogramming of
1036 * the event hardware. This happens at the end
1037 * of this function anyway.
1038 */
1039 if (timer->function(timer) != HRTIMER_NORESTART) {
1040 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1041 enqueue_hrtimer(timer, base, 0);
1042 }
1043 timer->state &= ~HRTIMER_STATE_CALLBACK;
1044 }
1045 spin_unlock(&cpu_base->lock);
1046 base++;
1047 }
1048
1049 cpu_base->expires_next = expires_next;
1050
1051 /* Reprogramming necessary ? */
1052 if (expires_next.tv64 != KTIME_MAX) {
1053 if (tick_program_event(expires_next, 0))
1054 goto retry;
1055 }
1056
1057 /* Raise softirq ? */
1058 if (raise)
1059 raise_softirq(HRTIMER_SOFTIRQ);
1060 }
1061
1062 static void run_hrtimer_softirq(struct softirq_action *h)
1063 {
1064 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1065
1066 spin_lock_irq(&cpu_base->lock);
1067
1068 while (!list_empty(&cpu_base->cb_pending)) {
1069 enum hrtimer_restart (*fn)(struct hrtimer *);
1070 struct hrtimer *timer;
1071 int restart;
1072
1073 timer = list_entry(cpu_base->cb_pending.next,
1074 struct hrtimer, cb_entry);
1075
1076 timer_stats_account_hrtimer(timer);
1077
1078 fn = timer->function;
1079 __remove_hrtimer(timer, timer->base, HRTIMER_STATE_CALLBACK, 0);
1080 spin_unlock_irq(&cpu_base->lock);
1081
1082 restart = fn(timer);
1083
1084 spin_lock_irq(&cpu_base->lock);
1085
1086 timer->state &= ~HRTIMER_STATE_CALLBACK;
1087 if (restart == HRTIMER_RESTART) {
1088 BUG_ON(hrtimer_active(timer));
1089 /*
1090 * Enqueue the timer, allow reprogramming of the event
1091 * device
1092 */
1093 enqueue_hrtimer(timer, timer->base, 1);
1094 } else if (hrtimer_active(timer)) {
1095 /*
1096 * If the timer was rearmed on another CPU, reprogram
1097 * the event device.
1098 */
1099 if (timer->base->first == &timer->node)
1100 hrtimer_reprogram(timer, timer->base);
1101 }
1102 }
1103 spin_unlock_irq(&cpu_base->lock);
1104 }
1105
1106 #endif /* CONFIG_HIGH_RES_TIMERS */
1107
1108 /*
1109 * Expire the per base hrtimer-queue:
1110 */
1111 static inline void run_hrtimer_queue(struct hrtimer_cpu_base *cpu_base,
1112 int index)
1113 {
1114 struct rb_node *node;
1115 struct hrtimer_clock_base *base = &cpu_base->clock_base[index];
1116
1117 if (!base->first)
1118 return;
1119
1120 if (base->get_softirq_time)
1121 base->softirq_time = base->get_softirq_time();
1122
1123 spin_lock_irq(&cpu_base->lock);
1124
1125 while ((node = base->first)) {
1126 struct hrtimer *timer;
1127 enum hrtimer_restart (*fn)(struct hrtimer *);
1128 int restart;
1129
1130 timer = rb_entry(node, struct hrtimer, node);
1131 if (base->softirq_time.tv64 <= timer->expires.tv64)
1132 break;
1133
1134 #ifdef CONFIG_HIGH_RES_TIMERS
1135 WARN_ON_ONCE(timer->cb_mode == HRTIMER_CB_IRQSAFE_NO_SOFTIRQ);
1136 #endif
1137 timer_stats_account_hrtimer(timer);
1138
1139 fn = timer->function;
1140 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1141 spin_unlock_irq(&cpu_base->lock);
1142
1143 restart = fn(timer);
1144
1145 spin_lock_irq(&cpu_base->lock);
1146
1147 timer->state &= ~HRTIMER_STATE_CALLBACK;
1148 if (restart != HRTIMER_NORESTART) {
1149 BUG_ON(hrtimer_active(timer));
1150 enqueue_hrtimer(timer, base, 0);
1151 }
1152 }
1153 spin_unlock_irq(&cpu_base->lock);
1154 }
1155
1156 /*
1157 * Called from timer softirq every jiffy, expire hrtimers:
1158 *
1159 * For HRT its the fall back code to run the softirq in the timer
1160 * softirq context in case the hrtimer initialization failed or has
1161 * not been done yet.
