]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/irq/manage.c
Merge remote-tracking branches 'asoc/fix/imx-spdif', 'asoc/fix/mtk', 'asoc/fix/mxs...
[mirror_ubuntu-zesty-kernel.git] / kernel / irq / manage.c
1 /*
2 * linux/kernel/irq/manage.c
3 *
4 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
5 * Copyright (C) 2005-2006 Thomas Gleixner
6 *
7 * This file contains driver APIs to the irq subsystem.
8 */
9
10 #define pr_fmt(fmt) "genirq: " fmt
11
12 #include <linux/irq.h>
13 #include <linux/kthread.h>
14 #include <linux/module.h>
15 #include <linux/random.h>
16 #include <linux/interrupt.h>
17 #include <linux/slab.h>
18 #include <linux/sched.h>
19 #include <linux/sched/rt.h>
20 #include <linux/task_work.h>
21
22 #include "internals.h"
23
24 #ifdef CONFIG_IRQ_FORCED_THREADING
25 __read_mostly bool force_irqthreads;
26
27 static int __init setup_forced_irqthreads(char *arg)
28 {
29 force_irqthreads = true;
30 return 0;
31 }
32 early_param("threadirqs", setup_forced_irqthreads);
33 #endif
34
35 static void __synchronize_hardirq(struct irq_desc *desc)
36 {
37 bool inprogress;
38
39 do {
40 unsigned long flags;
41
42 /*
43 * Wait until we're out of the critical section. This might
44 * give the wrong answer due to the lack of memory barriers.
45 */
46 while (irqd_irq_inprogress(&desc->irq_data))
47 cpu_relax();
48
49 /* Ok, that indicated we're done: double-check carefully. */
50 raw_spin_lock_irqsave(&desc->lock, flags);
51 inprogress = irqd_irq_inprogress(&desc->irq_data);
52 raw_spin_unlock_irqrestore(&desc->lock, flags);
53
54 /* Oops, that failed? */
55 } while (inprogress);
56 }
57
58 /**
59 * synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
60 * @irq: interrupt number to wait for
61 *
62 * This function waits for any pending hard IRQ handlers for this
63 * interrupt to complete before returning. If you use this
64 * function while holding a resource the IRQ handler may need you
65 * will deadlock. It does not take associated threaded handlers
66 * into account.
67 *
68 * Do not use this for shutdown scenarios where you must be sure
69 * that all parts (hardirq and threaded handler) have completed.
70 *
71 * Returns: false if a threaded handler is active.
72 *
73 * This function may be called - with care - from IRQ context.
74 */
75 bool synchronize_hardirq(unsigned int irq)
76 {
77 struct irq_desc *desc = irq_to_desc(irq);
78
79 if (desc) {
80 __synchronize_hardirq(desc);
81 return !atomic_read(&desc->threads_active);
82 }
83
84 return true;
85 }
86 EXPORT_SYMBOL(synchronize_hardirq);
87
88 /**
89 * synchronize_irq - wait for pending IRQ handlers (on other CPUs)
90 * @irq: interrupt number to wait for
91 *
92 * This function waits for any pending IRQ handlers for this interrupt
93 * to complete before returning. If you use this function while
94 * holding a resource the IRQ handler may need you will deadlock.
95 *
96 * This function may be called - with care - from IRQ context.
97 */
98 void synchronize_irq(unsigned int irq)
99 {
100 struct irq_desc *desc = irq_to_desc(irq);
101
102 if (desc) {
103 __synchronize_hardirq(desc);
104 /*
105 * We made sure that no hardirq handler is
106 * running. Now verify that no threaded handlers are
107 * active.
108 */
109 wait_event(desc->wait_for_threads,
110 !atomic_read(&desc->threads_active));
111 }
112 }
113 EXPORT_SYMBOL(synchronize_irq);
114
115 #ifdef CONFIG_SMP
116 cpumask_var_t irq_default_affinity;
117
118 static int __irq_can_set_affinity(struct irq_desc *desc)
119 {
120 if (!desc || !irqd_can_balance(&desc->irq_data) ||
121 !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
122 return 0;
123 return 1;
124 }
125
126 /**
127 * irq_can_set_affinity - Check if the affinity of a given irq can be set
128 * @irq: Interrupt to check
129 *
130 */
131 int irq_can_set_affinity(unsigned int irq)
132 {
133 return __irq_can_set_affinity(irq_to_desc(irq));
134 }
135
136 /**
137 * irq_set_thread_affinity - Notify irq threads to adjust affinity
138 * @desc: irq descriptor which has affitnity changed
139 *
140 * We just set IRQTF_AFFINITY and delegate the affinity setting
141 * to the interrupt thread itself. We can not call
142 * set_cpus_allowed_ptr() here as we hold desc->lock and this
143 * code can be called from hard interrupt context.
