]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/hrtimer.c
Merge tag 'fixes-nc-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[mirror_ubuntu-bionic-kernel.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/export.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/sched/sysctl.h>
48 #include <linux/sched/rt.h>
49 #include <linux/sched/deadline.h>
50 #include <linux/timer.h>
51 #include <linux/freezer.h>
52
53 #include <asm/uaccess.h>
54
55 #include <trace/events/timer.h>
56
57 /*
58 * The timer bases:
59 *
60 * There are more clockids then hrtimer bases. Thus, we index
61 * into the timer bases by the hrtimer_base_type enum. When trying
62 * to reach a base using a clockid, hrtimer_clockid_to_base()
63 * is used to convert from clockid to the proper hrtimer_base_type.
64 */
65 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
66 {
67
68 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock),
69 .clock_base =
70 {
71 {
72 .index = HRTIMER_BASE_MONOTONIC,
73 .clockid = CLOCK_MONOTONIC,
74 .get_time = &ktime_get,
75 .resolution = KTIME_LOW_RES,
76 },
77 {
78 .index = HRTIMER_BASE_REALTIME,
79 .clockid = CLOCK_REALTIME,
80 .get_time = &ktime_get_real,
81 .resolution = KTIME_LOW_RES,
82 },
83 {
84 .index = HRTIMER_BASE_BOOTTIME,
85 .clockid = CLOCK_BOOTTIME,
86 .get_time = &ktime_get_boottime,
87 .resolution = KTIME_LOW_RES,
88 },
89 {
90 .index = HRTIMER_BASE_TAI,
91 .clockid = CLOCK_TAI,
92 .get_time = &ktime_get_clocktai,
93 .resolution = KTIME_LOW_RES,
94 },
95 }
96 };
97
98 static const int hrtimer_clock_to_base_table[MAX_CLOCKS] = {
99 [CLOCK_REALTIME] = HRTIMER_BASE_REALTIME,
100 [CLOCK_MONOTONIC] = HRTIMER_BASE_MONOTONIC,
101 [CLOCK_BOOTTIME] = HRTIMER_BASE_BOOTTIME,
102 [CLOCK_TAI] = HRTIMER_BASE_TAI,
103 };
104
105 static inline int hrtimer_clockid_to_base(clockid_t clock_id)
106 {
107 return hrtimer_clock_to_base_table[clock_id];
108 }
109
110
111 /*
112 * Get the coarse grained time at the softirq based on xtime and
113 * wall_to_monotonic.
114 */
115 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
116 {
117 ktime_t xtim, mono, boot;
118 struct timespec xts, tom, slp;
119 s32 tai_offset;
120
121 get_xtime_and_monotonic_and_sleep_offset(&xts, &tom, &slp);
122 tai_offset = timekeeping_get_tai_offset();
123
124 xtim = timespec_to_ktime(xts);
125 mono = ktime_add(xtim, timespec_to_ktime(tom));
126 boot = ktime_add(mono, timespec_to_ktime(slp));
127 base->clock_base[HRTIMER_BASE_REALTIME].softirq_time = xtim;
128 base->clock_base[HRTIMER_BASE_MONOTONIC].softirq_time = mono;
129 base->clock_base[HRTIMER_BASE_BOOTTIME].softirq_time = boot;
130 base->clock_base[HRTIMER_BASE_TAI].softirq_time =
131 ktime_add(xtim, ktime_set(tai_offset, 0));
132 }
133
134 /*
135 * Functions and macros which are different for UP/SMP systems are kept in a
136 * single place
137 */
138 #ifdef CONFIG_SMP
139
140 /*
141 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
142 * means that all timers which are tied to this base via timer->base are
143 * locked, and the base itself is locked too.
144 *
145 * So __run_timers/migrate_timers can safely modify all timers which could
146 * be found on the lists/queues.
147 *
148 * When the timer's base is locked, and the timer removed from list, it is
149 * possible to set timer->base = NULL and drop the lock: the timer remains
150 * locked.
151 */
152 static
153 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
154 unsigned long *flags)
155 {
156 struct hrtimer_clock_base *base;
157
158 for (;;) {
159 base = timer->base;
160 if (likely(base != NULL)) {
161 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
162 if (likely(base == timer->base))
163 return base;
164 /* The timer has migrated to another CPU: */
165 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
166 }
167 cpu_relax();
168 }
169 }
170
171
172 /*
173 * Get the preferred target CPU for NOHZ
174 */
175 static int hrtimer_get_target(int this_cpu, int pinned)
176 {
177 #ifdef CONFIG_NO_HZ_COMMON
178 if (!pinned && get_sysctl_timer_migration() && idle_cpu(this_cpu))
179 return get_nohz_timer_target();
180 #endif
181 return this_cpu;
182 }
183
184 /*
185 * With HIGHRES=y we do not migrate the timer when it is expiring
186 * before the next event on the target cpu because we cannot reprogram
187 * the target cpu hardware and we would cause it to fire late.
188 *
189 * Called with cpu_base->lock of target cpu held.
190 */
191 static int
192 hrtimer_check_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base)
193 {
194 #ifdef CONFIG_HIGH_RES_TIMERS
195 ktime_t expires;
196
197 if (!new_base->cpu_base->hres_active)
198 return 0;
199
200 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset);
201 return expires.tv64 <= new_base->cpu_base->expires_next.tv64;
202 #else
203 return 0;
204 #endif
205 }
206
207 /*
208 * Switch the timer base to the current CPU when possible.
209 */
210 static inline struct hrtimer_clock_base *
211 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
212 int pinned)
213 {
214 struct hrtimer_clock_base *new_base;
215 struct hrtimer_cpu_base *new_cpu_base;
216 int this_cpu = smp_processor_id();
217 int cpu = hrtimer_get_target(this_cpu, pinned);
218 int basenum = base->index;
219
220 again:
221 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
222 new_base = &new_cpu_base->clock_base[basenum];
223
224 if (base != new_base) {
225 /*
226 * We are trying to move timer to new_base.
227 * However we can't change timer's base while it is running,
228 * so we keep it on the same CPU. No hassle vs. reprogramming
229 * the event source in the high resolution case. The softirq
230 * code will take care of this when the timer function has
231 * completed. There is no conflict as we hold the lock until
232 * the timer is enqueued.
