]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/hrtimer.c
Merge master.kernel.org:/pub/scm/linux/kernel/git/davem/net-2.6
[mirror_ubuntu-artful-kernel.git] / kernel / hrtimer.c
1 /*
2 * linux/kernel/hrtimer.c
3 *
4 * Copyright(C) 2005, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005, Red Hat, Inc., Ingo Molnar
6 *
7 * High-resolution kernel timers
8 *
9 * In contrast to the low-resolution timeout API implemented in
10 * kernel/timer.c, hrtimers provide finer resolution and accuracy
11 * depending on system configuration and capabilities.
12 *
13 * These timers are currently used for:
14 * - itimers
15 * - POSIX timers
16 * - nanosleep
17 * - precise in-kernel timing
18 *
19 * Started by: Thomas Gleixner and Ingo Molnar
20 *
21 * Credits:
22 * based on kernel/timer.c
23 *
24 * Help, testing, suggestions, bugfixes, improvements were
25 * provided by:
26 *
27 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel
28 * et. al.
29 *
30 * For licencing details see kernel-base/COPYING
31 */
32
33 #include <linux/cpu.h>
34 #include <linux/module.h>
35 #include <linux/percpu.h>
36 #include <linux/hrtimer.h>
37 #include <linux/notifier.h>
38 #include <linux/syscalls.h>
39 #include <linux/interrupt.h>
40
41 #include <asm/uaccess.h>
42
43 /**
44 * ktime_get - get the monotonic time in ktime_t format
45 *
46 * returns the time in ktime_t format
47 */
48 static ktime_t ktime_get(void)
49 {
50 struct timespec now;
51
52 ktime_get_ts(&now);
53
54 return timespec_to_ktime(now);
55 }
56
57 /**
58 * ktime_get_real - get the real (wall-) time in ktime_t format
59 *
60 * returns the time in ktime_t format
61 */
62 static ktime_t ktime_get_real(void)
63 {
64 struct timespec now;
65
66 getnstimeofday(&now);
67
68 return timespec_to_ktime(now);
69 }
70
71 EXPORT_SYMBOL_GPL(ktime_get_real);
72
73 /*
74 * The timer bases:
75 *
76 * Note: If we want to add new timer bases, we have to skip the two
77 * clock ids captured by the cpu-timers. We do this by holding empty
78 * entries rather than doing math adjustment of the clock ids.
79 * This ensures that we capture erroneous accesses to these clock ids
80 * rather than moving them into the range of valid clock id's.
81 */
82
83 #define MAX_HRTIMER_BASES 2
84
85 static DEFINE_PER_CPU(struct hrtimer_base, hrtimer_bases[MAX_HRTIMER_BASES]) =
86 {
87 {
88 .index = CLOCK_REALTIME,
89 .get_time = &ktime_get_real,
90 .resolution = KTIME_REALTIME_RES,
91 },
92 {
93 .index = CLOCK_MONOTONIC,
94 .get_time = &ktime_get,
95 .resolution = KTIME_MONOTONIC_RES,
96 },
97 };
98
99 /**
100 * ktime_get_ts - get the monotonic clock in timespec format
101 *
102 * @ts: pointer to timespec variable
103 *
104 * The function calculates the monotonic clock from the realtime
105 * clock and the wall_to_monotonic offset and stores the result
106 * in normalized timespec format in the variable pointed to by ts.
107 */
108 void ktime_get_ts(struct timespec *ts)
109 {
110 struct timespec tomono;
111 unsigned long seq;
112
113 do {
114 seq = read_seqbegin(&xtime_lock);
115 getnstimeofday(ts);
116 tomono = wall_to_monotonic;
117
118 } while (read_seqretry(&xtime_lock, seq));
119
120 set_normalized_timespec(ts, ts->tv_sec + tomono.tv_sec,
121 ts->tv_nsec + tomono.tv_nsec);
122 }
123 EXPORT_SYMBOL_GPL(ktime_get_ts);
124
125 /*
126 * Get the coarse grained time at the softirq based on xtime and
127 * wall_to_monotonic.