144 */
145 void irq_set_thread_affinity(struct irq_desc *desc)
146 {
147 struct irqaction *action = desc->action;
148
149 while (action) {
150 if (action->thread)
151 set_bit(IRQTF_AFFINITY, &action->thread_flags);
152 action = action->next;
153 }
154 }
155
156 #ifdef CONFIG_GENERIC_PENDING_IRQ
157 static inline bool irq_can_move_pcntxt(struct irq_data *data)
158 {
159 return irqd_can_move_in_process_context(data);
160 }
161 static inline bool irq_move_pending(struct irq_data *data)
162 {
163 return irqd_is_setaffinity_pending(data);
164 }
165 static inline void
166 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask)
167 {
168 cpumask_copy(desc->pending_mask, mask);
169 }
170 static inline void
171 irq_get_pending(struct cpumask *mask, struct irq_desc *desc)
172 {
173 cpumask_copy(mask, desc->pending_mask);
174 }
175 #else
176 static inline bool irq_can_move_pcntxt(struct irq_data *data) { return true; }
177 static inline bool irq_move_pending(struct irq_data *data) { return false; }
178 static inline void
179 irq_copy_pending(struct irq_desc *desc, const struct cpumask *mask) { }
180 static inline void
181 irq_get_pending(struct cpumask *mask, struct irq_desc *desc) { }
182 #endif
183
184 int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
185 bool force)
186 {
187 struct irq_desc *desc = irq_data_to_desc(data);
188 struct irq_chip *chip = irq_data_get_irq_chip(data);
189 int ret;
190
191 ret = chip->irq_set_affinity(data, mask, force);
192 switch (ret) {
193 case IRQ_SET_MASK_OK:
194 case IRQ_SET_MASK_OK_DONE:
195 cpumask_copy(desc->irq_common_data.affinity, mask);
196 case IRQ_SET_MASK_OK_NOCOPY:
197 irq_set_thread_affinity(desc);
198 ret = 0;
199 }
200
201 return ret;
202 }
203
204 int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
205 bool force)
206 {
207 struct irq_chip *chip = irq_data_get_irq_chip(data);
208 struct irq_desc *desc = irq_data_to_desc(data);
209 int ret = 0;
210
211 if (!chip || !chip->irq_set_affinity)
212 return -EINVAL;
213
214 if (irq_can_move_pcntxt(data)) {
215 ret = irq_do_set_affinity(data, mask, force);
216 } else {
217 irqd_set_move_pending(data);
218 irq_copy_pending(desc, mask);
219 }
220
221 if (desc->affinity_notify) {
222 kref_get(&desc->affinity_notify->kref);
223 schedule_work(&desc->affinity_notify->work);
224 }
225 irqd_set(data, IRQD_AFFINITY_SET);
226
227 return ret;
228 }
229
230 int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
231 {
232 struct irq_desc *desc = irq_to_desc(irq);
233 unsigned long flags;
234 int ret;
235
236 if (!desc)
237 return -EINVAL;
238
239 raw_spin_lock_irqsave(&desc->lock, flags);
240 ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
241 raw_spin_unlock_irqrestore(&desc->lock, flags);
242 return ret;
243 }
244
245 int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
246 {
247 unsigned long flags;
248 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
249
250 if (!desc)
251 return -EINVAL;
252 desc->affinity_hint = m;
253 irq_put_desc_unlock(desc, flags);
254 /* set the initial affinity to prevent every interrupt being on CPU0 */
255 if (m)
256 __irq_set_affinity(irq, m, false);
257 return 0;
258 }
259 EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
260
261 static void irq_affinity_notify(struct work_struct *work)
262 {
263 struct irq_affinity_notify *notify =
264 container_of(work, struct irq_affinity_notify, work);
265 struct irq_desc *desc = irq_to_desc(notify->irq);
266 cpumask_var_t cpumask;
267 unsigned long flags;
268
269 if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
270 goto out;
271
272 raw_spin_lock_irqsave(&desc->lock, flags);
273 if (irq_move_pending(&desc->irq_data))
274 irq_get_pending(cpumask, desc);
275 else
276 cpumask_copy(cpumask, desc->irq_common_data.affinity);
277 raw_spin_unlock_irqrestore(&desc->lock, flags);
278
279 notify->notify(notify, cpumask);
280
281 free_cpumask_var(cpumask);
282 out:
283 kref_put(&notify->kref, notify->release);
284 }
285
286 /**
287 * irq_set_affinity_notifier - control notification of IRQ affinity changes
288 * @irq: Interrupt for which to enable/disable notification
289 * @notify: Context for notification, or %NULL to disable
290 * notification. Function pointers must be initialised;
291 * the other fields will be initialised by this function.
292 *
293 * Must be called in process context. Notification may only be enabled
294 * after the IRQ is allocated and must be disabled before the IRQ is
295 * freed using free_irq().
296 */
297 int
298 irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
299 {
300 struct irq_desc *desc = irq_to_desc(irq);
301 struct irq_affinity_notify *old_notify;
302 unsigned long flags;
303
304 /* The release function is promised process context */
305 might_sleep();
306
307 if (!desc)
308 return -EINVAL;
309
310 /* Complete initialisation of *notify */
311 if (notify) {
312 notify->irq = irq;
313 kref_init(&notify->kref);
314 INIT_WORK(&notify->work, irq_affinity_notify);
315 }
316
317 raw_spin_lock_irqsave(&desc->lock, flags);
318 old_notify = desc->affinity_notify;
319 desc->affinity_notify = notify;
320 raw_spin_unlock_irqrestore(&desc->lock, flags);
321
322 if (old_notify)
323 kref_put(&old_notify->kref, old_notify->release);
324
325 return 0;
326 }
327 EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
328
329 #ifndef CONFIG_AUTO_IRQ_AFFINITY
330 /*
331 * Generic version of the affinity autoselector.
332 */
333 static int setup_affinity(struct irq_desc *desc, struct cpumask *mask)
334 {
335 struct cpumask *set = irq_default_affinity;
336 int node = irq_desc_get_node(desc);
337
338 /* Excludes PER_CPU and NO_BALANCE interrupts */
339 if (!__irq_can_set_affinity(desc))
340 return 0;
341
342 /*
343 * Preserve an userspace affinity setup, but make sure that
344 * one of the targets is online.