233 */
234 if (unlikely(hrtimer_callback_running(timer)))
235 return base;
236
237 /* See the comment in lock_timer_base() */
238 timer->base = NULL;
239 raw_spin_unlock(&base->cpu_base->lock);
240 raw_spin_lock(&new_base->cpu_base->lock);
241
242 if (cpu != this_cpu && hrtimer_check_target(timer, new_base)) {
243 cpu = this_cpu;
244 raw_spin_unlock(&new_base->cpu_base->lock);
245 raw_spin_lock(&base->cpu_base->lock);
246 timer->base = base;
247 goto again;
248 }
249 timer->base = new_base;
250 }
251 return new_base;
252 }
253
254 #else /* CONFIG_SMP */
255
256 static inline struct hrtimer_clock_base *
257 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
258 {
259 struct hrtimer_clock_base *base = timer->base;
260
261 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags);
262
263 return base;
264 }
265
266 # define switch_hrtimer_base(t, b, p) (b)
267
268 #endif /* !CONFIG_SMP */
269
270 /*
271 * Functions for the union type storage format of ktime_t which are
272 * too large for inlining:
273 */
274 #if BITS_PER_LONG < 64
275 # ifndef CONFIG_KTIME_SCALAR
276 /**
277 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
278 * @kt: addend
279 * @nsec: the scalar nsec value to add
280 *
281 * Returns the sum of kt and nsec in ktime_t format
282 */
283 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
284 {
285 ktime_t tmp;
286
287 if (likely(nsec < NSEC_PER_SEC)) {
288 tmp.tv64 = nsec;
289 } else {
290 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
291
292 /* Make sure nsec fits into long */
293 if (unlikely(nsec > KTIME_SEC_MAX))
294 return (ktime_t){ .tv64 = KTIME_MAX };
295
296 tmp = ktime_set((long)nsec, rem);
297 }
298
299 return ktime_add(kt, tmp);
300 }
301
302 EXPORT_SYMBOL_GPL(ktime_add_ns);
303
304 /**
305 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
306 * @kt: minuend
307 * @nsec: the scalar nsec value to subtract
308 *
309 * Returns the subtraction of @nsec from @kt in ktime_t format
310 */
311 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
312 {
313 ktime_t tmp;
314
315 if (likely(nsec < NSEC_PER_SEC)) {
316 tmp.tv64 = nsec;
317 } else {
318 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
319
320 tmp = ktime_set((long)nsec, rem);
321 }
322
323 return ktime_sub(kt, tmp);
324 }
325
326 EXPORT_SYMBOL_GPL(ktime_sub_ns);
327 # endif /* !CONFIG_KTIME_SCALAR */
328
329 /*
330 * Divide a ktime value by a nanosecond value
331 */
332 u64 ktime_divns(const ktime_t kt, s64 div)
333 {
334 u64 dclc;
335 int sft = 0;
336
337 dclc = ktime_to_ns(kt);
338 /* Make sure the divisor is less than 2^32: */
339 while (div >> 32) {
340 sft++;
341 div >>= 1;
342 }
343 dclc >>= sft;
344 do_div(dclc, (unsigned long) div);
345
346 return dclc;
347 }
348 #endif /* BITS_PER_LONG >= 64 */
349
350 /*
351 * Add two ktime values and do a safety check for overflow:
352 */
353 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
354 {
355 ktime_t res = ktime_add(lhs, rhs);
356
357 /*
358 * We use KTIME_SEC_MAX here, the maximum timeout which we can
359 * return to user space in a timespec:
360 */
361 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
362 res = ktime_set(KTIME_SEC_MAX, 0);
363
364 return res;
365 }
366
367 EXPORT_SYMBOL_GPL(ktime_add_safe);
368
369 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
370
371 static struct debug_obj_descr hrtimer_debug_descr;
372
373 static void *hrtimer_debug_hint(void *addr)
374 {
375 return ((struct hrtimer *) addr)->function;
376 }
377
378 /*
379 * fixup_init is called when:
380 * - an active object is initialized
381 */
382 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
383 {
384 struct hrtimer *timer = addr;
385
386 switch (state) {
387 case ODEBUG_STATE_ACTIVE:
388 hrtimer_cancel(timer);
389 debug_object_init(timer, &hrtimer_debug_descr);
390 return 1;
391 default:
392 return 0;
393 }
394 }
395
396 /*
397 * fixup_activate is called when:
398 * - an active object is activated
399 * - an unknown object is activated (might be a statically initialized object)
400 */
401 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
402 {
403 switch (state) {
404
405 case ODEBUG_STATE_NOTAVAILABLE:
406 WARN_ON_ONCE(1);
407 return 0;
408
409 case ODEBUG_STATE_ACTIVE:
410 WARN_ON(1);
411
412 default:
413 return 0;
414 }
415 }
416
417 /*
418 * fixup_free is called when:
419 * - an active object is freed
420 */
421 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
422 {
423 struct hrtimer *timer = addr;
424
425 switch (state) {
426 case ODEBUG_STATE_ACTIVE:
427 hrtimer_cancel(timer);
428 debug_object_free(timer, &hrtimer_debug_descr);
429 return 1;
430 default:
431 return 0;
432 }
433 }
434
435 static struct debug_obj_descr hrtimer_debug_descr = {
436 .name = "hrtimer",
437 .debug_hint = hrtimer_debug_hint,
438 .fixup_init = hrtimer_fixup_init,
439 .fixup_activate = hrtimer_fixup_activate,
440 .fixup_free = hrtimer_fixup_free,
441 };
442
443 static inline void debug_hrtimer_init(struct hrtimer *timer)
444 {
445 debug_object_init(timer, &hrtimer_debug_descr);
446 }
447
448 static inline void debug_hrtimer_activate(struct hrtimer *timer)
449 {
450 debug_object_activate(timer, &hrtimer_debug_descr);
451 }
452
453 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
454 {
455 debug_object_deactivate(timer, &hrtimer_debug_descr);
456 }
457
458 static inline void debug_hrtimer_free(struct hrtimer *timer)
459 {
460 debug_object_free(timer, &hrtimer_debug_descr);
461 }
462
463 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
464 enum hrtimer_mode mode);
465
466 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
467 enum hrtimer_mode mode)
468 {
469 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
470 __hrtimer_init(timer, clock_id, mode);
471 }
472 EXPORT_SYMBOL_GPL(hrtimer_init_on_stack);
473
474 void destroy_hrtimer_on_stack(struct hrtimer *timer)
475 {
476 debug_object_free(timer, &hrtimer_debug_descr);
477 }
478
479 #else
480 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
481 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
482 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
483 #endif
484
485 static inline void
486 debug_init(struct hrtimer *timer, clockid_t clockid,
487 enum hrtimer_mode mode)
488 {
489 debug_hrtimer_init(timer);
490 trace_hrtimer_init(timer, clockid, mode);
491 }
492
493 static inline void debug_activate(struct hrtimer *timer)
494 {
495 debug_hrtimer_activate(timer);
496 trace_hrtimer_start(timer);
497 }
498
499 static inline void debug_deactivate(struct hrtimer *timer)
500 {
501 debug_hrtimer_deactivate(timer);
502 trace_hrtimer_cancel(timer);
503 }
504
505 /* High resolution timer related functions */
506 #ifdef CONFIG_HIGH_RES_TIMERS
507
508 /*
509 * High resolution timer enabled ?
510 */
511 static int hrtimer_hres_enabled __read_mostly = 1;
512
513 /*
514 * Enable / Disable high resolution mode
515 */
516 static int __init setup_hrtimer_hres(char *str)
517 {
518 if (!strcmp(str, "off"))
519 hrtimer_hres_enabled = 0;
520 else if (!strcmp(str, "on"))
521 hrtimer_hres_enabled = 1;
522 else
523 return 0;
524 return 1;
525 }
526
527 __setup("highres=", setup_hrtimer_hres);
528
529 /*
530 * hrtimer_high_res_enabled - query, if the highres mode is enabled
531 */
532 static inline int hrtimer_is_hres_enabled(void)
533 {
534 return hrtimer_hres_enabled;
535 }
536
537 /*
538 * Is the high resolution mode active ?
