]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/irq/manage.c
genirq/debugfs: Add proper debugfs interface
[mirror_ubuntu-artful-kernel.git] / kernel / irq / manage.c
1 /*
2 * linux/kernel/irq/manage.c
3 *
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006 Thomas Gleixner
6 *
7 * This file contains driver APIs to the irq subsystem.
8 */
9
10 #define pr_fmt(fmt) "genirq: " fmt
11
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/sched/task.h>
21 #include <uapi/linux/sched/types.h>
22 #include <linux/task_work.h>
23
24 #include "internals.h"
25
26 #ifdef CONFIG_IRQ_FORCED_THREADING
27 __read_mostly bool force_irqthreads;
28
29 static int __init setup_forced_irqthreads(char *arg)
30 {
31 force_irqthreads = true;
32 return 0;
33 }
34 early_param("threadirqs", setup_forced_irqthreads);
35 #endif
36
37 static void __synchronize_hardirq(struct irq_desc *desc)
38 {
39 bool inprogress;
40
41 do {
42 unsigned long flags;
43
44 /*
45 * Wait until we're out of the critical section. This might
46 * give the wrong answer due to the lack of memory barriers.
47 */
48 while (irqd_irq_inprogress(&desc->irq_data))
49 cpu_relax();
50
51 /* Ok, that indicated we're done: double-check carefully. */
52 raw_spin_lock_irqsave(&desc->lock, flags);
53 inprogress = irqd_irq_inprogress(&desc->irq_data);
54 raw_spin_unlock_irqrestore(&desc->lock, flags);
55
56 /* Oops, that failed? */
57 } while (inprogress);
58 }
59
60 /**
61 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
62 * @irq: interrupt number to wait for
63 *
64 * This function waits for any pending hard IRQ handlers for this
65 * interrupt to complete before returning. If you use this
66 * function while holding a resource the IRQ handler may need you
67 * will deadlock. It does not take associated threaded handlers
68 * into account.
69 *
70 * Do not use this for shutdown scenarios where you must be sure
71 * that all parts (hardirq and threaded handler) have completed.
72 *
73 * Returns: false if a threaded handler is active.
74 *
75 * This function may be called - with care - from IRQ context.
76 */
77 bool synchronize_hardirq(unsigned int irq)
78 {
79 struct irq_desc *desc = irq_to_desc(irq);
80
81 if (desc) {
82 __synchronize_hardirq(desc);
83 return !atomic_read(&desc->threads_active);
84 }
85
86 return true;
87 }
88 EXPORT_SYMBOL(synchronize_hardirq);
89
90 /**
91 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
92 * @irq: interrupt number to wait for
93 *
94 * This function waits for any pending IRQ handlers for this interrupt
95 * to complete before returning. If you use this function while
96 * holding a resource the IRQ handler may need you will deadlock.
97 *
98 * This function may be called - with care - from IRQ context.
99 */
100 void synchronize_irq(unsigned int irq)
101 {
102 struct irq_desc *desc = irq_to_desc(irq);
103
104 if (desc) {
105 __synchronize_hardirq(desc);
106 /*
107 * We made sure that no hardirq handler is
108 * running. Now verify that no threaded handlers are
109 * active.
110 */
111 wait_event(desc->wait_for_threads,
112 !atomic_read(&desc->threads_active));
113 }
114 }
115 EXPORT_SYMBOL(synchronize_irq);
116
117 #ifdef CONFIG_SMP
118 cpumask_var_t irq_default_affinity;
119
120 static bool __irq_can_set_affinity(struct irq_desc *desc)
121 {
122 if (!desc || !irqd_can_balance(&desc->irq_data) ||
123 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
124 return false;
125 return true;
126 }
127
128 /**
129 * irq_can_set_affinity - Check if the affinity of a given irq can be set
130 * @irq: Interrupt to check
131 *
132 */
133 int irq_can_set_affinity(unsigned int irq)
134 {
135 return __irq_can_set_affinity(irq_to_desc(irq));
136 }
137
138 /**
139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
140 * @irq: Interrupt to check
141 *
142 * Like irq_can_set_affinity() above, but additionally checks for the
143 * AFFINITY_MANAGED flag.
144 */
145 bool irq_can_set_affinity_usr(unsigned int irq)
146 {
147 struct irq_desc *desc = irq_to_desc(irq);
148
149 return __irq_can_set_affinity(desc) &&
150 !irqd_affinity_is_managed(&desc->irq_data);
151 }
152
153 /**
154 * irq_set_thread_affinity - Notify irq threads to adjust affinity
155 * @desc: irq descriptor which has affitnity changed
156 *
157 * We just set IRQTF_AFFINITY and delegate the affinity setting
158 * to the interrupt thread itself. We can not call
159 * set_cpus_allowed_ptr() here as we hold desc->lock and this
160 * code can be called from hard interrupt context.
161 */
162 void irq_set_thread_affinity(struct irq_desc *desc)
163 {
164 struct irqaction *action;
165
166 for_each_action_of_desc(desc, action)
167 if (action->thread)
168 set_bit(IRQTF_AFFINITY, &action->thread_flags);
169 }
170
171 #ifdef CONFIG_GENERIC_PENDING_IRQ
172 static inline bool irq_can_move_pcntxt(struct irq_data *data)
173 {
174 return irqd_can_move_in_process_context(data);
175 }
176 static inline bool irq_move_pending(struct irq_data *data)
177 {
178 return irqd_is_setaffinity_pending(data);
179 }
180 static inline void
181 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
182 {
183 cpumask_copy(desc->pending_mask, mask);
184 }
185 static inline void
186 irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
187 {
188 cpumask_copy(mask, desc->pending_mask);
189 }
190 #else
191 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
192 static inline bool irq_move_pending(struct irq_data *data) { return false; }
193 static inline void
194 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
195 static inline void
196 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
197 #endif
198
199 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
200 bool force)
201 {
202 struct irq_desc *desc = irq_data_to_desc(data);
203 struct irq_chip *chip = irq_data_get_irq_chip(data);
204 int ret;
205
206 ret = chip->irq_set_affinity(data, mask, force);
207 switch (ret) {
208 case IRQ_SET_MASK_OK:
209 case IRQ_SET_MASK_OK_DONE:
210 cpumask_copy(desc->irq_common_data.affinity, mask);
211 case IRQ_SET_MASK_OK_NOCOPY:
212 irq_set_thread_affinity(desc);
213 ret = 0;
214 }
215
216 return ret;
217 }
218
219 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
220 bool force)
221 {
222 struct irq_chip *chip = irq_data_get_irq_chip(data);
223 struct irq_desc *desc = irq_data_to_desc(data);
224 int ret = 0;
225
226 if (!chip || !chip->irq_set_affinity)
227 return -EINVAL;
228
229 if (irq_can_move_pcntxt(data)) {
230 ret = irq_do_set_affinity(data, mask, force);
231 } else {
232 irqd_set_move_pending(data);
233 irq_copy_pending(desc, mask);
234 }
235
236 if (desc->affinity_notify) {
237 kref_get(&desc->affinity_notify->kref);
238 schedule_work(&desc->affinity_notify->work);
239 }
240 irqd_set(data, IRQD_AFFINITY_SET);
241
242 return ret;
243 }
244
245 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
246 {
247 struct irq_desc *desc = irq_to_desc(irq);
248 unsigned long flags;
249 int ret;
250
251 if (!desc)
252 return -EINVAL;
253
254 raw_spin_lock_irqsave(&desc->lock, flags);
255 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
256 raw_spin_unlock_irqrestore(&desc->lock, flags);
257 return ret;
258 }
259
260 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
261 {
262 unsigned long flags;
263 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
264
265 if (!desc)
266 return -EINVAL;
267 desc->affinity_hint = m;
268 irq_put_desc_unlock(desc, flags);
269 /* set the initial affinity to prevent every interrupt being on CPU0 */
270 if (m)
271 __irq_set_affinity(irq, m, false);
272 return 0;
273 }
274 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
275
276 static void irq_affinity_notify(struct work_struct *work)
277 {
278 struct irq_affinity_notify *notify =
279 container_of(work, struct irq_affinity_notify, work);
280 struct irq_desc *desc = irq_to_desc(notify->irq);
281 cpumask_var_t cpumask;
282 unsigned long flags;
283
284 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
285 goto out;
286
287 raw_spin_lock_irqsave(&desc->lock, flags);
288 if (irq_move_pending(&desc->irq_data))
289 irq_get_pending(cpumask, desc);
290 else
291 cpumask_copy(cpumask, desc->irq_common_data.affinity);
292 raw_spin_unlock_irqrestore(&desc->lock, flags);
293
294 notify->notify(notify, cpumask);
295
296 free_cpumask_var(cpumask);
297 out:
298 kref_put(&notify->kref, notify->release);
299 }
300
301 /**
302 * irq_set_affinity_notifier - control notification of IRQ affinity changes
303 * @irq: Interrupt for which to enable/disable notification
304 * @notify: Context for notification, or %NULL to disable
305 * notification. Function pointers must be initialised;
306 * the other fields will be initialised by this function.
