]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blob - kernel/irq/manage.c
Merge branches 'for-5.1/upstream-fixes', 'for-5.2/core', 'for-5.2/ish', 'for-5.2...
[mirror_ubuntu-kernels.git] / kernel / irq / manage.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
4 * Copyright (C) 2005-2006 Thomas Gleixner
5 *
6 * This file contains driver APIs to the irq subsystem.
7 */
8
9 #define pr_fmt(fmt) "genirq: " fmt
10
11 #include <linux/irq.h>
12 #include <linux/kthread.h>
13 #include <linux/module.h>
14 #include <linux/random.h>
15 #include <linux/interrupt.h>
16 #include <linux/slab.h>
17 #include <linux/sched.h>
18 #include <linux/sched/rt.h>
19 #include <linux/sched/task.h>
20 #include <uapi/linux/sched/types.h>
21 #include <linux/task_work.h>
22
23 #include "internals.h"
24
25 #ifdef CONFIG_IRQ_FORCED_THREADING
26 __read_mostly bool force_irqthreads;
27 EXPORT_SYMBOL_GPL(force_irqthreads);
28
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 force_irqthreads = true;
32 return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 bool inprogress;
40
41 do {
42 unsigned long flags;
43
44 /*
45 * Wait until we're out of the critical section. This might
46 * give the wrong answer due to the lack of memory barriers.
47 */
48 while (irqd_irq_inprogress(&desc->irq_data))
49 cpu_relax();
50
51 /* Ok, that indicated we're done: double-check carefully. */
52 raw_spin_lock_irqsave(&desc->lock, flags);
53 inprogress = irqd_irq_inprogress(&desc->irq_data);
54 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56 /* Oops, that failed? */
57 } while (inprogress);
58 }
59
60 /**
61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62 * @irq: interrupt number to wait for
63 *
64 * This function waits for any pending hard IRQ handlers for this
65 * interrupt to complete before returning. If you use this
66 * function while holding a resource the IRQ handler may need you
67 * will deadlock. It does not take associated threaded handlers
68 * into account.
69 *
70 * Do not use this for shutdown scenarios where you must be sure
71 * that all parts (hardirq and threaded handler) have completed.
72 *
73 * Returns: false if a threaded handler is active.
74 *
75 * This function may be called - with care - from IRQ context.
76 */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 struct irq_desc *desc = irq_to_desc(irq);
80
81 if (desc) {
82 __synchronize_hardirq(desc);
83 return !atomic_read(&desc->threads_active);
84 }
85
86 return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92 * @irq: interrupt number to wait for
93 *
94 * This function waits for any pending IRQ handlers for this interrupt
95 * to complete before returning. If you use this function while
96 * holding a resource the IRQ handler may need you will deadlock.
97 *
98 * This function may be called - with care - from IRQ context.
99 */
100 void synchronize_irq(unsigned int irq)
101 {
102 struct irq_desc *desc = irq_to_desc(irq);
103
104 if (desc) {
105 __synchronize_hardirq(desc);
106 /*
107 * We made sure that no hardirq handler is
108 * running. Now verify that no threaded handlers are
109 * active.
110 */
111 wait_event(desc->wait_for_threads,
112 !atomic_read(&desc->threads_active));
113 }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 return false;
125 return true;
126 }
127
128 /**
129 * irq_can_set_affinity - Check if the affinity of a given irq can be set
130 * @irq: Interrupt to check
131 *
132 */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140 * @irq: Interrupt to check
141 *
142 * Like irq_can_set_affinity() above, but additionally checks for the
143 * AFFINITY_MANAGED flag.
144 */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 struct irq_desc *desc = irq_to_desc(irq);
148
149 return __irq_can_set_affinity(desc) &&
150 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154 * irq_set_thread_affinity - Notify irq threads to adjust affinity
155 * @desc: irq descriptor which has affitnity changed
156 *
157 * We just set IRQTF_AFFINITY and delegate the affinity setting
158 * to the interrupt thread itself. We can not call
159 * set_cpus_allowed_ptr() here as we hold desc->lock and this
160 * code can be called from hard interrupt context.
161 */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 struct irqaction *action;
165
166 for_each_action_of_desc(desc, action)
167 if (action->thread)
168 set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
171 static void irq_validate_effective_affinity(struct irq_data *data)
172 {
173 #ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
174 const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
175 struct irq_chip *chip = irq_data_get_irq_chip(data);
176
177 if (!cpumask_empty(m))
178 return;
179 pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
180 chip->name, data->irq);
181 #endif
182 }
183
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 bool force)
186 {
187 struct irq_desc *desc = irq_data_to_desc(data);
188 struct irq_chip *chip = irq_data_get_irq_chip(data);
189 int ret;
190
191 if (!chip || !chip->irq_set_affinity)
192 return -EINVAL;
193
194 ret = chip->irq_set_affinity(data, mask, force);
195 switch (ret) {
196 case IRQ_SET_MASK_OK:
197 case IRQ_SET_MASK_OK_DONE:
198 cpumask_copy(desc->irq_common_data.affinity, mask);
199 /* fall through */
200 case IRQ_SET_MASK_OK_NOCOPY:
201 irq_validate_effective_affinity(data);
202 irq_set_thread_affinity(desc);
203 ret = 0;
204 }
205
206 return ret;
207 }
208
209 #ifdef CONFIG_GENERIC_PENDING_IRQ
210 static inline int irq_set_affinity_pending(struct irq_data *data,
211 const struct cpumask *dest)
212 {
213 struct irq_desc *desc = irq_data_to_desc(data);
214
215 irqd_set_move_pending(data);
216 irq_copy_pending(desc, dest);
217 return 0;
218 }
219 #else
220 static inline int irq_set_affinity_pending(struct irq_data *data,
221 const struct cpumask *dest)
222 {
223 return -EBUSY;
224 }
225 #endif
226
227 static int irq_try_set_affinity(struct irq_data *data,
228 const struct cpumask *dest, bool force)
229 {
230 int ret = irq_do_set_affinity(data, dest, force);
231
232 /*
233 * In case that the underlying vector management is busy and the
234 * architecture supports the generic pending mechanism then utilize
235 * this to avoid returning an error to user space.
236 */
237 if (ret == -EBUSY && !force)
238 ret = irq_set_affinity_pending(data, dest);
239 return ret;
240 }
241
242 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
243 bool force)
244 {
245 struct irq_chip *chip = irq_data_get_irq_chip(data);
246 struct irq_desc *desc = irq_data_to_desc(data);
247 int ret = 0;
248
249 if (!chip || !chip->irq_set_affinity)
250 return -EINVAL;
251
252 if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
253 ret = irq_try_set_affinity(data, mask, force);
254 } else {
255 irqd_set_move_pending(data);
256 irq_copy_pending(desc, mask);
257 }
258
259 if (desc->affinity_notify) {
260 kref_get(&desc->affinity_notify->kref);
261 schedule_work(&desc->affinity_notify->work);
262 }
263 irqd_set(data, IRQD_AFFINITY_SET);
264
265 return ret;
266 }
267
268 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
269 {
270 struct irq_desc *desc = irq_to_desc(irq);
271 unsigned long flags;
272 int ret;
273
274 if (!desc)
275 return -EINVAL;
276
277 raw_spin_lock_irqsave(&desc->lock, flags);
278 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
279 raw_spin_unlock_irqrestore(&desc->lock, flags);
280 return ret;
281 }
282
283 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
284 {
285 unsigned long flags;
286 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
287
288 if (!desc)
289 return -EINVAL;
290 desc->affinity_hint = m;
291 irq_put_desc_unlock(desc, flags);
292 /* set the initial affinity to prevent every interrupt being on CPU0 */
293 if (m)
294 __irq_set_affinity(irq, m, false);
295 return 0;
296 }
297 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
298
299 static void irq_affinity_notify(struct work_struct *work)
300 {
301 struct irq_affinity_notify *notify =
302 container_of(work, struct irq_affinity_notify, work);
303 struct irq_desc *desc = irq_to_desc(notify->irq);
304 cpumask_var_t cpumask;
305 unsigned long flags;
306
307 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
308 goto out;
309
310 raw_spin_lock_irqsave(&desc->lock, flags);
311 if (irq_move_pending(&desc->irq_data))
312 irq_get_pending(cpumask, desc);
313 else
314 cpumask_copy(cpumask, desc->irq_common_data.affinity);
315 raw_spin_unlock_irqrestore(&desc->lock, flags);
316
317 notify->notify(notify, cpumask);
318
319 free_cpumask_var(cpumask);
320 out:
321 kref_put(&notify->kref, notify->release);
322 }
323
324 /**
325 * irq_set_affinity_notifier - control notification of IRQ affinity changes
326 * @irq: Interrupt for which to enable/disable notification
327 * @notify: Context for notification, or %NULL to disable
328 * notification. Function pointers must be initialised;
329 * the other fields will be initialised by this function.
330 *
331 * Must be called in process context. Notification may only be enabled
332 * after the IRQ is allocated and must be disabled before the IRQ is
333 * freed using free_irq().
334 */
335 int
336 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
337 {
338 struct irq_desc *desc = irq_to_desc(irq);
339 struct irq_affinity_notify *old_notify;
340 unsigned long flags;
341
342 /* The release function is promised process context */
343 might_sleep();
344
345 if (!desc || desc->istate & IRQS_NMI)
346 return -EINVAL;
347
348 /* Complete initialisation of *notify */
349 if (notify) {
350 notify->irq = irq;
351 kref_init(&notify->kref);
352 INIT_WORK(&notify->work, irq_affinity_notify);
353 }
354
355 raw_spin_lock_irqsave(&desc->lock, flags);
356 old_notify = desc->affinity_notify;
357 desc->affinity_notify = notify;
358 raw_spin_unlock_irqrestore(&desc->lock, flags);
359
360 if (old_notify)
361 kref_put(&old_notify->kref, old_notify->release);
362
363 return 0;
364 }
365 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
366
367 #ifndef CONFIG_AUTO_IRQ_AFFINITY
368 /*
369 * Generic version of the affinity autoselector.