539 */
540 static inline int hrtimer_hres_active(void)
541 {
542 return __this_cpu_read(hrtimer_bases.hres_active);
543 }
544
545 /*
546 * Reprogram the event source with checking both queues for the
547 * next event
548 * Called with interrupts disabled and base->lock held
549 */
550 static void
551 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal)
552 {
553 int i;
554 struct hrtimer_clock_base *base = cpu_base->clock_base;
555 ktime_t expires, expires_next;
556
557 expires_next.tv64 = KTIME_MAX;
558
559 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
560 struct hrtimer *timer;
561 struct timerqueue_node *next;
562
563 next = timerqueue_getnext(&base->active);
564 if (!next)
565 continue;
566 timer = container_of(next, struct hrtimer, node);
567
568 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
569 /*
570 * clock_was_set() has changed base->offset so the
571 * result might be negative. Fix it up to prevent a
572 * false positive in clockevents_program_event()
573 */
574 if (expires.tv64 < 0)
575 expires.tv64 = 0;
576 if (expires.tv64 < expires_next.tv64)
577 expires_next = expires;
578 }
579
580 if (skip_equal && expires_next.tv64 == cpu_base->expires_next.tv64)
581 return;
582
583 cpu_base->expires_next.tv64 = expires_next.tv64;
584
585 if (cpu_base->expires_next.tv64 != KTIME_MAX)
586 tick_program_event(cpu_base->expires_next, 1);
587 }
588
589 /*
590 * Shared reprogramming for clock_realtime and clock_monotonic
591 *
592 * When a timer is enqueued and expires earlier than the already enqueued
593 * timers, we have to check, whether it expires earlier than the timer for
594 * which the clock event device was armed.
595 *
596 * Called with interrupts disabled and base->cpu_base.lock held
597 */
598 static int hrtimer_reprogram(struct hrtimer *timer,
599 struct hrtimer_clock_base *base)
600 {
601 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
602 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
603 int res;
604
605 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
606
607 /*
608 * When the callback is running, we do not reprogram the clock event
609 * device. The timer callback is either running on a different CPU or
610 * the callback is executed in the hrtimer_interrupt context. The
611 * reprogramming is handled either by the softirq, which called the
612 * callback or at the end of the hrtimer_interrupt.
613 */
614 if (hrtimer_callback_running(timer))
615 return 0;
616
617 /*
618 * CLOCK_REALTIME timer might be requested with an absolute
619 * expiry time which is less than base->offset. Nothing wrong
620 * about that, just avoid to call into the tick code, which
621 * has now objections against negative expiry values.
622 */
623 if (expires.tv64 < 0)
624 return -ETIME;
625
626 if (expires.tv64 >= cpu_base->expires_next.tv64)
627 return 0;
628
629 /*
630 * If a hang was detected in the last timer interrupt then we
631 * do not schedule a timer which is earlier than the expiry
632 * which we enforced in the hang detection. We want the system
633 * to make progress.
634 */
635 if (cpu_base->hang_detected)
636 return 0;
637
638 /*
639 * Clockevents returns -ETIME, when the event was in the past.
640 */
641 res = tick_program_event(expires, 0);
642 if (!IS_ERR_VALUE(res))
643 cpu_base->expires_next = expires;
644 return res;
645 }
646
647 /*
648 * Initialize the high resolution related parts of cpu_base
649 */
650 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
651 {
652 base->expires_next.tv64 = KTIME_MAX;
653 base->hres_active = 0;
654 }
655
656 /*
657 * When High resolution timers are active, try to reprogram. Note, that in case
658 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
659 * check happens. The timer gets enqueued into the rbtree. The reprogramming
660 * and expiry check is done in the hrtimer_interrupt or in the softirq.
661 */
662 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
663 struct hrtimer_clock_base *base)
664 {
665 return base->cpu_base->hres_active && hrtimer_reprogram(timer, base);
666 }
667
668 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base)
669 {
670 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset;
671 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset;
672 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset;
673
674 return ktime_get_update_offsets(offs_real, offs_boot, offs_tai);
675 }
676
677 /*
678 * Retrigger next event is called after clock was set
679 *
680 * Called with interrupts disabled via on_each_cpu()
681 */
682 static void retrigger_next_event(void *arg)
683 {
684 struct hrtimer_cpu_base *base = &__get_cpu_var(hrtimer_bases);
685
686 if (!hrtimer_hres_active())
687 return;
688
689 raw_spin_lock(&base->lock);
690 hrtimer_update_base(base);
691 hrtimer_force_reprogram(base, 0);
692 raw_spin_unlock(&base->lock);
693 }
694
695 /*
696 * Switch to high resolution mode
697 */
698 static int hrtimer_switch_to_hres(void)
699 {
700 int i, cpu = smp_processor_id();
701 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
702 unsigned long flags;
703
704 if (base->hres_active)
705 return 1;
706
707 local_irq_save(flags);
708
709 if (tick_init_highres()) {
710 local_irq_restore(flags);
711 printk(KERN_WARNING "Could not switch to high resolution "
712 "mode on CPU %d\n", cpu);
713 return 0;
714 }
715 base->hres_active = 1;
716 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
717 base->clock_base[i].resolution = KTIME_HIGH_RES;
718
719 tick_setup_sched_timer();
720 /* "Retrigger" the interrupt to get things going */
721 retrigger_next_event(NULL);
722 local_irq_restore(flags);
723 return 1;
724 }
725
726 static void clock_was_set_work(struct work_struct *work)
727 {
728 clock_was_set();
729 }
730
731 static DECLARE_WORK(hrtimer_work, clock_was_set_work);
732
733 /*
734 * Called from timekeeping and resume code to reprogramm the hrtimer
735 * interrupt device on all cpus.
736 */
737 void clock_was_set_delayed(void)
738 {
739 schedule_work(&hrtimer_work);
740 }
741
742 #else
743
744 static inline int hrtimer_hres_active(void) { return 0; }
745 static inline int hrtimer_is_hres_enabled(void) { return 0; }
746 static inline int hrtimer_switch_to_hres(void) { return 0; }
747 static inline void
748 hrtimer_force_reprogram(struct hrtimer_cpu_base *base, int skip_equal) { }
749 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
750 struct hrtimer_clock_base *base)
751 {
752 return 0;
753 }
754 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
755 static inline void retrigger_next_event(void *arg) { }
756
757 #endif /* CONFIG_HIGH_RES_TIMERS */
758
759 /*
760 * Clock realtime was set
761 *
762 * Change the offset of the realtime clock vs. the monotonic
763 * clock.
764 *
765 * We might have to reprogram the high resolution timer interrupt. On
766 * SMP we call the architecture specific code to retrigger _all_ high
767 * resolution timer interrupts. On UP we just disable interrupts and
768 * call the high resolution interrupt code.
