]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/hrtimer.c
Merge branch 'acpica' of git://git.kernel.org/pub/scm/linux/kernel/git/lenb/linux...
[mirror_ubuntu-zesty-kernel.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * High-resolution kernel timers
9 *
10 * In contrast to the low-resolution timeout API implemented in
11 * kernel/timer.c, hrtimers provide finer resolution and accuracy
12 * depending on system configuration and capabilities.
13 *
14 * These timers are currently used for:
15 * - itimers
16 * - POSIX timers
17 * - nanosleep
18 * - precise in-kernel timing
19 *
20 * Started by: Thomas Gleixner and Ingo Molnar
21 *
22 * Credits:
23 * based on kernel/timer.c
24 *
25 * Help, testing, suggestions, bugfixes, improvements were
26 * provided by:
27 *
28 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
29 * et. al.
30 *
31 * For licencing details see kernel-base/COPYING
32 */
33
34 #include <linux/cpu.h>
35 #include <linux/module.h>
36 #include <linux/percpu.h>
37 #include <linux/hrtimer.h>
38 #include <linux/notifier.h>
39 #include <linux/syscalls.h>
40 #include <linux/kallsyms.h>
41 #include <linux/interrupt.h>
42 #include <linux/tick.h>
43 #include <linux/seq_file.h>
44 #include <linux/err.h>
45 #include <linux/debugobjects.h>
46 #include <linux/sched.h>
47 #include <linux/timer.h>
48
49 #include <asm/uaccess.h>
50
51 /**
52 * ktime_get - get the monotonic time in ktime_t format
53 *
54 * returns the time in ktime_t format
55 */
56 ktime_t ktime_get(void)
57 {
58 struct timespec now;
59
60 ktime_get_ts(&now);
61
62 return timespec_to_ktime(now);
63 }
64 EXPORT_SYMBOL_GPL(ktime_get);
65
66 /**
67 * ktime_get_real - get the real (wall-) time in ktime_t format
68 *
69 * returns the time in ktime_t format
70 */
71 ktime_t ktime_get_real(void)
72 {
73 struct timespec now;
74
75 getnstimeofday(&now);
76
77 return timespec_to_ktime(now);
78 }
79
80 EXPORT_SYMBOL_GPL(ktime_get_real);
81
82 /*
83 * The timer bases:
84 *
85 * Note: If we want to add new timer bases, we have to skip the two
86 * clock ids captured by the cpu-timers. We do this by holding empty
87 * entries rather than doing math adjustment of the clock ids.
88 * This ensures that we capture erroneous accesses to these clock ids
89 * rather than moving them into the range of valid clock id's.
90 */
91 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) =
92 {
93
94 .clock_base =
95 {
96 {
97 .index = CLOCK_REALTIME,
98 .get_time = &ktime_get_real,
99 .resolution = KTIME_LOW_RES,
100 },
101 {
102 .index = CLOCK_MONOTONIC,
103 .get_time = &ktime_get,
104 .resolution = KTIME_LOW_RES,
105 },
106 }
107 };
108
109 /**
110 * ktime_get_ts - get the monotonic clock in timespec format
111 * @ts: pointer to timespec variable
112 *
113 * The function calculates the monotonic clock from the realtime
114 * clock and the wall_to_monotonic offset and stores the result
115 * in normalized timespec format in the variable pointed to by @ts.
116 */
117 void ktime_get_ts(struct timespec *ts)
118 {
119 struct timespec tomono;
120 unsigned long seq;
121
122 do {
123 seq = read_seqbegin(&xtime_lock);
124 getnstimeofday(ts);
125 tomono = wall_to_monotonic;
126
127 } while (read_seqretry(&xtime_lock, seq));
128
129 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
130 ts->tv_nsec + tomono.tv_nsec);
131 }
132 EXPORT_SYMBOL_GPL(ktime_get_ts);
133
134 /*
135 * Get the coarse grained time at the softirq based on xtime and
136 * wall_to_monotonic.
137 */
138 static void hrtimer_get_softirq_time(struct hrtimer_cpu_base *base)
139 {
140 ktime_t xtim, tomono;
141 struct timespec xts, tom;
142 unsigned long seq;
143
144 do {
145 seq = read_seqbegin(&xtime_lock);
146 xts = current_kernel_time();
147 tom = wall_to_monotonic;
148 } while (read_seqretry(&xtime_lock, seq));
149
150 xtim = timespec_to_ktime(xts);
151 tomono = timespec_to_ktime(tom);
152 base->clock_base[CLOCK_REALTIME].softirq_time = xtim;
153 base->clock_base[CLOCK_MONOTONIC].softirq_time =
154 ktime_add(xtim, tomono);
155 }
156
157 /*
158 * Functions and macros which are different for UP/SMP systems are kept in a
159 * single place
160 */
161 #ifdef CONFIG_SMP
162
163 /*
164 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
165 * means that all timers which are tied to this base via timer->base are
166 * locked, and the base itself is locked too.
167 *
168 * So __run_timers/migrate_timers can safely modify all timers which could
169 * be found on the lists/queues.
170 *
171 * When the timer's base is locked, and the timer removed from list, it is
172 * possible to set timer->base = NULL and drop the lock: the timer remains
173 * locked.
174 */
175 static
176 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer,
177 unsigned long *flags)
178 {
179 struct hrtimer_clock_base *base;
180
181 for (;;) {
182 base = timer->base;
183 if (likely(base != NULL)) {
184 spin_lock_irqsave(&base->cpu_base->lock, *flags);
185 if (likely(base == timer->base))
186 return base;
187 /* The timer has migrated to another CPU: */
188 spin_unlock_irqrestore(&base->cpu_base->lock, *flags);
189 }
190 cpu_relax();
191 }
192 }
193
194 /*
195 * Switch the timer base to the current CPU when possible.
196 */
197 static inline struct hrtimer_clock_base *
198 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base,
199 int pinned)
200 {
201 struct hrtimer_clock_base *new_base;
202 struct hrtimer_cpu_base *new_cpu_base;
203 int cpu, preferred_cpu = -1;
204
205 cpu = smp_processor_id();
206 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
207 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu)) {
208 preferred_cpu = get_nohz_load_balancer();
209 if (preferred_cpu >= 0)
210 cpu = preferred_cpu;
211 }
212 #endif
213
214 again:
215 new_cpu_base = &per_cpu(hrtimer_bases, cpu);
216 new_base = &new_cpu_base->clock_base[base->index];
217
218 if (base != new_base) {
219 /*
220 * We are trying to schedule the timer on the local CPU.
221 * However we can't change timer's base while it is running,
222 * so we keep it on the same CPU. No hassle vs. reprogramming
223 * the event source in the high resolution case. The softirq
224 * code will take care of this when the timer function has
225 * completed. There is no conflict as we hold the lock until
226 * the timer is enqueued.
227 */
228 if (unlikely(hrtimer_callback_running(timer)))
229 return base;
230
231 /* See the comment in lock_timer_base() */
232 timer->base = NULL;
233 spin_unlock(&base->cpu_base->lock);
234 spin_lock(&new_base->cpu_base->lock);
235
236 /* Optimized away for NOHZ=n SMP=n */
237 if (cpu == preferred_cpu) {
238 /* Calculate clock monotonic expiry time */
239 #ifdef CONFIG_HIGH_RES_TIMERS
240 ktime_t expires = ktime_sub(hrtimer_get_expires(timer),
241 new_base->offset);
242 #else
243 ktime_t expires = hrtimer_get_expires(timer);
244 #endif
245
246 /*
247 * Get the next event on target cpu from the
248 * clock events layer.