307 *
308 * Must be called in process context. Notification may only be enabled
309 * after the IRQ is allocated and must be disabled before the IRQ is
310 * freed using free_irq().
311 */
312 int
313 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
314 {
315 struct irq_desc *desc = irq_to_desc(irq);
316 struct irq_affinity_notify *old_notify;
317 unsigned long flags;
318
319 /* The release function is promised process context */
320 might_sleep();
321
322 if (!desc)
323 return -EINVAL;
324
325 /* Complete initialisation of *notify */
326 if (notify) {
327 notify->irq = irq;
328 kref_init(&notify->kref);
329 INIT_WORK(&notify->work, irq_affinity_notify);
330 }
331
332 raw_spin_lock_irqsave(&desc->lock, flags);
333 old_notify = desc->affinity_notify;
334 desc->affinity_notify = notify;
335 raw_spin_unlock_irqrestore(&desc->lock, flags);
336
337 if (old_notify)
338 kref_put(&old_notify->kref, old_notify->release);
339
340 return 0;
341 }
342 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
343
344 #ifndef CONFIG_AUTO_IRQ_AFFINITY
345 /*
346 * Generic version of the affinity autoselector.
347 */
348 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
349 {
350 struct cpumask *set = irq_default_affinity;
351 int node = irq_desc_get_node(desc);
352
353 /* Excludes PER_CPU and NO_BALANCE interrupts */
354 if (!__irq_can_set_affinity(desc))
355 return 0;
356
357 /*
358 * Preserve the managed affinity setting and a userspace affinity
359 * setup, but make sure that one of the targets is online.
360 */
361 if (irqd_affinity_is_managed(&desc->irq_data) ||
362 irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
363 if (cpumask_intersects(desc->irq_common_data.affinity,
364 cpu_online_mask))
365 set = desc->irq_common_data.affinity;
366 else
367 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
368 }
369
370 cpumask_and(mask, cpu_online_mask, set);
371 if (node != NUMA_NO_NODE) {
372 const struct cpumask *nodemask = cpumask_of_node(node);
373
374 /* make sure at least one of the cpus in nodemask is online */
375 if (cpumask_intersects(mask, nodemask))
376 cpumask_and(mask, mask, nodemask);
377 }
378 irq_do_set_affinity(&desc->irq_data, mask, false);
379 return 0;
380 }
381 #else
382 /* Wrapper for ALPHA specific affinity selector magic */
383 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
384 {
385 return irq_select_affinity(irq_desc_get_irq(d));
386 }
387 #endif
388
389 /*
390 * Called when affinity is set via /proc/irq
391 */
392 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
393 {
394 struct irq_desc *desc = irq_to_desc(irq);
395 unsigned long flags;
396 int ret;
397
398 raw_spin_lock_irqsave(&desc->lock, flags);
399 ret = setup_affinity(desc, mask);
400 raw_spin_unlock_irqrestore(&desc->lock, flags);
401 return ret;
402 }
403
404 #else
405 static inline int
406 setup_affinity(struct irq_desc *desc, struct cpumask *mask)
407 {
408 return 0;
409 }
410 #endif
411
412 /**
413 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
414 * @irq: interrupt number to set affinity
415 * @vcpu_info: vCPU specific data
416 *
417 * This function uses the vCPU specific data to set the vCPU
418 * affinity for an irq. The vCPU specific data is passed from
419 * outside, such as KVM. One example code path is as below:
420 * KVM -> IOMMU -> irq_set_vcpu_affinity().
421 */
422 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
423 {
424 unsigned long flags;
425 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
426 struct irq_data *data;
427 struct irq_chip *chip;
428 int ret = -ENOSYS;
429
430 if (!desc)
431 return -EINVAL;
432
433 data = irq_desc_get_irq_data(desc);
434 chip = irq_data_get_irq_chip(data);
435 if (chip && chip->irq_set_vcpu_affinity)
436 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
437 irq_put_desc_unlock(desc, flags);
438
439 return ret;
440 }
441 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
442
443 void __disable_irq(struct irq_desc *desc)
444 {
445 if (!desc->depth++)
446 irq_disable(desc);
447 }
448
449 static int __disable_irq_nosync(unsigned int irq)
450 {
451 unsigned long flags;
452 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
453
454 if (!desc)
455 return -EINVAL;
456 __disable_irq(desc);
457 irq_put_desc_busunlock(desc, flags);
458 return 0;
459 }
460
461 /**
462 * disable_irq_nosync - disable an irq without waiting
463 * @irq: Interrupt to disable
464 *
465 * Disable the selected interrupt line. Disables and Enables are
466 * nested.
467 * Unlike disable_irq(), this function does not ensure existing
468 * instances of the IRQ handler have completed before returning.
469 *
470 * This function may be called from IRQ context.
471 */
472 void disable_irq_nosync(unsigned int irq)
473 {
474 __disable_irq_nosync(irq);
475 }
476 EXPORT_SYMBOL(disable_irq_nosync);
477
478 /**
479 * disable_irq - disable an irq and wait for completion
480 * @irq: Interrupt to disable
481 *
482 * Disable the selected interrupt line. Enables and Disables are
483 * nested.
484 * This function waits for any pending IRQ handlers for this interrupt
485 * to complete before returning. If you use this function while
486 * holding a resource the IRQ handler may need you will deadlock.
487 *
488 * This function may be called - with care - from IRQ context.
489 */
490 void disable_irq(unsigned int irq)
491 {
492 if (!__disable_irq_nosync(irq))
493 synchronize_irq(irq);
494 }
495 EXPORT_SYMBOL(disable_irq);
496
497 /**
498 * disable_hardirq - disables an irq and waits for hardirq completion
499 * @irq: Interrupt to disable
500 *
501 * Disable the selected interrupt line. Enables and Disables are
502 * nested.
503 * This function waits for any pending hard IRQ handlers for this
504 * interrupt to complete before returning. If you use this function while
505 * holding a resource the hard IRQ handler may need you will deadlock.
506 *
507 * When used to optimistically disable an interrupt from atomic context
508 * the return value must be checked.
509 *
510 * Returns: false if a threaded handler is active.
511 *
512 * This function may be called - with care - from IRQ context.
513 */
514 bool disable_hardirq(unsigned int irq)
515 {
516 if (!__disable_irq_nosync(irq))
517 return synchronize_hardirq(irq);
518
519 return false;
520 }
521 EXPORT_SYMBOL_GPL(disable_hardirq);
522
523 void __enable_irq(struct irq_desc *desc)
524 {
525 switch (desc->depth) {
526 case 0:
527 err_out:
528 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
529 irq_desc_get_irq(desc));
530 break;
531 case 1: {
532 if (desc->istate & IRQS_SUSPENDED)
533 goto err_out;
534 /* Prevent probing on this irq: */
535 irq_settings_set_noprobe(desc);
536 /*
537 * Call irq_startup() not irq_enable() here because the
538 * interrupt might be marked NOAUTOEN. So irq_startup()
539 * needs to be invoked when it gets enabled the first
540 * time. If it was already started up, then irq_startup()
541 * will invoke irq_enable() under the hood.