345 */
346 if (irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
347 if (cpumask_intersects(desc->irq_common_data.affinity,
348 cpu_online_mask))
349 set = desc->irq_common_data.affinity;
350 else
351 irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
352 }
353
354 cpumask_and(mask, cpu_online_mask, set);
355 if (node != NUMA_NO_NODE) {
356 const struct cpumask *nodemask = cpumask_of_node(node);
357
358 /* make sure at least one of the cpus in nodemask is online */
359 if (cpumask_intersects(mask, nodemask))
360 cpumask_and(mask, mask, nodemask);
361 }
362 irq_do_set_affinity(&desc->irq_data, mask, false);
363 return 0;
364 }
365 #else
366 /* Wrapper for ALPHA specific affinity selector magic */
367 static inline int setup_affinity(struct irq_desc *d, struct cpumask *mask)
368 {
369 return irq_select_affinity(irq_desc_get_irq(d));
370 }
371 #endif
372
373 /*
374 * Called when affinity is set via /proc/irq
375 */
376 int irq_select_affinity_usr(unsigned int irq, struct cpumask *mask)
377 {
378 struct irq_desc *desc = irq_to_desc(irq);
379 unsigned long flags;
380 int ret;
381
382 raw_spin_lock_irqsave(&desc->lock, flags);
383 ret = setup_affinity(desc, mask);
384 raw_spin_unlock_irqrestore(&desc->lock, flags);
385 return ret;
386 }
387
388 #else
389 static inline int
390 setup_affinity(struct irq_desc *desc, struct cpumask *mask)
391 {
392 return 0;
393 }
394 #endif
395
396 /**
397 * irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
398 * @irq: interrupt number to set affinity
399 * @vcpu_info: vCPU specific data
400 *
401 * This function uses the vCPU specific data to set the vCPU
402 * affinity for an irq. The vCPU specific data is passed from
403 * outside, such as KVM. One example code path is as below:
404 * KVM -> IOMMU -> irq_set_vcpu_affinity().
405 */
406 int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
407 {
408 unsigned long flags;
409 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
410 struct irq_data *data;
411 struct irq_chip *chip;
412 int ret = -ENOSYS;
413
414 if (!desc)
415 return -EINVAL;
416
417 data = irq_desc_get_irq_data(desc);
418 chip = irq_data_get_irq_chip(data);
419 if (chip && chip->irq_set_vcpu_affinity)
420 ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
421 irq_put_desc_unlock(desc, flags);
422
423 return ret;
424 }
425 EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
426
427 void __disable_irq(struct irq_desc *desc)
428 {
429 if (!desc->depth++)
430 irq_disable(desc);
431 }
432
433 static int __disable_irq_nosync(unsigned int irq)
434 {
435 unsigned long flags;
436 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
437
438 if (!desc)
439 return -EINVAL;
440 __disable_irq(desc);
441 irq_put_desc_busunlock(desc, flags);
442 return 0;
443 }
444
445 /**
446 * disable_irq_nosync - disable an irq without waiting
447 * @irq: Interrupt to disable
448 *
449 * Disable the selected interrupt line. Disables and Enables are
450 * nested.
451 * Unlike disable_irq(), this function does not ensure existing
452 * instances of the IRQ handler have completed before returning.
453 *
454 * This function may be called from IRQ context.
455 */
456 void disable_irq_nosync(unsigned int irq)
457 {
458 __disable_irq_nosync(irq);
459 }
460 EXPORT_SYMBOL(disable_irq_nosync);
461
462 /**
463 * disable_irq - disable an irq and wait for completion
464 * @irq: Interrupt to disable
465 *
466 * Disable the selected interrupt line. Enables and Disables are
467 * nested.
468 * This function waits for any pending IRQ handlers for this interrupt
469 * to complete before returning. If you use this function while
470 * holding a resource the IRQ handler may need you will deadlock.
471 *
472 * This function may be called - with care - from IRQ context.
473 */
474 void disable_irq(unsigned int irq)
475 {
476 if (!__disable_irq_nosync(irq))
477 synchronize_irq(irq);
478 }
479 EXPORT_SYMBOL(disable_irq);
480
481 /**
482 * disable_hardirq - disables an irq and waits for hardirq completion
483 * @irq: Interrupt to disable
484 *
485 * Disable the selected interrupt line. Enables and Disables are
486 * nested.
487 * This function waits for any pending hard IRQ handlers for this
488 * interrupt to complete before returning. If you use this function while
489 * holding a resource the hard IRQ handler may need you will deadlock.
490 *
491 * When used to optimistically disable an interrupt from atomic context
492 * the return value must be checked.
493 *
494 * Returns: false if a threaded handler is active.
495 *
496 * This function may be called - with care - from IRQ context.
497 */
498 bool disable_hardirq(unsigned int irq)
499 {
500 if (!__disable_irq_nosync(irq))
501 return synchronize_hardirq(irq);
502
503 return false;
504 }
505 EXPORT_SYMBOL_GPL(disable_hardirq);
506
507 void __enable_irq(struct irq_desc *desc)
508 {
509 switch (desc->depth) {
510 case 0:
511 err_out:
512 WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
513 irq_desc_get_irq(desc));
514 break;
515 case 1: {
516 if (desc->istate & IRQS_SUSPENDED)
517 goto err_out;
518 /* Prevent probing on this irq: */
519 irq_settings_set_noprobe(desc);
520 irq_enable(desc);
521 check_irq_resend(desc);
522 /* fall-through */
523 }
524 default:
525 desc->depth--;
526 }
527 }
528
529 /**
530 * enable_irq - enable handling of an irq
531 * @irq: Interrupt to enable
532 *
533 * Undoes the effect of one call to disable_irq(). If this
534 * matches the last disable, processing of interrupts on this
535 * IRQ line is re-enabled.
536 *
537 * This function may be called from IRQ context only when
538 * desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
539 */
540 void enable_irq(unsigned int irq)
541 {
542 unsigned long flags;
543 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
544
545 if (!desc)
546 return;
547 if (WARN(!desc->irq_data.chip,
548 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
549 goto out;
550
551 __enable_irq(desc);
552 out:
553 irq_put_desc_busunlock(desc, flags);
554 }
555 EXPORT_SYMBOL(enable_irq);
556
557 static int set_irq_wake_real(unsigned int irq, unsigned int on)
558 {
559 struct irq_desc *desc = irq_to_desc(irq);
560 int ret = -ENXIO;
561
562 if (irq_desc_get_chip(desc)->flags & IRQCHIP_SKIP_SET_WAKE)
563 return 0;
564
565 if (desc->irq_data.chip->irq_set_wake)
566 ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
567
568 return ret;
569 }
570
571 /**
572 * irq_set_irq_wake - control irq power management wakeup
573 * @irq: interrupt to control
574 * @on: enable/disable power management wakeup
575 *
576 * Enable/disable power management wakeup mode, which is
577 * disabled by default. Enables and disables must match,
578 * just as they match for non-wakeup mode support.