128 */
129 static void hrtimer_get_softirq_time(struct hrtimer_base *base)
130 {
131 ktime_t xtim, tomono;
132 unsigned long seq;
133
134 do {
135 seq = read_seqbegin(&xtime_lock);
136 xtim = timespec_to_ktime(xtime);
137 tomono = timespec_to_ktime(wall_to_monotonic);
138
139 } while (read_seqretry(&xtime_lock, seq));
140
141 base[CLOCK_REALTIME].softirq_time = xtim;
142 base[CLOCK_MONOTONIC].softirq_time = ktime_add(xtim, tomono);
143 }
144
145 /*
146 * Functions and macros which are different for UP/SMP systems are kept in a
147 * single place
148 */
149 #ifdef CONFIG_SMP
150
151 #define set_curr_timer(b, t) do { (b)->curr_timer = (t); } while (0)
152
153 /*
154 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock
155 * means that all timers which are tied to this base via timer->base are
156 * locked, and the base itself is locked too.
157 *
158 * So __run_timers/migrate_timers can safely modify all timers which could
159 * be found on the lists/queues.
160 *
161 * When the timer's base is locked, and the timer removed from list, it is
162 * possible to set timer->base = NULL and drop the lock: the timer remains
163 * locked.
164 */
165 static struct hrtimer_base *lock_hrtimer_base(const struct hrtimer *timer,
166 unsigned long *flags)
167 {
168 struct hrtimer_base *base;
169
170 for (;;) {
171 base = timer->base;
172 if (likely(base != NULL)) {
173 spin_lock_irqsave(&base->lock, *flags);
174 if (likely(base == timer->base))
175 return base;
176 /* The timer has migrated to another CPU: */
177 spin_unlock_irqrestore(&base->lock, *flags);
178 }
179 cpu_relax();
180 }
181 }
182
183 /*
184 * Switch the timer base to the current CPU when possible.
185 */
186 static inline struct hrtimer_base *
187 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_base *base)
188 {
189 struct hrtimer_base *new_base;
190
191 new_base = &__get_cpu_var(hrtimer_bases[base->index]);
192
193 if (base != new_base) {
194 /*
195 * We are trying to schedule the timer on the local CPU.
196 * However we can't change timer's base while it is running,
197 * so we keep it on the same CPU. No hassle vs. reprogramming
198 * the event source in the high resolution case. The softirq
199 * code will take care of this when the timer function has
200 * completed. There is no conflict as we hold the lock until
201 * the timer is enqueued.
202 */
203 if (unlikely(base->curr_timer == timer))
204 return base;
205
206 /* See the comment in lock_timer_base() */
207 timer->base = NULL;
208 spin_unlock(&base->lock);
209 spin_lock(&new_base->lock);
210 timer->base = new_base;
211 }
212 return new_base;
213 }
214
215 #else /* CONFIG_SMP */
216
217 #define set_curr_timer(b, t) do { } while (0)
218
219 static inline struct hrtimer_base *
220 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
221 {
222 struct hrtimer_base *base = timer->base;
223
224 spin_lock_irqsave(&base->lock, *flags);
225
226 return base;
227 }
228
229 #define switch_hrtimer_base(t, b) (b)
230
231 #endif /* !CONFIG_SMP */
232
233 /*
234 * Functions for the union type storage format of ktime_t which are
235 * too large for inlining:
236 */
237 #if BITS_PER_LONG < 64
238 # ifndef CONFIG_KTIME_SCALAR
239 /**
240 * ktime_add_ns - Add a scalar nanoseconds value to a ktime_t variable
241 *
242 * @kt: addend
243 * @nsec: the scalar nsec value to add
244 *
245 * Returns the sum of kt and nsec in ktime_t format
246 */
247 ktime_t ktime_add_ns(const ktime_t kt, u64 nsec)