542 */
543 irq_startup(desc, true);
544 break;
545 }
546 default:
547 desc->depth--;
548 }
549 }
550
551 /**
552 * enable_irq - enable handling of an irq
553 * @irq: Interrupt to enable
554 *
555 * Undoes the effect of one call to disable_irq(). If this
556 * matches the last disable, processing of interrupts on this
557 * IRQ line is re-enabled.
558 *
559 * This function may be called from IRQ context only when
560 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
561 */
562 void enable_irq(unsigned int irq)
563 {
564 unsigned long flags;
565 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
566
567 if (!desc)
568 return;
569 if (WARN(!desc->irq_data.chip,
570 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
571 goto out;
572
573 __enable_irq(desc);
574 out:
575 irq_put_desc_busunlock(desc, flags);
576 }
577 EXPORT_SYMBOL(enable_irq);
578
579 static int set_irq_wake_real(unsigned int irq, unsigned int on)
580 {
581 struct irq_desc *desc = irq_to_desc(irq);
582 int ret = -ENXIO;
583
584 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
585 return 0;
586
587 if (desc->irq_data.chip->irq_set_wake)
588 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
589
590 return ret;
591 }
592
593 /**
594 * irq_set_irq_wake - control irq power management wakeup
595 * @irq: interrupt to control
596 * @on: enable/disable power management wakeup
597 *
598 * Enable/disable power management wakeup mode, which is
599 * disabled by default. Enables and disables must match,
600 * just as they match for non-wakeup mode support.
601 *
602 * Wakeup mode lets this IRQ wake the system from sleep
603 * states like "suspend to RAM".
604 */
605 int irq_set_irq_wake(unsigned int irq, unsigned int on)
606 {
607 unsigned long flags;
608 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
609 int ret = 0;
610
611 if (!desc)
612 return -EINVAL;
613
614 /* wakeup-capable irqs can be shared between drivers that
615 * don't need to have the same sleep mode behaviors.
616 */
617 if (on) {
618 if (desc->wake_depth++ == 0) {
619 ret = set_irq_wake_real(irq, on);
620 if (ret)
621 desc->wake_depth = 0;
622 else
623 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
624 }
625 } else {
626 if (desc->wake_depth == 0) {
627 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
628 } else if (--desc->wake_depth == 0) {
629 ret = set_irq_wake_real(irq, on);
630 if (ret)
631 desc->wake_depth = 1;
632 else
633 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
634 }
635 }
636 irq_put_desc_busunlock(desc, flags);
637 return ret;
638 }
639 EXPORT_SYMBOL(irq_set_irq_wake);
640
641 /*
642 * Internal function that tells the architecture code whether a
643 * particular irq has been exclusively allocated or is available
644 * for driver use.
645 */
646 int can_request_irq(unsigned int irq, unsigned long irqflags)
647 {
648 unsigned long flags;
649 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
650 int canrequest = 0;
651
652 if (!desc)
653 return 0;
654
655 if (irq_settings_can_request(desc)) {
656 if (!desc->action ||
657 irqflags & desc->action->flags & IRQF_SHARED)
658 canrequest = 1;
659 }
660 irq_put_desc_unlock(desc, flags);
661 return canrequest;
662 }
663
664 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
665 {
666 struct irq_chip *chip = desc->irq_data.chip;
667 int ret, unmask = 0;
668
669 if (!chip || !chip->irq_set_type) {
670 /*
671 * IRQF_TRIGGER_* but the PIC does not support multiple
672 * flow-types?
673 */
674 pr_debug("No set_type function for IRQ %d (%s)\n",
675 irq_desc_get_irq(desc),
676 chip ? (chip->name ? : "unknown") : "unknown");
677 return 0;
678 }
679
680 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
681 if (!irqd_irq_masked(&desc->irq_data))
682 mask_irq(desc);
683 if (!irqd_irq_disabled(&desc->irq_data))
684 unmask = 1;
685 }
686
687 /* Mask all flags except trigger mode */
688 flags &= IRQ_TYPE_SENSE_MASK;
689 ret = chip->irq_set_type(&desc->irq_data, flags);
690
691 switch (ret) {
692 case IRQ_SET_MASK_OK:
693 case IRQ_SET_MASK_OK_DONE:
694 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
695 irqd_set(&desc->irq_data, flags);
696
697 case IRQ_SET_MASK_OK_NOCOPY:
698 flags = irqd_get_trigger_type(&desc->irq_data);
699 irq_settings_set_trigger_mask(desc, flags);
700 irqd_clear(&desc->irq_data, IRQD_LEVEL);
701 irq_settings_clr_level(desc);
702 if (flags & IRQ_TYPE_LEVEL_MASK) {
703 irq_settings_set_level(desc);
704 irqd_set(&desc->irq_data, IRQD_LEVEL);
705 }
706
707 ret = 0;
708 break;
709 default:
710 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
711 flags, irq_desc_get_irq(desc), chip->irq_set_type);
712 }
713 if (unmask)
714 unmask_irq(desc);
715 return ret;
716 }
717
718 #ifdef CONFIG_HARDIRQS_SW_RESEND
719 int irq_set_parent(int irq, int parent_irq)
720 {
721 unsigned long flags;
722 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
723
724 if (!desc)
725 return -EINVAL;
726
727 desc->parent_irq = parent_irq;
728
729 irq_put_desc_unlock(desc, flags);
730 return 0;
731 }
732 EXPORT_SYMBOL_GPL(irq_set_parent);
733 #endif
734
735 /*
736 * Default primary interrupt handler for threaded interrupts. Is
737 * assigned as primary handler when request_threaded_irq is called
738 * with handler == NULL. Useful for oneshot interrupts.
739 */
740 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
741 {
742 return IRQ_WAKE_THREAD;
743 }
744
745 /*
746 * Primary handler for nested threaded interrupts. Should never be
747 * called.
748 */
749 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
750 {
751 WARN(1, "Primary handler called for nested irq %d\n", irq);
752 return IRQ_NONE;
753 }
754
755 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
756 {
757 WARN(1, "Secondary action handler called for irq %d\n", irq);
758 return IRQ_NONE;
759 }
760
761 static int irq_wait_for_interrupt(struct irqaction *action)
762 {
763 set_current_state(TASK_INTERRUPTIBLE);
764
765 while (!kthread_should_stop()) {
766
767 if (test_and_clear_bit(IRQTF_RUNTHREAD,
768 &action->thread_flags)) {
769 __set_current_state(TASK_RUNNING);
770 return 0;
771 }
772 schedule();
773 set_current_state(TASK_INTERRUPTIBLE);
774 }
775 __set_current_state(TASK_RUNNING);
776 return -1;
777 }
778
779 /*
780 * Oneshot interrupts keep the irq line masked until the threaded
781 * handler finished. unmask if the interrupt has not been disabled and
782 * is marked MASKED.
783 */
784 static void irq_finalize_oneshot(struct irq_desc *desc,
785 struct irqaction *action)
786 {
787 if (!(desc->istate & IRQS_ONESHOT) ||
788 action->handler == irq_forced_secondary_handler)
789 return;
790 again:
791 chip_bus_lock(desc);
792 raw_spin_lock_irq(&desc->lock);
793
794 /*
795 * Implausible though it may be we need to protect us against
796 * the following scenario:
797 *
798 * The thread is faster done than the hard interrupt handler
799 * on the other CPU. If we unmask the irq line then the
800 * interrupt can come in again and masks the line, leaves due
801 * to IRQS_INPROGRESS and the irq line is masked forever.
802 *
803 * This also serializes the state of shared oneshot handlers
804 * versus "desc->threads_onehsot |= action->thread_mask;" in
805 * irq_wake_thread(). See the comment there which explains the
806 * serialization.
807 */
808 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
809 raw_spin_unlock_irq(&desc->lock);
810 chip_bus_sync_unlock(desc);
811 cpu_relax();
812 goto again;
813 }
814
815 /*
816 * Now check again, whether the thread should run. Otherwise
817 * we would clear the threads_oneshot bit of this thread which
818 * was just set.