769 */
770 void clock_was_set(void)
771 {
772 #ifdef CONFIG_HIGH_RES_TIMERS
773 /* Retrigger the CPU local events everywhere */
774 on_each_cpu(retrigger_next_event, NULL, 1);
775 #endif
776 timerfd_clock_was_set();
777 }
778
779 /*
780 * During resume we might have to reprogram the high resolution timer
781 * interrupt on all online CPUs. However, all other CPUs will be
782 * stopped with IRQs interrupts disabled so the clock_was_set() call
783 * must be deferred.
784 */
785 void hrtimers_resume(void)
786 {
787 WARN_ONCE(!irqs_disabled(),
788 KERN_INFO "hrtimers_resume() called with IRQs enabled!");
789
790 /* Retrigger on the local CPU */
791 retrigger_next_event(NULL);
792 /* And schedule a retrigger for all others */
793 clock_was_set_delayed();
794 }
795
796 static inline void timer_stats_hrtimer_set_start_info(struct hrtimer *timer)
797 {
798 #ifdef CONFIG_TIMER_STATS
799 if (timer->start_site)
800 return;
801 timer->start_site = __builtin_return_address(0);
802 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
803 timer->start_pid = current->pid;
804 #endif
805 }
806
807 static inline void timer_stats_hrtimer_clear_start_info(struct hrtimer *timer)
808 {
809 #ifdef CONFIG_TIMER_STATS
810 timer->start_site = NULL;
811 #endif
812 }
813
814 static inline void timer_stats_account_hrtimer(struct hrtimer *timer)
815 {
816 #ifdef CONFIG_TIMER_STATS
817 if (likely(!timer_stats_active))
818 return;
819 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
820 timer->function, timer->start_comm, 0);
821 #endif
822 }
823
824 /*
825 * Counterpart to lock_hrtimer_base above:
826 */
827 static inline
828 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
829 {
830 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
831 }
832
833 /**
834 * hrtimer_forward - forward the timer expiry
835 * @timer: hrtimer to forward
836 * @now: forward past this time
837 * @interval: the interval to forward
838 *
839 * Forward the timer expiry so it will expire in the future.
840 * Returns the number of overruns.
841 */
842 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
843 {
844 u64 orun = 1;
845 ktime_t delta;
846
847 delta = ktime_sub(now, hrtimer_get_expires(timer));
848
849 if (delta.tv64 < 0)
850 return 0;
851
852 if (interval.tv64 < timer->base->resolution.tv64)
853 interval.tv64 = timer->base->resolution.tv64;
854
855 if (unlikely(delta.tv64 >= interval.tv64)) {
856 s64 incr = ktime_to_ns(interval);
857
858 orun = ktime_divns(delta, incr);
859 hrtimer_add_expires_ns(timer, incr * orun);
860 if (hrtimer_get_expires_tv64(timer) > now.tv64)
861 return orun;
862 /*
863 * This (and the ktime_add() below) is the
864 * correction for exact:
865 */
866 orun++;
867 }
868 hrtimer_add_expires(timer, interval);
869
870 return orun;
871 }
872 EXPORT_SYMBOL_GPL(hrtimer_forward);
873
874 /*
875 * enqueue_hrtimer - internal function to (re)start a timer
876 *
877 * The timer is inserted in expiry order. Insertion into the
878 * red black tree is O(log(n)). Must hold the base lock.
879 *
880 * Returns 1 when the new timer is the leftmost timer in the tree.
881 */
882 static int enqueue_hrtimer(struct hrtimer *timer,
883 struct hrtimer_clock_base *base)
884 {
885 debug_activate(timer);
886
887 timerqueue_add(&base->active, &timer->node);
888 base->cpu_base->active_bases |= 1 << base->index;
889
890 /*
891 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
892 * state of a possibly running callback.
893 */
894 timer->state |= HRTIMER_STATE_ENQUEUED;
895
896 return (&timer->node == base->active.next);
897 }
898
899 /*
900 * __remove_hrtimer - internal function to remove a timer
901 *
902 * Caller must hold the base lock.
903 *
904 * High resolution timer mode reprograms the clock event device when the
905 * timer is the one which expires next. The caller can disable this by setting
906 * reprogram to zero. This is useful, when the context does a reprogramming
907 * anyway (e.g. timer interrupt)
908 */
909 static void __remove_hrtimer(struct hrtimer *timer,
910 struct hrtimer_clock_base *base,
911 unsigned long newstate, int reprogram)
912 {
913 struct timerqueue_node *next_timer;
914 if (!(timer->state & HRTIMER_STATE_ENQUEUED))
915 goto out;
916
917 next_timer = timerqueue_getnext(&base->active);
918 timerqueue_del(&base->active, &timer->node);
919 if (&timer->node == next_timer) {
920 #ifdef CONFIG_HIGH_RES_TIMERS
921 /* Reprogram the clock event device. if enabled */
922 if (reprogram && hrtimer_hres_active()) {
923 ktime_t expires;
924
925 expires = ktime_sub(hrtimer_get_expires(timer),
926 base->offset);
927 if (base->cpu_base->expires_next.tv64 == expires.tv64)
928 hrtimer_force_reprogram(base->cpu_base, 1);
929 }
930 #endif
931 }
932 if (!timerqueue_getnext(&base->active))
933 base->cpu_base->active_bases &= ~(1 << base->index);
934 out:
935 timer->state = newstate;
936 }
937
938 /*
939 * remove hrtimer, called with base lock held
940 */
941 static inline int
942 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
943 {
944 if (hrtimer_is_queued(timer)) {
945 unsigned long state;
946 int reprogram;
947
948 /*
949 * Remove the timer and force reprogramming when high
950 * resolution mode is active and the timer is on the current
951 * CPU. If we remove a timer on another CPU, reprogramming is
952 * skipped. The interrupt event on this CPU is fired and
953 * reprogramming happens in the interrupt handler. This is a
954 * rare case and less expensive than a smp call.
955 */
956 debug_deactivate(timer);
957 timer_stats_hrtimer_clear_start_info(timer);
958 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
959 /*
960 * We must preserve the CALLBACK state flag here,
961 * otherwise we could move the timer base in
962 * switch_hrtimer_base.
963 */
964 state = timer->state & HRTIMER_STATE_CALLBACK;
965 __remove_hrtimer(timer, base, state, reprogram);
966 return 1;
967 }
968 return 0;
969 }
970
971 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
972 unsigned long delta_ns, const enum hrtimer_mode mode,
973 int wakeup)
974 {
975 struct hrtimer_clock_base *base, *new_base;
976 unsigned long flags;
977 int ret, leftmost;
978
979 base = lock_hrtimer_base(timer, &flags);
980
981 /* Remove an active timer from the queue: */
982 ret = remove_hrtimer(timer, base);
983
984 /* Switch the timer base, if necessary: */
985 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
986
987 if (mode & HRTIMER_MODE_REL) {
988 tim = ktime_add_safe(tim, new_base->get_time());
989 /*
990 * CONFIG_TIME_LOW_RES is a temporary way for architectures
991 * to signal that they simply return xtime in
992 * do_gettimeoffset(). In this case we want to round up by
993 * resolution when starting a relative timer, to avoid short
994 * timeouts. This will go away with the GTOD framework.