248 {
249 ktime_t tmp;
250
251 if (likely(nsec < NSEC_PER_SEC)) {
252 tmp.tv64 = nsec;
253 } else {
254 unsigned long rem = do_div(nsec, NSEC_PER_SEC);
255
256 tmp = ktime_set((long)nsec, rem);
257 }
258
259 return ktime_add(kt, tmp);
260 }
261
262 #else /* CONFIG_KTIME_SCALAR */
263
264 # endif /* !CONFIG_KTIME_SCALAR */
265
266 /*
267 * Divide a ktime value by a nanosecond value
268 */
269 static unsigned long ktime_divns(const ktime_t kt, s64 div)
270 {
271 u64 dclc, inc, dns;
272 int sft = 0;
273
274 dclc = dns = ktime_to_ns(kt);
275 inc = div;
276 /* Make sure the divisor is less than 2^32: */
277 while (div >> 32) {
278 sft++;
279 div >>= 1;
280 }
281 dclc >>= sft;
282 do_div(dclc, (unsigned long) div);
283
284 return (unsigned long) dclc;
285 }
286
287 #else /* BITS_PER_LONG < 64 */
288 # define ktime_divns(kt, div) (unsigned long)((kt).tv64 / (div))
289 #endif /* BITS_PER_LONG >= 64 */
290
291 /*
292 * Counterpart to lock_timer_base above:
293 */
294 static inline
295 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags)
296 {
297 spin_unlock_irqrestore(&timer->base->lock, *flags);
298 }
299
300 /**
301 * hrtimer_forward - forward the timer expiry
302 *
303 * @timer: hrtimer to forward
304 * @now: forward past this time
305 * @interval: the interval to forward
306 *
307 * Forward the timer expiry so it will expire in the future.
308 * Returns the number of overruns.
309 */
310 unsigned long
311 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval)
312 {
313 unsigned long orun = 1;
314 ktime_t delta;
315
316 delta = ktime_sub(now, timer->expires);
317
318 if (delta.tv64 < 0)
319 return 0;
320
321 if (interval.tv64 < timer->base->resolution.tv64)
322 interval.tv64 = timer->base->resolution.tv64;
323
324 if (unlikely(delta.tv64 >= interval.tv64)) {
325 s64 incr = ktime_to_ns(interval);
326
327 orun = ktime_divns(delta, incr);
328 timer->expires = ktime_add_ns(timer->expires, incr * orun);
329 if (timer->expires.tv64 > now.tv64)
330 return orun;
331 /*
332 * This (and the ktime_add() below) is the
333 * correction for exact:
334 */
335 orun++;
336 }
337 timer->expires = ktime_add(timer->expires, interval);
338
339 return orun;
340 }
341
342 /*
343 * enqueue_hrtimer - internal function to (re)start a timer
344 *
345 * The timer is inserted in expiry order. Insertion into the
346 * red black tree is O(log(n)). Must hold the base lock.
347 */
348 static void enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
349 {
350 struct rb_node **link = &base->active.rb_node;
351 struct rb_node *parent = NULL;
352 struct hrtimer *entry;
353
354 /*
355 * Find the right place in the rbtree:
356 */
357 while (*link) {
358 parent = *link;
359 entry = rb_entry(parent, struct hrtimer, node);
360 /*
361 * We dont care about collisions. Nodes with
362 * the same expiry time stay together.
363 */
364 if (timer->expires.tv64 < entry->expires.tv64)
365 link = &(*link)->rb_left;
366 else
367 link = &(*link)->rb_right;
368 }
369
370 /*
371 * Insert the timer to the rbtree and check whether it
372 * replaces the first pending timer
373 */
374 rb_link_node(&timer->node, parent, link);
375 rb_insert_color(&timer->node, &base->active);
376
377 if (!base->first || timer->expires.tv64 <
378 rb_entry(base->first, struct hrtimer, node)->expires.tv64)
379 base->first = &timer->node;
380 }
381
382 /*
383 * __remove_hrtimer - internal function to remove a timer
384 *
385 * Caller must hold the base lock.