819 */
820 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
821 goto out_unlock;
822
823 desc->threads_oneshot &= ~action->thread_mask;
824
825 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
826 irqd_irq_masked(&desc->irq_data))
827 unmask_threaded_irq(desc);
828
829 out_unlock:
830 raw_spin_unlock_irq(&desc->lock);
831 chip_bus_sync_unlock(desc);
832 }
833
834 #ifdef CONFIG_SMP
835 /*
836 * Check whether we need to change the affinity of the interrupt thread.
837 */
838 static void
839 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
840 {
841 cpumask_var_t mask;
842 bool valid = true;
843
844 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
845 return;
846
847 /*
848 * In case we are out of memory we set IRQTF_AFFINITY again and
849 * try again next time
850 */
851 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
852 set_bit(IRQTF_AFFINITY, &action->thread_flags);
853 return;
854 }
855
856 raw_spin_lock_irq(&desc->lock);
857 /*
858 * This code is triggered unconditionally. Check the affinity
859 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
860 */
861 if (cpumask_available(desc->irq_common_data.affinity))
862 cpumask_copy(mask, desc->irq_common_data.affinity);
863 else
864 valid = false;
865 raw_spin_unlock_irq(&desc->lock);
866
867 if (valid)
868 set_cpus_allowed_ptr(current, mask);
869 free_cpumask_var(mask);
870 }
871 #else
872 static inline void
873 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
874 #endif
875
876 /*
877 * Interrupts which are not explicitely requested as threaded
878 * interrupts rely on the implicit bh/preempt disable of the hard irq
879 * context. So we need to disable bh here to avoid deadlocks and other
880 * side effects.
881 */
882 static irqreturn_t
883 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
884 {
885 irqreturn_t ret;
886
887 local_bh_disable();
888 ret = action->thread_fn(action->irq, action->dev_id);
889 irq_finalize_oneshot(desc, action);
890 local_bh_enable();
891 return ret;
892 }
893
894 /*
895 * Interrupts explicitly requested as threaded interrupts want to be
896 * preemtible - many of them need to sleep and wait for slow busses to
897 * complete.
898 */
899 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
900 struct irqaction *action)
901 {
902 irqreturn_t ret;
903
904 ret = action->thread_fn(action->irq, action->dev_id);
905 irq_finalize_oneshot(desc, action);
906 return ret;
907 }
908
909 static void wake_threads_waitq(struct irq_desc *desc)
910 {
911 if (atomic_dec_and_test(&desc->threads_active))
912 wake_up(&desc->wait_for_threads);
913 }
914
915 static void irq_thread_dtor(struct callback_head *unused)
916 {
917 struct task_struct *tsk = current;
918 struct irq_desc *desc;
919 struct irqaction *action;
920
921 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
922 return;
923
924 action = kthread_data(tsk);
925
926 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
927 tsk->comm, tsk->pid, action->irq);
928
929
930 desc = irq_to_desc(action->irq);
931 /*
932 * If IRQTF_RUNTHREAD is set, we need to decrement
933 * desc->threads_active and wake possible waiters.
934 */
935 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
936 wake_threads_waitq(desc);
937
938 /* Prevent a stale desc->threads_oneshot */
939 irq_finalize_oneshot(desc, action);
940 }
941
942 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
943 {
944 struct irqaction *secondary = action->secondary;
945
946 if (WARN_ON_ONCE(!secondary))
947 return;
948
949 raw_spin_lock_irq(&desc->lock);
950 __irq_wake_thread(desc, secondary);
951 raw_spin_unlock_irq(&desc->lock);
952 }
953
954 /*
955 * Interrupt handler thread
956 */
957 static int irq_thread(void *data)
958 {
959 struct callback_head on_exit_work;
960 struct irqaction *action = data;
961 struct irq_desc *desc = irq_to_desc(action->irq);
962 irqreturn_t (*handler_fn)(struct irq_desc *desc,
963 struct irqaction *action);
964
965 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
966 &action->thread_flags))
967 handler_fn = irq_forced_thread_fn;
968 else
969 handler_fn = irq_thread_fn;
970
971 init_task_work(&on_exit_work, irq_thread_dtor);
972 task_work_add(current, &on_exit_work, false);
973
974 irq_thread_check_affinity(desc, action);
975
976 while (!irq_wait_for_interrupt(action)) {
977 irqreturn_t action_ret;
978
979 irq_thread_check_affinity(desc, action);
980
981 action_ret = handler_fn(desc, action);
982 if (action_ret == IRQ_HANDLED)
983 atomic_inc(&desc->threads_handled);
984 if (action_ret == IRQ_WAKE_THREAD)
985 irq_wake_secondary(desc, action);
986
987 wake_threads_waitq(desc);
988 }
989
990 /*
991 * This is the regular exit path. __free_irq() is stopping the
992 * thread via kthread_stop() after calling
993 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
994 * oneshot mask bit can be set. We cannot verify that as we
995 * cannot touch the oneshot mask at this point anymore as
996 * __setup_irq() might have given out currents thread_mask
997 * again.
998 */
999 task_work_cancel(current, irq_thread_dtor);
1000 return 0;
1001 }
1002
1003 /**
1004 * irq_wake_thread - wake the irq thread for the action identified by dev_id
1005 * @irq: Interrupt line
1006 * @dev_id: Device identity for which the thread should be woken
1007 *
1008 */
1009 void irq_wake_thread(unsigned int irq, void *dev_id)
1010 {
1011 struct irq_desc *desc = irq_to_desc(irq);
1012 struct irqaction *action;
1013 unsigned long flags;
1014
1015 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1016 return;
1017
1018 raw_spin_lock_irqsave(&desc->lock, flags);
1019 for_each_action_of_desc(desc, action) {
1020 if (action->dev_id == dev_id) {
1021 if (action->thread)
1022 __irq_wake_thread(desc, action);
1023 break;
1024 }
1025 }
1026 raw_spin_unlock_irqrestore(&desc->lock, flags);
1027 }
1028 EXPORT_SYMBOL_GPL(irq_wake_thread);
1029
1030 static int irq_setup_forced_threading(struct irqaction *new)
1031 {
1032 if (!force_irqthreads)
1033 return 0;
1034 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1035 return 0;
1036
1037 new->flags |= IRQF_ONESHOT;
1038
1039 /*
1040 * Handle the case where we have a real primary handler and a
1041 * thread handler. We force thread them as well by creating a
1042 * secondary action.
1043 */
1044 if (new->handler != irq_default_primary_handler && new->thread_fn) {
1045 /* Allocate the secondary action */
1046 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1047 if (!new->secondary)
1048 return -ENOMEM;
1049 new->secondary->handler = irq_forced_secondary_handler;
1050 new->secondary->thread_fn = new->thread_fn;
1051 new->secondary->dev_id = new->dev_id;
1052 new->secondary->irq = new->irq;
1053 new->secondary->name = new->name;
1054 }
1055 /* Deal with the primary handler */
1056 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1057 new->thread_fn = new->handler;
1058 new->handler = irq_default_primary_handler;
1059 return 0;
1060 }
1061
1062 static int irq_request_resources(struct irq_desc *desc)
1063 {
1064 struct irq_data *d = &desc->irq_data;
1065 struct irq_chip *c = d->chip;
1066
1067 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1068 }
1069
1070 static void irq_release_resources(struct irq_desc *desc)
1071 {
1072 struct irq_data *d = &desc->irq_data;
1073 struct irq_chip *c = d->chip;
1074
1075 if (c->irq_release_resources)
1076 c->irq_release_resources(d);
1077 }
1078
1079 static int
1080 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1081 {
1082 struct task_struct *t;
1083 struct sched_param param = {
1084 .sched_priority = MAX_USER_RT_PRIO/2,
1085 };
1086
1087 if (!secondary) {
1088 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1089 new->name);
1090 } else {
1091 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1092 new->name);
1093 param.sched_priority -= 1;
1094 }
1095
1096 if (IS_ERR(t))
1097 return PTR_ERR(t);
1098
1099 sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1100
1101 /*
1102 * We keep the reference to the task struct even if
1103 * the thread dies to avoid that the interrupt code
1104 * references an already freed task_struct.