995 */
996 #ifdef CONFIG_TIME_LOW_RES
997 tim = ktime_add_safe(tim, base->resolution);
998 #endif
999 }
1000
1001 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
1002
1003 timer_stats_hrtimer_set_start_info(timer);
1004
1005 leftmost = enqueue_hrtimer(timer, new_base);
1006
1007 /*
1008 * Only allow reprogramming if the new base is on this CPU.
1009 * (it might still be on another CPU if the timer was pending)
1010 *
1011 * XXX send_remote_softirq() ?
1012 */
1013 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases)
1014 && hrtimer_enqueue_reprogram(timer, new_base)) {
1015 if (wakeup) {
1016 /*
1017 * We need to drop cpu_base->lock to avoid a
1018 * lock ordering issue vs. rq->lock.
1019 */
1020 raw_spin_unlock(&new_base->cpu_base->lock);
1021 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1022 local_irq_restore(flags);
1023 return ret;
1024 } else {
1025 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
1026 }
1027 }
1028
1029 unlock_hrtimer_base(timer, &flags);
1030
1031 return ret;
1032 }
1033
1034 /**
1035 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
1036 * @timer: the timer to be added
1037 * @tim: expiry time
1038 * @delta_ns: "slack" range for the timer
1039 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1040 * relative (HRTIMER_MODE_REL)
1041 *
1042 * Returns:
1043 * 0 on success
1044 * 1 when the timer was active
1045 */
1046 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1047 unsigned long delta_ns, const enum hrtimer_mode mode)
1048 {
1049 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1050 }
1051 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1052
1053 /**
1054 * hrtimer_start - (re)start an hrtimer on the current CPU
1055 * @timer: the timer to be added
1056 * @tim: expiry time
1057 * @mode: expiry mode: absolute (HRTIMER_MODE_ABS) or
1058 * relative (HRTIMER_MODE_REL)
1059 *
1060 * Returns:
1061 * 0 on success
1062 * 1 when the timer was active
1063 */
1064 int
1065 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1066 {
1067 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1068 }
1069 EXPORT_SYMBOL_GPL(hrtimer_start);
1070
1071
1072 /**
1073 * hrtimer_try_to_cancel - try to deactivate a timer
1074 * @timer: hrtimer to stop
1075 *
1076 * Returns:
1077 * 0 when the timer was not active
1078 * 1 when the timer was active
1079 * -1 when the timer is currently excuting the callback function and
1080 * cannot be stopped
1081 */
1082 int hrtimer_try_to_cancel(struct hrtimer *timer)
1083 {
1084 struct hrtimer_clock_base *base;
1085 unsigned long flags;
1086 int ret = -1;
1087
1088 base = lock_hrtimer_base(timer, &flags);
1089
1090 if (!hrtimer_callback_running(timer))
1091 ret = remove_hrtimer(timer, base);
1092
1093 unlock_hrtimer_base(timer, &flags);
1094
1095 return ret;
1096
1097 }
1098 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1099
1100 /**
1101 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1102 * @timer: the timer to be cancelled
1103 *
1104 * Returns:
1105 * 0 when the timer was not active
1106 * 1 when the timer was active
1107 */
1108 int hrtimer_cancel(struct hrtimer *timer)
1109 {
1110 for (;;) {
1111 int ret = hrtimer_try_to_cancel(timer);
1112
1113 if (ret >= 0)
1114 return ret;
1115 cpu_relax();
1116 }
1117 }
1118 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1119
1120 /**
1121 * hrtimer_get_remaining - get remaining time for the timer
1122 * @timer: the timer to read
1123 */
1124 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1125 {
1126 unsigned long flags;
1127 ktime_t rem;
1128
1129 lock_hrtimer_base(timer, &flags);
1130 rem = hrtimer_expires_remaining(timer);
1131 unlock_hrtimer_base(timer, &flags);
1132
1133 return rem;
1134 }
1135 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1136
1137 #ifdef CONFIG_NO_HZ_COMMON
1138 /**
1139 * hrtimer_get_next_event - get the time until next expiry event
1140 *
1141 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1142 * is pending.
1143 */
1144 ktime_t hrtimer_get_next_event(void)
1145 {
1146 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1147 struct hrtimer_clock_base *base = cpu_base->clock_base;
1148 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1149 unsigned long flags;
1150 int i;
1151
1152 raw_spin_lock_irqsave(&cpu_base->lock, flags);
1153
1154 if (!hrtimer_hres_active()) {
1155 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1156 struct hrtimer *timer;
1157 struct timerqueue_node *next;
1158
1159 next = timerqueue_getnext(&base->active);
1160 if (!next)
1161 continue;
1162
1163 timer = container_of(next, struct hrtimer, node);
1164 delta.tv64 = hrtimer_get_expires_tv64(timer);
1165 delta = ktime_sub(delta, base->get_time());
1166 if (delta.tv64 < mindelta.tv64)
1167 mindelta.tv64 = delta.tv64;
1168 }
1169 }
1170
1171 raw_spin_unlock_irqrestore(&cpu_base->lock, flags);
1172
1173 if (mindelta.tv64 < 0)
1174 mindelta.tv64 = 0;
1175 return mindelta;
1176 }
1177 #endif
1178
1179 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1180 enum hrtimer_mode mode)
1181 {
1182 struct hrtimer_cpu_base *cpu_base;
1183 int base;
1184
1185 memset(timer, 0, sizeof(struct hrtimer));
1186
1187 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1188
1189 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1190 clock_id = CLOCK_MONOTONIC;
1191
1192 base = hrtimer_clockid_to_base(clock_id);
1193 timer->base = &cpu_base->clock_base[base];
1194 timerqueue_init(&timer->node);
1195
1196 #ifdef CONFIG_TIMER_STATS
1197 timer->start_site = NULL;
1198 timer->start_pid = -1;
1199 memset(timer->start_comm, 0, TASK_COMM_LEN);
1200 #endif
1201 }
1202
1203 /**
1204 * hrtimer_init - initialize a timer to the given clock
1205 * @timer: the timer to be initialized
1206 * @clock_id: the clock to be used
1207 * @mode: timer mode abs/rel
1208 */
1209 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1210 enum hrtimer_mode mode)
1211 {
1212 debug_init(timer, clock_id, mode);
1213 __hrtimer_init(timer, clock_id, mode);
1214 }
1215 EXPORT_SYMBOL_GPL(hrtimer_init);
1216
1217 /**
1218 * hrtimer_get_res - get the timer resolution for a clock
1219 * @which_clock: which clock to query
1220 * @tp: pointer to timespec variable to store the resolution
1221 *
1222 * Store the resolution of the clock selected by @which_clock in the
1223 * variable pointed to by @tp.