386 */
387 static void __remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
388 {
389 /*
390 * Remove the timer from the rbtree and replace the
391 * first entry pointer if necessary.
392 */
393 if (base->first == &timer->node)
394 base->first = rb_next(&timer->node);
395 rb_erase(&timer->node, &base->active);
396 rb_set_parent(&timer->node, &timer->node);
397 }
398
399 /*
400 * remove hrtimer, called with base lock held
401 */
402 static inline int
403 remove_hrtimer(struct hrtimer *timer, struct hrtimer_base *base)
404 {
405 if (hrtimer_active(timer)) {
406 __remove_hrtimer(timer, base);
407 return 1;
408 }
409 return 0;
410 }
411
412 /**
413 * hrtimer_start - (re)start an relative timer on the current CPU
414 *
415 * @timer: the timer to be added
416 * @tim: expiry time
417 * @mode: expiry mode: absolute (HRTIMER_ABS) or relative (HRTIMER_REL)
418 *
419 * Returns:
420 * 0 on success
421 * 1 when the timer was active
422 */
423 int
424 hrtimer_start(struct hrtimer *timer, ktime_t tim, const enum hrtimer_mode mode)
425 {
426 struct hrtimer_base *base, *new_base;
427 unsigned long flags;
428 int ret;
429
430 base = lock_hrtimer_base(timer, &flags);
431
432 /* Remove an active timer from the queue: */
433 ret = remove_hrtimer(timer, base);
434
435 /* Switch the timer base, if necessary: */
436 new_base = switch_hrtimer_base(timer, base);
437
438 if (mode == HRTIMER_REL) {
439 tim = ktime_add(tim, new_base->get_time());
440 /*
441 * CONFIG_TIME_LOW_RES is a temporary way for architectures
442 * to signal that they simply return xtime in
443 * do_gettimeoffset(). In this case we want to round up by
444 * resolution when starting a relative timer, to avoid short
445 * timeouts. This will go away with the GTOD framework.
446 */
447 #ifdef CONFIG_TIME_LOW_RES
448 tim = ktime_add(tim, base->resolution);
449 #endif
450 }
451 timer->expires = tim;
452
453 enqueue_hrtimer(timer, new_base);
454
455 unlock_hrtimer_base(timer, &flags);
456
457 return ret;
458 }
459 EXPORT_SYMBOL_GPL(hrtimer_start);
460
461 /**
462 * hrtimer_try_to_cancel - try to deactivate a timer
463 *
464 * @timer: hrtimer to stop
465 *
466 * Returns:
467 * 0 when the timer was not active
468 * 1 when the timer was active
469 * -1 when the timer is currently excuting the callback function and
470 * can not be stopped
471 */
472 int hrtimer_try_to_cancel(struct hrtimer *timer)
473 {
474 struct hrtimer_base *base;
475 unsigned long flags;
476 int ret = -1;
477
478 base = lock_hrtimer_base(timer, &flags);
479
480 if (base->curr_timer != timer)
481 ret = remove_hrtimer(timer, base);
482
483 unlock_hrtimer_base(timer, &flags);
484
485 return ret;
486
487 }
488 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel);
489
490 /**
491 * hrtimer_cancel - cancel a timer and wait for the handler to finish.