249 * This covers the highres=off nohz=on case as well.
250 */
251 ktime_t next = clockevents_get_next_event(cpu);
252
253 ktime_t delta = ktime_sub(expires, next);
254
255 /*
256 * We do not migrate the timer when it is expiring
257 * before the next event on the target cpu because
258 * we cannot reprogram the target cpu hardware and
259 * we would cause it to fire late.
260 */
261 if (delta.tv64 < 0) {
262 cpu = smp_processor_id();
263 spin_unlock(&new_base->cpu_base->lock);
264 spin_lock(&base->cpu_base->lock);
265 timer->base = base;
266 goto again;
267 }
268 }
269 timer->base = new_base;
270 }
271 return new_base;
272 }
273
274 #else /* CONFIG_SMP */
275
276 static inline struct hrtimer_clock_base *
277 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
278 {
279 struct hrtimer_clock_base *base = timer->base;
280
281 spin_lock_irqsave(&base->cpu_base->lock, *flags);
282
283 return base;
284 }
285
286 # define switch_hrtimer_base(t, b, p) (b)
287
288 #endif /* !CONFIG_SMP */
289
290 /*
291 * Functions for the union type storage format of ktime_t which are
292 * too large for inlining:
293 */
294 #if BITS_PER_LONG < 64
295 # ifndef CONFIG_KTIME_SCALAR
296 /**
297 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
298 * @kt: addend
299 * @nsec: the scalar nsec value to add
300 *
301 * Returns the sum of kt and nsec in ktime_t format
302 */
303 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
304 {
305 ktime_t tmp;
306
307 if (likely(nsec < NSEC_PER_SEC)) {
308 tmp.tv64 = nsec;
309 } else {
310 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
311
312 tmp = ktime_set((long)nsec, rem);
313 }
314
315 return ktime_add(kt, tmp);
316 }
317
318 EXPORT_SYMBOL_GPL(ktime_add_ns);
319
320 /**
321 * ktime_sub_ns - Subtract a scalar nanoseconds value from a ktime_t variable
322 * @kt: minuend
323 * @nsec: the scalar nsec value to subtract
324 *
325 * Returns the subtraction of @nsec from @kt in ktime_t format
326 */
327 ktime_t ktime_sub_ns(const ktime_t kt, u64 nsec)
328 {
329 ktime_t tmp;
330
331 if (likely(nsec < NSEC_PER_SEC)) {
332 tmp.tv64 = nsec;
333 } else {
334 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
335
336 tmp = ktime_set((long)nsec, rem);
337 }
338
339 return ktime_sub(kt, tmp);
340 }
341
342 EXPORT_SYMBOL_GPL(ktime_sub_ns);
343 # endif /* !CONFIG_KTIME_SCALAR */
344
345 /*
346 * Divide a ktime value by a nanosecond value
347 */
348 u64 ktime_divns(const ktime_t kt, s64 div)
349 {
350 u64 dclc;
351 int sft = 0;
352
353 dclc = ktime_to_ns(kt);
354 /* Make sure the divisor is less than 2^32: */
355 while (div >> 32) {
356 sft++;
357 div >>= 1;
358 }
359 dclc >>= sft;
360 do_div(dclc, (unsigned long) div);
361
362 return dclc;
363 }
364 #endif /* BITS_PER_LONG >= 64 */
365
366 /*
367 * Add two ktime values and do a safety check for overflow:
368 */
369 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs)
370 {
371 ktime_t res = ktime_add(lhs, rhs);
372
373 /*
374 * We use KTIME_SEC_MAX here, the maximum timeout which we can
375 * return to user space in a timespec:
376 */
377 if (res.tv64 < 0 || res.tv64 < lhs.tv64 || res.tv64 < rhs.tv64)
378 res = ktime_set(KTIME_SEC_MAX, 0);
379
380 return res;
381 }
382
383 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
384
385 static struct debug_obj_descr hrtimer_debug_descr;
386
387 /*
388 * fixup_init is called when:
389 * - an active object is initialized
390 */
391 static int hrtimer_fixup_init(void *addr, enum debug_obj_state state)
392 {
393 struct hrtimer *timer = addr;
394
395 switch (state) {
396 case ODEBUG_STATE_ACTIVE:
397 hrtimer_cancel(timer);
398 debug_object_init(timer, &hrtimer_debug_descr);
399 return 1;
400 default:
401 return 0;
402 }
403 }
404
405 /*
406 * fixup_activate is called when:
407 * - an active object is activated
408 * - an unknown object is activated (might be a statically initialized object)
409 */
410 static int hrtimer_fixup_activate(void *addr, enum debug_obj_state state)
411 {
412 switch (state) {
413
414 case ODEBUG_STATE_NOTAVAILABLE:
415 WARN_ON_ONCE(1);
416 return 0;
417
418 case ODEBUG_STATE_ACTIVE:
419 WARN_ON(1);
420
421 default:
422 return 0;
423 }
424 }
425
426 /*
427 * fixup_free is called when:
428 * - an active object is freed
429 */
430 static int hrtimer_fixup_free(void *addr, enum debug_obj_state state)
431 {
432 struct hrtimer *timer = addr;
433
434 switch (state) {
435 case ODEBUG_STATE_ACTIVE:
436 hrtimer_cancel(timer);
437 debug_object_free(timer, &hrtimer_debug_descr);
438 return 1;
439 default:
440 return 0;
441 }
442 }
443
444 static struct debug_obj_descr hrtimer_debug_descr = {
445 .name = "hrtimer",
446 .fixup_init = hrtimer_fixup_init,
447 .fixup_activate = hrtimer_fixup_activate,
448 .fixup_free = hrtimer_fixup_free,
449 };
450
451 static inline void debug_hrtimer_init(struct hrtimer *timer)
452 {
453 debug_object_init(timer, &hrtimer_debug_descr);
454 }
455
456 static inline void debug_hrtimer_activate(struct hrtimer *timer)
457 {
458 debug_object_activate(timer, &hrtimer_debug_descr);
459 }
460
461 static inline void debug_hrtimer_deactivate(struct hrtimer *timer)
462 {
463 debug_object_deactivate(timer, &hrtimer_debug_descr);
464 }
465
466 static inline void debug_hrtimer_free(struct hrtimer *timer)
467 {
468 debug_object_free(timer, &hrtimer_debug_descr);
469 }
470
471 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
472 enum hrtimer_mode mode);
473
474 void hrtimer_init_on_stack(struct hrtimer *timer, clockid_t clock_id,
475 enum hrtimer_mode mode)
476 {
477 debug_object_init_on_stack(timer, &hrtimer_debug_descr);
478 __hrtimer_init(timer, clock_id, mode);
479 }
480
481 void destroy_hrtimer_on_stack(struct hrtimer *timer)
482 {
483 debug_object_free(timer, &hrtimer_debug_descr);
484 }
485
486 #else
487 static inline void debug_hrtimer_init(struct hrtimer *timer) { }
488 static inline void debug_hrtimer_activate(struct hrtimer *timer) { }
489 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { }
490 #endif
491
492 /* High resolution timer related functions */
493 #ifdef CONFIG_HIGH_RES_TIMERS
494
495 /*
496 * High resolution timer enabled ?