1105 */
1106 get_task_struct(t);
1107 new->thread = t;
1108 /*
1109 * Tell the thread to set its affinity. This is
1110 * important for shared interrupt handlers as we do
1111 * not invoke setup_affinity() for the secondary
1112 * handlers as everything is already set up. Even for
1113 * interrupts marked with IRQF_NO_BALANCE this is
1114 * correct as we want the thread to move to the cpu(s)
1115 * on which the requesting code placed the interrupt.
1116 */
1117 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1118 return 0;
1119 }
1120
1121 /*
1122 * Internal function to register an irqaction - typically used to
1123 * allocate special interrupts that are part of the architecture.
1124 */
1125 static int
1126 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1127 {
1128 struct irqaction *old, **old_ptr;
1129 unsigned long flags, thread_mask = 0;
1130 int ret, nested, shared = 0;
1131 cpumask_var_t mask;
1132
1133 if (!desc)
1134 return -EINVAL;
1135
1136 if (desc->irq_data.chip == &no_irq_chip)
1137 return -ENOSYS;
1138 if (!try_module_get(desc->owner))
1139 return -ENODEV;
1140
1141 new->irq = irq;
1142
1143 /*
1144 * If the trigger type is not specified by the caller,
1145 * then use the default for this interrupt.
1146 */
1147 if (!(new->flags & IRQF_TRIGGER_MASK))
1148 new->flags |= irqd_get_trigger_type(&desc->irq_data);
1149
1150 /*
1151 * Check whether the interrupt nests into another interrupt
1152 * thread.
1153 */
1154 nested = irq_settings_is_nested_thread(desc);
1155 if (nested) {
1156 if (!new->thread_fn) {
1157 ret = -EINVAL;
1158 goto out_mput;
1159 }
1160 /*
1161 * Replace the primary handler which was provided from
1162 * the driver for non nested interrupt handling by the
1163 * dummy function which warns when called.
1164 */
1165 new->handler = irq_nested_primary_handler;
1166 } else {
1167 if (irq_settings_can_thread(desc)) {
1168 ret = irq_setup_forced_threading(new);
1169 if (ret)
1170 goto out_mput;
1171 }
1172 }
1173
1174 /*
1175 * Create a handler thread when a thread function is supplied
1176 * and the interrupt does not nest into another interrupt
1177 * thread.
1178 */
1179 if (new->thread_fn && !nested) {
1180 ret = setup_irq_thread(new, irq, false);
1181 if (ret)
1182 goto out_mput;
1183 if (new->secondary) {
1184 ret = setup_irq_thread(new->secondary, irq, true);
1185 if (ret)
1186 goto out_thread;
1187 }
1188 }
1189
1190 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1191 ret = -ENOMEM;
1192 goto out_thread;
1193 }
1194
1195 /*
1196 * Drivers are often written to work w/o knowledge about the
1197 * underlying irq chip implementation, so a request for a
1198 * threaded irq without a primary hard irq context handler
1199 * requires the ONESHOT flag to be set. Some irq chips like
1200 * MSI based interrupts are per se one shot safe. Check the
1201 * chip flags, so we can avoid the unmask dance at the end of
1202 * the threaded handler for those.
1203 */
1204 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1205 new->flags &= ~IRQF_ONESHOT;
1206
1207 /*
1208 * The following block of code has to be executed atomically
1209 */
1210 raw_spin_lock_irqsave(&desc->lock, flags);
1211 old_ptr = &desc->action;
1212 old = *old_ptr;
1213 if (old) {
1214 /*
1215 * Can't share interrupts unless both agree to and are
1216 * the same type (level, edge, polarity). So both flag
1217 * fields must have IRQF_SHARED set and the bits which
1218 * set the trigger type must match. Also all must
1219 * agree on ONESHOT.
1220 */
1221 unsigned int oldtype = irqd_get_trigger_type(&desc->irq_data);
1222
1223 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1224 (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1225 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1226 goto mismatch;
1227
1228 /* All handlers must agree on per-cpuness */
1229 if ((old->flags & IRQF_PERCPU) !=
1230 (new->flags & IRQF_PERCPU))
1231 goto mismatch;
1232
1233 /* add new interrupt at end of irq queue */
1234 do {
1235 /*
1236 * Or all existing action->thread_mask bits,
1237 * so we can find the next zero bit for this
1238 * new action.
1239 */
1240 thread_mask |= old->thread_mask;
1241 old_ptr = &old->next;
1242 old = *old_ptr;
1243 } while (old);
1244 shared = 1;
1245 }
1246
1247 /*
1248 * Setup the thread mask for this irqaction for ONESHOT. For
1249 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1250 * conditional in irq_wake_thread().
1251 */
1252 if (new->flags & IRQF_ONESHOT) {
1253 /*
1254 * Unlikely to have 32 resp 64 irqs sharing one line,
1255 * but who knows.
1256 */
1257 if (thread_mask == ~0UL) {
1258 ret = -EBUSY;
1259 goto out_mask;
1260 }
1261 /*
1262 * The thread_mask for the action is or'ed to
1263 * desc->thread_active to indicate that the
1264 * IRQF_ONESHOT thread handler has been woken, but not
1265 * yet finished. The bit is cleared when a thread
1266 * completes. When all threads of a shared interrupt
1267 * line have completed desc->threads_active becomes
1268 * zero and the interrupt line is unmasked. See
1269 * handle.c:irq_wake_thread() for further information.
1270 *
1271 * If no thread is woken by primary (hard irq context)
1272 * interrupt handlers, then desc->threads_active is
1273 * also checked for zero to unmask the irq line in the
1274 * affected hard irq flow handlers
1275 * (handle_[fasteoi|level]_irq).
1276 *
1277 * The new action gets the first zero bit of
1278 * thread_mask assigned. See the loop above which or's
1279 * all existing action->thread_mask bits.
1280 */
1281 new->thread_mask = 1 << ffz(thread_mask);
1282
1283 } else if (new->handler == irq_default_primary_handler &&
1284 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1285 /*
1286 * The interrupt was requested with handler = NULL, so
1287 * we use the default primary handler for it. But it
1288 * does not have the oneshot flag set. In combination
1289 * with level interrupts this is deadly, because the
1290 * default primary handler just wakes the thread, then
1291 * the irq lines is reenabled, but the device still
1292 * has the level irq asserted. Rinse and repeat....
1293 *
1294 * While this works for edge type interrupts, we play
1295 * it safe and reject unconditionally because we can't
1296 * say for sure which type this interrupt really
1297 * has. The type flags are unreliable as the
1298 * underlying chip implementation can override them.
1299 */
1300 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1301 irq);
1302 ret = -EINVAL;
1303 goto out_mask;
1304 }
1305
1306 if (!shared) {
1307 ret = irq_request_resources(desc);
1308 if (ret) {
1309 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1310 new->name, irq, desc->irq_data.chip->name);
1311 goto out_mask;
1312 }
1313
1314 init_waitqueue_head(&desc->wait_for_threads);
1315
1316 /* Setup the type (level, edge polarity) if configured: */
1317 if (new->flags & IRQF_TRIGGER_MASK) {
1318 ret = __irq_set_trigger(desc,
1319 new->flags & IRQF_TRIGGER_MASK);
1320
1321 if (ret) {
1322 irq_release_resources(desc);
1323 goto out_mask;
1324 }
1325 }
1326
1327 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1328 IRQS_ONESHOT | IRQS_WAITING);
1329 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1330
1331 if (new->flags & IRQF_PERCPU) {
1332 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1333 irq_settings_set_per_cpu(desc);
1334 }
1335
1336 if (new->flags & IRQF_ONESHOT)
1337 desc->istate |= IRQS_ONESHOT;
1338
1339 if (irq_settings_can_autoenable(desc)) {
1340 irq_startup(desc, true);
1341 } else {
1342 /*
1343 * Shared interrupts do not go well with disabling
1344 * auto enable. The sharing interrupt might request
1345 * it while it's still disabled and then wait for
1346 * interrupts forever.