492 *
493 * @timer: the timer to be cancelled
494 *
495 * Returns:
496 * 0 when the timer was not active
497 * 1 when the timer was active
498 */
499 int hrtimer_cancel(struct hrtimer *timer)
500 {
501 for (;;) {
502 int ret = hrtimer_try_to_cancel(timer);
503
504 if (ret >= 0)
505 return ret;
506 cpu_relax();
507 }
508 }
509 EXPORT_SYMBOL_GPL(hrtimer_cancel);
510
511 /**
512 * hrtimer_get_remaining - get remaining time for the timer
513 *
514 * @timer: the timer to read
515 */
516 ktime_t hrtimer_get_remaining(const struct hrtimer *timer)
517 {
518 struct hrtimer_base *base;
519 unsigned long flags;
520 ktime_t rem;
521
522 base = lock_hrtimer_base(timer, &flags);
523 rem = ktime_sub(timer->expires, timer->base->get_time());
524 unlock_hrtimer_base(timer, &flags);
525
526 return rem;
527 }
528 EXPORT_SYMBOL_GPL(hrtimer_get_remaining);
529
530 #ifdef CONFIG_NO_IDLE_HZ
531 /**
532 * hrtimer_get_next_event - get the time until next expiry event
533 *
534 * Returns the delta to the next expiry event or KTIME_MAX if no timer
535 * is pending.
536 */
537 ktime_t hrtimer_get_next_event(void)
538 {
539 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
540 ktime_t delta, mindelta = { .tv64 = KTIME_MAX };
541 unsigned long flags;
542 int i;
543
544 for (i = 0; i < MAX_HRTIMER_BASES; i++, base++) {
545 struct hrtimer *timer;
546
547 spin_lock_irqsave(&base->lock, flags);
548 if (!base->first) {
549 spin_unlock_irqrestore(&base->lock, flags);
550 continue;
551 }
552 timer = rb_entry(base->first, struct hrtimer, node);
553 delta.tv64 = timer->expires.tv64;
554 spin_unlock_irqrestore(&base->lock, flags);
555 delta = ktime_sub(delta, base->get_time());
556 if (delta.tv64 < mindelta.tv64)
557 mindelta.tv64 = delta.tv64;
558 }
559 if (mindelta.tv64 < 0)
560 mindelta.tv64 = 0;
561 return mindelta;
562 }
563 #endif
564
565 /**
566 * hrtimer_init - initialize a timer to the given clock
567 *
568 * @timer: the timer to be initialized
569 * @clock_id: the clock to be used
570 * @mode: timer mode abs/rel
571 */
572 void hrtimer_init(struct hrtimer *timer, clockid_t clock_id,
573 enum hrtimer_mode mode)
574 {
575 struct hrtimer_base *bases;
576
577 memset(timer, 0, sizeof(struct hrtimer));
578
579 bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
580
581 if (clock_id == CLOCK_REALTIME && mode != HRTIMER_ABS)
582 clock_id = CLOCK_MONOTONIC;
583
584 timer->base = &bases[clock_id];
585 rb_set_parent(&timer->node, &timer->node);
586 }
587 EXPORT_SYMBOL_GPL(hrtimer_init);
588
589 /**
590 * hrtimer_get_res - get the timer resolution for a clock
591 *
592 * @which_clock: which clock to query
593 * @tp: pointer to timespec variable to store the resolution
594 *
595 * Store the resolution of the clock selected by which_clock in the
596 * variable pointed to by tp.