497 */
498 static int hrtimer_hres_enabled __read_mostly = 1;
499
500 /*
501 * Enable / Disable high resolution mode
502 */
503 static int __init setup_hrtimer_hres(char *str)
504 {
505 if (!strcmp(str, "off"))
506 hrtimer_hres_enabled = 0;
507 else if (!strcmp(str, "on"))
508 hrtimer_hres_enabled = 1;
509 else
510 return 0;
511 return 1;
512 }
513
514 __setup("highres=", setup_hrtimer_hres);
515
516 /*
517 * hrtimer_high_res_enabled - query, if the highres mode is enabled
518 */
519 static inline int hrtimer_is_hres_enabled(void)
520 {
521 return hrtimer_hres_enabled;
522 }
523
524 /*
525 * Is the high resolution mode active ?
526 */
527 static inline int hrtimer_hres_active(void)
528 {
529 return __get_cpu_var(hrtimer_bases).hres_active;
530 }
531
532 /*
533 * Reprogram the event source with checking both queues for the
534 * next event
535 * Called with interrupts disabled and base->lock held
536 */
537 static void hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base)
538 {
539 int i;
540 struct hrtimer_clock_base *base = cpu_base->clock_base;
541 ktime_t expires;
542
543 cpu_base->expires_next.tv64 = KTIME_MAX;
544
545 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
546 struct hrtimer *timer;
547
548 if (!base->first)
549 continue;
550 timer = rb_entry(base->first, struct hrtimer, node);
551 expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
552 /*
553 * clock_was_set() has changed base->offset so the
554 * result might be negative. Fix it up to prevent a
555 * false positive in clockevents_program_event()
556 */
557 if (expires.tv64 < 0)
558 expires.tv64 = 0;
559 if (expires.tv64 < cpu_base->expires_next.tv64)
560 cpu_base->expires_next = expires;
561 }
562
563 if (cpu_base->expires_next.tv64 != KTIME_MAX)
564 tick_program_event(cpu_base->expires_next, 1);
565 }
566
567 /*
568 * Shared reprogramming for clock_realtime and clock_monotonic
569 *
570 * When a timer is enqueued and expires earlier than the already enqueued
571 * timers, we have to check, whether it expires earlier than the timer for
572 * which the clock event device was armed.
573 *
574 * Called with interrupts disabled and base->cpu_base.lock held
575 */
576 static int hrtimer_reprogram(struct hrtimer *timer,
577 struct hrtimer_clock_base *base)
578 {
579 ktime_t *expires_next = &__get_cpu_var(hrtimer_bases).expires_next;
580 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset);
581 int res;
582
583 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0);
584
585 /*
586 * When the callback is running, we do not reprogram the clock event
587 * device. The timer callback is either running on a different CPU or
588 * the callback is executed in the hrtimer_interrupt context. The
589 * reprogramming is handled either by the softirq, which called the
590 * callback or at the end of the hrtimer_interrupt.
591 */
592 if (hrtimer_callback_running(timer))
593 return 0;
594
595 /*
596 * CLOCK_REALTIME timer might be requested with an absolute
597 * expiry time which is less than base->offset. Nothing wrong
598 * about that, just avoid to call into the tick code, which
599 * has now objections against negative expiry values.
600 */
601 if (expires.tv64 < 0)
602 return -ETIME;
603
604 if (expires.tv64 >= expires_next->tv64)
605 return 0;
606
607 /*
608 * Clockevents returns -ETIME, when the event was in the past.
609 */
610 res = tick_program_event(expires, 0);
611 if (!IS_ERR_VALUE(res))
612 *expires_next = expires;
613 return res;
614 }
615
616
617 /*
618 * Retrigger next event is called after clock was set
619 *
620 * Called with interrupts disabled via on_each_cpu()
621 */
622 static void retrigger_next_event(void *arg)
623 {
624 struct hrtimer_cpu_base *base;
625 struct timespec realtime_offset;
626 unsigned long seq;
627
628 if (!hrtimer_hres_active())
629 return;
630
631 do {
632 seq = read_seqbegin(&xtime_lock);
633 set_normalized_timespec(&realtime_offset,
634 -wall_to_monotonic.tv_sec,
635 -wall_to_monotonic.tv_nsec);
636 } while (read_seqretry(&xtime_lock, seq));
637
638 base = &__get_cpu_var(hrtimer_bases);
639
640 /* Adjust CLOCK_REALTIME offset */
641 spin_lock(&base->lock);
642 base->clock_base[CLOCK_REALTIME].offset =
643 timespec_to_ktime(realtime_offset);
644
645 hrtimer_force_reprogram(base);
646 spin_unlock(&base->lock);
647 }
648
649 /*
650 * Clock realtime was set
651 *
652 * Change the offset of the realtime clock vs. the monotonic
653 * clock.
654 *
655 * We might have to reprogram the high resolution timer interrupt. On
656 * SMP we call the architecture specific code to retrigger _all_ high
657 * resolution timer interrupts. On UP we just disable interrupts and
658 * call the high resolution interrupt code.
659 */
660 void clock_was_set(void)
661 {
662 /* Retrigger the CPU local events everywhere */
663 on_each_cpu(retrigger_next_event, NULL, 1);
664 }
665
666 /*
667 * During resume we might have to reprogram the high resolution timer
668 * interrupt (on the local CPU):
669 */
670 void hres_timers_resume(void)
671 {
672 WARN_ONCE(!irqs_disabled(),
673 KERN_INFO "hres_timers_resume() called with IRQs enabled!");
674
675 retrigger_next_event(NULL);
676 }
677
678 /*
679 * Initialize the high resolution related parts of cpu_base
680 */
681 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base)
682 {
683 base->expires_next.tv64 = KTIME_MAX;
684 base->hres_active = 0;
685 }
686
687 /*
688 * Initialize the high resolution related parts of a hrtimer
689 */
690 static inline void hrtimer_init_timer_hres(struct hrtimer *timer)
691 {
692 }
693
694
695 /*
696 * When High resolution timers are active, try to reprogram. Note, that in case
697 * the state has HRTIMER_STATE_CALLBACK set, no reprogramming and no expiry
698 * check happens. The timer gets enqueued into the rbtree. The reprogramming
699 * and expiry check is done in the hrtimer_interrupt or in the softirq.