1224 */
1225 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1226 {
1227 struct hrtimer_cpu_base *cpu_base;
1228 int base = hrtimer_clockid_to_base(which_clock);
1229
1230 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1231 *tp = ktime_to_timespec(cpu_base->clock_base[base].resolution);
1232
1233 return 0;
1234 }
1235 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1236
1237 static void __run_hrtimer(struct hrtimer *timer, ktime_t *now)
1238 {
1239 struct hrtimer_clock_base *base = timer->base;
1240 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1241 enum hrtimer_restart (*fn)(struct hrtimer *);
1242 int restart;
1243
1244 WARN_ON(!irqs_disabled());
1245
1246 debug_deactivate(timer);
1247 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1248 timer_stats_account_hrtimer(timer);
1249 fn = timer->function;
1250
1251 /*
1252 * Because we run timers from hardirq context, there is no chance
1253 * they get migrated to another cpu, therefore its safe to unlock
1254 * the timer base.
1255 */
1256 raw_spin_unlock(&cpu_base->lock);
1257 trace_hrtimer_expire_entry(timer, now);
1258 restart = fn(timer);
1259 trace_hrtimer_expire_exit(timer);
1260 raw_spin_lock(&cpu_base->lock);
1261
1262 /*
1263 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1264 * we do not reprogramm the event hardware. Happens either in
1265 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1266 */
1267 if (restart != HRTIMER_NORESTART) {
1268 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1269 enqueue_hrtimer(timer, base);
1270 }
1271
1272 WARN_ON_ONCE(!(timer->state & HRTIMER_STATE_CALLBACK));
1273
1274 timer->state &= ~HRTIMER_STATE_CALLBACK;
1275 }
1276
1277 #ifdef CONFIG_HIGH_RES_TIMERS
1278
1279 /*
1280 * High resolution timer interrupt
1281 * Called with interrupts disabled
1282 */
1283 void hrtimer_interrupt(struct clock_event_device *dev)
1284 {
1285 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1286 ktime_t expires_next, now, entry_time, delta;
1287 int i, retries = 0;
1288
1289 BUG_ON(!cpu_base->hres_active);
1290 cpu_base->nr_events++;
1291 dev->next_event.tv64 = KTIME_MAX;
1292
1293 raw_spin_lock(&cpu_base->lock);
1294 entry_time = now = hrtimer_update_base(cpu_base);
1295 retry:
1296 expires_next.tv64 = KTIME_MAX;
1297 /*
1298 * We set expires_next to KTIME_MAX here with cpu_base->lock
1299 * held to prevent that a timer is enqueued in our queue via
1300 * the migration code. This does not affect enqueueing of
1301 * timers which run their callback and need to be requeued on
1302 * this CPU.
1303 */
1304 cpu_base->expires_next.tv64 = KTIME_MAX;
1305
1306 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1307 struct hrtimer_clock_base *base;
1308 struct timerqueue_node *node;
1309 ktime_t basenow;
1310
1311 if (!(cpu_base->active_bases & (1 << i)))
1312 continue;
1313
1314 base = cpu_base->clock_base + i;
1315 basenow = ktime_add(now, base->offset);
1316
1317 while ((node = timerqueue_getnext(&base->active))) {
1318 struct hrtimer *timer;
1319
1320 timer = container_of(node, struct hrtimer, node);
1321
1322 /*
1323 * The immediate goal for using the softexpires is
1324 * minimizing wakeups, not running timers at the
1325 * earliest interrupt after their soft expiration.
1326 * This allows us to avoid using a Priority Search
1327 * Tree, which can answer a stabbing querry for
1328 * overlapping intervals and instead use the simple
1329 * BST we already have.
1330 * We don't add extra wakeups by delaying timers that
1331 * are right-of a not yet expired timer, because that
1332 * timer will have to trigger a wakeup anyway.
1333 */
1334
1335 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1336 ktime_t expires;
1337
1338 expires = ktime_sub(hrtimer_get_expires(timer),
1339 base->offset);
1340 if (expires.tv64 < 0)
1341 expires.tv64 = KTIME_MAX;
1342 if (expires.tv64 < expires_next.tv64)
1343 expires_next = expires;
1344 break;
1345 }
1346
1347 __run_hrtimer(timer, &basenow);
1348 }
1349 }
1350
1351 /*
1352 * Store the new expiry value so the migration code can verify
1353 * against it.
1354 */
1355 cpu_base->expires_next = expires_next;
1356 raw_spin_unlock(&cpu_base->lock);
1357
1358 /* Reprogramming necessary ? */
1359 if (expires_next.tv64 == KTIME_MAX ||
1360 !tick_program_event(expires_next, 0)) {
1361 cpu_base->hang_detected = 0;
1362 return;
1363 }
1364
1365 /*
1366 * The next timer was already expired due to:
1367 * - tracing
1368 * - long lasting callbacks
1369 * - being scheduled away when running in a VM
1370 *
1371 * We need to prevent that we loop forever in the hrtimer
1372 * interrupt routine. We give it 3 attempts to avoid
1373 * overreacting on some spurious event.
1374 *
1375 * Acquire base lock for updating the offsets and retrieving
1376 * the current time.
1377 */
1378 raw_spin_lock(&cpu_base->lock);
1379 now = hrtimer_update_base(cpu_base);
1380 cpu_base->nr_retries++;
1381 if (++retries < 3)
1382 goto retry;
1383 /*
1384 * Give the system a chance to do something else than looping
1385 * here. We stored the entry time, so we know exactly how long
1386 * we spent here. We schedule the next event this amount of
1387 * time away.
1388 */
1389 cpu_base->nr_hangs++;
1390 cpu_base->hang_detected = 1;
1391 raw_spin_unlock(&cpu_base->lock);
1392 delta = ktime_sub(now, entry_time);
1393 if (delta.tv64 > cpu_base->max_hang_time.tv64)
1394 cpu_base->max_hang_time = delta;
1395 /*
1396 * Limit it to a sensible value as we enforce a longer
1397 * delay. Give the CPU at least 100ms to catch up.
1398 */
1399 if (delta.tv64 > 100 * NSEC_PER_MSEC)
1400 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC);
1401 else
1402 expires_next = ktime_add(now, delta);
1403 tick_program_event(expires_next, 1);
1404 printk_once(KERN_WARNING "hrtimer: interrupt took %llu ns\n",
1405 ktime_to_ns(delta));
1406 }
1407
1408 /*
1409 * local version of hrtimer_peek_ahead_timers() called with interrupts
1410 * disabled.
1411 */
1412 static void __hrtimer_peek_ahead_timers(void)
1413 {
1414 struct tick_device *td;
1415
1416 if (!hrtimer_hres_active())
1417 return;
1418
1419 td = &__get_cpu_var(tick_cpu_device);
1420 if (td && td->evtdev)
1421 hrtimer_interrupt(td->evtdev);
1422 }
1423
1424 /**
1425 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1426 *
1427 * hrtimer_peek_ahead_timers will peek at the timer queue of
1428 * the current cpu and check if there are any timers for which
1429 * the soft expires time has passed. If any such timers exist,
1430 * they are run immediately and then removed from the timer queue.