597 */
598 int hrtimer_get_res(const clockid_t which_clock, struct timespec *tp)
599 {
600 struct hrtimer_base *bases;
601
602 bases = per_cpu(hrtimer_bases, raw_smp_processor_id());
603 *tp = ktime_to_timespec(bases[which_clock].resolution);
604
605 return 0;
606 }
607 EXPORT_SYMBOL_GPL(hrtimer_get_res);
608
609 /*
610 * Expire the per base hrtimer-queue:
611 */
612 static inline void run_hrtimer_queue(struct hrtimer_base *base)
613 {
614 struct rb_node *node;
615
616 if (!base->first)
617 return;
618
619 if (base->get_softirq_time)
620 base->softirq_time = base->get_softirq_time();
621
622 spin_lock_irq(&base->lock);
623
624 while ((node = base->first)) {
625 struct hrtimer *timer;
626 int (*fn)(struct hrtimer *);
627 int restart;
628
629 timer = rb_entry(node, struct hrtimer, node);
630 if (base->softirq_time.tv64 <= timer->expires.tv64)
631 break;
632
633 fn = timer->function;
634 set_curr_timer(base, timer);
635 __remove_hrtimer(timer, base);
636 spin_unlock_irq(&base->lock);
637
638 restart = fn(timer);
639
640 spin_lock_irq(&base->lock);
641
642 if (restart != HRTIMER_NORESTART) {
643 BUG_ON(hrtimer_active(timer));
644 enqueue_hrtimer(timer, base);
645 }
646 }
647 set_curr_timer(base, NULL);
648 spin_unlock_irq(&base->lock);
649 }
650
651 /*
652 * Called from timer softirq every jiffy, expire hrtimers:
653 */
654 void hrtimer_run_queues(void)
655 {
656 struct hrtimer_base *base = __get_cpu_var(hrtimer_bases);
657 int i;
658
659 hrtimer_get_softirq_time(base);
660
661 for (i = 0; i < MAX_HRTIMER_BASES; i++)
662 run_hrtimer_queue(&base[i]);
663 }
664
665 /*
666 * Sleep related functions:
667 */
668 static int hrtimer_wakeup(struct hrtimer *timer)
669 {
670 struct hrtimer_sleeper *t =
671 container_of(timer, struct hrtimer_sleeper, timer);
672 struct task_struct *task = t->task;
673
674 t->task = NULL;
675 if (task)
676 wake_up_process(task);
677
678 return HRTIMER_NORESTART;
679 }
680
681 void hrtimer_init_sleeper(struct hrtimer_sleeper *sl, task_t *task)
682 {
683 sl->timer.function = hrtimer_wakeup;
684 sl->task = task;
685 }
686
687 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode)
688 {
689 hrtimer_init_sleeper(t, current);
690
691 do {
692 set_current_state(TASK_INTERRUPTIBLE);
693 hrtimer_start(&t->timer, t->timer.expires, mode);
694
695 schedule();
696
697 hrtimer_cancel(&t->timer);
698 mode = HRTIMER_ABS;
699
700 } while (t->task && !signal_pending(current));
701
702 return t->task == NULL;
703 }
704
705 static long __sched nanosleep_restart(struct restart_block *restart)
706 {
707 struct hrtimer_sleeper t;
708 struct timespec __user *rmtp;
709 struct timespec tu;
710 ktime_t time;
711
712 restart->fn = do_no_restart_syscall;
713
714 hrtimer_init(&t.timer, restart->arg3, HRTIMER_ABS);
715 t.timer.expires.tv64 = ((u64)restart->arg1 << 32) | (u64) restart->arg0;
716
717 if (do_nanosleep(&t, HRTIMER_ABS))
718 return 0;
719
720 rmtp = (struct timespec __user *) restart->arg2;
721 if (rmtp) {
722 time = ktime_sub(t.timer.expires, t.timer.base->get_time());
723 if (time.tv64 <= 0)
724 return 0;
725 tu = ktime_to_timespec(time);
726 if (copy_to_user(rmtp, &tu, sizeof(tu)))
727 return -EFAULT;
728 }
729
730 restart->fn = nanosleep_restart;
731
732 /* The other values in restart are already filled in */
733 return -ERESTART_RESTARTBLOCK;
734 }
735
736 long hrtimer_nanosleep(struct timespec *rqtp, struct timespec __user *rmtp,