700 */
701 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
702 struct hrtimer_clock_base *base,
703 int wakeup)
704 {
705 if (base->cpu_base->hres_active && hrtimer_reprogram(timer, base)) {
706 if (wakeup) {
707 spin_unlock(&base->cpu_base->lock);
708 raise_softirq_irqoff(HRTIMER_SOFTIRQ);
709 spin_lock(&base->cpu_base->lock);
710 } else
711 __raise_softirq_irqoff(HRTIMER_SOFTIRQ);
712
713 return 1;
714 }
715
716 return 0;
717 }
718
719 /*
720 * Switch to high resolution mode
721 */
722 static int hrtimer_switch_to_hres(void)
723 {
724 int cpu = smp_processor_id();
725 struct hrtimer_cpu_base *base = &per_cpu(hrtimer_bases, cpu);
726 unsigned long flags;
727
728 if (base->hres_active)
729 return 1;
730
731 local_irq_save(flags);
732
733 if (tick_init_highres()) {
734 local_irq_restore(flags);
735 printk(KERN_WARNING "Could not switch to high resolution "
736 "mode on CPU %d\n", cpu);
737 return 0;
738 }
739 base->hres_active = 1;
740 base->clock_base[CLOCK_REALTIME].resolution = KTIME_HIGH_RES;
741 base->clock_base[CLOCK_MONOTONIC].resolution = KTIME_HIGH_RES;
742
743 tick_setup_sched_timer();
744
745 /* "Retrigger" the interrupt to get things going */
746 retrigger_next_event(NULL);
747 local_irq_restore(flags);
748 printk(KERN_DEBUG "Switched to high resolution mode on CPU %d\n",
749 smp_processor_id());
750 return 1;
751 }
752
753 #else
754
755 static inline int hrtimer_hres_active(void) { return 0; }
756 static inline int hrtimer_is_hres_enabled(void) { return 0; }
757 static inline int hrtimer_switch_to_hres(void) { return 0; }
758 static inline void hrtimer_force_reprogram(struct hrtimer_cpu_base *base) { }
759 static inline int hrtimer_enqueue_reprogram(struct hrtimer *timer,
760 struct hrtimer_clock_base *base,
761 int wakeup)
762 {
763 return 0;
764 }
765 static inline void hrtimer_init_hres(struct hrtimer_cpu_base *base) { }
766 static inline void hrtimer_init_timer_hres(struct hrtimer *timer) { }
767
768 #endif /* CONFIG_HIGH_RES_TIMERS */
769
770 #ifdef CONFIG_TIMER_STATS
771 void __timer_stats_hrtimer_set_start_info(struct hrtimer *timer, void *addr)
772 {
773 if (timer->start_site)
774 return;
775
776 timer->start_site = addr;
777 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
778 timer->start_pid = current->pid;
779 }
780 #endif
781
782 /*
783 * Counterpart to lock_hrtimer_base above:
784 */
785 static inline
786 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
787 {
788 spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags);
789 }
790
791 /**
792 * hrtimer_forward - forward the timer expiry
793 * @timer: hrtimer to forward
794 * @now: forward past this time
795 * @interval: the interval to forward
796 *
797 * Forward the timer expiry so it will expire in the future.
798 * Returns the number of overruns.
799 */
800 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
801 {
802 u64 orun = 1;
803 ktime_t delta;
804
805 delta = ktime_sub(now, hrtimer_get_expires(timer));
806
807 if (delta.tv64 < 0)
808 return 0;
809
810 if (interval.tv64 < timer->base->resolution.tv64)
811 interval.tv64 = timer->base->resolution.tv64;
812
813 if (unlikely(delta.tv64 >= interval.tv64)) {
814 s64 incr = ktime_to_ns(interval);
815
816 orun = ktime_divns(delta, incr);
817 hrtimer_add_expires_ns(timer, incr * orun);
818 if (hrtimer_get_expires_tv64(timer) > now.tv64)
819 return orun;
820 /*
821 * This (and the ktime_add() below) is the
822 * correction for exact:
823 */
824 orun++;
825 }
826 hrtimer_add_expires(timer, interval);
827
828 return orun;
829 }
830 EXPORT_SYMBOL_GPL(hrtimer_forward);
831
832 /*
833 * enqueue_hrtimer - internal function to (re)start a timer
834 *
835 * The timer is inserted in expiry order. Insertion into the
836 * red black tree is O(log(n)). Must hold the base lock.
837 *
838 * Returns 1 when the new timer is the leftmost timer in the tree.
839 */
840 static int enqueue_hrtimer(struct hrtimer *timer,
841 struct hrtimer_clock_base *base)
842 {
843 struct rb_node **link = &base->active.rb_node;
844 struct rb_node *parent = NULL;
845 struct hrtimer *entry;
846 int leftmost = 1;
847
848 debug_hrtimer_activate(timer);
849
850 /*
851 * Find the right place in the rbtree:
852 */
853 while (*link) {
854 parent = *link;
855 entry = rb_entry(parent, struct hrtimer, node);
856 /*
857 * We dont care about collisions. Nodes with
858 * the same expiry time stay together.
859 */
860 if (hrtimer_get_expires_tv64(timer) <
861 hrtimer_get_expires_tv64(entry)) {
862 link = &(*link)->rb_left;
863 } else {
864 link = &(*link)->rb_right;
865 leftmost = 0;
866 }
867 }
868
869 /*
870 * Insert the timer to the rbtree and check whether it
871 * replaces the first pending timer
872 */
873 if (leftmost)
874 base->first = &timer->node;
875
876 rb_link_node(&timer->node, parent, link);
877 rb_insert_color(&timer->node, &base->active);
878 /*
879 * HRTIMER_STATE_ENQUEUED is or'ed to the current state to preserve the
880 * state of a possibly running callback.
881 */
882 timer->state |= HRTIMER_STATE_ENQUEUED;
883
884 return leftmost;
885 }
886
887 /*
888 * __remove_hrtimer - internal function to remove a timer
889 *
890 * Caller must hold the base lock.
891 *
892 * High resolution timer mode reprograms the clock event device when the
893 * timer is the one which expires next. The caller can disable this by setting
894 * reprogram to zero. This is useful, when the context does a reprogramming
895 * anyway (e.g. timer interrupt)
896 */
897 static void __remove_hrtimer(struct hrtimer *timer,
898 struct hrtimer_clock_base *base,
899 unsigned long newstate, int reprogram)
900 {
901 if (timer->state & HRTIMER_STATE_ENQUEUED) {
902 /*
903 * Remove the timer from the rbtree and replace the
904 * first entry pointer if necessary.
905 */
906 if (base->first == &timer->node) {
907 base->first = rb_next(&timer->node);
908 /* Reprogram the clock event device. if enabled */
909 if (reprogram && hrtimer_hres_active())
910 hrtimer_force_reprogram(base->cpu_base);
911 }
912 rb_erase(&timer->node, &base->active);
913 }
914 timer->state = newstate;
915 }
916
917 /*
918 * remove hrtimer, called with base lock held
919 */
920 static inline int
921 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base)
922 {
923 if (hrtimer_is_queued(timer)) {
924 int reprogram;
925
926 /*
927 * Remove the timer and force reprogramming when high
928 * resolution mode is active and the timer is on the current
929 * CPU. If we remove a timer on another CPU, reprogramming is
930 * skipped. The interrupt event on this CPU is fired and
931 * reprogramming happens in the interrupt handler. This is a
932 * rare case and less expensive than a smp call.