370 */
371 int irq_setup_affinity(struct irq_desc *desc)
372 {
373 struct cpumask *set = irq_default_affinity;
374 int ret, node = irq_desc_get_node(desc);
375 static DEFINE_RAW_SPINLOCK(mask_lock);
376 static struct cpumask mask;
377
378 /* Excludes PER_CPU and NO_BALANCE interrupts */
379 if (!__irq_can_set_affinity(desc))
380 return 0;
381
382 raw_spin_lock(&mask_lock);
383 /*
384 * Preserve the managed affinity setting and a userspace affinity
385 * setup, but make sure that one of the targets is online.
386 */
387 if (irqd_affinity_is_managed(&desc->irq_data) ||
388 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
389 if (cpumask_intersects(desc->irq_common_data.affinity,
390 cpu_online_mask))
391 set = desc->irq_common_data.affinity;
392 else
393 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
394 }
395
396 cpumask_and(&mask, cpu_online_mask, set);
397 if (cpumask_empty(&mask))
398 cpumask_copy(&mask, cpu_online_mask);
399
400 if (node != NUMA_NO_NODE) {
401 const struct cpumask *nodemask = cpumask_of_node(node);
402
403 /* make sure at least one of the cpus in nodemask is online */
404 if (cpumask_intersects(&mask, nodemask))
405 cpumask_and(&mask, &mask, nodemask);
406 }
407 ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
408 raw_spin_unlock(&mask_lock);
409 return ret;
410 }
411 #else
412 /* Wrapper for ALPHA specific affinity selector magic */
413 int irq_setup_affinity(struct irq_desc *desc)
414 {
415 return irq_select_affinity(irq_desc_get_irq(desc));
416 }
417 #endif
418
419 /*
420 * Called when a bogus affinity is set via /proc/irq
421 */
422 int irq_select_affinity_usr(unsigned int irq)
423 {
424 struct irq_desc *desc = irq_to_desc(irq);
425 unsigned long flags;
426 int ret;
427
428 raw_spin_lock_irqsave(&desc->lock, flags);
429 ret = irq_setup_affinity(desc);
430 raw_spin_unlock_irqrestore(&desc->lock, flags);
431 return ret;
432 }
433 #endif
434
435 /**
436 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
437 * @irq: interrupt number to set affinity
438 * @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
439 * specific data for percpu_devid interrupts
440 *
441 * This function uses the vCPU specific data to set the vCPU
442 * affinity for an irq. The vCPU specific data is passed from
443 * outside, such as KVM. One example code path is as below:
444 * KVM -> IOMMU -> irq_set_vcpu_affinity().
445 */
446 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
447 {
448 unsigned long flags;
449 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
450 struct irq_data *data;
451 struct irq_chip *chip;
452 int ret = -ENOSYS;
453
454 if (!desc)
455 return -EINVAL;
456
457 data = irq_desc_get_irq_data(desc);
458 do {
459 chip = irq_data_get_irq_chip(data);
460 if (chip && chip->irq_set_vcpu_affinity)
461 break;
462 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
463 data = data->parent_data;
464 #else
465 data = NULL;
466 #endif
467 } while (data);
468
469 if (data)
470 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
471 irq_put_desc_unlock(desc, flags);
472
473 return ret;
474 }
475 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
476
477 void __disable_irq(struct irq_desc *desc)
478 {
479 if (!desc->depth++)
480 irq_disable(desc);
481 }
482
483 static int __disable_irq_nosync(unsigned int irq)
484 {
485 unsigned long flags;
486 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
487
488 if (!desc)
489 return -EINVAL;
490 __disable_irq(desc);
491 irq_put_desc_busunlock(desc, flags);
492 return 0;
493 }
494
495 /**
496 * disable_irq_nosync - disable an irq without waiting
497 * @irq: Interrupt to disable
498 *
499 * Disable the selected interrupt line. Disables and Enables are
500 * nested.
501 * Unlike disable_irq(), this function does not ensure existing
502 * instances of the IRQ handler have completed before returning.
503 *
504 * This function may be called from IRQ context.
505 */
506 void disable_irq_nosync(unsigned int irq)
507 {
508 __disable_irq_nosync(irq);
509 }
510 EXPORT_SYMBOL(disable_irq_nosync);
511
512 /**
513 * disable_irq - disable an irq and wait for completion
514 * @irq: Interrupt to disable
515 *
516 * Disable the selected interrupt line. Enables and Disables are
517 * nested.
518 * This function waits for any pending IRQ handlers for this interrupt
519 * to complete before returning. If you use this function while
520 * holding a resource the IRQ handler may need you will deadlock.
521 *
522 * This function may be called - with care - from IRQ context.
523 */
524 void disable_irq(unsigned int irq)
525 {
526 if (!__disable_irq_nosync(irq))
527 synchronize_irq(irq);
528 }
529 EXPORT_SYMBOL(disable_irq);
530
531 /**
532 * disable_hardirq - disables an irq and waits for hardirq completion
533 * @irq: Interrupt to disable
534 *
535 * Disable the selected interrupt line. Enables and Disables are
536 * nested.
537 * This function waits for any pending hard IRQ handlers for this
538 * interrupt to complete before returning. If you use this function while
539 * holding a resource the hard IRQ handler may need you will deadlock.
540 *
541 * When used to optimistically disable an interrupt from atomic context
542 * the return value must be checked.
543 *
544 * Returns: false if a threaded handler is active.
545 *
546 * This function may be called - with care - from IRQ context.
547 */
548 bool disable_hardirq(unsigned int irq)
549 {
550 if (!__disable_irq_nosync(irq))
551 return synchronize_hardirq(irq);
552
553 return false;
554 }
555 EXPORT_SYMBOL_GPL(disable_hardirq);
556
557 /**
558 * disable_nmi_nosync - disable an nmi without waiting
559 * @irq: Interrupt to disable
560 *
561 * Disable the selected interrupt line. Disables and enables are
562 * nested.
563 * The interrupt to disable must have been requested through request_nmi.
564 * Unlike disable_nmi(), this function does not ensure existing
565 * instances of the IRQ handler have completed before returning.
566 */
567 void disable_nmi_nosync(unsigned int irq)
568 {
569 disable_irq_nosync(irq);
570 }
571
572 void __enable_irq(struct irq_desc *desc)
573 {
574 switch (desc->depth) {
575 case 0:
576 err_out:
577 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
578 irq_desc_get_irq(desc));
579 break;
580 case 1: {
581 if (desc->istate & IRQS_SUSPENDED)
582 goto err_out;
583 /* Prevent probing on this irq: */
584 irq_settings_set_noprobe(desc);
585 /*
586 * Call irq_startup() not irq_enable() here because the
587 * interrupt might be marked NOAUTOEN. So irq_startup()
588 * needs to be invoked when it gets enabled the first
589 * time. If it was already started up, then irq_startup()
590 * will invoke irq_enable() under the hood.
591 */
592 irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
593 break;
594 }
595 default:
596 desc->depth--;
597 }
598 }
599
600 /**
601 * enable_irq - enable handling of an irq
602 * @irq: Interrupt to enable
603 *
604 * Undoes the effect of one call to disable_irq(). If this
605 * matches the last disable, processing of interrupts on this
606 * IRQ line is re-enabled.
607 *
608 * This function may be called from IRQ context only when
609 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
610 */
611 void enable_irq(unsigned int irq)
612 {
613 unsigned long flags;
614 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
615
616 if (!desc)
617 return;
618 if (WARN(!desc->irq_data.chip,
619 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
620 goto out;
621
622 __enable_irq(desc);
623 out:
624 irq_put_desc_busunlock(desc, flags);
625 }
626 EXPORT_SYMBOL(enable_irq);
627
628 /**
629 * enable_nmi - enable handling of an nmi
630 * @irq: Interrupt to enable
631 *
632 * The interrupt to enable must have been requested through request_nmi.
633 * Undoes the effect of one call to disable_nmi(). If this
634 * matches the last disable, processing of interrupts on this
635 * IRQ line is re-enabled.
636 */
637 void enable_nmi(unsigned int irq)
638 {
639 enable_irq(irq);
640 }
641
642 static int set_irq_wake_real(unsigned int irq, unsigned int on)
643 {
644 struct irq_desc *desc = irq_to_desc(irq);
645 int ret = -ENXIO;
646
647 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
648 return 0;
649
650 if (desc->irq_data.chip->irq_set_wake)
651 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
652
653 return ret;
654 }
655
656 /**
657 * irq_set_irq_wake - control irq power management wakeup
658 * @irq: interrupt to control
659 * @on: enable/disable power management wakeup
660 *
661 * Enable/disable power management wakeup mode, which is
662 * disabled by default. Enables and disables must match,
663 * just as they match for non-wakeup mode support.
664 *
665 * Wakeup mode lets this IRQ wake the system from sleep
666 * states like "suspend to RAM".
667 */
668 int irq_set_irq_wake(unsigned int irq, unsigned int on)
669 {
670 unsigned long flags;
671 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
672 int ret = 0;
673
674 if (!desc)
675 return -EINVAL;
676
677 /* Don't use NMIs as wake up interrupts please */
678 if (desc->istate & IRQS_NMI) {
679 ret = -EINVAL;
680 goto out_unlock;
681 }
682
683 /* wakeup-capable irqs can be shared between drivers that
684 * don't need to have the same sleep mode behaviors.
685 */
686 if (on) {
687 if (desc->wake_depth++ == 0) {
688 ret = set_irq_wake_real(irq, on);
689 if (ret)
690 desc->wake_depth = 0;
691 else
692 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
693 }
694 } else {
695 if (desc->wake_depth == 0) {
696 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
697 } else if (--desc->wake_depth == 0) {
698 ret = set_irq_wake_real(irq, on);
699 if (ret)
700 desc->wake_depth = 1;
701 else
702 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
703 }
704 }
705
706 out_unlock:
707 irq_put_desc_busunlock(desc, flags);
708 return ret;
709 }
710 EXPORT_SYMBOL(irq_set_irq_wake);
711
712 /*
713 * Internal function that tells the architecture code whether a
714 * particular irq has been exclusively allocated or is available
715 * for driver use.
716 */
717 int can_request_irq(unsigned int irq, unsigned long irqflags)
718 {
719 unsigned long flags;
720 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
721 int canrequest = 0;
722
723 if (!desc)
724 return 0;
725
726 if (irq_settings_can_request(desc)) {
727 if (!desc->action ||
728 irqflags & desc->action->flags & IRQF_SHARED)
729 canrequest = 1;
730 }
731 irq_put_desc_unlock(desc, flags);
732 return canrequest;
733 }
734
735 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
736 {
737 struct irq_chip *chip = desc->irq_data.chip;
738 int ret, unmask = 0;
739
740 if (!chip || !chip->irq_set_type) {
741 /*
742 * IRQF_TRIGGER_* but the PIC does not support multiple
743 * flow-types?