579 *
580 * Wakeup mode lets this IRQ wake the system from sleep
581 * states like "suspend to RAM".
582 */
583 int irq_set_irq_wake(unsigned int irq, unsigned int on)
584 {
585 unsigned long flags;
586 struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
587 int ret = 0;
588
589 if (!desc)
590 return -EINVAL;
591
592 /* wakeup-capable irqs can be shared between drivers that
593 * don't need to have the same sleep mode behaviors.
594 */
595 if (on) {
596 if (desc->wake_depth++ == 0) {
597 ret = set_irq_wake_real(irq, on);
598 if (ret)
599 desc->wake_depth = 0;
600 else
601 irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
602 }
603 } else {
604 if (desc->wake_depth == 0) {
605 WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
606 } else if (--desc->wake_depth == 0) {
607 ret = set_irq_wake_real(irq, on);
608 if (ret)
609 desc->wake_depth = 1;
610 else
611 irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
612 }
613 }
614 irq_put_desc_busunlock(desc, flags);
615 return ret;
616 }
617 EXPORT_SYMBOL(irq_set_irq_wake);
618
619 /*
620 * Internal function that tells the architecture code whether a
621 * particular irq has been exclusively allocated or is available
622 * for driver use.
623 */
624 int can_request_irq(unsigned int irq, unsigned long irqflags)
625 {
626 unsigned long flags;
627 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
628 int canrequest = 0;
629
630 if (!desc)
631 return 0;
632
633 if (irq_settings_can_request(desc)) {
634 if (!desc->action ||
635 irqflags & desc->action->flags & IRQF_SHARED)
636 canrequest = 1;
637 }
638 irq_put_desc_unlock(desc, flags);
639 return canrequest;
640 }
641
642 int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
643 {
644 struct irq_chip *chip = desc->irq_data.chip;
645 int ret, unmask = 0;
646
647 if (!chip || !chip->irq_set_type) {
648 /*
649 * IRQF_TRIGGER_* but the PIC does not support multiple
650 * flow-types?
651 */
652 pr_debug("No set_type function for IRQ %d (%s)\n",
653 irq_desc_get_irq(desc),
654 chip ? (chip->name ? : "unknown") : "unknown");
655 return 0;
656 }
657
658 flags &= IRQ_TYPE_SENSE_MASK;
659
660 if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
661 if (!irqd_irq_masked(&desc->irq_data))
662 mask_irq(desc);
663 if (!irqd_irq_disabled(&desc->irq_data))
664 unmask = 1;
665 }
666
667 /* caller masked out all except trigger mode flags */
668 ret = chip->irq_set_type(&desc->irq_data, flags);
669
670 switch (ret) {
671 case IRQ_SET_MASK_OK:
672 case IRQ_SET_MASK_OK_DONE:
673 irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
674 irqd_set(&desc->irq_data, flags);
675
676 case IRQ_SET_MASK_OK_NOCOPY:
677 flags = irqd_get_trigger_type(&desc->irq_data);
678 irq_settings_set_trigger_mask(desc, flags);
679 irqd_clear(&desc->irq_data, IRQD_LEVEL);
680 irq_settings_clr_level(desc);
681 if (flags & IRQ_TYPE_LEVEL_MASK) {
682 irq_settings_set_level(desc);
683 irqd_set(&desc->irq_data, IRQD_LEVEL);
684 }
685
686 ret = 0;
687 break;
688 default:
689 pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
690 flags, irq_desc_get_irq(desc), chip->irq_set_type);
691 }
692 if (unmask)
693 unmask_irq(desc);
694 return ret;
695 }
696
697 #ifdef CONFIG_HARDIRQS_SW_RESEND
698 int irq_set_parent(int irq, int parent_irq)
699 {
700 unsigned long flags;
701 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
702
703 if (!desc)
704 return -EINVAL;
705
706 desc->parent_irq = parent_irq;
707
708 irq_put_desc_unlock(desc, flags);
709 return 0;
710 }
711 #endif
712
713 /*
714 * Default primary interrupt handler for threaded interrupts. Is
715 * assigned as primary handler when request_threaded_irq is called
716 * with handler == NULL. Useful for oneshot interrupts.
717 */
718 static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
719 {
720 return IRQ_WAKE_THREAD;
721 }
722
723 /*
724 * Primary handler for nested threaded interrupts. Should never be
725 * called.
726 */
727 static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
728 {
729 WARN(1, "Primary handler called for nested irq %d\n", irq);
730 return IRQ_NONE;
731 }
732
733 static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
734 {
735 WARN(1, "Secondary action handler called for irq %d\n", irq);
736 return IRQ_NONE;
737 }
738
739 static int irq_wait_for_interrupt(struct irqaction *action)
740 {
741 set_current_state(TASK_INTERRUPTIBLE);
742
743 while (!kthread_should_stop()) {
744
745 if (test_and_clear_bit(IRQTF_RUNTHREAD,
746 &action->thread_flags)) {
747 __set_current_state(TASK_RUNNING);
748 return 0;
749 }
750 schedule();
751 set_current_state(TASK_INTERRUPTIBLE);
752 }
753 __set_current_state(TASK_RUNNING);
754 return -1;
755 }
756
757 /*
758 * Oneshot interrupts keep the irq line masked until the threaded
759 * handler finished. unmask if the interrupt has not been disabled and
760 * is marked MASKED.