1347 */
1348 WARN_ON_ONCE(new->flags & IRQF_SHARED);
1349 /* Undo nested disables: */
1350 desc->depth = 1;
1351 }
1352
1353 /* Exclude IRQ from balancing if requested */
1354 if (new->flags & IRQF_NOBALANCING) {
1355 irq_settings_set_no_balancing(desc);
1356 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1357 }
1358
1359 /* Set default affinity mask once everything is setup */
1360 setup_affinity(desc, mask);
1361
1362 } else if (new->flags & IRQF_TRIGGER_MASK) {
1363 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1364 unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1365
1366 if (nmsk != omsk)
1367 /* hope the handler works with current trigger mode */
1368 pr_warn("irq %d uses trigger mode %u; requested %u\n",
1369 irq, omsk, nmsk);
1370 }
1371
1372 *old_ptr = new;
1373
1374 irq_pm_install_action(desc, new);
1375
1376 /* Reset broken irq detection when installing new handler */
1377 desc->irq_count = 0;
1378 desc->irqs_unhandled = 0;
1379
1380 /*
1381 * Check whether we disabled the irq via the spurious handler
1382 * before. Reenable it and give it another chance.
1383 */
1384 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1385 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1386 __enable_irq(desc);
1387 }
1388
1389 raw_spin_unlock_irqrestore(&desc->lock, flags);
1390
1391 /*
1392 * Strictly no need to wake it up, but hung_task complains
1393 * when no hard interrupt wakes the thread up.
1394 */
1395 if (new->thread)
1396 wake_up_process(new->thread);
1397 if (new->secondary)
1398 wake_up_process(new->secondary->thread);
1399
1400 register_irq_proc(irq, desc);
1401 irq_add_debugfs_entry(irq, desc);
1402 new->dir = NULL;
1403 register_handler_proc(irq, new);
1404 free_cpumask_var(mask);
1405
1406 return 0;
1407
1408 mismatch:
1409 if (!(new->flags & IRQF_PROBE_SHARED)) {
1410 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1411 irq, new->flags, new->name, old->flags, old->name);
1412 #ifdef CONFIG_DEBUG_SHIRQ
1413 dump_stack();
1414 #endif
1415 }
1416 ret = -EBUSY;
1417
1418 out_mask:
1419 raw_spin_unlock_irqrestore(&desc->lock, flags);
1420 free_cpumask_var(mask);
1421
1422 out_thread:
1423 if (new->thread) {
1424 struct task_struct *t = new->thread;
1425
1426 new->thread = NULL;
1427 kthread_stop(t);
1428 put_task_struct(t);
1429 }
1430 if (new->secondary && new->secondary->thread) {
1431 struct task_struct *t = new->secondary->thread;
1432
1433 new->secondary->thread = NULL;
1434 kthread_stop(t);
1435 put_task_struct(t);
1436 }
1437 out_mput:
1438 module_put(desc->owner);
1439 return ret;
1440 }
1441
1442 /**
1443 * setup_irq - setup an interrupt
1444 * @irq: Interrupt line to setup
1445 * @act: irqaction for the interrupt
1446 *
1447 * Used to statically setup interrupts in the early boot process.
1448 */
1449 int setup_irq(unsigned int irq, struct irqaction *act)
1450 {
1451 int retval;
1452 struct irq_desc *desc = irq_to_desc(irq);
1453
1454 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1455 return -EINVAL;
1456
1457 retval = irq_chip_pm_get(&desc->irq_data);
1458 if (retval < 0)
1459 return retval;
1460
1461 chip_bus_lock(desc);
1462 retval = __setup_irq(irq, desc, act);
1463 chip_bus_sync_unlock(desc);
1464
1465 if (retval)
1466 irq_chip_pm_put(&desc->irq_data);
1467
1468 return retval;
1469 }
1470 EXPORT_SYMBOL_GPL(setup_irq);
1471
1472 /*
1473 * Internal function to unregister an irqaction - used to free
1474 * regular and special interrupts that are part of the architecture.
1475 */
1476 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1477 {
1478 struct irq_desc *desc = irq_to_desc(irq);
1479 struct irqaction *action, **action_ptr;
1480 unsigned long flags;
1481
1482 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1483
1484 if (!desc)
1485 return NULL;
1486
1487 chip_bus_lock(desc);
1488 raw_spin_lock_irqsave(&desc->lock, flags);
1489
1490 /*
1491 * There can be multiple actions per IRQ descriptor, find the right
1492 * one based on the dev_id:
1493 */
1494 action_ptr = &desc->action;
1495 for (;;) {
1496 action = *action_ptr;
1497
1498 if (!action) {
1499 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1500 raw_spin_unlock_irqrestore(&desc->lock, flags);
1501 chip_bus_sync_unlock(desc);
1502 return NULL;
1503 }
1504
1505 if (action->dev_id == dev_id)
1506 break;
1507 action_ptr = &action->next;
1508 }
1509
1510 /* Found it - now remove it from the list of entries: */
1511 *action_ptr = action->next;
1512
1513 irq_pm_remove_action(desc, action);
1514
1515 /* If this was the last handler, shut down the IRQ line: */
1516 if (!desc->action) {
1517 irq_settings_clr_disable_unlazy(desc);
1518 irq_shutdown(desc);
1519 irq_release_resources(desc);
1520 }
1521
1522 #ifdef CONFIG_SMP
1523 /* make sure affinity_hint is cleaned up */
1524 if (WARN_ON_ONCE(desc->affinity_hint))
1525 desc->affinity_hint = NULL;
1526 #endif
1527
1528 raw_spin_unlock_irqrestore(&desc->lock, flags);
1529 chip_bus_sync_unlock(desc);
1530
1531 unregister_handler_proc(irq, action);
1532
1533 /* Make sure it's not being used on another CPU: */
1534 synchronize_irq(irq);
1535
1536 #ifdef CONFIG_DEBUG_SHIRQ
1537 /*
1538 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1539 * event to happen even now it's being freed, so let's make sure that
1540 * is so by doing an extra call to the handler ....
1541 *
1542 * ( We do this after actually deregistering it, to make sure that a
1543 * 'real' IRQ doesn't run in * parallel with our fake. )
1544 */
1545 if (action->flags & IRQF_SHARED) {
1546 local_irq_save(flags);
1547 action->handler(irq, dev_id);
1548 local_irq_restore(flags);
1549 }
1550 #endif
1551
1552 if (action->thread) {
1553 kthread_stop(action->thread);
1554 put_task_struct(action->thread);
1555 if (action->secondary && action->secondary->thread) {
1556 kthread_stop(action->secondary->thread);
1557 put_task_struct(action->secondary->thread);
1558 }
1559 }
1560
1561 irq_chip_pm_put(&desc->irq_data);
1562 module_put(desc->owner);
1563 kfree(action->secondary);
1564 return action;
1565 }
1566
1567 /**
1568 * remove_irq - free an interrupt
1569 * @irq: Interrupt line to free
1570 * @act: irqaction for the interrupt
1571 *
1572 * Used to remove interrupts statically setup by the early boot process.
1573 */
1574 void remove_irq(unsigned int irq, struct irqaction *act)
1575 {
1576 struct irq_desc *desc = irq_to_desc(irq);
1577
1578 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1579 __free_irq(irq, act->dev_id);
1580 }
1581 EXPORT_SYMBOL_GPL(remove_irq);
1582
1583 /**
1584 * free_irq - free an interrupt allocated with request_irq
1585 * @irq: Interrupt line to free
1586 * @dev_id: Device identity to free
1587 *
1588 * Remove an interrupt handler. The handler is removed and if the
1589 * interrupt line is no longer in use by any driver it is disabled.
1590 * On a shared IRQ the caller must ensure the interrupt is disabled
1591 * on the card it drives before calling this function. The function
1592 * does not return until any executing interrupts for this IRQ
1593 * have completed.
1594 *
1595 * This function must not be called from interrupt context.
1596 *
1597 * Returns the devname argument passed to request_irq.