1431 *
1432 */
1433 void hrtimer_peek_ahead_timers(void)
1434 {
1435 unsigned long flags;
1436
1437 local_irq_save(flags);
1438 __hrtimer_peek_ahead_timers();
1439 local_irq_restore(flags);
1440 }
1441
1442 static void run_hrtimer_softirq(struct softirq_action *h)
1443 {
1444 hrtimer_peek_ahead_timers();
1445 }
1446
1447 #else /* CONFIG_HIGH_RES_TIMERS */
1448
1449 static inline void __hrtimer_peek_ahead_timers(void) { }
1450
1451 #endif /* !CONFIG_HIGH_RES_TIMERS */
1452
1453 /*
1454 * Called from timer softirq every jiffy, expire hrtimers:
1455 *
1456 * For HRT its the fall back code to run the softirq in the timer
1457 * softirq context in case the hrtimer initialization failed or has
1458 * not been done yet.
1459 */
1460 void hrtimer_run_pending(void)
1461 {
1462 if (hrtimer_hres_active())
1463 return;
1464
1465 /*
1466 * This _is_ ugly: We have to check in the softirq context,
1467 * whether we can switch to highres and / or nohz mode. The
1468 * clocksource switch happens in the timer interrupt with
1469 * xtime_lock held. Notification from there only sets the
1470 * check bit in the tick_oneshot code, otherwise we might
1471 * deadlock vs. xtime_lock.
1472 */
1473 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1474 hrtimer_switch_to_hres();
1475 }
1476
1477 /*
1478 * Called from hardirq context every jiffy
1479 */
1480 void hrtimer_run_queues(void)
1481 {
1482 struct timerqueue_node *node;
1483 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1484 struct hrtimer_clock_base *base;
1485 int index, gettime = 1;
1486
1487 if (hrtimer_hres_active())
1488 return;
1489
1490 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1491 base = &cpu_base->clock_base[index];
1492 if (!timerqueue_getnext(&base->active))
1493 continue;
1494
1495 if (gettime) {
1496 hrtimer_get_softirq_time(cpu_base);
1497 gettime = 0;
1498 }
1499
1500 raw_spin_lock(&cpu_base->lock);
1501
1502 while ((node = timerqueue_getnext(&base->active))) {
1503 struct hrtimer *timer;
1504
1505 timer = container_of(node, struct hrtimer, node);
1506 if (base->softirq_time.tv64 <=
1507 hrtimer_get_expires_tv64(timer))
1508 break;
1509
1510 __run_hrtimer(timer, &base->softirq_time);
1511 }
1512 raw_spin_unlock(&cpu_base->lock);
1513 }
1514 }
1515
1516 /*
1517 * Sleep related functions:
1518 */
1519 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1520 {
1521 struct hrtimer_sleeper *t =
1522 container_of(timer, struct hrtimer_sleeper, timer);
1523 struct task_struct *task = t->task;
1524
1525 t->task = NULL;
1526 if (task)
1527 wake_up_process(task);
1528
1529 return HRTIMER_NORESTART;
1530 }
1531
1532 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1533 {
1534 sl->timer.function = hrtimer_wakeup;
1535 sl->task = task;
1536 }
1537 EXPORT_SYMBOL_GPL(hrtimer_init_sleeper);
1538
1539 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1540 {
1541 hrtimer_init_sleeper(t, current);
1542
1543 do {
1544 set_current_state(TASK_INTERRUPTIBLE);
1545 hrtimer_start_expires(&t->timer, mode);
1546 if (!hrtimer_active(&t->timer))
1547 t->task = NULL;
1548
1549 if (likely(t->task))
1550 freezable_schedule();
1551
1552 hrtimer_cancel(&t->timer);
1553 mode = HRTIMER_MODE_ABS;
1554
1555 } while (t->task && !signal_pending(current));
1556
1557 __set_current_state(TASK_RUNNING);
1558
1559 return t->task == NULL;
1560 }
1561
1562 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1563 {
1564 struct timespec rmt;
1565 ktime_t rem;
1566
1567 rem = hrtimer_expires_remaining(timer);
1568 if (rem.tv64 <= 0)
1569 return 0;
1570 rmt = ktime_to_timespec(rem);
1571
1572 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1573 return -EFAULT;
1574
1575 return 1;
1576 }
1577
1578 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1579 {
1580 struct hrtimer_sleeper t;
1581 struct timespec __user *rmtp;
1582 int ret = 0;
1583
1584 hrtimer_init_on_stack(&t.timer, restart->nanosleep.clockid,
1585 HRTIMER_MODE_ABS);
1586 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1587
1588 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1589 goto out;
1590
1591 rmtp = restart->nanosleep.rmtp;
1592 if (rmtp) {
1593 ret = update_rmtp(&t.timer, rmtp);
1594 if (ret <= 0)
1595 goto out;
1596 }
1597
1598 /* The other values in restart are already filled in */
1599 ret = -ERESTART_RESTARTBLOCK;
1600 out:
1601 destroy_hrtimer_on_stack(&t.timer);
1602 return ret;
1603 }
1604
1605 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1606 const enum hrtimer_mode mode, const clockid_t clockid)
1607 {
1608 struct restart_block *restart;
1609 struct hrtimer_sleeper t;
1610 int ret = 0;
1611 unsigned long slack;
1612
1613 slack = current->timer_slack_ns;
1614 if (dl_task(current) || rt_task(current))
1615 slack = 0;
1616
1617 hrtimer_init_on_stack(&t.timer, clockid, mode);
1618 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1619 if (do_nanosleep(&t, mode))
1620 goto out;
1621
1622 /* Absolute timers do not update the rmtp value and restart: */
1623 if (mode == HRTIMER_MODE_ABS) {
1624 ret = -ERESTARTNOHAND;
1625 goto out;
1626 }
1627
1628 if (rmtp) {
1629 ret = update_rmtp(&t.timer, rmtp);
1630 if (ret <= 0)
1631 goto out;
1632 }
1633
1634 restart = &current_thread_info()->restart_block;
1635 restart->fn = hrtimer_nanosleep_restart;
1636 restart->nanosleep.clockid = t.timer.base->clockid;
1637 restart->nanosleep.rmtp = rmtp;
1638 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1639
1640 ret = -ERESTART_RESTARTBLOCK;
1641 out:
1642 destroy_hrtimer_on_stack(&t.timer);
1643 return ret;
1644 }
1645
1646 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1647 struct timespec __user *, rmtp)
1648 {
1649 struct timespec tu;
1650
1651 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1652 return -EFAULT;
1653
1654 if (!timespec_valid(&tu))
1655 return -EINVAL;
1656
1657 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1658 }
1659
1660 /*
1661 * Functions related to boot-time initialization:
1662 */
1663 static void init_hrtimers_cpu(int cpu)
1664 {
1665 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1666 int i;
1667
1668 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1669 cpu_base->clock_base[i].cpu_base = cpu_base;
1670 timerqueue_init_head(&cpu_base->clock_base[i].active);
1671 }
1672
1673 hrtimer_init_hres(cpu_base);
1674 }
1675
1676 #ifdef CONFIG_HOTPLUG_CPU
1677
1678 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1679 struct hrtimer_clock_base *new_base)
1680 {
1681 struct hrtimer *timer;
1682 struct timerqueue_node *node;
1683
1684 while ((node = timerqueue_getnext(&old_base->active))) {
1685 timer = container_of(node, struct hrtimer, node);
1686 BUG_ON(hrtimer_callback_running(timer));
1687 debug_deactivate(timer);
1688
1689 /*
1690 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1691 * timer could be seen as !active and just vanish away
1692 * under us on another CPU
1693 */
1694 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1695 timer->base = new_base;
1696 /*
1697 * Enqueue the timers on the new cpu. This does not
1698 * reprogram the event device in case the timer
1699 * expires before the earliest on this CPU, but we run
1700 * hrtimer_interrupt after we migrated everything to
1701 * sort out already expired timers and reprogram the
1702 * event device.