933 */
934 debug_hrtimer_deactivate(timer);
935 timer_stats_hrtimer_clear_start_info(timer);
936 reprogram = base->cpu_base == &__get_cpu_var(hrtimer_bases);
937 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE,
938 reprogram);
939 return 1;
940 }
941 return 0;
942 }
943
944 int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
945 unsigned long delta_ns, const enum hrtimer_mode mode,
946 int wakeup)
947 {
948 struct hrtimer_clock_base *base, *new_base;
949 unsigned long flags;
950 int ret, leftmost;
951
952 base = lock_hrtimer_base(timer, &flags);
953
954 /* Remove an active timer from the queue: */
955 ret = remove_hrtimer(timer, base);
956
957 /* Switch the timer base, if necessary: */
958 new_base = switch_hrtimer_base(timer, base, mode & HRTIMER_MODE_PINNED);
959
960 if (mode & HRTIMER_MODE_REL) {
961 tim = ktime_add_safe(tim, new_base->get_time());
962 /*
963 * CONFIG_TIME_LOW_RES is a temporary way for architectures
964 * to signal that they simply return xtime in
965 * do_gettimeoffset(). In this case we want to round up by
966 * resolution when starting a relative timer, to avoid short
967 * timeouts. This will go away with the GTOD framework.
968 */
969 #ifdef CONFIG_TIME_LOW_RES
970 tim = ktime_add_safe(tim, base->resolution);
971 #endif
972 }
973
974 hrtimer_set_expires_range_ns(timer, tim, delta_ns);
975
976 timer_stats_hrtimer_set_start_info(timer);
977
978 leftmost = enqueue_hrtimer(timer, new_base);
979
980 /*
981 * Only allow reprogramming if the new base is on this CPU.
982 * (it might still be on another CPU if the timer was pending)
983 *
984 * XXX send_remote_softirq() ?
985 */
986 if (leftmost && new_base->cpu_base == &__get_cpu_var(hrtimer_bases))
987 hrtimer_enqueue_reprogram(timer, new_base, wakeup);
988
989 unlock_hrtimer_base(timer, &flags);
990
991 return ret;
992 }
993
994 /**
995 * hrtimer_start_range_ns - (re)start an hrtimer on the current CPU
996 * @timer: the timer to be added
997 * @tim: expiry time
998 * @delta_ns: "slack" range for the timer
999 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1000 *
1001 * Returns:
1002 * 0 on success
1003 * 1 when the timer was active
1004 */
1005 int hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim,
1006 unsigned long delta_ns, const enum hrtimer_mode mode)
1007 {
1008 return __hrtimer_start_range_ns(timer, tim, delta_ns, mode, 1);
1009 }
1010 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns);
1011
1012 /**
1013 * hrtimer_start - (re)start an hrtimer on the current CPU
1014 * @timer: the timer to be added
1015 * @tim: expiry time
1016 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
1017 *
1018 * Returns:
1019 * 0 on success
1020 * 1 when the timer was active
1021 */
1022 int
1023 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
1024 {
1025 return __hrtimer_start_range_ns(timer, tim, 0, mode, 1);
1026 }
1027 EXPORT_SYMBOL_GPL(hrtimer_start);
1028
1029
1030 /**
1031 * hrtimer_try_to_cancel - try to deactivate a timer
1032 * @timer: hrtimer to stop
1033 *
1034 * Returns:
1035 * 0 when the timer was not active
1036 * 1 when the timer was active
1037 * -1 when the timer is currently excuting the callback function and
1038 * cannot be stopped
1039 */
1040 int hrtimer_try_to_cancel(struct hrtimer *timer)
1041 {
1042 struct hrtimer_clock_base *base;
1043 unsigned long flags;
1044 int ret = -1;
1045
1046 base = lock_hrtimer_base(timer, &flags);
1047
1048 if (!hrtimer_callback_running(timer))
1049 ret = remove_hrtimer(timer, base);
1050
1051 unlock_hrtimer_base(timer, &flags);
1052
1053 return ret;
1054
1055 }
1056 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
1057
1058 /**
1059 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
1060 * @timer: the timer to be cancelled
1061 *
1062 * Returns:
1063 * 0 when the timer was not active
1064 * 1 when the timer was active
1065 */
1066 int hrtimer_cancel(struct hrtimer *timer)
1067 {
1068 for (;;) {
1069 int ret = hrtimer_try_to_cancel(timer);
1070
1071 if (ret >= 0)
1072 return ret;
1073 cpu_relax();
1074 }
1075 }
1076 EXPORT_SYMBOL_GPL(hrtimer_cancel);
1077
1078 /**
1079 * hrtimer_get_remaining - get remaining time for the timer
1080 * @timer: the timer to read
1081 */
1082 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
1083 {
1084 struct hrtimer_clock_base *base;
1085 unsigned long flags;
1086 ktime_t rem;
1087
1088 base = lock_hrtimer_base(timer, &flags);
1089 rem = hrtimer_expires_remaining(timer);
1090 unlock_hrtimer_base(timer, &flags);
1091
1092 return rem;
1093 }
1094 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
1095
1096 #ifdef CONFIG_NO_HZ
1097 /**
1098 * hrtimer_get_next_event - get the time until next expiry event
1099 *
1100 * Returns the delta to the next expiry event or KTIME_MAX if no timer
1101 * is pending.
1102 */
1103 ktime_t hrtimer_get_next_event(void)
1104 {
1105 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1106 struct hrtimer_clock_base *base = cpu_base->clock_base;
1107 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
1108 unsigned long flags;
1109 int i;
1110
1111 spin_lock_irqsave(&cpu_base->lock, flags);
1112
1113 if (!hrtimer_hres_active()) {
1114 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++, base++) {
1115 struct hrtimer *timer;
1116
1117 if (!base->first)
1118 continue;
1119
1120 timer = rb_entry(base->first, struct hrtimer, node);
1121 delta.tv64 = hrtimer_get_expires_tv64(timer);
1122 delta = ktime_sub(delta, base->get_time());
1123 if (delta.tv64 < mindelta.tv64)
1124 mindelta.tv64 = delta.tv64;
1125 }
1126 }
1127
1128 spin_unlock_irqrestore(&cpu_base->lock, flags);
1129
1130 if (mindelta.tv64 < 0)
1131 mindelta.tv64 = 0;
1132 return mindelta;
1133 }
1134 #endif
1135
1136 static void __hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1137 enum hrtimer_mode mode)
1138 {
1139 struct hrtimer_cpu_base *cpu_base;
1140
1141 memset(timer, 0, sizeof(struct hrtimer));
1142
1143 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1144
1145 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_MODE_ABS)
1146 clock_id = CLOCK_MONOTONIC;
1147
1148 timer->base = &cpu_base->clock_base[clock_id];
1149 INIT_LIST_HEAD(&timer->cb_entry);
1150 hrtimer_init_timer_hres(timer);
1151
1152 #ifdef CONFIG_TIMER_STATS
1153 timer->start_site = NULL;
1154 timer->start_pid = -1;
1155 memset(timer->start_comm, 0, TASK_COMM_LEN);
1156 #endif
1157 }
1158
1159 /**
1160 * hrtimer_init - initialize a timer to the given clock
1161 * @timer: the timer to be initialized
1162 * @clock_id: the clock to be used
1163 * @mode: timer mode abs/rel
1164 */
1165 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
1166 enum hrtimer_mode mode)
1167 {
1168 debug_hrtimer_init(timer);
1169 __hrtimer_init(timer, clock_id, mode);
1170 }
1171 EXPORT_SYMBOL_GPL(hrtimer_init);
1172
1173 /**
1174 * hrtimer_get_res - get the timer resolution for a clock
1175 * @which_clock: which clock to query
1176 * @tp: pointer to timespec variable to store the resolution
1177 *
1178 * Store the resolution of the clock selected by @which_clock in the
1179 * variable pointed to by @tp.