1598 */
1599 const void *free_irq(unsigned int irq, void *dev_id)
1600 {
1601 struct irq_desc *desc = irq_to_desc(irq);
1602 struct irqaction *action;
1603 const char *devname;
1604
1605 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1606 return NULL;
1607
1608 #ifdef CONFIG_SMP
1609 if (WARN_ON(desc->affinity_notify))
1610 desc->affinity_notify = NULL;
1611 #endif
1612
1613 action = __free_irq(irq, dev_id);
1614 devname = action->name;
1615 kfree(action);
1616 return devname;
1617 }
1618 EXPORT_SYMBOL(free_irq);
1619
1620 /**
1621 * request_threaded_irq - allocate an interrupt line
1622 * @irq: Interrupt line to allocate
1623 * @handler: Function to be called when the IRQ occurs.
1624 * Primary handler for threaded interrupts
1625 * If NULL and thread_fn != NULL the default
1626 * primary handler is installed
1627 * @thread_fn: Function called from the irq handler thread
1628 * If NULL, no irq thread is created
1629 * @irqflags: Interrupt type flags
1630 * @devname: An ascii name for the claiming device
1631 * @dev_id: A cookie passed back to the handler function
1632 *
1633 * This call allocates interrupt resources and enables the
1634 * interrupt line and IRQ handling. From the point this
1635 * call is made your handler function may be invoked. Since
1636 * your handler function must clear any interrupt the board
1637 * raises, you must take care both to initialise your hardware
1638 * and to set up the interrupt handler in the right order.
1639 *
1640 * If you want to set up a threaded irq handler for your device
1641 * then you need to supply @handler and @thread_fn. @handler is
1642 * still called in hard interrupt context and has to check
1643 * whether the interrupt originates from the device. If yes it
1644 * needs to disable the interrupt on the device and return
1645 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1646 * @thread_fn. This split handler design is necessary to support
1647 * shared interrupts.
1648 *
1649 * Dev_id must be globally unique. Normally the address of the
1650 * device data structure is used as the cookie. Since the handler
1651 * receives this value it makes sense to use it.
1652 *
1653 * If your interrupt is shared you must pass a non NULL dev_id
1654 * as this is required when freeing the interrupt.
1655 *
1656 * Flags:
1657 *
1658 * IRQF_SHARED Interrupt is shared
1659 * IRQF_TRIGGER_* Specify active edge(s) or level
1660 *
1661 */
1662 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1663 irq_handler_t thread_fn, unsigned long irqflags,
1664 const char *devname, void *dev_id)
1665 {
1666 struct irqaction *action;
1667 struct irq_desc *desc;
1668 int retval;
1669
1670 if (irq == IRQ_NOTCONNECTED)
1671 return -ENOTCONN;
1672
1673 /*
1674 * Sanity-check: shared interrupts must pass in a real dev-ID,
1675 * otherwise we'll have trouble later trying to figure out
1676 * which interrupt is which (messes up the interrupt freeing
1677 * logic etc).
1678 *
1679 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1680 * it cannot be set along with IRQF_NO_SUSPEND.
1681 */
1682 if (((irqflags & IRQF_SHARED) && !dev_id) ||
1683 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1684 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1685 return -EINVAL;
1686
1687 desc = irq_to_desc(irq);
1688 if (!desc)
1689 return -EINVAL;
1690
1691 if (!irq_settings_can_request(desc) ||
1692 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1693 return -EINVAL;
1694
1695 if (!handler) {
1696 if (!thread_fn)
1697 return -EINVAL;
1698 handler = irq_default_primary_handler;
1699 }
1700
1701 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1702 if (!action)
1703 return -ENOMEM;
1704
1705 action->handler = handler;
1706 action->thread_fn = thread_fn;
1707 action->flags = irqflags;
1708 action->name = devname;
1709 action->dev_id = dev_id;
1710
1711 retval = irq_chip_pm_get(&desc->irq_data);
1712 if (retval < 0) {
1713 kfree(action);
1714 return retval;
1715 }
1716
1717 chip_bus_lock(desc);
1718 retval = __setup_irq(irq, desc, action);
1719 chip_bus_sync_unlock(desc);
1720
1721 if (retval) {
1722 irq_chip_pm_put(&desc->irq_data);
1723 kfree(action->secondary);
1724 kfree(action);
1725 }
1726
1727 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1728 if (!retval && (irqflags & IRQF_SHARED)) {
1729 /*
1730 * It's a shared IRQ -- the driver ought to be prepared for it
1731 * to happen immediately, so let's make sure....
1732 * We disable the irq to make sure that a 'real' IRQ doesn't
1733 * run in parallel with our fake.
1734 */
1735 unsigned long flags;
1736
1737 disable_irq(irq);
1738 local_irq_save(flags);
1739
1740 handler(irq, dev_id);
1741
1742 local_irq_restore(flags);
1743 enable_irq(irq);
1744 }
1745 #endif
1746 return retval;
1747 }
1748 EXPORT_SYMBOL(request_threaded_irq);
1749
1750 /**
1751 * request_any_context_irq - allocate an interrupt line
1752 * @irq: Interrupt line to allocate
1753 * @handler: Function to be called when the IRQ occurs.
1754 * Threaded handler for threaded interrupts.
1755 * @flags: Interrupt type flags
1756 * @name: An ascii name for the claiming device
1757 * @dev_id: A cookie passed back to the handler function
1758 *
1759 * This call allocates interrupt resources and enables the
1760 * interrupt line and IRQ handling. It selects either a
1761 * hardirq or threaded handling method depending on the
1762 * context.
1763 *
1764 * On failure, it returns a negative value. On success,
1765 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1766 */
1767 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1768 unsigned long flags, const char *name, void *dev_id)
1769 {
1770 struct irq_desc *desc;
1771 int ret;
1772
1773 if (irq == IRQ_NOTCONNECTED)
1774 return -ENOTCONN;
1775
1776 desc = irq_to_desc(irq);
1777 if (!desc)
1778 return -EINVAL;
1779
1780 if (irq_settings_is_nested_thread(desc)) {
1781 ret = request_threaded_irq(irq, NULL, handler,
1782 flags, name, dev_id);
1783 return !ret ? IRQC_IS_NESTED : ret;
1784 }
1785
1786 ret = request_irq(irq, handler, flags, name, dev_id);
1787 return !ret ? IRQC_IS_HARDIRQ : ret;
1788 }
1789 EXPORT_SYMBOL_GPL(request_any_context_irq);
1790
1791 void enable_percpu_irq(unsigned int irq, unsigned int type)
1792 {
1793 unsigned int cpu = smp_processor_id();
1794 unsigned long flags;
1795 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1796
1797 if (!desc)
1798 return;
1799
1800 /*
1801 * If the trigger type is not specified by the caller, then
1802 * use the default for this interrupt.
1803 */
1804 type &= IRQ_TYPE_SENSE_MASK;
1805 if (type == IRQ_TYPE_NONE)
1806 type = irqd_get_trigger_type(&desc->irq_data);
1807
1808 if (type != IRQ_TYPE_NONE) {
1809 int ret;
1810
1811 ret = __irq_set_trigger(desc, type);
1812
1813 if (ret) {
1814 WARN(1, "failed to set type for IRQ%d\n", irq);
1815 goto out;
1816 }
1817 }
1818
1819 irq_percpu_enable(desc, cpu);
1820 out:
1821 irq_put_desc_unlock(desc, flags);
1822 }
1823 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1824
1825 /**
1826 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1827 * @irq: Linux irq number to check for
1828 *
1829 * Must be called from a non migratable context. Returns the enable
1830 * state of a per cpu interrupt on the current cpu.
1831 */
1832 bool irq_percpu_is_enabled(unsigned int irq)
1833 {
1834 unsigned int cpu = smp_processor_id();
1835 struct irq_desc *desc;
1836 unsigned long flags;
1837 bool is_enabled;
1838
1839 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1840 if (!desc)
1841 return false;
1842
1843 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1844 irq_put_desc_unlock(desc, flags);
1845
1846 return is_enabled;
1847 }
1848 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1849
1850 void disable_percpu_irq(unsigned int irq)
1851 {
1852 unsigned int cpu = smp_processor_id();
1853 unsigned long flags;
1854 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1855
1856 if (!desc)
1857 return;
1858
1859 irq_percpu_disable(desc, cpu);
1860 irq_put_desc_unlock(desc, flags);
1861 }
1862 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1863
1864 /*
1865 * Internal function to unregister a percpu irqaction.