1703 */
1704 enqueue_hrtimer(timer, new_base);
1705
1706 /* Clear the migration state bit */
1707 timer->state &= ~HRTIMER_STATE_MIGRATE;
1708 }
1709 }
1710
1711 static void migrate_hrtimers(int scpu)
1712 {
1713 struct hrtimer_cpu_base *old_base, *new_base;
1714 int i;
1715
1716 BUG_ON(cpu_online(scpu));
1717 tick_cancel_sched_timer(scpu);
1718
1719 local_irq_disable();
1720 old_base = &per_cpu(hrtimer_bases, scpu);
1721 new_base = &__get_cpu_var(hrtimer_bases);
1722 /*
1723 * The caller is globally serialized and nobody else
1724 * takes two locks at once, deadlock is not possible.
1725 */
1726 raw_spin_lock(&new_base->lock);
1727 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1728
1729 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1730 migrate_hrtimer_list(&old_base->clock_base[i],
1731 &new_base->clock_base[i]);
1732 }
1733
1734 raw_spin_unlock(&old_base->lock);
1735 raw_spin_unlock(&new_base->lock);
1736
1737 /* Check, if we got expired work to do */
1738 __hrtimer_peek_ahead_timers();
1739 local_irq_enable();
1740 }
1741
1742 #endif /* CONFIG_HOTPLUG_CPU */
1743
1744 static int hrtimer_cpu_notify(struct notifier_block *self,
1745 unsigned long action, void *hcpu)
1746 {
1747 int scpu = (long)hcpu;
1748
1749 switch (action) {
1750
1751 case CPU_UP_PREPARE:
1752 case CPU_UP_PREPARE_FROZEN:
1753 init_hrtimers_cpu(scpu);
1754 break;
1755
1756 #ifdef CONFIG_HOTPLUG_CPU
1757 case CPU_DYING:
1758 case CPU_DYING_FROZEN:
1759 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1760 break;
1761 case CPU_DEAD:
1762 case CPU_DEAD_FROZEN:
1763 {
1764 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1765 migrate_hrtimers(scpu);
1766 break;
1767 }
1768 #endif
1769
1770 default:
1771 break;
1772 }
1773
1774 return NOTIFY_OK;
1775 }
1776
1777 static struct notifier_block hrtimers_nb = {
1778 .notifier_call = hrtimer_cpu_notify,
1779 };
1780
1781 void __init hrtimers_init(void)
1782 {
1783 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1784 (void *)(long)smp_processor_id());
1785 register_cpu_notifier(&hrtimers_nb);
1786 #ifdef CONFIG_HIGH_RES_TIMERS
1787 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1788 #endif
1789 }
1790
1791 /**
1792 * schedule_hrtimeout_range_clock - sleep until timeout
1793 * @expires: timeout value (ktime_t)
1794 * @delta: slack in expires timeout (ktime_t)
1795 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1796 * @clock: timer clock, CLOCK_MONOTONIC or CLOCK_REALTIME
1797 */
1798 int __sched
1799 schedule_hrtimeout_range_clock(ktime_t *expires, unsigned long delta,
1800 const enum hrtimer_mode mode, int clock)
1801 {
1802 struct hrtimer_sleeper t;
1803
1804 /*
1805 * Optimize when a zero timeout value is given. It does not
1806 * matter whether this is an absolute or a relative time.
1807 */
1808 if (expires && !expires->tv64) {
1809 __set_current_state(TASK_RUNNING);
1810 return 0;
1811 }
1812
1813 /*
1814 * A NULL parameter means "infinite"
1815 */
1816 if (!expires) {
1817 schedule();
1818 __set_current_state(TASK_RUNNING);
1819 return -EINTR;
1820 }
1821
1822 hrtimer_init_on_stack(&t.timer, clock, mode);
1823 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1824
1825 hrtimer_init_sleeper(&t, current);
1826
1827 hrtimer_start_expires(&t.timer, mode);
1828 if (!hrtimer_active(&t.timer))
1829 t.task = NULL;
1830
1831 if (likely(t.task))
1832 schedule();
1833
1834 hrtimer_cancel(&t.timer);
1835 destroy_hrtimer_on_stack(&t.timer);
1836
1837 __set_current_state(TASK_RUNNING);
1838
1839 return !t.task ? 0 : -EINTR;
1840 }
1841
1842 /**
1843 * schedule_hrtimeout_range - sleep until timeout
1844 * @expires: timeout value (ktime_t)
1845 * @delta: slack in expires timeout (ktime_t)
1846 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1847 *
1848 * Make the current task sleep until the given expiry time has
1849 * elapsed. The routine will return immediately unless
1850 * the current task state has been set (see set_current_state()).
1851 *
1852 * The @delta argument gives the kernel the freedom to schedule the
1853 * actual wakeup to a time that is both power and performance friendly.
1854 * The kernel give the normal best effort behavior for "@expires+@delta",
1855 * but may decide to fire the timer earlier, but no earlier than @expires.
1856 *
1857 * You can set the task state as follows -
1858 *
1859 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1860 * pass before the routine returns.
1861 *
1862 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1863 * delivered to the current task.
1864 *
1865 * The current task state is guaranteed to be TASK_RUNNING when this
1866 * routine returns.
1867 *
1868 * Returns 0 when the timer has expired otherwise -EINTR
1869 */
1870 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1871 const enum hrtimer_mode mode)
1872 {
1873 return schedule_hrtimeout_range_clock(expires, delta, mode,
1874 CLOCK_MONOTONIC);
1875 }
1876 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1877
1878 /**
1879 * schedule_hrtimeout - sleep until timeout
1880 * @expires: timeout value (ktime_t)
1881 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1882 *
1883 * Make the current task sleep until the given expiry time has
1884 * elapsed. The routine will return immediately unless
1885 * the current task state has been set (see set_current_state()).
1886 *
1887 * You can set the task state as follows -
1888 *
1889 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1890 * pass before the routine returns.
1891 *
1892 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1893 * delivered to the current task.
1894 *
1895 * The current task state is guaranteed to be TASK_RUNNING when this
1896 * routine returns.
1897 *
1898 * Returns 0 when the timer has expired otherwise -EINTR
1899 */
1900 int __sched schedule_hrtimeout(ktime_t *expires,
1901 const enum hrtimer_mode mode)
1902 {
1903 return schedule_hrtimeout_range(expires, 0, mode);
1904 }
1905 EXPORT_SYMBOL_GPL(schedule_hrtimeout);