744 */
745 pr_debug("No set_type function for IRQ %d (%s)\n",
746 irq_desc_get_irq(desc),
747 chip ? (chip->name ? : "unknown") : "unknown");
748 return 0;
749 }
750
751 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
752 if (!irqd_irq_masked(&desc->irq_data))
753 mask_irq(desc);
754 if (!irqd_irq_disabled(&desc->irq_data))
755 unmask = 1;
756 }
757
758 /* Mask all flags except trigger mode */
759 flags &= IRQ_TYPE_SENSE_MASK;
760 ret = chip->irq_set_type(&desc->irq_data, flags);
761
762 switch (ret) {
763 case IRQ_SET_MASK_OK:
764 case IRQ_SET_MASK_OK_DONE:
765 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
766 irqd_set(&desc->irq_data, flags);
767 /* fall through */
768
769 case IRQ_SET_MASK_OK_NOCOPY:
770 flags = irqd_get_trigger_type(&desc->irq_data);
771 irq_settings_set_trigger_mask(desc, flags);
772 irqd_clear(&desc->irq_data, IRQD_LEVEL);
773 irq_settings_clr_level(desc);
774 if (flags & IRQ_TYPE_LEVEL_MASK) {
775 irq_settings_set_level(desc);
776 irqd_set(&desc->irq_data, IRQD_LEVEL);
777 }
778
779 ret = 0;
780 break;
781 default:
782 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
783 flags, irq_desc_get_irq(desc), chip->irq_set_type);
784 }
785 if (unmask)
786 unmask_irq(desc);
787 return ret;
788 }
789
790 #ifdef CONFIG_HARDIRQS_SW_RESEND
791 int irq_set_parent(int irq, int parent_irq)
792 {
793 unsigned long flags;
794 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
795
796 if (!desc)
797 return -EINVAL;
798
799 desc->parent_irq = parent_irq;
800
801 irq_put_desc_unlock(desc, flags);
802 return 0;
803 }
804 EXPORT_SYMBOL_GPL(irq_set_parent);
805 #endif
806
807 /*
808 * Default primary interrupt handler for threaded interrupts. Is
809 * assigned as primary handler when request_threaded_irq is called
810 * with handler == NULL. Useful for oneshot interrupts.
811 */
812 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
813 {
814 return IRQ_WAKE_THREAD;
815 }
816
817 /*
818 * Primary handler for nested threaded interrupts. Should never be
819 * called.
820 */
821 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
822 {
823 WARN(1, "Primary handler called for nested irq %d\n", irq);
824 return IRQ_NONE;
825 }
826
827 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
828 {
829 WARN(1, "Secondary action handler called for irq %d\n", irq);
830 return IRQ_NONE;
831 }
832
833 static int irq_wait_for_interrupt(struct irqaction *action)
834 {
835 for (;;) {
836 set_current_state(TASK_INTERRUPTIBLE);
837
838 if (kthread_should_stop()) {
839 /* may need to run one last time */
840 if (test_and_clear_bit(IRQTF_RUNTHREAD,
841 &action->thread_flags)) {
842 __set_current_state(TASK_RUNNING);
843 return 0;
844 }
845 __set_current_state(TASK_RUNNING);
846 return -1;
847 }
848
849 if (test_and_clear_bit(IRQTF_RUNTHREAD,
850 &action->thread_flags)) {
851 __set_current_state(TASK_RUNNING);
852 return 0;
853 }
854 schedule();
855 }
856 }
857
858 /*
859 * Oneshot interrupts keep the irq line masked until the threaded
860 * handler finished. unmask if the interrupt has not been disabled and
861 * is marked MASKED.
862 */
863 static void irq_finalize_oneshot(struct irq_desc *desc,
864 struct irqaction *action)
865 {
866 if (!(desc->istate & IRQS_ONESHOT) ||
867 action->handler == irq_forced_secondary_handler)
868 return;
869 again:
870 chip_bus_lock(desc);
871 raw_spin_lock_irq(&desc->lock);
872
873 /*
874 * Implausible though it may be we need to protect us against
875 * the following scenario:
876 *
877 * The thread is faster done than the hard interrupt handler
878 * on the other CPU. If we unmask the irq line then the
879 * interrupt can come in again and masks the line, leaves due
880 * to IRQS_INPROGRESS and the irq line is masked forever.
881 *
882 * This also serializes the state of shared oneshot handlers
883 * versus "desc->threads_onehsot |= action->thread_mask;" in
884 * irq_wake_thread(). See the comment there which explains the
885 * serialization.
886 */
887 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
888 raw_spin_unlock_irq(&desc->lock);
889 chip_bus_sync_unlock(desc);
890 cpu_relax();
891 goto again;
892 }
893
894 /*
895 * Now check again, whether the thread should run. Otherwise
896 * we would clear the threads_oneshot bit of this thread which
897 * was just set.
898 */
899 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
900 goto out_unlock;
901
902 desc->threads_oneshot &= ~action->thread_mask;
903
904 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
905 irqd_irq_masked(&desc->irq_data))
906 unmask_threaded_irq(desc);
907
908 out_unlock:
909 raw_spin_unlock_irq(&desc->lock);
910 chip_bus_sync_unlock(desc);
911 }
912
913 #ifdef CONFIG_SMP
914 /*
915 * Check whether we need to change the affinity of the interrupt thread.
916 */
917 static void
918 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
919 {
920 cpumask_var_t mask;
921 bool valid = true;
922
923 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
924 return;
925
926 /*
927 * In case we are out of memory we set IRQTF_AFFINITY again and
928 * try again next time
929 */
930 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
931 set_bit(IRQTF_AFFINITY, &action->thread_flags);
932 return;
933 }
934
935 raw_spin_lock_irq(&desc->lock);
936 /*
937 * This code is triggered unconditionally. Check the affinity
938 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
939 */
940 if (cpumask_available(desc->irq_common_data.affinity)) {
941 const struct cpumask *m;
942
943 m = irq_data_get_effective_affinity_mask(&desc->irq_data);
944 cpumask_copy(mask, m);
945 } else {
946 valid = false;
947 }
948 raw_spin_unlock_irq(&desc->lock);
949
950 if (valid)
951 set_cpus_allowed_ptr(current, mask);
952 free_cpumask_var(mask);
953 }
954 #else
955 static inline void
956 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
957 #endif
958
959 /*
960 * Interrupts which are not explicitly requested as threaded
961 * interrupts rely on the implicit bh/preempt disable of the hard irq
962 * context. So we need to disable bh here to avoid deadlocks and other
963 * side effects.
964 */
965 static irqreturn_t
966 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
967 {
968 irqreturn_t ret;
969
970 local_bh_disable();
971 ret = action->thread_fn(action->irq, action->dev_id);
972 if (ret == IRQ_HANDLED)
973 atomic_inc(&desc->threads_handled);
974
975 irq_finalize_oneshot(desc, action);
976 local_bh_enable();
977 return ret;
978 }
979
980 /*
981 * Interrupts explicitly requested as threaded interrupts want to be
982 * preemtible - many of them need to sleep and wait for slow busses to
983 * complete.
984 */
985 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
986 struct irqaction *action)
987 {
988 irqreturn_t ret;
989
990 ret = action->thread_fn(action->irq, action->dev_id);
991 if (ret == IRQ_HANDLED)
992 atomic_inc(&desc->threads_handled);
993
994 irq_finalize_oneshot(desc, action);
995 return ret;
996 }
997
998 static void wake_threads_waitq(struct irq_desc *desc)
999 {
1000 if (atomic_dec_and_test(&desc->threads_active))
1001 wake_up(&desc->wait_for_threads);
1002 }
1003
1004 static void irq_thread_dtor(struct callback_head *unused)
1005 {
1006 struct task_struct *tsk = current;
1007 struct irq_desc *desc;
1008 struct irqaction *action;
1009
1010 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
1011 return;
1012
1013 action = kthread_data(tsk);
1014
1015 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
1016 tsk->comm, tsk->pid, action->irq);
1017
1018
1019 desc = irq_to_desc(action->irq);
1020 /*
1021 * If IRQTF_RUNTHREAD is set, we need to decrement
1022 * desc->threads_active and wake possible waiters.
1023 */
1024 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
1025 wake_threads_waitq(desc);
1026
1027 /* Prevent a stale desc->threads_oneshot */
1028 irq_finalize_oneshot(desc, action);
1029 }
1030
1031 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
1032 {
1033 struct irqaction *secondary = action->secondary;
1034
1035 if (WARN_ON_ONCE(!secondary))
1036 return;
1037
1038 raw_spin_lock_irq(&desc->lock);
1039 __irq_wake_thread(desc, secondary);
1040 raw_spin_unlock_irq(&desc->lock);
1041 }
1042
1043 /*
1044 * Interrupt handler thread
1045 */
1046 static int irq_thread(void *data)
1047 {
1048 struct callback_head on_exit_work;
1049 struct irqaction *action = data;
1050 struct irq_desc *desc = irq_to_desc(action->irq);
1051 irqreturn_t (*handler_fn)(struct irq_desc *desc,
1052 struct irqaction *action);
1053
1054 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1055 &action->thread_flags))
1056 handler_fn = irq_forced_thread_fn;
1057 else
1058 handler_fn = irq_thread_fn;
1059
1060 init_task_work(&on_exit_work, irq_thread_dtor);
1061 task_work_add(current, &on_exit_work, false);
1062
1063 irq_thread_check_affinity(desc, action);
1064
1065 while (!irq_wait_for_interrupt(action)) {
1066 irqreturn_t action_ret;
1067
1068 irq_thread_check_affinity(desc, action);
1069
1070 action_ret = handler_fn(desc, action);
1071 if (action_ret == IRQ_WAKE_THREAD)
1072 irq_wake_secondary(desc, action);
1073
1074 wake_threads_waitq(desc);
1075 }
1076
1077 /*
1078 * This is the regular exit path. __free_irq() is stopping the
1079 * thread via kthread_stop() after calling
1080 * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1081 * oneshot mask bit can be set.