1162 */
1163 void hrtimer_run_queues(void)
1164 {
1165 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1166 int i;
1167
1168 if (hrtimer_hres_active())
1169 return;
1170
1171 /*
1172 * This _is_ ugly: We have to check in the softirq context,
1173 * whether we can switch to highres and / or nohz mode. The
1174 * clocksource switch happens in the timer interrupt with
1175 * xtime_lock held. Notification from there only sets the
1176 * check bit in the tick_oneshot code, otherwise we might
1177 * deadlock vs. xtime_lock.
1178 */
1179 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1180 if (hrtimer_switch_to_hres())
1181 return;
1182
1183 hrtimer_get_softirq_time(cpu_base);
1184
1185 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1186 run_hrtimer_queue(cpu_base, i);
1187 }
1188
1189 /*
1190 * Sleep related functions:
1191 */
1192 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1193 {
1194 struct hrtimer_sleeper *t =
1195 container_of(timer, struct hrtimer_sleeper, timer);
1196 struct task_struct *task = t->task;
1197
1198 t->task = NULL;
1199 if (task)
1200 wake_up_process(task);
1201
1202 return HRTIMER_NORESTART;
1203 }
1204
1205 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1206 {
1207 sl->timer.function = hrtimer_wakeup;
1208 sl->task = task;
1209 #ifdef CONFIG_HIGH_RES_TIMERS
1210 sl->timer.cb_mode = HRTIMER_CB_IRQSAFE_NO_RESTART;
1211 #endif
1212 }
1213
1214 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1215 {
1216 hrtimer_init_sleeper(t, current);
1217
1218 do {
1219 set_current_state(TASK_INTERRUPTIBLE);
1220 hrtimer_start(&t->timer, t->timer.expires, mode);
1221
1222 if (likely(t->task))
1223 schedule();
1224
1225 hrtimer_cancel(&t->timer);
1226 mode = HRTIMER_MODE_ABS;
1227
1228 } while (t->task && !signal_pending(current));
1229
1230 return t->task == NULL;
1231 }
1232
1233 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1234 {
1235 struct hrtimer_sleeper t;
1236 struct timespec __user *rmtp;
1237 struct timespec tu;
1238 ktime_t time;
1239
1240 restart->fn = do_no_restart_syscall;
1241
1242 hrtimer_init(&t.timer, restart->arg0, HRTIMER_MODE_ABS);
1243 t.timer.expires.tv64 = ((u64)restart->arg3 << 32) | (u64) restart->arg2;
1244
1245 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1246 return 0;
1247
1248 rmtp = (struct timespec __user *) restart->arg1;
1249 if (rmtp) {
1250 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
1251 if (time.tv64 <= 0)
1252 return 0;
1253 tu = ktime_to_timespec(time);
1254 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1255 return -EFAULT;
1256 }
1257
1258 restart->fn = hrtimer_nanosleep_restart;
1259
1260 /* The other values in restart are already filled in */
1261 return -ERESTART_RESTARTBLOCK;
1262 }
1263
1264 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1265 const enum hrtimer_mode mode, const clockid_t clockid)
1266 {
1267 struct restart_block *restart;
1268 struct hrtimer_sleeper t;
1269 struct timespec tu;
1270 ktime_t rem;
1271
1272 hrtimer_init(&t.timer, clockid, mode);
1273 t.timer.expires = timespec_to_ktime(*rqtp);
1274 if (do_nanosleep(&t, mode))
1275 return 0;
1276
1277 /* Absolute timers do not update the rmtp value and restart: */
1278 if (mode == HRTIMER_MODE_ABS)
1279 return -ERESTARTNOHAND;
1280
1281 if (rmtp) {
1282 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
1283 if (rem.tv64 <= 0)
1284 return 0;
1285 tu = ktime_to_timespec(rem);
1286 if (copy_to_user(rmtp, &tu, sizeof(tu)))