761 */
762 static void irq_finalize_oneshot(struct irq_desc *desc,
763 struct irqaction *action)
764 {
765 if (!(desc->istate & IRQS_ONESHOT) ||
766 action->handler == irq_forced_secondary_handler)
767 return;
768 again:
769 chip_bus_lock(desc);
770 raw_spin_lock_irq(&desc->lock);
771
772 /*
773 * Implausible though it may be we need to protect us against
774 * the following scenario:
775 *
776 * The thread is faster done than the hard interrupt handler
777 * on the other CPU. If we unmask the irq line then the
778 * interrupt can come in again and masks the line, leaves due
779 * to IRQS_INPROGRESS and the irq line is masked forever.
780 *
781 * This also serializes the state of shared oneshot handlers
782 * versus "desc->threads_onehsot |= action->thread_mask;" in
783 * irq_wake_thread(). See the comment there which explains the
784 * serialization.
785 */
786 if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
787 raw_spin_unlock_irq(&desc->lock);
788 chip_bus_sync_unlock(desc);
789 cpu_relax();
790 goto again;
791 }
792
793 /*
794 * Now check again, whether the thread should run. Otherwise
795 * we would clear the threads_oneshot bit of this thread which
796 * was just set.
797 */
798 if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
799 goto out_unlock;
800
801 desc->threads_oneshot &= ~action->thread_mask;
802
803 if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
804 irqd_irq_masked(&desc->irq_data))
805 unmask_threaded_irq(desc);
806
807 out_unlock:
808 raw_spin_unlock_irq(&desc->lock);
809 chip_bus_sync_unlock(desc);
810 }
811
812 #ifdef CONFIG_SMP
813 /*
814 * Check whether we need to change the affinity of the interrupt thread.
815 */
816 static void
817 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
818 {
819 cpumask_var_t mask;
820 bool valid = true;
821
822 if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
823 return;
824
825 /*
826 * In case we are out of memory we set IRQTF_AFFINITY again and
827 * try again next time
828 */
829 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
830 set_bit(IRQTF_AFFINITY, &action->thread_flags);
831 return;
832 }
833
834 raw_spin_lock_irq(&desc->lock);
835 /*
836 * This code is triggered unconditionally. Check the affinity
837 * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
838 */
839 if (desc->irq_common_data.affinity)
840 cpumask_copy(mask, desc->irq_common_data.affinity);
841 else
842 valid = false;
843 raw_spin_unlock_irq(&desc->lock);
844
845 if (valid)
846 set_cpus_allowed_ptr(current, mask);
847 free_cpumask_var(mask);
848 }
849 #else
850 static inline void
851 irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
852 #endif
853
854 /*
855 * Interrupts which are not explicitely requested as threaded
856 * interrupts rely on the implicit bh/preempt disable of the hard irq
857 * context. So we need to disable bh here to avoid deadlocks and other
858 * side effects.
859 */
860 static irqreturn_t
861 irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
862 {
863 irqreturn_t ret;
864
865 local_bh_disable();
866 ret = action->thread_fn(action->irq, action->dev_id);
867 irq_finalize_oneshot(desc, action);
868 local_bh_enable();
869 return ret;
870 }
871
872 /*
873 * Interrupts explicitly requested as threaded interrupts want to be
874 * preemtible - many of them need to sleep and wait for slow busses to
875 * complete.
876 */
877 static irqreturn_t irq_thread_fn(struct irq_desc *desc,
878 struct irqaction *action)
879 {
880 irqreturn_t ret;
881
882 ret = action->thread_fn(action->irq, action->dev_id);
883 irq_finalize_oneshot(desc, action);
884 return ret;
885 }
886
887 static void wake_threads_waitq(struct irq_desc *desc)
888 {
889 if (atomic_dec_and_test(&desc->threads_active))
890 wake_up(&desc->wait_for_threads);
891 }
892
893 static void irq_thread_dtor(struct callback_head *unused)
894 {
895 struct task_struct *tsk = current;
896 struct irq_desc *desc;
897 struct irqaction *action;
898
899 if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
900 return;
901
902 action = kthread_data(tsk);
903
904 pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
905 tsk->comm, tsk->pid, action->irq);
906
907
908 desc = irq_to_desc(action->irq);
909 /*
910 * If IRQTF_RUNTHREAD is set, we need to decrement
911 * desc->threads_active and wake possible waiters.
912 */
913 if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
914 wake_threads_waitq(desc);
915
916 /* Prevent a stale desc->threads_oneshot */
917 irq_finalize_oneshot(desc, action);
918 }
919
920 static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
921 {
922 struct irqaction *secondary = action->secondary;
923
924 if (WARN_ON_ONCE(!secondary))
925 return;
926
927 raw_spin_lock_irq(&desc->lock);
928 __irq_wake_thread(desc, secondary);
929 raw_spin_unlock_irq(&desc->lock);
930 }
931
932 /*
933 * Interrupt handler thread
934 */
935 static int irq_thread(void *data)
936 {
937 struct callback_head on_exit_work;
938 struct irqaction *action = data;
939 struct irq_desc *desc = irq_to_desc(action->irq);
940 irqreturn_t (*handler_fn)(struct irq_desc *desc,
941 struct irqaction *action);
942
943 if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
944 &action->thread_flags))
945 handler_fn = irq_forced_thread_fn;
946 else
947 handler_fn = irq_thread_fn;
948
949 init_task_work(&on_exit_work, irq_thread_dtor);
950 task_work_add(current, &on_exit_work, false);
951
952 irq_thread_check_affinity(desc, action);
953
954 while (!irq_wait_for_interrupt(action)) {
955 irqreturn_t action_ret;
956
957 irq_thread_check_affinity(desc, action);
958
959 action_ret = handler_fn(desc, action);
960 if (action_ret == IRQ_HANDLED)
961 atomic_inc(&desc->threads_handled);
962 if (action_ret == IRQ_WAKE_THREAD)
963 irq_wake_secondary(desc, action);
964
965 wake_threads_waitq(desc);
966 }
967
968 /*
969 * This is the regular exit path. __free_irq() is stopping the
970 * thread via kthread_stop() after calling
971 * synchronize_irq(). So neither IRQTF_RUNTHREAD nor the
972 * oneshot mask bit can be set. We cannot verify that as we
973 * cannot touch the oneshot mask at this point anymore as
974 * __setup_irq() might have given out currents thread_mask
975 * again.