1082 */
1083 task_work_cancel(current, irq_thread_dtor);
1084 return 0;
1085 }
1086
1087 /**
1088 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1089 * @irq: Interrupt line
1090 * @dev_id: Device identity for which the thread should be woken
1091 *
1092 */
1093 void irq_wake_thread(unsigned int irq, void *dev_id)
1094 {
1095 struct irq_desc *desc = irq_to_desc(irq);
1096 struct irqaction *action;
1097 unsigned long flags;
1098
1099 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1100 return;
1101
1102 raw_spin_lock_irqsave(&desc->lock, flags);
1103 for_each_action_of_desc(desc, action) {
1104 if (action->dev_id == dev_id) {
1105 if (action->thread)
1106 __irq_wake_thread(desc, action);
1107 break;
1108 }
1109 }
1110 raw_spin_unlock_irqrestore(&desc->lock, flags);
1111 }
1112 EXPORT_SYMBOL_GPL(irq_wake_thread);
1113
1114 static int irq_setup_forced_threading(struct irqaction *new)
1115 {
1116 if (!force_irqthreads)
1117 return 0;
1118 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1119 return 0;
1120
1121 /*
1122 * No further action required for interrupts which are requested as
1123 * threaded interrupts already
1124 */
1125 if (new->handler == irq_default_primary_handler)
1126 return 0;
1127
1128 new->flags |= IRQF_ONESHOT;
1129
1130 /*
1131 * Handle the case where we have a real primary handler and a
1132 * thread handler. We force thread them as well by creating a
1133 * secondary action.
1134 */
1135 if (new->handler && new->thread_fn) {
1136 /* Allocate the secondary action */
1137 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1138 if (!new->secondary)
1139 return -ENOMEM;
1140 new->secondary->handler = irq_forced_secondary_handler;
1141 new->secondary->thread_fn = new->thread_fn;
1142 new->secondary->dev_id = new->dev_id;
1143 new->secondary->irq = new->irq;
1144 new->secondary->name = new->name;
1145 }
1146 /* Deal with the primary handler */
1147 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1148 new->thread_fn = new->handler;
1149 new->handler = irq_default_primary_handler;
1150 return 0;
1151 }
1152
1153 static int irq_request_resources(struct irq_desc *desc)
1154 {
1155 struct irq_data *d = &desc->irq_data;
1156 struct irq_chip *c = d->chip;
1157
1158 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1159 }
1160
1161 static void irq_release_resources(struct irq_desc *desc)
1162 {
1163 struct irq_data *d = &desc->irq_data;
1164 struct irq_chip *c = d->chip;
1165
1166 if (c->irq_release_resources)
1167 c->irq_release_resources(d);
1168 }
1169
1170 static bool irq_supports_nmi(struct irq_desc *desc)
1171 {
1172 struct irq_data *d = irq_desc_get_irq_data(desc);
1173
1174 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1175 /* Only IRQs directly managed by the root irqchip can be set as NMI */
1176 if (d->parent_data)
1177 return false;
1178 #endif
1179 /* Don't support NMIs for chips behind a slow bus */
1180 if (d->chip->irq_bus_lock || d->chip->irq_bus_sync_unlock)
1181 return false;
1182
1183 return d->chip->flags & IRQCHIP_SUPPORTS_NMI;
1184 }
1185
1186 static int irq_nmi_setup(struct irq_desc *desc)
1187 {
1188 struct irq_data *d = irq_desc_get_irq_data(desc);
1189 struct irq_chip *c = d->chip;
1190
1191 return c->irq_nmi_setup ? c->irq_nmi_setup(d) : -EINVAL;
1192 }
1193
1194 static void irq_nmi_teardown(struct irq_desc *desc)
1195 {
1196 struct irq_data *d = irq_desc_get_irq_data(desc);
1197 struct irq_chip *c = d->chip;
1198
1199 if (c->irq_nmi_teardown)
1200 c->irq_nmi_teardown(d);
1201 }
1202
1203 static int
1204 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1205 {
1206 struct task_struct *t;
1207 struct sched_param param = {
1208 .sched_priority = MAX_USER_RT_PRIO/2,
1209 };
1210
1211 if (!secondary) {
1212 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1213 new->name);
1214 } else {
1215 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1216 new->name);
1217 param.sched_priority -= 1;
1218 }
1219
1220 if (IS_ERR(t))
1221 return PTR_ERR(t);
1222
1223 sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1224
1225 /*
1226 * We keep the reference to the task struct even if
1227 * the thread dies to avoid that the interrupt code
1228 * references an already freed task_struct.
1229 */
1230 get_task_struct(t);
1231 new->thread = t;
1232 /*
1233 * Tell the thread to set its affinity. This is
1234 * important for shared interrupt handlers as we do
1235 * not invoke setup_affinity() for the secondary
1236 * handlers as everything is already set up. Even for
1237 * interrupts marked with IRQF_NO_BALANCE this is
1238 * correct as we want the thread to move to the cpu(s)
1239 * on which the requesting code placed the interrupt.
1240 */
1241 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1242 return 0;
1243 }
1244
1245 /*
1246 * Internal function to register an irqaction - typically used to
1247 * allocate special interrupts that are part of the architecture.
1248 *
1249 * Locking rules:
1250 *
1251 * desc->request_mutex Provides serialization against a concurrent free_irq()
1252 * chip_bus_lock Provides serialization for slow bus operations
1253 * desc->lock Provides serialization against hard interrupts
1254 *
1255 * chip_bus_lock and desc->lock are sufficient for all other management and
1256 * interrupt related functions. desc->request_mutex solely serializes
1257 * request/free_irq().
1258 */
1259 static int
1260 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1261 {
1262 struct irqaction *old, **old_ptr;
1263 unsigned long flags, thread_mask = 0;
1264 int ret, nested, shared = 0;
1265
1266 if (!desc)
1267 return -EINVAL;
1268
1269 if (desc->irq_data.chip == &no_irq_chip)
1270 return -ENOSYS;
1271 if (!try_module_get(desc->owner))
1272 return -ENODEV;
1273
1274 new->irq = irq;
1275
1276 /*
1277 * If the trigger type is not specified by the caller,
1278 * then use the default for this interrupt.
1279 */
1280 if (!(new->flags & IRQF_TRIGGER_MASK))
1281 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1282
1283 /*
1284 * Check whether the interrupt nests into another interrupt
1285 * thread.
1286 */
1287 nested = irq_settings_is_nested_thread(desc);
1288 if (nested) {
1289 if (!new->thread_fn) {
1290 ret = -EINVAL;
1291 goto out_mput;
1292 }
1293 /*
1294 * Replace the primary handler which was provided from
1295 * the driver for non nested interrupt handling by the
1296 * dummy function which warns when called.
1297 */
1298 new->handler = irq_nested_primary_handler;
1299 } else {
1300 if (irq_settings_can_thread(desc)) {
1301 ret = irq_setup_forced_threading(new);
1302 if (ret)
1303 goto out_mput;
1304 }
1305 }
1306
1307 /*
1308 * Create a handler thread when a thread function is supplied
1309 * and the interrupt does not nest into another interrupt
1310 * thread.
1311 */
1312 if (new->thread_fn && !nested) {
1313 ret = setup_irq_thread(new, irq, false);
1314 if (ret)
1315 goto out_mput;
1316 if (new->secondary) {
1317 ret = setup_irq_thread(new->secondary, irq, true);
1318 if (ret)
1319 goto out_thread;
1320 }
1321 }
1322
1323 /*
1324 * Drivers are often written to work w/o knowledge about the
1325 * underlying irq chip implementation, so a request for a
1326 * threaded irq without a primary hard irq context handler
1327 * requires the ONESHOT flag to be set. Some irq chips like
1328 * MSI based interrupts are per se one shot safe. Check the
1329 * chip flags, so we can avoid the unmask dance at the end of
1330 * the threaded handler for those.
1331 */
1332 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1333 new->flags &= ~IRQF_ONESHOT;
1334
1335 /*
1336 * Protects against a concurrent __free_irq() call which might wait
1337 * for synchronize_hardirq() to complete without holding the optional
1338 * chip bus lock and desc->lock. Also protects against handing out
1339 * a recycled oneshot thread_mask bit while it's still in use by
1340 * its previous owner.
1341 */
1342 mutex_lock(&desc->request_mutex);
1343
1344 /*
1345 * Acquire bus lock as the irq_request_resources() callback below
1346 * might rely on the serialization or the magic power management
1347 * functions which are abusing the irq_bus_lock() callback,
1348 */
1349 chip_bus_lock(desc);
1350
1351 /* First installed action requests resources. */
1352 if (!desc->action) {
1353 ret = irq_request_resources(desc);
1354 if (ret) {
1355 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1356 new->name, irq, desc->irq_data.chip->name);
1357 goto out_bus_unlock;
1358 }
1359 }
1360
1361 /*
1362 * The following block of code has to be executed atomically
1363 * protected against a concurrent interrupt and any of the other
1364 * management calls which are not serialized via
1365 * desc->request_mutex or the optional bus lock.
1366 */
1367 raw_spin_lock_irqsave(&desc->lock, flags);
1368 old_ptr = &desc->action;
1369 old = *old_ptr;
1370 if (old) {
1371 /*
1372 * Can't share interrupts unless both agree to and are
1373 * the same type (level, edge, polarity). So both flag
1374 * fields must have IRQF_SHARED set and the bits which
1375 * set the trigger type must match. Also all must
1376 * agree on ONESHOT.
1377 * Interrupt lines used for NMIs cannot be shared.
1378 */
1379 unsigned int oldtype;
1380
1381 if (desc->istate & IRQS_NMI) {
1382 pr_err("Invalid attempt to share NMI for %s (irq %d) on irqchip %s.\n",
1383 new->name, irq, desc->irq_data.chip->name);
1384 ret = -EINVAL;
1385 goto out_unlock;
1386 }
1387
1388 /*
1389 * If nobody did set the configuration before, inherit
1390 * the one provided by the requester.