1287 return -EFAULT;
1288 }
1289
1290 restart = &current_thread_info()->restart_block;
1291 restart->fn = hrtimer_nanosleep_restart;
1292 restart->arg0 = (unsigned long) t.timer.base->index;
1293 restart->arg1 = (unsigned long) rmtp;
1294 restart->arg2 = t.timer.expires.tv64 & 0xFFFFFFFF;
1295 restart->arg3 = t.timer.expires.tv64 >> 32;
1296
1297 return -ERESTART_RESTARTBLOCK;
1298 }
1299
1300 asmlinkage long
1301 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
1302 {
1303 struct timespec tu;
1304
1305 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1306 return -EFAULT;
1307
1308 if (!timespec_valid(&tu))
1309 return -EINVAL;
1310
1311 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1312 }
1313
1314 /*
1315 * Functions related to boot-time initialization:
1316 */
1317 static void __devinit init_hrtimers_cpu(int cpu)
1318 {
1319 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1320 int i;
1321
1322 spin_lock_init(&cpu_base->lock);
1323 lockdep_set_class(&cpu_base->lock, &cpu_base->lock_key);
1324
1325 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1326 cpu_base->clock_base[i].cpu_base = cpu_base;
1327
1328 hrtimer_init_hres(cpu_base);
1329 }
1330
1331 #ifdef CONFIG_HOTPLUG_CPU
1332
1333 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1334 struct hrtimer_clock_base *new_base)
1335 {
1336 struct hrtimer *timer;
1337 struct rb_node *node;
1338
1339 while ((node = rb_first(&old_base->active))) {
1340 timer = rb_entry(node, struct hrtimer, node);
1341 BUG_ON(hrtimer_callback_running(timer));
1342 __remove_hrtimer(timer, old_base, HRTIMER_STATE_INACTIVE, 0);
1343 timer->base = new_base;
1344 /*
1345 * Enqueue the timer. Allow reprogramming of the event device
1346 */
1347 enqueue_hrtimer(timer, new_base, 1);
1348 }
1349 }
1350
1351 static void migrate_hrtimers(int cpu)
1352 {
1353 struct hrtimer_cpu_base *old_base, *new_base;
1354 int i;
1355
1356 BUG_ON(cpu_online(cpu));
1357 old_base = &per_cpu(hrtimer_bases, cpu);
1358 new_base = &get_cpu_var(hrtimer_bases);
1359
1360 tick_cancel_sched_timer(cpu);
1361
1362 local_irq_disable();
1363 double_spin_lock(&new_base->lock, &old_base->lock,
1364 smp_processor_id() < cpu);
1365
1366 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1367 migrate_hrtimer_list(&old_base->clock_base[i],
1368 &new_base->clock_base[i]);
1369 }
1370
1371 double_spin_unlock(&new_base->lock, &old_base->lock,
1372 smp_processor_id() < cpu);
1373 local_irq_enable();
1374 put_cpu_var(hrtimer_bases);
1375 }
1376 #endif /* CONFIG_HOTPLUG_CPU */
1377
1378 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1379 unsigned long action, void *hcpu)
1380 {
1381 long cpu = (long)hcpu;
1382
1383 switch (action) {
1384
1385 case CPU_UP_PREPARE:
1386 init_hrtimers_cpu(cpu);
1387 break;
1388
1389 #ifdef CONFIG_HOTPLUG_CPU
1390 case CPU_DEAD:
1391 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &cpu);
1392 migrate_hrtimers(cpu);
1393 break;
1394 #endif
1395
1396 default:
1397 break;
1398 }
1399
1400 return NOTIFY_OK;
1401 }
1402
1403 static struct notifier_block __cpuinitdata hrtimers_nb = {
1404 .notifier_call = hrtimer_cpu_notify,
1405 };
1406
1407 void __init hrtimers_init(void)
1408 {
1409 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1410 (void *)(long)smp_processor_id());
1411 register_cpu_notifier(&hrtimers_nb);
1412 #ifdef CONFIG_HIGH_RES_TIMERS
1413 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq, NULL);
1414 #endif
1415 }
1416