976 */
977 task_work_cancel(current, irq_thread_dtor);
978 return 0;
979 }
980
981 /**
982 * irq_wake_thread - wake the irq thread for the action identified by dev_id
983 * @irq: Interrupt line
984 * @dev_id: Device identity for which the thread should be woken
985 *
986 */
987 void irq_wake_thread(unsigned int irq, void *dev_id)
988 {
989 struct irq_desc *desc = irq_to_desc(irq);
990 struct irqaction *action;
991 unsigned long flags;
992
993 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
994 return;
995
996 raw_spin_lock_irqsave(&desc->lock, flags);
997 for (action = desc->action; action; action = action->next) {
998 if (action->dev_id == dev_id) {
999 if (action->thread)
1000 __irq_wake_thread(desc, action);
1001 break;
1002 }
1003 }
1004 raw_spin_unlock_irqrestore(&desc->lock, flags);
1005 }
1006 EXPORT_SYMBOL_GPL(irq_wake_thread);
1007
1008 static int irq_setup_forced_threading(struct irqaction *new)
1009 {
1010 if (!force_irqthreads)
1011 return 0;
1012 if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1013 return 0;
1014
1015 new->flags |= IRQF_ONESHOT;
1016
1017 /*
1018 * Handle the case where we have a real primary handler and a
1019 * thread handler. We force thread them as well by creating a
1020 * secondary action.
1021 */
1022 if (new->handler != irq_default_primary_handler && new->thread_fn) {
1023 /* Allocate the secondary action */
1024 new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1025 if (!new->secondary)
1026 return -ENOMEM;
1027 new->secondary->handler = irq_forced_secondary_handler;
1028 new->secondary->thread_fn = new->thread_fn;
1029 new->secondary->dev_id = new->dev_id;
1030 new->secondary->irq = new->irq;
1031 new->secondary->name = new->name;
1032 }
1033 /* Deal with the primary handler */
1034 set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1035 new->thread_fn = new->handler;
1036 new->handler = irq_default_primary_handler;
1037 return 0;
1038 }
1039
1040 static int irq_request_resources(struct irq_desc *desc)
1041 {
1042 struct irq_data *d = &desc->irq_data;
1043 struct irq_chip *c = d->chip;
1044
1045 return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1046 }
1047
1048 static void irq_release_resources(struct irq_desc *desc)
1049 {
1050 struct irq_data *d = &desc->irq_data;
1051 struct irq_chip *c = d->chip;
1052
1053 if (c->irq_release_resources)
1054 c->irq_release_resources(d);
1055 }
1056
1057 static int
1058 setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1059 {
1060 struct task_struct *t;
1061 struct sched_param param = {
1062 .sched_priority = MAX_USER_RT_PRIO/2,
1063 };
1064
1065 if (!secondary) {
1066 t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1067 new->name);
1068 } else {
1069 t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1070 new->name);
1071 param.sched_priority -= 1;
1072 }
1073
1074 if (IS_ERR(t))
1075 return PTR_ERR(t);
1076
1077 sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1078
1079 /*
1080 * We keep the reference to the task struct even if
1081 * the thread dies to avoid that the interrupt code
1082 * references an already freed task_struct.
1083 */
1084 get_task_struct(t);
1085 new->thread = t;
1086 /*
1087 * Tell the thread to set its affinity. This is
1088 * important for shared interrupt handlers as we do
1089 * not invoke setup_affinity() for the secondary
1090 * handlers as everything is already set up. Even for
1091 * interrupts marked with IRQF_NO_BALANCE this is
1092 * correct as we want the thread to move to the cpu(s)
1093 * on which the requesting code placed the interrupt.
1094 */
1095 set_bit(IRQTF_AFFINITY, &new->thread_flags);
1096 return 0;
1097 }
1098
1099 /*
1100 * Internal function to register an irqaction - typically used to
1101 * allocate special interrupts that are part of the architecture.
1102 */
1103 static int
1104 __setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1105 {
1106 struct irqaction *old, **old_ptr;
1107 unsigned long flags, thread_mask = 0;
1108 int ret, nested, shared = 0;
1109 cpumask_var_t mask;
1110
1111 if (!desc)
1112 return -EINVAL;
1113
1114 if (desc->irq_data.chip == &no_irq_chip)
1115 return -ENOSYS;
1116 if (!try_module_get(desc->owner))
1117 return -ENODEV;
1118
1119 new->irq = irq;
1120
1121 /*
1122 * Check whether the interrupt nests into another interrupt
1123 * thread.
1124 */
1125 nested = irq_settings_is_nested_thread(desc);
1126 if (nested) {
1127 if (!new->thread_fn) {
1128 ret = -EINVAL;
1129 goto out_mput;
1130 }
1131 /*
1132 * Replace the primary handler which was provided from
1133 * the driver for non nested interrupt handling by the
1134 * dummy function which warns when called.
1135 */
1136 new->handler = irq_nested_primary_handler;
1137 } else {
1138 if (irq_settings_can_thread(desc)) {
1139 ret = irq_setup_forced_threading(new);
1140 if (ret)
1141 goto out_mput;
1142 }
1143 }
1144
1145 /*
1146 * Create a handler thread when a thread function is supplied
1147 * and the interrupt does not nest into another interrupt
1148 * thread.