1391 */
1392 if (irqd_trigger_type_was_set(&desc->irq_data)) {
1393 oldtype = irqd_get_trigger_type(&desc->irq_data);
1394 } else {
1395 oldtype = new->flags & IRQF_TRIGGER_MASK;
1396 irqd_set_trigger_type(&desc->irq_data, oldtype);
1397 }
1398
1399 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1400 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1401 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1402 goto mismatch;
1403
1404 /* All handlers must agree on per-cpuness */
1405 if ((old->flags & IRQF_PERCPU) !=
1406 (new->flags & IRQF_PERCPU))
1407 goto mismatch;
1408
1409 /* add new interrupt at end of irq queue */
1410 do {
1411 /*
1412 * Or all existing action->thread_mask bits,
1413 * so we can find the next zero bit for this
1414 * new action.
1415 */
1416 thread_mask |= old->thread_mask;
1417 old_ptr = &old->next;
1418 old = *old_ptr;
1419 } while (old);
1420 shared = 1;
1421 }
1422
1423 /*
1424 * Setup the thread mask for this irqaction for ONESHOT. For
1425 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1426 * conditional in irq_wake_thread().
1427 */
1428 if (new->flags & IRQF_ONESHOT) {
1429 /*
1430 * Unlikely to have 32 resp 64 irqs sharing one line,
1431 * but who knows.
1432 */
1433 if (thread_mask == ~0UL) {
1434 ret = -EBUSY;
1435 goto out_unlock;
1436 }
1437 /*
1438 * The thread_mask for the action is or'ed to
1439 * desc->thread_active to indicate that the
1440 * IRQF_ONESHOT thread handler has been woken, but not
1441 * yet finished. The bit is cleared when a thread
1442 * completes. When all threads of a shared interrupt
1443 * line have completed desc->threads_active becomes
1444 * zero and the interrupt line is unmasked. See
1445 * handle.c:irq_wake_thread() for further information.
1446 *
1447 * If no thread is woken by primary (hard irq context)
1448 * interrupt handlers, then desc->threads_active is
1449 * also checked for zero to unmask the irq line in the
1450 * affected hard irq flow handlers
1451 * (handle_[fasteoi|level]_irq).
1452 *
1453 * The new action gets the first zero bit of
1454 * thread_mask assigned. See the loop above which or's
1455 * all existing action->thread_mask bits.
1456 */
1457 new->thread_mask = 1UL << ffz(thread_mask);
1458
1459 } else if (new->handler == irq_default_primary_handler &&
1460 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1461 /*
1462 * The interrupt was requested with handler = NULL, so
1463 * we use the default primary handler for it. But it
1464 * does not have the oneshot flag set. In combination
1465 * with level interrupts this is deadly, because the
1466 * default primary handler just wakes the thread, then
1467 * the irq lines is reenabled, but the device still
1468 * has the level irq asserted. Rinse and repeat....
1469 *
1470 * While this works for edge type interrupts, we play
1471 * it safe and reject unconditionally because we can't
1472 * say for sure which type this interrupt really
1473 * has. The type flags are unreliable as the
1474 * underlying chip implementation can override them.
1475 */
1476 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1477 irq);
1478 ret = -EINVAL;
1479 goto out_unlock;
1480 }
1481
1482 if (!shared) {
1483 init_waitqueue_head(&desc->wait_for_threads);
1484
1485 /* Setup the type (level, edge polarity) if configured: */
1486 if (new->flags & IRQF_TRIGGER_MASK) {
1487 ret = __irq_set_trigger(desc,
1488 new->flags & IRQF_TRIGGER_MASK);
1489
1490 if (ret)
1491 goto out_unlock;
1492 }
1493
1494 /*
1495 * Activate the interrupt. That activation must happen
1496 * independently of IRQ_NOAUTOEN. request_irq() can fail
1497 * and the callers are supposed to handle
1498 * that. enable_irq() of an interrupt requested with
1499 * IRQ_NOAUTOEN is not supposed to fail. The activation
1500 * keeps it in shutdown mode, it merily associates
1501 * resources if necessary and if that's not possible it
1502 * fails. Interrupts which are in managed shutdown mode
1503 * will simply ignore that activation request.
1504 */
1505 ret = irq_activate(desc);
1506 if (ret)
1507 goto out_unlock;
1508
1509 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1510 IRQS_ONESHOT | IRQS_WAITING);
1511 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1512
1513 if (new->flags & IRQF_PERCPU) {
1514 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1515 irq_settings_set_per_cpu(desc);
1516 }
1517
1518 if (new->flags & IRQF_ONESHOT)
1519 desc->istate |= IRQS_ONESHOT;
1520
1521 /* Exclude IRQ from balancing if requested */
1522 if (new->flags & IRQF_NOBALANCING) {
1523 irq_settings_set_no_balancing(desc);
1524 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1525 }
1526
1527 if (irq_settings_can_autoenable(desc)) {
1528 irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1529 } else {
1530 /*
1531 * Shared interrupts do not go well with disabling
1532 * auto enable. The sharing interrupt might request
1533 * it while it's still disabled and then wait for
1534 * interrupts forever.
1535 */
1536 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1537 /* Undo nested disables: */
1538 desc->depth = 1;
1539 }
1540
1541 } else if (new->flags & IRQF_TRIGGER_MASK) {
1542 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1543 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1544
1545 if (nmsk != omsk)
1546 /* hope the handler works with current trigger mode */
1547 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1548 irq, omsk, nmsk);
1549 }
1550
1551 *old_ptr = new;
1552
1553 irq_pm_install_action(desc, new);
1554
1555 /* Reset broken irq detection when installing new handler */
1556 desc->irq_count = 0;
1557 desc->irqs_unhandled = 0;
1558
1559 /*
1560 * Check whether we disabled the irq via the spurious handler
1561 * before. Reenable it and give it another chance.
1562 */
1563 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1564 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1565 __enable_irq(desc);
1566 }
1567
1568 raw_spin_unlock_irqrestore(&desc->lock, flags);
1569 chip_bus_sync_unlock(desc);
1570 mutex_unlock(&desc->request_mutex);
1571
1572 irq_setup_timings(desc, new);
1573
1574 /*
1575 * Strictly no need to wake it up, but hung_task complains
1576 * when no hard interrupt wakes the thread up.
1577 */
1578 if (new->thread)
1579 wake_up_process(new->thread);
1580 if (new->secondary)
1581 wake_up_process(new->secondary->thread);
1582
1583 register_irq_proc(irq, desc);
1584 new->dir = NULL;
1585 register_handler_proc(irq, new);
1586 return 0;
1587
1588 mismatch:
1589 if (!(new->flags & IRQF_PROBE_SHARED)) {
1590 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1591 irq, new->flags, new->name, old->flags, old->name);
1592 #ifdef CONFIG_DEBUG_SHIRQ
1593 dump_stack();
1594 #endif
1595 }
1596 ret = -EBUSY;
1597
1598 out_unlock:
1599 raw_spin_unlock_irqrestore(&desc->lock, flags);
1600
1601 if (!desc->action)
1602 irq_release_resources(desc);
1603 out_bus_unlock:
1604 chip_bus_sync_unlock(desc);
1605 mutex_unlock(&desc->request_mutex);
1606
1607 out_thread:
1608 if (new->thread) {
1609 struct task_struct *t = new->thread;
1610
1611 new->thread = NULL;
1612 kthread_stop(t);
1613 put_task_struct(t);
1614 }
1615 if (new->secondary && new->secondary->thread) {
1616 struct task_struct *t = new->secondary->thread;
1617
1618 new->secondary->thread = NULL;
1619 kthread_stop(t);
1620 put_task_struct(t);
1621 }
1622 out_mput:
1623 module_put(desc->owner);
1624 return ret;
1625 }
1626
1627 /**
1628 * setup_irq - setup an interrupt
1629 * @irq: Interrupt line to setup
1630 * @act: irqaction for the interrupt
1631 *
1632 * Used to statically setup interrupts in the early boot process.
1633 */
1634 int setup_irq(unsigned int irq, struct irqaction *act)
1635 {
1636 int retval;
1637 struct irq_desc *desc = irq_to_desc(irq);
1638
1639 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1640 return -EINVAL;
1641
1642 retval = irq_chip_pm_get(&desc->irq_data);
1643 if (retval < 0)
1644 return retval;
1645
1646 retval = __setup_irq(irq, desc, act);
1647
1648 if (retval)
1649 irq_chip_pm_put(&desc->irq_data);
1650
1651 return retval;
1652 }
1653 EXPORT_SYMBOL_GPL(setup_irq);
1654
1655 /*
1656 * Internal function to unregister an irqaction - used to free
1657 * regular and special interrupts that are part of the architecture.
1658 */
1659 static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1660 {
1661 unsigned irq = desc->irq_data.irq;
1662 struct irqaction *action, **action_ptr;
1663 unsigned long flags;
1664
1665 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1666
1667 mutex_lock(&desc->request_mutex);
1668 chip_bus_lock(desc);
1669 raw_spin_lock_irqsave(&desc->lock, flags);
1670
1671 /*
1672 * There can be multiple actions per IRQ descriptor, find the right
1673 * one based on the dev_id:
1674 */
1675 action_ptr = &desc->action;
1676 for (;;) {
1677 action = *action_ptr;
1678
1679 if (!action) {
1680 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1681 raw_spin_unlock_irqrestore(&desc->lock, flags);
1682 chip_bus_sync_unlock(desc);
1683 mutex_unlock(&desc->request_mutex);
1684 return NULL;
1685 }
1686
1687 if (action->dev_id == dev_id)
1688 break;
1689 action_ptr = &action->next;
1690 }
1691
1692 /* Found it - now remove it from the list of entries: */
1693 *action_ptr = action->next;
1694
1695 irq_pm_remove_action(desc, action);
1696
1697 /* If this was the last handler, shut down the IRQ line: */
1698 if (!desc->action) {
1699 irq_settings_clr_disable_unlazy(desc);
1700 irq_shutdown(desc);
1701 }
1702
1703 #ifdef CONFIG_SMP
1704 /* make sure affinity_hint is cleaned up */
1705 if (WARN_ON_ONCE(desc->affinity_hint))
1706 desc->affinity_hint = NULL;
1707 #endif
1708
1709 raw_spin_unlock_irqrestore(&desc->lock, flags);
1710 /*
1711 * Drop bus_lock here so the changes which were done in the chip
1712 * callbacks above are synced out to the irq chips which hang
1713 * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1714 *
1715 * Aside of that the bus_lock can also be taken from the threaded
1716 * handler in irq_finalize_oneshot() which results in a deadlock
1717 * because kthread_stop() would wait forever for the thread to
1718 * complete, which is blocked on the bus lock.