1180 */
1181 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
1182 {
1183 struct hrtimer_cpu_base *cpu_base;
1184
1185 cpu_base = &__raw_get_cpu_var(hrtimer_bases);
1186 *tp = ktime_to_timespec(cpu_base->clock_base[which_clock].resolution);
1187
1188 return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(hrtimer_get_res);
1191
1192 static void __run_hrtimer(struct hrtimer *timer)
1193 {
1194 struct hrtimer_clock_base *base = timer->base;
1195 struct hrtimer_cpu_base *cpu_base = base->cpu_base;
1196 enum hrtimer_restart (*fn)(struct hrtimer *);
1197 int restart;
1198
1199 WARN_ON(!irqs_disabled());
1200
1201 debug_hrtimer_deactivate(timer);
1202 __remove_hrtimer(timer, base, HRTIMER_STATE_CALLBACK, 0);
1203 timer_stats_account_hrtimer(timer);
1204 fn = timer->function;
1205
1206 /*
1207 * Because we run timers from hardirq context, there is no chance
1208 * they get migrated to another cpu, therefore its safe to unlock
1209 * the timer base.
1210 */
1211 spin_unlock(&cpu_base->lock);
1212 restart = fn(timer);
1213 spin_lock(&cpu_base->lock);
1214
1215 /*
1216 * Note: We clear the CALLBACK bit after enqueue_hrtimer and
1217 * we do not reprogramm the event hardware. Happens either in
1218 * hrtimer_start_range_ns() or in hrtimer_interrupt()
1219 */
1220 if (restart != HRTIMER_NORESTART) {
1221 BUG_ON(timer->state != HRTIMER_STATE_CALLBACK);
1222 enqueue_hrtimer(timer, base);
1223 }
1224 timer->state &= ~HRTIMER_STATE_CALLBACK;
1225 }
1226
1227 #ifdef CONFIG_HIGH_RES_TIMERS
1228
1229 static int force_clock_reprogram;
1230
1231 /*
1232 * After 5 iteration's attempts, we consider that hrtimer_interrupt()
1233 * is hanging, which could happen with something that slows the interrupt
1234 * such as the tracing. Then we force the clock reprogramming for each future
1235 * hrtimer interrupts to avoid infinite loops and use the min_delta_ns
1236 * threshold that we will overwrite.
1237 * The next tick event will be scheduled to 3 times we currently spend on
1238 * hrtimer_interrupt(). This gives a good compromise, the cpus will spend
1239 * 1/4 of their time to process the hrtimer interrupts. This is enough to
1240 * let it running without serious starvation.
1241 */
1242
1243 static inline void
1244 hrtimer_interrupt_hanging(struct clock_event_device *dev,
1245 ktime_t try_time)
1246 {
1247 force_clock_reprogram = 1;
1248 dev->min_delta_ns = (unsigned long)try_time.tv64 * 3;
1249 printk(KERN_WARNING "hrtimer: interrupt too slow, "
1250 "forcing clock min delta to %lu ns\n", dev->min_delta_ns);
1251 }
1252 /*
1253 * High resolution timer interrupt
1254 * Called with interrupts disabled
1255 */
1256 void hrtimer_interrupt(struct clock_event_device *dev)
1257 {
1258 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1259 struct hrtimer_clock_base *base;
1260 ktime_t expires_next, now;
1261 int nr_retries = 0;
1262 int i;
1263
1264 BUG_ON(!cpu_base->hres_active);
1265 cpu_base->nr_events++;
1266 dev->next_event.tv64 = KTIME_MAX;
1267
1268 retry:
1269 /* 5 retries is enough to notice a hang */
1270 if (!(++nr_retries % 5))
1271 hrtimer_interrupt_hanging(dev, ktime_sub(ktime_get(), now));
1272
1273 now = ktime_get();
1274
1275 expires_next.tv64 = KTIME_MAX;
1276
1277 base = cpu_base->clock_base;
1278
1279 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1280 ktime_t basenow;
1281 struct rb_node *node;
1282
1283 spin_lock(&cpu_base->lock);
1284
1285 basenow = ktime_add(now, base->offset);
1286
1287 while ((node = base->first)) {
1288 struct hrtimer *timer;
1289
1290 timer = rb_entry(node, struct hrtimer, node);
1291
1292 /*
1293 * The immediate goal for using the softexpires is
1294 * minimizing wakeups, not running timers at the
1295 * earliest interrupt after their soft expiration.
1296 * This allows us to avoid using a Priority Search
1297 * Tree, which can answer a stabbing querry for
1298 * overlapping intervals and instead use the simple
1299 * BST we already have.
1300 * We don't add extra wakeups by delaying timers that
1301 * are right-of a not yet expired timer, because that
1302 * timer will have to trigger a wakeup anyway.
1303 */
1304
1305 if (basenow.tv64 < hrtimer_get_softexpires_tv64(timer)) {
1306 ktime_t expires;
1307
1308 expires = ktime_sub(hrtimer_get_expires(timer),
1309 base->offset);
1310 if (expires.tv64 < expires_next.tv64)
1311 expires_next = expires;
1312 break;
1313 }
1314
1315 __run_hrtimer(timer);
1316 }
1317 spin_unlock(&cpu_base->lock);
1318 base++;
1319 }
1320
1321 cpu_base->expires_next = expires_next;
1322
1323 /* Reprogramming necessary ? */
1324 if (expires_next.tv64 != KTIME_MAX) {
1325 if (tick_program_event(expires_next, force_clock_reprogram))
1326 goto retry;
1327 }
1328 }
1329
1330 /*
1331 * local version of hrtimer_peek_ahead_timers() called with interrupts
1332 * disabled.
1333 */
1334 static void __hrtimer_peek_ahead_timers(void)
1335 {
1336 struct tick_device *td;
1337
1338 if (!hrtimer_hres_active())
1339 return;
1340
1341 td = &__get_cpu_var(tick_cpu_device);
1342 if (td && td->evtdev)
1343 hrtimer_interrupt(td->evtdev);
1344 }
1345
1346 /**
1347 * hrtimer_peek_ahead_timers -- run soft-expired timers now
1348 *
1349 * hrtimer_peek_ahead_timers will peek at the timer queue of
1350 * the current cpu and check if there are any timers for which
1351 * the soft expires time has passed. If any such timers exist,
1352 * they are run immediately and then removed from the timer queue.
1353 *
1354 */
1355 void hrtimer_peek_ahead_timers(void)
1356 {
1357 unsigned long flags;
1358
1359 local_irq_save(flags);
1360 __hrtimer_peek_ahead_timers();
1361 local_irq_restore(flags);
1362 }
1363
1364 static void run_hrtimer_softirq(struct softirq_action *h)
1365 {
1366 hrtimer_peek_ahead_timers();
1367 }
1368
1369 #else /* CONFIG_HIGH_RES_TIMERS */
1370
1371 static inline void __hrtimer_peek_ahead_timers(void) { }
1372
1373 #endif /* !CONFIG_HIGH_RES_TIMERS */
1374
1375 /*
1376 * Called from timer softirq every jiffy, expire hrtimers:
1377 *
1378 * For HRT its the fall back code to run the softirq in the timer
1379 * softirq context in case the hrtimer initialization failed or has
1380 * not been done yet.