1149 */
1150 if (new->thread_fn && !nested) {
1151 ret = setup_irq_thread(new, irq, false);
1152 if (ret)
1153 goto out_mput;
1154 if (new->secondary) {
1155 ret = setup_irq_thread(new->secondary, irq, true);
1156 if (ret)
1157 goto out_thread;
1158 }
1159 }
1160
1161 if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
1162 ret = -ENOMEM;
1163 goto out_thread;
1164 }
1165
1166 /*
1167 * Drivers are often written to work w/o knowledge about the
1168 * underlying irq chip implementation, so a request for a
1169 * threaded irq without a primary hard irq context handler
1170 * requires the ONESHOT flag to be set. Some irq chips like
1171 * MSI based interrupts are per se one shot safe. Check the
1172 * chip flags, so we can avoid the unmask dance at the end of
1173 * the threaded handler for those.
1174 */
1175 if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1176 new->flags &= ~IRQF_ONESHOT;
1177
1178 /*
1179 * The following block of code has to be executed atomically
1180 */
1181 raw_spin_lock_irqsave(&desc->lock, flags);
1182 old_ptr = &desc->action;
1183 old = *old_ptr;
1184 if (old) {
1185 /*
1186 * Can't share interrupts unless both agree to and are
1187 * the same type (level, edge, polarity). So both flag
1188 * fields must have IRQF_SHARED set and the bits which
1189 * set the trigger type must match. Also all must
1190 * agree on ONESHOT.
1191 */
1192 if (!((old->flags & new->flags) & IRQF_SHARED) ||
1193 ((old->flags ^ new->flags) & IRQF_TRIGGER_MASK) ||
1194 ((old->flags ^ new->flags) & IRQF_ONESHOT))
1195 goto mismatch;
1196
1197 /* All handlers must agree on per-cpuness */
1198 if ((old->flags & IRQF_PERCPU) !=
1199 (new->flags & IRQF_PERCPU))
1200 goto mismatch;
1201
1202 /* add new interrupt at end of irq queue */
1203 do {
1204 /*
1205 * Or all existing action->thread_mask bits,
1206 * so we can find the next zero bit for this
1207 * new action.
1208 */
1209 thread_mask |= old->thread_mask;
1210 old_ptr = &old->next;
1211 old = *old_ptr;
1212 } while (old);
1213 shared = 1;
1214 }
1215
1216 /*
1217 * Setup the thread mask for this irqaction for ONESHOT. For
1218 * !ONESHOT irqs the thread mask is 0 so we can avoid a
1219 * conditional in irq_wake_thread().
1220 */
1221 if (new->flags & IRQF_ONESHOT) {
1222 /*
1223 * Unlikely to have 32 resp 64 irqs sharing one line,
1224 * but who knows.
1225 */
1226 if (thread_mask == ~0UL) {
1227 ret = -EBUSY;
1228 goto out_mask;
1229 }
1230 /*
1231 * The thread_mask for the action is or'ed to
1232 * desc->thread_active to indicate that the
1233 * IRQF_ONESHOT thread handler has been woken, but not
1234 * yet finished. The bit is cleared when a thread
1235 * completes. When all threads of a shared interrupt
1236 * line have completed desc->threads_active becomes
1237 * zero and the interrupt line is unmasked. See
1238 * handle.c:irq_wake_thread() for further information.
1239 *
1240 * If no thread is woken by primary (hard irq context)
1241 * interrupt handlers, then desc->threads_active is
1242 * also checked for zero to unmask the irq line in the
1243 * affected hard irq flow handlers
1244 * (handle_[fasteoi|level]_irq).
1245 *
1246 * The new action gets the first zero bit of
1247 * thread_mask assigned. See the loop above which or's
1248 * all existing action->thread_mask bits.
1249 */
1250 new->thread_mask = 1 << ffz(thread_mask);
1251
1252 } else if (new->handler == irq_default_primary_handler &&
1253 !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1254 /*
1255 * The interrupt was requested with handler = NULL, so
1256 * we use the default primary handler for it. But it
1257 * does not have the oneshot flag set. In combination
1258 * with level interrupts this is deadly, because the
1259 * default primary handler just wakes the thread, then
1260 * the irq lines is reenabled, but the device still
1261 * has the level irq asserted. Rinse and repeat....
1262 *
1263 * While this works for edge type interrupts, we play
1264 * it safe and reject unconditionally because we can't
1265 * say for sure which type this interrupt really
1266 * has. The type flags are unreliable as the
1267 * underlying chip implementation can override them.
1268 */
1269 pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1270 irq);
1271 ret = -EINVAL;
1272 goto out_mask;
1273 }
1274
1275 if (!shared) {
1276 ret = irq_request_resources(desc);
1277 if (ret) {
1278 pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1279 new->name, irq, desc->irq_data.chip->name);
1280 goto out_mask;
1281 }
1282
1283 init_waitqueue_head(&desc->wait_for_threads);
1284
1285 /* Setup the type (level, edge polarity) if configured: */
1286 if (new->flags & IRQF_TRIGGER_MASK) {
1287 ret = __irq_set_trigger(desc,
1288 new->flags & IRQF_TRIGGER_MASK);
1289
1290 if (ret)
1291 goto out_mask;
1292 }
1293
1294 desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1295 IRQS_ONESHOT | IRQS_WAITING);
1296 irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1297
1298 if (new->flags & IRQF_PERCPU) {
1299 irqd_set(&desc->irq_data, IRQD_PER_CPU);
1300 irq_settings_set_per_cpu(desc);
1301 }
1302
1303 if (new->flags & IRQF_ONESHOT)
1304 desc->istate |= IRQS_ONESHOT;
1305
1306 if (irq_settings_can_autoenable(desc))
1307 irq_startup(desc, true);
1308 else
1309 /* Undo nested disables: */
1310 desc->depth = 1;
1311
1312 /* Exclude IRQ from balancing if requested */
1313 if (new->flags & IRQF_NOBALANCING) {
1314 irq_settings_set_no_balancing(desc);
1315 irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1316 }
1317
1318 /* Set default affinity mask once everything is setup */
1319 setup_affinity(desc, mask);
1320
1321 } else if (new->flags & IRQF_TRIGGER_MASK) {
1322 unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1323 unsigned int omsk = irq_settings_get_trigger_mask(desc);
1324
1325 if (nmsk != omsk)
1326 /* hope the handler works with current trigger mode */
1327 pr_warning("irq %d uses trigger mode %u; requested %u\n",
1328 irq, nmsk, omsk);
1329 }
1330
1331 *old_ptr = new;
1332
1333 irq_pm_install_action(desc, new);
1334
1335 /* Reset broken irq detection when installing new handler */
1336 desc->irq_count = 0;
1337 desc->irqs_unhandled = 0;
1338
1339 /*
1340 * Check whether we disabled the irq via the spurious handler
1341 * before. Reenable it and give it another chance.