1719 *
1720 * The still held desc->request_mutex() protects against a
1721 * concurrent request_irq() of this irq so the release of resources
1722 * and timing data is properly serialized.
1723 */
1724 chip_bus_sync_unlock(desc);
1725
1726 unregister_handler_proc(irq, action);
1727
1728 /* Make sure it's not being used on another CPU: */
1729 synchronize_hardirq(irq);
1730
1731 #ifdef CONFIG_DEBUG_SHIRQ
1732 /*
1733 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1734 * event to happen even now it's being freed, so let's make sure that
1735 * is so by doing an extra call to the handler ....
1736 *
1737 * ( We do this after actually deregistering it, to make sure that a
1738 * 'real' IRQ doesn't run in parallel with our fake. )
1739 */
1740 if (action->flags & IRQF_SHARED) {
1741 local_irq_save(flags);
1742 action->handler(irq, dev_id);
1743 local_irq_restore(flags);
1744 }
1745 #endif
1746
1747 /*
1748 * The action has already been removed above, but the thread writes
1749 * its oneshot mask bit when it completes. Though request_mutex is
1750 * held across this which prevents __setup_irq() from handing out
1751 * the same bit to a newly requested action.
1752 */
1753 if (action->thread) {
1754 kthread_stop(action->thread);
1755 put_task_struct(action->thread);
1756 if (action->secondary && action->secondary->thread) {
1757 kthread_stop(action->secondary->thread);
1758 put_task_struct(action->secondary->thread);
1759 }
1760 }
1761
1762 /* Last action releases resources */
1763 if (!desc->action) {
1764 /*
1765 * Reaquire bus lock as irq_release_resources() might
1766 * require it to deallocate resources over the slow bus.
1767 */
1768 chip_bus_lock(desc);
1769 irq_release_resources(desc);
1770 chip_bus_sync_unlock(desc);
1771 irq_remove_timings(desc);
1772 }
1773
1774 mutex_unlock(&desc->request_mutex);
1775
1776 irq_chip_pm_put(&desc->irq_data);
1777 module_put(desc->owner);
1778 kfree(action->secondary);
1779 return action;
1780 }
1781
1782 /**
1783 * remove_irq - free an interrupt
1784 * @irq: Interrupt line to free
1785 * @act: irqaction for the interrupt
1786 *
1787 * Used to remove interrupts statically setup by the early boot process.
1788 */
1789 void remove_irq(unsigned int irq, struct irqaction *act)
1790 {
1791 struct irq_desc *desc = irq_to_desc(irq);
1792
1793 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1794 __free_irq(desc, act->dev_id);
1795 }
1796 EXPORT_SYMBOL_GPL(remove_irq);
1797
1798 /**
1799 * free_irq - free an interrupt allocated with request_irq
1800 * @irq: Interrupt line to free
1801 * @dev_id: Device identity to free
1802 *
1803 * Remove an interrupt handler. The handler is removed and if the
1804 * interrupt line is no longer in use by any driver it is disabled.
1805 * On a shared IRQ the caller must ensure the interrupt is disabled
1806 * on the card it drives before calling this function. The function
1807 * does not return until any executing interrupts for this IRQ
1808 * have completed.
1809 *
1810 * This function must not be called from interrupt context.
1811 *
1812 * Returns the devname argument passed to request_irq.
1813 */
1814 const void *free_irq(unsigned int irq, void *dev_id)
1815 {
1816 struct irq_desc *desc = irq_to_desc(irq);
1817 struct irqaction *action;
1818 const char *devname;
1819
1820 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1821 return NULL;
1822
1823 #ifdef CONFIG_SMP
1824 if (WARN_ON(desc->affinity_notify))
1825 desc->affinity_notify = NULL;
1826 #endif
1827
1828 action = __free_irq(desc, dev_id);
1829
1830 if (!action)
1831 return NULL;
1832
1833 devname = action->name;
1834 kfree(action);
1835 return devname;
1836 }
1837 EXPORT_SYMBOL(free_irq);
1838
1839 /* This function must be called with desc->lock held */
1840 static const void *__cleanup_nmi(unsigned int irq, struct irq_desc *desc)
1841 {
1842 const char *devname = NULL;
1843
1844 desc->istate &= ~IRQS_NMI;
1845
1846 if (!WARN_ON(desc->action == NULL)) {
1847 irq_pm_remove_action(desc, desc->action);
1848 devname = desc->action->name;
1849 unregister_handler_proc(irq, desc->action);
1850
1851 kfree(desc->action);
1852 desc->action = NULL;
1853 }
1854
1855 irq_settings_clr_disable_unlazy(desc);
1856 irq_shutdown(desc);
1857
1858 irq_release_resources(desc);
1859
1860 irq_chip_pm_put(&desc->irq_data);
1861 module_put(desc->owner);
1862
1863 return devname;
1864 }
1865
1866 const void *free_nmi(unsigned int irq, void *dev_id)
1867 {
1868 struct irq_desc *desc = irq_to_desc(irq);
1869 unsigned long flags;
1870 const void *devname;
1871
1872 if (!desc || WARN_ON(!(desc->istate & IRQS_NMI)))
1873 return NULL;
1874
1875 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1876 return NULL;
1877
1878 /* NMI still enabled */
1879 if (WARN_ON(desc->depth == 0))
1880 disable_nmi_nosync(irq);
1881
1882 raw_spin_lock_irqsave(&desc->lock, flags);
1883
1884 irq_nmi_teardown(desc);
1885 devname = __cleanup_nmi(irq, desc);
1886
1887 raw_spin_unlock_irqrestore(&desc->lock, flags);
1888
1889 return devname;
1890 }
1891
1892 /**
1893 * request_threaded_irq - allocate an interrupt line
1894 * @irq: Interrupt line to allocate
1895 * @handler: Function to be called when the IRQ occurs.
1896 * Primary handler for threaded interrupts
1897 * If NULL and thread_fn != NULL the default
1898 * primary handler is installed
1899 * @thread_fn: Function called from the irq handler thread
1900 * If NULL, no irq thread is created
1901 * @irqflags: Interrupt type flags
1902 * @devname: An ascii name for the claiming device
1903 * @dev_id: A cookie passed back to the handler function
1904 *
1905 * This call allocates interrupt resources and enables the
1906 * interrupt line and IRQ handling. From the point this
1907 * call is made your handler function may be invoked. Since
1908 * your handler function must clear any interrupt the board
1909 * raises, you must take care both to initialise your hardware
1910 * and to set up the interrupt handler in the right order.
1911 *
1912 * If you want to set up a threaded irq handler for your device
1913 * then you need to supply @handler and @thread_fn. @handler is
1914 * still called in hard interrupt context and has to check
1915 * whether the interrupt originates from the device. If yes it
1916 * needs to disable the interrupt on the device and return
1917 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1918 * @thread_fn. This split handler design is necessary to support
1919 * shared interrupts.
1920 *
1921 * Dev_id must be globally unique. Normally the address of the
1922 * device data structure is used as the cookie. Since the handler
1923 * receives this value it makes sense to use it.
1924 *
1925 * If your interrupt is shared you must pass a non NULL dev_id
1926 * as this is required when freeing the interrupt.
1927 *
1928 * Flags:
1929 *
1930 * IRQF_SHARED Interrupt is shared
1931 * IRQF_TRIGGER_* Specify active edge(s) or level
1932 *
1933 */
1934 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1935 irq_handler_t thread_fn, unsigned long irqflags,
1936 const char *devname, void *dev_id)
1937 {
1938 struct irqaction *action;
1939 struct irq_desc *desc;
1940 int retval;
1941
1942 if (irq == IRQ_NOTCONNECTED)
1943 return -ENOTCONN;
1944
1945 /*
1946 * Sanity-check: shared interrupts must pass in a real dev-ID,
1947 * otherwise we'll have trouble later trying to figure out
1948 * which interrupt is which (messes up the interrupt freeing
1949 * logic etc).
1950 *
1951 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1952 * it cannot be set along with IRQF_NO_SUSPEND.
1953 */
1954 if (((irqflags & IRQF_SHARED) && !dev_id) ||
1955 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1956 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1957 return -EINVAL;
1958
1959 desc = irq_to_desc(irq);
1960 if (!desc)
1961 return -EINVAL;
1962
1963 if (!irq_settings_can_request(desc) ||
1964 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1965 return -EINVAL;
1966
1967 if (!handler) {
1968 if (!thread_fn)
1969 return -EINVAL;
1970 handler = irq_default_primary_handler;
1971 }
1972
1973 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1974 if (!action)
1975 return -ENOMEM;
1976
1977 action->handler = handler;
1978 action->thread_fn = thread_fn;
1979 action->flags = irqflags;
1980 action->name = devname;
1981 action->dev_id = dev_id;
1982
1983 retval = irq_chip_pm_get(&desc->irq_data);
1984 if (retval < 0) {
1985 kfree(action);
1986 return retval;
1987 }
1988
1989 retval = __setup_irq(irq, desc, action);
1990
1991 if (retval) {
1992 irq_chip_pm_put(&desc->irq_data);
1993 kfree(action->secondary);
1994 kfree(action);
1995 }
1996
1997 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1998 if (!retval && (irqflags & IRQF_SHARED)) {
1999 /*
2000 * It's a shared IRQ -- the driver ought to be prepared for it
2001 * to happen immediately, so let's make sure....
2002 * We disable the irq to make sure that a 'real' IRQ doesn't
2003 * run in parallel with our fake.
2004 */
2005 unsigned long flags;
2006
2007 disable_irq(irq);
2008 local_irq_save(flags);
2009
2010 handler(irq, dev_id);
2011
2012 local_irq_restore(flags);
2013 enable_irq(irq);
2014 }
2015 #endif
2016 return retval;
2017 }
2018 EXPORT_SYMBOL(request_threaded_irq);
2019
2020 /**
2021 * request_any_context_irq - allocate an interrupt line
2022 * @irq: Interrupt line to allocate
2023 * @handler: Function to be called when the IRQ occurs.
2024 * Threaded handler for threaded interrupts.