1381 */
1382 void hrtimer_run_pending(void)
1383 {
1384 if (hrtimer_hres_active())
1385 return;
1386
1387 /*
1388 * This _is_ ugly: We have to check in the softirq context,
1389 * whether we can switch to highres and / or nohz mode. The
1390 * clocksource switch happens in the timer interrupt with
1391 * xtime_lock held. Notification from there only sets the
1392 * check bit in the tick_oneshot code, otherwise we might
1393 * deadlock vs. xtime_lock.
1394 */
1395 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled()))
1396 hrtimer_switch_to_hres();
1397 }
1398
1399 /*
1400 * Called from hardirq context every jiffy
1401 */
1402 void hrtimer_run_queues(void)
1403 {
1404 struct rb_node *node;
1405 struct hrtimer_cpu_base *cpu_base = &__get_cpu_var(hrtimer_bases);
1406 struct hrtimer_clock_base *base;
1407 int index, gettime = 1;
1408
1409 if (hrtimer_hres_active())
1410 return;
1411
1412 for (index = 0; index < HRTIMER_MAX_CLOCK_BASES; index++) {
1413 base = &cpu_base->clock_base[index];
1414
1415 if (!base->first)
1416 continue;
1417
1418 if (gettime) {
1419 hrtimer_get_softirq_time(cpu_base);
1420 gettime = 0;
1421 }
1422
1423 spin_lock(&cpu_base->lock);
1424
1425 while ((node = base->first)) {
1426 struct hrtimer *timer;
1427
1428 timer = rb_entry(node, struct hrtimer, node);
1429 if (base->softirq_time.tv64 <=
1430 hrtimer_get_expires_tv64(timer))
1431 break;
1432
1433 __run_hrtimer(timer);
1434 }
1435 spin_unlock(&cpu_base->lock);
1436 }
1437 }
1438
1439 /*
1440 * Sleep related functions:
1441 */
1442 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer)
1443 {
1444 struct hrtimer_sleeper *t =
1445 container_of(timer, struct hrtimer_sleeper, timer);
1446 struct task_struct *task = t->task;
1447
1448 t->task = NULL;
1449 if (task)
1450 wake_up_process(task);
1451
1452 return HRTIMER_NORESTART;
1453 }
1454
1455 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, struct task_struct *task)
1456 {
1457 sl->timer.function = hrtimer_wakeup;
1458 sl->task = task;
1459 }
1460
1461 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
1462 {
1463 hrtimer_init_sleeper(t, current);
1464
1465 do {
1466 set_current_state(TASK_INTERRUPTIBLE);
1467 hrtimer_start_expires(&t->timer, mode);
1468 if (!hrtimer_active(&t->timer))
1469 t->task = NULL;
1470
1471 if (likely(t->task))
1472 schedule();
1473
1474 hrtimer_cancel(&t->timer);
1475 mode = HRTIMER_MODE_ABS;
1476
1477 } while (t->task && !signal_pending(current));
1478
1479 __set_current_state(TASK_RUNNING);
1480
1481 return t->task == NULL;
1482 }
1483
1484 static int update_rmtp(struct hrtimer *timer, struct timespec __user *rmtp)
1485 {
1486 struct timespec rmt;
1487 ktime_t rem;
1488
1489 rem = hrtimer_expires_remaining(timer);
1490 if (rem.tv64 <= 0)
1491 return 0;
1492 rmt = ktime_to_timespec(rem);
1493
1494 if (copy_to_user(rmtp, &rmt, sizeof(*rmtp)))
1495 return -EFAULT;
1496
1497 return 1;
1498 }
1499
1500 long __sched hrtimer_nanosleep_restart(struct restart_block *restart)
1501 {
1502 struct hrtimer_sleeper t;
1503 struct timespec __user *rmtp;
1504 int ret = 0;
1505
1506 hrtimer_init_on_stack(&t.timer, restart->nanosleep.index,
1507 HRTIMER_MODE_ABS);
1508 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires);
1509
1510 if (do_nanosleep(&t, HRTIMER_MODE_ABS))
1511 goto out;
1512
1513 rmtp = restart->nanosleep.rmtp;
1514 if (rmtp) {
1515 ret = update_rmtp(&t.timer, rmtp);
1516 if (ret <= 0)
1517 goto out;
1518 }
1519
1520 /* The other values in restart are already filled in */
1521 ret = -ERESTART_RESTARTBLOCK;
1522 out:
1523 destroy_hrtimer_on_stack(&t.timer);
1524 return ret;
1525 }
1526
1527 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
1528 const enum hrtimer_mode mode, const clockid_t clockid)
1529 {
1530 struct restart_block *restart;
1531 struct hrtimer_sleeper t;
1532 int ret = 0;
1533 unsigned long slack;
1534
1535 slack = current->timer_slack_ns;
1536 if (rt_task(current))
1537 slack = 0;
1538
1539 hrtimer_init_on_stack(&t.timer, clockid, mode);
1540 hrtimer_set_expires_range_ns(&t.timer, timespec_to_ktime(*rqtp), slack);
1541 if (do_nanosleep(&t, mode))
1542 goto out;
1543
1544 /* Absolute timers do not update the rmtp value and restart: */
1545 if (mode == HRTIMER_MODE_ABS) {
1546 ret = -ERESTARTNOHAND;
1547 goto out;
1548 }
1549
1550 if (rmtp) {
1551 ret = update_rmtp(&t.timer, rmtp);
1552 if (ret <= 0)
1553 goto out;
1554 }
1555
1556 restart = &current_thread_info()->restart_block;
1557 restart->fn = hrtimer_nanosleep_restart;
1558 restart->nanosleep.index = t.timer.base->index;
1559 restart->nanosleep.rmtp = rmtp;
1560 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer);
1561
1562 ret = -ERESTART_RESTARTBLOCK;
1563 out:
1564 destroy_hrtimer_on_stack(&t.timer);
1565 return ret;
1566 }
1567
1568 SYSCALL_DEFINE2(nanosleep, struct timespec __user *, rqtp,
1569 struct timespec __user *, rmtp)
1570 {
1571 struct timespec tu;
1572
1573 if (copy_from_user(&tu, rqtp, sizeof(tu)))
1574 return -EFAULT;
1575
1576 if (!timespec_valid(&tu))
1577 return -EINVAL;
1578
1579 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_MODE_REL, CLOCK_MONOTONIC);
1580 }
1581
1582 /*
1583 * Functions related to boot-time initialization:
1584 */
1585 static void __cpuinit init_hrtimers_cpu(int cpu)
1586 {
1587 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu);
1588 int i;
1589
1590 spin_lock_init(&cpu_base->lock);
1591
1592 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++)
1593 cpu_base->clock_base[i].cpu_base = cpu_base;
1594
1595 hrtimer_init_hres(cpu_base);
1596 }
1597
1598 #ifdef CONFIG_HOTPLUG_CPU
1599
1600 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base,
1601 struct hrtimer_clock_base *new_base)
1602 {
1603 struct hrtimer *timer;
1604 struct rb_node *node;
1605
1606 while ((node = rb_first(&old_base->active))) {
1607 timer = rb_entry(node, struct hrtimer, node);
1608 BUG_ON(hrtimer_callback_running(timer));
1609 debug_hrtimer_deactivate(timer);
1610
1611 /*
1612 * Mark it as STATE_MIGRATE not INACTIVE otherwise the
1613 * timer could be seen as !active and just vanish away
1614 * under us on another CPU
1615 */
1616 __remove_hrtimer(timer, old_base, HRTIMER_STATE_MIGRATE, 0);
1617 timer->base = new_base;
1618 /*
1619 * Enqueue the timers on the new cpu. This does not
1620 * reprogram the event device in case the timer
1621 * expires before the earliest on this CPU, but we run
1622 * hrtimer_interrupt after we migrated everything to
1623 * sort out already expired timers and reprogram the
1624 * event device.