737 const enum hrtimer_mode mode, const clockid_t clockid)
738 {
739 struct restart_block *restart;
740 struct hrtimer_sleeper t;
741 struct timespec tu;
742 ktime_t rem;
743
744 hrtimer_init(&t.timer, clockid, mode);
745 t.timer.expires = timespec_to_ktime(*rqtp);
746 if (do_nanosleep(&t, mode))
747 return 0;
748
749 /* Absolute timers do not update the rmtp value and restart: */
750 if (mode == HRTIMER_ABS)
751 return -ERESTARTNOHAND;
752
753 if (rmtp) {
754 rem = ktime_sub(t.timer.expires, t.timer.base->get_time());
755 if (rem.tv64 <= 0)
756 return 0;
757 tu = ktime_to_timespec(rem);
758 if (copy_to_user(rmtp, &tu, sizeof(tu)))
759 return -EFAULT;
760 }
761
762 restart = &current_thread_info()->restart_block;
763 restart->fn = nanosleep_restart;
764 restart->arg0 = t.timer.expires.tv64 & 0xFFFFFFFF;
765 restart->arg1 = t.timer.expires.tv64 >> 32;
766 restart->arg2 = (unsigned long) rmtp;
767 restart->arg3 = (unsigned long) t.timer.base->index;
768
769 return -ERESTART_RESTARTBLOCK;
770 }
771
772 asmlinkage long
773 sys_nanosleep(struct timespec __user *rqtp, struct timespec __user *rmtp)
774 {
775 struct timespec tu;
776
777 if (copy_from_user(&tu, rqtp, sizeof(tu)))
778 return -EFAULT;
779
780 if (!timespec_valid(&tu))
781 return -EINVAL;
782
783 return hrtimer_nanosleep(&tu, rmtp, HRTIMER_REL, CLOCK_MONOTONIC);
784 }
785
786 /*
787 * Functions related to boot-time initialization:
788 */
789 static void __devinit init_hrtimers_cpu(int cpu)
790 {
791 struct hrtimer_base *base = per_cpu(hrtimer_bases, cpu);
792 int i;
793
794 for (i = 0; i < MAX_HRTIMER_BASES; i++, base++)
795 spin_lock_init(&base->lock);
796 }
797
798 #ifdef CONFIG_HOTPLUG_CPU
799
800 static void migrate_hrtimer_list(struct hrtimer_base *old_base,
801 struct hrtimer_base *new_base)
802 {
803 struct hrtimer *timer;
804 struct rb_node *node;
805
806 while ((node = rb_first(&old_base->active))) {
807 timer = rb_entry(node, struct hrtimer, node);
808 __remove_hrtimer(timer, old_base);
809 timer->base = new_base;
810 enqueue_hrtimer(timer, new_base);
811 }
812 }
813
814 static void migrate_hrtimers(int cpu)
815 {
816 struct hrtimer_base *old_base, *new_base;
817 int i;
818
819 BUG_ON(cpu_online(cpu));
820 old_base = per_cpu(hrtimer_bases, cpu);
821 new_base = get_cpu_var(hrtimer_bases);
822
823 local_irq_disable();
824
825 for (i = 0; i < MAX_HRTIMER_BASES; i++) {
826
827 spin_lock(&new_base->lock);
828 spin_lock(&old_base->lock);
829
830 BUG_ON(old_base->curr_timer);
831
832 migrate_hrtimer_list(old_base, new_base);
833
834 spin_unlock(&old_base->lock);
835 spin_unlock(&new_base->lock);
836 old_base++;
837 new_base++;
838 }
839
840 local_irq_enable();
841 put_cpu_var(hrtimer_bases);
842 }
843 #endif /* CONFIG_HOTPLUG_CPU */
844
845 static int hrtimer_cpu_notify(struct notifier_block *self,
846 unsigned long action, void *hcpu)
847 {
848 long cpu = (long)hcpu;
849
850 switch (action) {
851
852 case CPU_UP_PREPARE:
853 init_hrtimers_cpu(cpu);
854 break;
855
856 #ifdef CONFIG_HOTPLUG_CPU
857 case CPU_DEAD:
858 migrate_hrtimers(cpu);
859 break;
860 #endif
861
862 default:
863 break;
864 }
865
866 return NOTIFY_OK;
867 }
868
869 static struct notifier_block hrtimers_nb = {
870 .notifier_call = hrtimer_cpu_notify,
871 };
872
873 void __init hrtimers_init(void)
874 {
875 hrtimer_cpu_notify(&hrtimers_nb, (unsigned long)CPU_UP_PREPARE,
876 (void *)(long)smp_processor_id());
877 register_cpu_notifier(&hrtimers_nb);
878 }
879