2025 * @flags: Interrupt type flags
2026 * @name: An ascii name for the claiming device
2027 * @dev_id: A cookie passed back to the handler function
2028 *
2029 * This call allocates interrupt resources and enables the
2030 * interrupt line and IRQ handling. It selects either a
2031 * hardirq or threaded handling method depending on the
2032 * context.
2033 *
2034 * On failure, it returns a negative value. On success,
2035 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
2036 */
2037 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
2038 unsigned long flags, const char *name, void *dev_id)
2039 {
2040 struct irq_desc *desc;
2041 int ret;
2042
2043 if (irq == IRQ_NOTCONNECTED)
2044 return -ENOTCONN;
2045
2046 desc = irq_to_desc(irq);
2047 if (!desc)
2048 return -EINVAL;
2049
2050 if (irq_settings_is_nested_thread(desc)) {
2051 ret = request_threaded_irq(irq, NULL, handler,
2052 flags, name, dev_id);
2053 return !ret ? IRQC_IS_NESTED : ret;
2054 }
2055
2056 ret = request_irq(irq, handler, flags, name, dev_id);
2057 return !ret ? IRQC_IS_HARDIRQ : ret;
2058 }
2059 EXPORT_SYMBOL_GPL(request_any_context_irq);
2060
2061 /**
2062 * request_nmi - allocate an interrupt line for NMI delivery
2063 * @irq: Interrupt line to allocate
2064 * @handler: Function to be called when the IRQ occurs.
2065 * Threaded handler for threaded interrupts.
2066 * @irqflags: Interrupt type flags
2067 * @name: An ascii name for the claiming device
2068 * @dev_id: A cookie passed back to the handler function
2069 *
2070 * This call allocates interrupt resources and enables the
2071 * interrupt line and IRQ handling. It sets up the IRQ line
2072 * to be handled as an NMI.
2073 *
2074 * An interrupt line delivering NMIs cannot be shared and IRQ handling
2075 * cannot be threaded.
2076 *
2077 * Interrupt lines requested for NMI delivering must produce per cpu
2078 * interrupts and have auto enabling setting disabled.
2079 *
2080 * Dev_id must be globally unique. Normally the address of the
2081 * device data structure is used as the cookie. Since the handler
2082 * receives this value it makes sense to use it.
2083 *
2084 * If the interrupt line cannot be used to deliver NMIs, function
2085 * will fail and return a negative value.
2086 */
2087 int request_nmi(unsigned int irq, irq_handler_t handler,
2088 unsigned long irqflags, const char *name, void *dev_id)
2089 {
2090 struct irqaction *action;
2091 struct irq_desc *desc;
2092 unsigned long flags;
2093 int retval;
2094
2095 if (irq == IRQ_NOTCONNECTED)
2096 return -ENOTCONN;
2097
2098 /* NMI cannot be shared, used for Polling */
2099 if (irqflags & (IRQF_SHARED | IRQF_COND_SUSPEND | IRQF_IRQPOLL))
2100 return -EINVAL;
2101
2102 if (!(irqflags & IRQF_PERCPU))
2103 return -EINVAL;
2104
2105 if (!handler)
2106 return -EINVAL;
2107
2108 desc = irq_to_desc(irq);
2109
2110 if (!desc || irq_settings_can_autoenable(desc) ||
2111 !irq_settings_can_request(desc) ||
2112 WARN_ON(irq_settings_is_per_cpu_devid(desc)) ||
2113 !irq_supports_nmi(desc))
2114 return -EINVAL;
2115
2116 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2117 if (!action)
2118 return -ENOMEM;
2119
2120 action->handler = handler;
2121 action->flags = irqflags | IRQF_NO_THREAD | IRQF_NOBALANCING;
2122 action->name = name;
2123 action->dev_id = dev_id;
2124
2125 retval = irq_chip_pm_get(&desc->irq_data);
2126 if (retval < 0)
2127 goto err_out;
2128
2129 retval = __setup_irq(irq, desc, action);
2130 if (retval)
2131 goto err_irq_setup;
2132
2133 raw_spin_lock_irqsave(&desc->lock, flags);
2134
2135 /* Setup NMI state */
2136 desc->istate |= IRQS_NMI;
2137 retval = irq_nmi_setup(desc);
2138 if (retval) {
2139 __cleanup_nmi(irq, desc);
2140 raw_spin_unlock_irqrestore(&desc->lock, flags);
2141 return -EINVAL;
2142 }
2143
2144 raw_spin_unlock_irqrestore(&desc->lock, flags);
2145
2146 return 0;
2147
2148 err_irq_setup:
2149 irq_chip_pm_put(&desc->irq_data);
2150 err_out:
2151 kfree(action);
2152
2153 return retval;
2154 }
2155
2156 void enable_percpu_irq(unsigned int irq, unsigned int type)
2157 {
2158 unsigned int cpu = smp_processor_id();
2159 unsigned long flags;
2160 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2161
2162 if (!desc)
2163 return;
2164
2165 /*
2166 * If the trigger type is not specified by the caller, then
2167 * use the default for this interrupt.
2168 */
2169 type &= IRQ_TYPE_SENSE_MASK;
2170 if (type == IRQ_TYPE_NONE)
2171 type = irqd_get_trigger_type(&desc->irq_data);
2172
2173 if (type != IRQ_TYPE_NONE) {
2174 int ret;
2175
2176 ret = __irq_set_trigger(desc, type);
2177
2178 if (ret) {
2179 WARN(1, "failed to set type for IRQ%d\n", irq);
2180 goto out;
2181 }
2182 }
2183
2184 irq_percpu_enable(desc, cpu);
2185 out:
2186 irq_put_desc_unlock(desc, flags);
2187 }
2188 EXPORT_SYMBOL_GPL(enable_percpu_irq);
2189
2190 void enable_percpu_nmi(unsigned int irq, unsigned int type)
2191 {
2192 enable_percpu_irq(irq, type);
2193 }
2194
2195 /**
2196 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
2197 * @irq: Linux irq number to check for
2198 *
2199 * Must be called from a non migratable context. Returns the enable
2200 * state of a per cpu interrupt on the current cpu.
2201 */
2202 bool irq_percpu_is_enabled(unsigned int irq)
2203 {
2204 unsigned int cpu = smp_processor_id();
2205 struct irq_desc *desc;
2206 unsigned long flags;
2207 bool is_enabled;
2208
2209 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2210 if (!desc)
2211 return false;
2212
2213 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
2214 irq_put_desc_unlock(desc, flags);
2215
2216 return is_enabled;
2217 }
2218 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
2219
2220 void disable_percpu_irq(unsigned int irq)
2221 {
2222 unsigned int cpu = smp_processor_id();
2223 unsigned long flags;
2224 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
2225
2226 if (!desc)
2227 return;
2228
2229 irq_percpu_disable(desc, cpu);
2230 irq_put_desc_unlock(desc, flags);
2231 }
2232 EXPORT_SYMBOL_GPL(disable_percpu_irq);
2233
2234 void disable_percpu_nmi(unsigned int irq)
2235 {
2236 disable_percpu_irq(irq);
2237 }
2238
2239 /*
2240 * Internal function to unregister a percpu irqaction.
2241 */
2242 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2243 {
2244 struct irq_desc *desc = irq_to_desc(irq);
2245 struct irqaction *action;
2246 unsigned long flags;
2247
2248 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2249
2250 if (!desc)
2251 return NULL;
2252
2253 raw_spin_lock_irqsave(&desc->lock, flags);
2254
2255 action = desc->action;
2256 if (!action || action->percpu_dev_id != dev_id) {
2257 WARN(1, "Trying to free already-free IRQ %d\n", irq);
2258 goto bad;
2259 }
2260
2261 if (!cpumask_empty(desc->percpu_enabled)) {
2262 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2263 irq, cpumask_first(desc->percpu_enabled));
2264 goto bad;
2265 }
2266
2267 /* Found it - now remove it from the list of entries: */
2268 desc->action = NULL;
2269
2270 desc->istate &= ~IRQS_NMI;
2271
2272 raw_spin_unlock_irqrestore(&desc->lock, flags);
2273
2274 unregister_handler_proc(irq, action);
2275
2276 irq_chip_pm_put(&desc->irq_data);
2277 module_put(desc->owner);
2278 return action;
2279
2280 bad:
2281 raw_spin_unlock_irqrestore(&desc->lock, flags);
2282 return NULL;
2283 }
2284
2285 /**
2286 * remove_percpu_irq - free a per-cpu interrupt
2287 * @irq: Interrupt line to free
2288 * @act: irqaction for the interrupt
2289 *
2290 * Used to remove interrupts statically setup by the early boot process.
2291 */
2292 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2293 {
2294 struct irq_desc *desc = irq_to_desc(irq);
2295
2296 if (desc && irq_settings_is_per_cpu_devid(desc))
2297 __free_percpu_irq(irq, act->percpu_dev_id);
2298 }
2299
2300 /**
2301 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
2302 * @irq: Interrupt line to free
2303 * @dev_id: Device identity to free
2304 *
2305 * Remove a percpu interrupt handler. The handler is removed, but
2306 * the interrupt line is not disabled. This must be done on each
2307 * CPU before calling this function. The function does not return
2308 * until any executing interrupts for this IRQ have completed.
2309 *
2310 * This function must not be called from interrupt context.
2311 */
2312 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2313 {
2314 struct irq_desc *desc = irq_to_desc(irq);
2315
2316 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2317 return;
2318
2319 chip_bus_lock(desc);
2320 kfree(__free_percpu_irq(irq, dev_id));
2321 chip_bus_sync_unlock(desc);
2322 }
2323 EXPORT_SYMBOL_GPL(free_percpu_irq);
2324
2325 void free_percpu_nmi(unsigned int irq, void __percpu *dev_id)
2326 {
2327 struct irq_desc *desc = irq_to_desc(irq);
2328
2329 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2330 return;
2331
2332 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2333 return;
2334
2335 kfree(__free_percpu_irq(irq, dev_id));
2336 }
2337
2338 /**
2339 * setup_percpu_irq - setup a per-cpu interrupt
2340 * @irq: Interrupt line to setup
2341 * @act: irqaction for the interrupt
2342 *
2343 * Used to statically setup per-cpu interrupts in the early boot process.