1625 */
1626 enqueue_hrtimer(timer, new_base);
1627
1628 /* Clear the migration state bit */
1629 timer->state &= ~HRTIMER_STATE_MIGRATE;
1630 }
1631 }
1632
1633 static void migrate_hrtimers(int scpu)
1634 {
1635 struct hrtimer_cpu_base *old_base, *new_base;
1636 int i;
1637
1638 BUG_ON(cpu_online(scpu));
1639 tick_cancel_sched_timer(scpu);
1640
1641 local_irq_disable();
1642 old_base = &per_cpu(hrtimer_bases, scpu);
1643 new_base = &__get_cpu_var(hrtimer_bases);
1644 /*
1645 * The caller is globally serialized and nobody else
1646 * takes two locks at once, deadlock is not possible.
1647 */
1648 spin_lock(&new_base->lock);
1649 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1650
1651 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) {
1652 migrate_hrtimer_list(&old_base->clock_base[i],
1653 &new_base->clock_base[i]);
1654 }
1655
1656 spin_unlock(&old_base->lock);
1657 spin_unlock(&new_base->lock);
1658
1659 /* Check, if we got expired work to do */
1660 __hrtimer_peek_ahead_timers();
1661 local_irq_enable();
1662 }
1663
1664 #endif /* CONFIG_HOTPLUG_CPU */
1665
1666 static int __cpuinit hrtimer_cpu_notify(struct notifier_block *self,
1667 unsigned long action, void *hcpu)
1668 {
1669 int scpu = (long)hcpu;
1670
1671 switch (action) {
1672
1673 case CPU_UP_PREPARE:
1674 case CPU_UP_PREPARE_FROZEN:
1675 init_hrtimers_cpu(scpu);
1676 break;
1677
1678 #ifdef CONFIG_HOTPLUG_CPU
1679 case CPU_DYING:
1680 case CPU_DYING_FROZEN:
1681 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DYING, &scpu);
1682 break;
1683 case CPU_DEAD:
1684 case CPU_DEAD_FROZEN:
1685 {
1686 clockevents_notify(CLOCK_EVT_NOTIFY_CPU_DEAD, &scpu);
1687 migrate_hrtimers(scpu);
1688 break;
1689 }
1690 #endif
1691
1692 default:
1693 break;
1694 }
1695
1696 return NOTIFY_OK;
1697 }
1698
1699 static struct notifier_block __cpuinitdata hrtimers_nb = {
1700 .notifier_call = hrtimer_cpu_notify,
1701 };
1702
1703 void __init hrtimers_init(void)
1704 {
1705 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
1706 (void *)(long)smp_processor_id());
1707 register_cpu_notifier(&hrtimers_nb);
1708 #ifdef CONFIG_HIGH_RES_TIMERS
1709 open_softirq(HRTIMER_SOFTIRQ, run_hrtimer_softirq);
1710 #endif
1711 }
1712
1713 /**
1714 * schedule_hrtimeout_range - sleep until timeout
1715 * @expires: timeout value (ktime_t)
1716 * @delta: slack in expires timeout (ktime_t)
1717 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1718 *
1719 * Make the current task sleep until the given expiry time has
1720 * elapsed. The routine will return immediately unless
1721 * the current task state has been set (see set_current_state()).
1722 *
1723 * The @delta argument gives the kernel the freedom to schedule the
1724 * actual wakeup to a time that is both power and performance friendly.
1725 * The kernel give the normal best effort behavior for "@expires+@delta",
1726 * but may decide to fire the timer earlier, but no earlier than @expires.
1727 *
1728 * You can set the task state as follows -
1729 *
1730 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1731 * pass before the routine returns.
1732 *
1733 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1734 * delivered to the current task.
1735 *
1736 * The current task state is guaranteed to be TASK_RUNNING when this
1737 * routine returns.
1738 *
1739 * Returns 0 when the timer has expired otherwise -EINTR
1740 */
1741 int __sched schedule_hrtimeout_range(ktime_t *expires, unsigned long delta,
1742 const enum hrtimer_mode mode)
1743 {
1744 struct hrtimer_sleeper t;
1745
1746 /*
1747 * Optimize when a zero timeout value is given. It does not
1748 * matter whether this is an absolute or a relative time.
1749 */
1750 if (expires && !expires->tv64) {
1751 __set_current_state(TASK_RUNNING);
1752 return 0;
1753 }
1754
1755 /*
1756 * A NULL parameter means "inifinte"
1757 */
1758 if (!expires) {
1759 schedule();
1760 __set_current_state(TASK_RUNNING);
1761 return -EINTR;
1762 }
1763
1764 hrtimer_init_on_stack(&t.timer, CLOCK_MONOTONIC, mode);
1765 hrtimer_set_expires_range_ns(&t.timer, *expires, delta);
1766
1767 hrtimer_init_sleeper(&t, current);
1768
1769 hrtimer_start_expires(&t.timer, mode);
1770 if (!hrtimer_active(&t.timer))
1771 t.task = NULL;
1772
1773 if (likely(t.task))
1774 schedule();
1775
1776 hrtimer_cancel(&t.timer);
1777 destroy_hrtimer_on_stack(&t.timer);
1778
1779 __set_current_state(TASK_RUNNING);
1780
1781 return !t.task ? 0 : -EINTR;
1782 }
1783 EXPORT_SYMBOL_GPL(schedule_hrtimeout_range);
1784
1785 /**
1786 * schedule_hrtimeout - sleep until timeout
1787 * @expires: timeout value (ktime_t)
1788 * @mode: timer mode, HRTIMER_MODE_ABS or HRTIMER_MODE_REL
1789 *
1790 * Make the current task sleep until the given expiry time has
1791 * elapsed. The routine will return immediately unless
1792 * the current task state has been set (see set_current_state()).
1793 *
1794 * You can set the task state as follows -
1795 *
1796 * %TASK_UNINTERRUPTIBLE - at least @timeout time is guaranteed to
1797 * pass before the routine returns.
1798 *
1799 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1800 * delivered to the current task.
1801 *
1802 * The current task state is guaranteed to be TASK_RUNNING when this
1803 * routine returns.
1804 *
1805 * Returns 0 when the timer has expired otherwise -EINTR
1806 */
1807 int __sched schedule_hrtimeout(ktime_t *expires,
1808 const enum hrtimer_mode mode)
1809 {
1810 return schedule_hrtimeout_range(expires, 0, mode);
1811 }
1812 EXPORT_SYMBOL_GPL(schedule_hrtimeout);