1866 */
1867 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1868 {
1869 struct irq_desc *desc = irq_to_desc(irq);
1870 struct irqaction *action;
1871 unsigned long flags;
1872
1873 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1874
1875 if (!desc)
1876 return NULL;
1877
1878 raw_spin_lock_irqsave(&desc->lock, flags);
1879
1880 action = desc->action;
1881 if (!action || action->percpu_dev_id != dev_id) {
1882 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1883 goto bad;
1884 }
1885
1886 if (!cpumask_empty(desc->percpu_enabled)) {
1887 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1888 irq, cpumask_first(desc->percpu_enabled));
1889 goto bad;
1890 }
1891
1892 /* Found it - now remove it from the list of entries: */
1893 desc->action = NULL;
1894
1895 raw_spin_unlock_irqrestore(&desc->lock, flags);
1896
1897 unregister_handler_proc(irq, action);
1898
1899 irq_chip_pm_put(&desc->irq_data);
1900 module_put(desc->owner);
1901 return action;
1902
1903 bad:
1904 raw_spin_unlock_irqrestore(&desc->lock, flags);
1905 return NULL;
1906 }
1907
1908 /**
1909 * remove_percpu_irq - free a per-cpu interrupt
1910 * @irq: Interrupt line to free
1911 * @act: irqaction for the interrupt
1912 *
1913 * Used to remove interrupts statically setup by the early boot process.
1914 */
1915 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1916 {
1917 struct irq_desc *desc = irq_to_desc(irq);
1918
1919 if (desc && irq_settings_is_per_cpu_devid(desc))
1920 __free_percpu_irq(irq, act->percpu_dev_id);
1921 }
1922
1923 /**
1924 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
1925 * @irq: Interrupt line to free
1926 * @dev_id: Device identity to free
1927 *
1928 * Remove a percpu interrupt handler. The handler is removed, but
1929 * the interrupt line is not disabled. This must be done on each
1930 * CPU before calling this function. The function does not return
1931 * until any executing interrupts for this IRQ have completed.
1932 *
1933 * This function must not be called from interrupt context.
1934 */
1935 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1936 {
1937 struct irq_desc *desc = irq_to_desc(irq);
1938
1939 if (!desc || !irq_settings_is_per_cpu_devid(desc))
1940 return;
1941
1942 chip_bus_lock(desc);
1943 kfree(__free_percpu_irq(irq, dev_id));
1944 chip_bus_sync_unlock(desc);
1945 }
1946 EXPORT_SYMBOL_GPL(free_percpu_irq);
1947
1948 /**
1949 * setup_percpu_irq - setup a per-cpu interrupt
1950 * @irq: Interrupt line to setup
1951 * @act: irqaction for the interrupt
1952 *
1953 * Used to statically setup per-cpu interrupts in the early boot process.
1954 */
1955 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1956 {
1957 struct irq_desc *desc = irq_to_desc(irq);
1958 int retval;
1959
1960 if (!desc || !irq_settings_is_per_cpu_devid(desc))
1961 return -EINVAL;
1962
1963 retval = irq_chip_pm_get(&desc->irq_data);
1964 if (retval < 0)
1965 return retval;
1966
1967 chip_bus_lock(desc);
1968 retval = __setup_irq(irq, desc, act);
1969 chip_bus_sync_unlock(desc);
1970
1971 if (retval)
1972 irq_chip_pm_put(&desc->irq_data);
1973
1974 return retval;
1975 }
1976
1977 /**
1978 * request_percpu_irq - allocate a percpu interrupt line
1979 * @irq: Interrupt line to allocate
1980 * @handler: Function to be called when the IRQ occurs.
1981 * @devname: An ascii name for the claiming device
1982 * @dev_id: A percpu cookie passed back to the handler function
1983 *
1984 * This call allocates interrupt resources and enables the
1985 * interrupt on the local CPU. If the interrupt is supposed to be
1986 * enabled on other CPUs, it has to be done on each CPU using
1987 * enable_percpu_irq().
1988 *
1989 * Dev_id must be globally unique. It is a per-cpu variable, and
1990 * the handler gets called with the interrupted CPU's instance of
1991 * that variable.
1992 */
1993 int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1994 const char *devname, void __percpu *dev_id)
1995 {
1996 struct irqaction *action;
1997 struct irq_desc *desc;
1998 int retval;
1999
2000 if (!dev_id)
2001 return -EINVAL;
2002
2003 desc = irq_to_desc(irq);
2004 if (!desc || !irq_settings_can_request(desc) ||
2005 !irq_settings_is_per_cpu_devid(desc))
2006 return -EINVAL;
2007
2008 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2009 if (!action)
2010 return -ENOMEM;
2011
2012 action->handler = handler;
2013 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
2014 action->name = devname;
2015 action->percpu_dev_id = dev_id;
2016
2017 retval = irq_chip_pm_get(&desc->irq_data);
2018 if (retval < 0) {
2019 kfree(action);
2020 return retval;
2021 }
2022
2023 chip_bus_lock(desc);
2024 retval = __setup_irq(irq, desc, action);
2025 chip_bus_sync_unlock(desc);
2026
2027 if (retval) {
2028 irq_chip_pm_put(&desc->irq_data);
2029 kfree(action);
2030 }
2031
2032 return retval;
2033 }
2034 EXPORT_SYMBOL_GPL(request_percpu_irq);
2035
2036 /**
2037 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
2038 * @irq: Interrupt line that is forwarded to a VM
2039 * @which: One of IRQCHIP_STATE_* the caller wants to know about
2040 * @state: a pointer to a boolean where the state is to be storeed
2041 *
2042 * This call snapshots the internal irqchip state of an
2043 * interrupt, returning into @state the bit corresponding to
2044 * stage @which
2045 *
2046 * This function should be called with preemption disabled if the
2047 * interrupt controller has per-cpu registers.
2048 */
2049 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2050 bool *state)
2051 {
2052 struct irq_desc *desc;
2053 struct irq_data *data;
2054 struct irq_chip *chip;
2055 unsigned long flags;
2056 int err = -EINVAL;
2057
2058 desc = irq_get_desc_buslock(irq, &flags, 0);
2059 if (!desc)
2060 return err;
2061
2062 data = irq_desc_get_irq_data(desc);
2063
2064 do {
2065 chip = irq_data_get_irq_chip(data);
2066 if (chip->irq_get_irqchip_state)
2067 break;
2068 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2069 data = data->parent_data;
2070 #else
2071 data = NULL;
2072 #endif
2073 } while (data);
2074
2075 if (data)
2076 err = chip->irq_get_irqchip_state(data, which, state);
2077
2078 irq_put_desc_busunlock(desc, flags);
2079 return err;
2080 }
2081 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2082
2083 /**
2084 * irq_set_irqchip_state - set the state of a forwarded interrupt.
2085 * @irq: Interrupt line that is forwarded to a VM
2086 * @which: State to be restored (one of IRQCHIP_STATE_*)
2087 * @val: Value corresponding to @which
2088 *
2089 * This call sets the internal irqchip state of an interrupt,
2090 * depending on the value of @which.
2091 *
2092 * This function should be called with preemption disabled if the
2093 * interrupt controller has per-cpu registers.
2094 */
2095 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2096 bool val)
2097 {
2098 struct irq_desc *desc;
2099 struct irq_data *data;
2100 struct irq_chip *chip;
2101 unsigned long flags;
2102 int err = -EINVAL;
2103
2104 desc = irq_get_desc_buslock(irq, &flags, 0);
2105 if (!desc)
2106 return err;
2107
2108 data = irq_desc_get_irq_data(desc);
2109
2110 do {
2111 chip = irq_data_get_irq_chip(data);
2112 if (chip->irq_set_irqchip_state)
2113 break;
2114 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2115 data = data->parent_data;
2116 #else
2117 data = NULL;
2118 #endif
2119 } while (data);
2120
2121 if (data)
2122 err = chip->irq_set_irqchip_state(data, which, val);
2123
2124 irq_put_desc_busunlock(desc, flags);
2125 return err;
2126 }
2127 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);