2344 */
2345 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2346 {
2347 struct irq_desc *desc = irq_to_desc(irq);
2348 int retval;
2349
2350 if (!desc || !irq_settings_is_per_cpu_devid(desc))
2351 return -EINVAL;
2352
2353 retval = irq_chip_pm_get(&desc->irq_data);
2354 if (retval < 0)
2355 return retval;
2356
2357 retval = __setup_irq(irq, desc, act);
2358
2359 if (retval)
2360 irq_chip_pm_put(&desc->irq_data);
2361
2362 return retval;
2363 }
2364
2365 /**
2366 * __request_percpu_irq - allocate a percpu interrupt line
2367 * @irq: Interrupt line to allocate
2368 * @handler: Function to be called when the IRQ occurs.
2369 * @flags: Interrupt type flags (IRQF_TIMER only)
2370 * @devname: An ascii name for the claiming device
2371 * @dev_id: A percpu cookie passed back to the handler function
2372 *
2373 * This call allocates interrupt resources and enables the
2374 * interrupt on the local CPU. If the interrupt is supposed to be
2375 * enabled on other CPUs, it has to be done on each CPU using
2376 * enable_percpu_irq().
2377 *
2378 * Dev_id must be globally unique. It is a per-cpu variable, and
2379 * the handler gets called with the interrupted CPU's instance of
2380 * that variable.
2381 */
2382 int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2383 unsigned long flags, const char *devname,
2384 void __percpu *dev_id)
2385 {
2386 struct irqaction *action;
2387 struct irq_desc *desc;
2388 int retval;
2389
2390 if (!dev_id)
2391 return -EINVAL;
2392
2393 desc = irq_to_desc(irq);
2394 if (!desc || !irq_settings_can_request(desc) ||
2395 !irq_settings_is_per_cpu_devid(desc))
2396 return -EINVAL;
2397
2398 if (flags && flags != IRQF_TIMER)
2399 return -EINVAL;
2400
2401 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2402 if (!action)
2403 return -ENOMEM;
2404
2405 action->handler = handler;
2406 action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2407 action->name = devname;
2408 action->percpu_dev_id = dev_id;
2409
2410 retval = irq_chip_pm_get(&desc->irq_data);
2411 if (retval < 0) {
2412 kfree(action);
2413 return retval;
2414 }
2415
2416 retval = __setup_irq(irq, desc, action);
2417
2418 if (retval) {
2419 irq_chip_pm_put(&desc->irq_data);
2420 kfree(action);
2421 }
2422
2423 return retval;
2424 }
2425 EXPORT_SYMBOL_GPL(__request_percpu_irq);
2426
2427 /**
2428 * request_percpu_nmi - allocate a percpu interrupt line for NMI delivery
2429 * @irq: Interrupt line to allocate
2430 * @handler: Function to be called when the IRQ occurs.
2431 * @name: An ascii name for the claiming device
2432 * @dev_id: A percpu cookie passed back to the handler function
2433 *
2434 * This call allocates interrupt resources for a per CPU NMI. Per CPU NMIs
2435 * have to be setup on each CPU by calling prepare_percpu_nmi() before
2436 * being enabled on the same CPU by using enable_percpu_nmi().
2437 *
2438 * Dev_id must be globally unique. It is a per-cpu variable, and
2439 * the handler gets called with the interrupted CPU's instance of
2440 * that variable.
2441 *
2442 * Interrupt lines requested for NMI delivering should have auto enabling
2443 * setting disabled.
2444 *
2445 * If the interrupt line cannot be used to deliver NMIs, function
2446 * will fail returning a negative value.
2447 */
2448 int request_percpu_nmi(unsigned int irq, irq_handler_t handler,
2449 const char *name, void __percpu *dev_id)
2450 {
2451 struct irqaction *action;
2452 struct irq_desc *desc;
2453 unsigned long flags;
2454 int retval;
2455
2456 if (!handler)
2457 return -EINVAL;
2458
2459 desc = irq_to_desc(irq);
2460
2461 if (!desc || !irq_settings_can_request(desc) ||
2462 !irq_settings_is_per_cpu_devid(desc) ||
2463 irq_settings_can_autoenable(desc) ||
2464 !irq_supports_nmi(desc))
2465 return -EINVAL;
2466
2467 /* The line cannot already be NMI */
2468 if (desc->istate & IRQS_NMI)
2469 return -EINVAL;
2470
2471 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2472 if (!action)
2473 return -ENOMEM;
2474
2475 action->handler = handler;
2476 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND | IRQF_NO_THREAD
2477 | IRQF_NOBALANCING;
2478 action->name = name;
2479 action->percpu_dev_id = dev_id;
2480
2481 retval = irq_chip_pm_get(&desc->irq_data);
2482 if (retval < 0)
2483 goto err_out;
2484
2485 retval = __setup_irq(irq, desc, action);
2486 if (retval)
2487 goto err_irq_setup;
2488
2489 raw_spin_lock_irqsave(&desc->lock, flags);
2490 desc->istate |= IRQS_NMI;
2491 raw_spin_unlock_irqrestore(&desc->lock, flags);
2492
2493 return 0;
2494
2495 err_irq_setup:
2496 irq_chip_pm_put(&desc->irq_data);
2497 err_out:
2498 kfree(action);
2499
2500 return retval;
2501 }
2502
2503 /**
2504 * prepare_percpu_nmi - performs CPU local setup for NMI delivery
2505 * @irq: Interrupt line to prepare for NMI delivery
2506 *
2507 * This call prepares an interrupt line to deliver NMI on the current CPU,
2508 * before that interrupt line gets enabled with enable_percpu_nmi().
2509 *
2510 * As a CPU local operation, this should be called from non-preemptible
2511 * context.
2512 *
2513 * If the interrupt line cannot be used to deliver NMIs, function
2514 * will fail returning a negative value.
2515 */
2516 int prepare_percpu_nmi(unsigned int irq)
2517 {
2518 unsigned long flags;
2519 struct irq_desc *desc;
2520 int ret = 0;
2521
2522 WARN_ON(preemptible());
2523
2524 desc = irq_get_desc_lock(irq, &flags,
2525 IRQ_GET_DESC_CHECK_PERCPU);
2526 if (!desc)
2527 return -EINVAL;
2528
2529 if (WARN(!(desc->istate & IRQS_NMI),
2530 KERN_ERR "prepare_percpu_nmi called for a non-NMI interrupt: irq %u\n",
2531 irq)) {
2532 ret = -EINVAL;
2533 goto out;
2534 }
2535
2536 ret = irq_nmi_setup(desc);
2537 if (ret) {
2538 pr_err("Failed to setup NMI delivery: irq %u\n", irq);
2539 goto out;
2540 }
2541
2542 out:
2543 irq_put_desc_unlock(desc, flags);
2544 return ret;
2545 }
2546
2547 /**
2548 * teardown_percpu_nmi - undoes NMI setup of IRQ line
2549 * @irq: Interrupt line from which CPU local NMI configuration should be
2550 * removed
2551 *
2552 * This call undoes the setup done by prepare_percpu_nmi().
2553 *
2554 * IRQ line should not be enabled for the current CPU.
2555 *
2556 * As a CPU local operation, this should be called from non-preemptible
2557 * context.
2558 */
2559 void teardown_percpu_nmi(unsigned int irq)
2560 {
2561 unsigned long flags;
2562 struct irq_desc *desc;
2563
2564 WARN_ON(preemptible());
2565
2566 desc = irq_get_desc_lock(irq, &flags,
2567 IRQ_GET_DESC_CHECK_PERCPU);
2568 if (!desc)
2569 return;
2570
2571 if (WARN_ON(!(desc->istate & IRQS_NMI)))
2572 goto out;
2573
2574 irq_nmi_teardown(desc);
2575 out:
2576 irq_put_desc_unlock(desc, flags);
2577 }
2578
2579 /**
2580 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2581 * @irq: Interrupt line that is forwarded to a VM
2582 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2583 * @state: a pointer to a boolean where the state is to be storeed
2584 *
2585 * This call snapshots the internal irqchip state of an
2586 * interrupt, returning into @state the bit corresponding to
2587 * stage @which
2588 *
2589 * This function should be called with preemption disabled if the
2590 * interrupt controller has per-cpu registers.
2591 */
2592 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2593 bool *state)
2594 {
2595 struct irq_desc *desc;
2596 struct irq_data *data;
2597 struct irq_chip *chip;
2598 unsigned long flags;
2599 int err = -EINVAL;
2600
2601 desc = irq_get_desc_buslock(irq, &flags, 0);
2602 if (!desc)
2603 return err;
2604
2605 data = irq_desc_get_irq_data(desc);
2606
2607 do {
2608 chip = irq_data_get_irq_chip(data);
2609 if (chip->irq_get_irqchip_state)
2610 break;
2611 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2612 data = data->parent_data;
2613 #else
2614 data = NULL;
2615 #endif
2616 } while (data);
2617
2618 if (data)
2619 err = chip->irq_get_irqchip_state(data, which, state);
2620
2621 irq_put_desc_busunlock(desc, flags);
2622 return err;
2623 }
2624 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2625
2626 /**
2627 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2628 * @irq: Interrupt line that is forwarded to a VM
2629 * @which: State to be restored (one of IRQCHIP_STATE_*)
2630 * @val: Value corresponding to @which
2631 *
2632 * This call sets the internal irqchip state of an interrupt,
2633 * depending on the value of @which.
2634 *
2635 * This function should be called with preemption disabled if the
2636 * interrupt controller has per-cpu registers.
2637 */
2638 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2639 bool val)
2640 {
2641 struct irq_desc *desc;
2642 struct irq_data *data;
2643 struct irq_chip *chip;
2644 unsigned long flags;
2645 int err = -EINVAL;
2646
2647 desc = irq_get_desc_buslock(irq, &flags, 0);
2648 if (!desc)
2649 return err;
2650
2651 data = irq_desc_get_irq_data(desc);
2652
2653 do {
2654 chip = irq_data_get_irq_chip(data);
2655 if (chip->irq_set_irqchip_state)
2656 break;
2657 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2658 data = data->parent_data;
2659 #else
2660 data = NULL;
2661 #endif
2662 } while (data);
2663
2664 if (data)
2665 err = chip->irq_set_irqchip_state(data, which, val);
2666
2667 irq_put_desc_busunlock(desc, flags);
2668 return err;
2669 }
2670 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);