1342 */
1343 if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1344 desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1345 __enable_irq(desc);
1346 }
1347
1348 raw_spin_unlock_irqrestore(&desc->lock, flags);
1349
1350 /*
1351 * Strictly no need to wake it up, but hung_task complains
1352 * when no hard interrupt wakes the thread up.
1353 */
1354 if (new->thread)
1355 wake_up_process(new->thread);
1356 if (new->secondary)
1357 wake_up_process(new->secondary->thread);
1358
1359 register_irq_proc(irq, desc);
1360 new->dir = NULL;
1361 register_handler_proc(irq, new);
1362 free_cpumask_var(mask);
1363
1364 return 0;
1365
1366 mismatch:
1367 if (!(new->flags & IRQF_PROBE_SHARED)) {
1368 pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1369 irq, new->flags, new->name, old->flags, old->name);
1370 #ifdef CONFIG_DEBUG_SHIRQ
1371 dump_stack();
1372 #endif
1373 }
1374 ret = -EBUSY;
1375
1376 out_mask:
1377 raw_spin_unlock_irqrestore(&desc->lock, flags);
1378 free_cpumask_var(mask);
1379
1380 out_thread:
1381 if (new->thread) {
1382 struct task_struct *t = new->thread;
1383
1384 new->thread = NULL;
1385 kthread_stop(t);
1386 put_task_struct(t);
1387 }
1388 if (new->secondary && new->secondary->thread) {
1389 struct task_struct *t = new->secondary->thread;
1390
1391 new->secondary->thread = NULL;
1392 kthread_stop(t);
1393 put_task_struct(t);
1394 }
1395 out_mput:
1396 module_put(desc->owner);
1397 return ret;
1398 }
1399
1400 /**
1401 * setup_irq - setup an interrupt
1402 * @irq: Interrupt line to setup
1403 * @act: irqaction for the interrupt
1404 *
1405 * Used to statically setup interrupts in the early boot process.
1406 */
1407 int setup_irq(unsigned int irq, struct irqaction *act)
1408 {
1409 int retval;
1410 struct irq_desc *desc = irq_to_desc(irq);
1411
1412 if (WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1413 return -EINVAL;
1414 chip_bus_lock(desc);
1415 retval = __setup_irq(irq, desc, act);
1416 chip_bus_sync_unlock(desc);
1417
1418 return retval;
1419 }
1420 EXPORT_SYMBOL_GPL(setup_irq);
1421
1422 /*
1423 * Internal function to unregister an irqaction - used to free
1424 * regular and special interrupts that are part of the architecture.
1425 */
1426 static struct irqaction *__free_irq(unsigned int irq, void *dev_id)
1427 {
1428 struct irq_desc *desc = irq_to_desc(irq);
1429 struct irqaction *action, **action_ptr;
1430 unsigned long flags;
1431
1432 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1433
1434 if (!desc)
1435 return NULL;
1436
1437 chip_bus_lock(desc);
1438 raw_spin_lock_irqsave(&desc->lock, flags);
1439
1440 /*
1441 * There can be multiple actions per IRQ descriptor, find the right
1442 * one based on the dev_id:
1443 */
1444 action_ptr = &desc->action;
1445 for (;;) {
1446 action = *action_ptr;
1447
1448 if (!action) {
1449 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1450 raw_spin_unlock_irqrestore(&desc->lock, flags);
1451 chip_bus_sync_unlock(desc);
1452 return NULL;
1453 }
1454
1455 if (action->dev_id == dev_id)
1456 break;
1457 action_ptr = &action->next;
1458 }
1459
1460 /* Found it - now remove it from the list of entries: */
1461 *action_ptr = action->next;
1462
1463 irq_pm_remove_action(desc, action);
1464
1465 /* If this was the last handler, shut down the IRQ line: */
1466 if (!desc->action) {
1467 irq_settings_clr_disable_unlazy(desc);
1468 irq_shutdown(desc);
1469 irq_release_resources(desc);
1470 }
1471
1472 #ifdef CONFIG_SMP
1473 /* make sure affinity_hint is cleaned up */
1474 if (WARN_ON_ONCE(desc->affinity_hint))
1475 desc->affinity_hint = NULL;
1476 #endif
1477
1478 raw_spin_unlock_irqrestore(&desc->lock, flags);
1479 chip_bus_sync_unlock(desc);
1480
1481 unregister_handler_proc(irq, action);
1482
1483 /* Make sure it's not being used on another CPU: */
1484 synchronize_irq(irq);
1485
1486 #ifdef CONFIG_DEBUG_SHIRQ
1487 /*
1488 * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1489 * event to happen even now it's being freed, so let's make sure that
1490 * is so by doing an extra call to the handler ....
1491 *
1492 * ( We do this after actually deregistering it, to make sure that a
1493 * 'real' IRQ doesn't run in * parallel with our fake. )
1494 */
1495 if (action->flags & IRQF_SHARED) {
1496 local_irq_save(flags);
1497 action->handler(irq, dev_id);
1498 local_irq_restore(flags);
1499 }
1500 #endif
1501
1502 if (action->thread) {
1503 kthread_stop(action->thread);
1504 put_task_struct(action->thread);
1505 if (action->secondary && action->secondary->thread) {
1506 kthread_stop(action->secondary->thread);
1507 put_task_struct(action->secondary->thread);
1508 }
1509 }
1510
1511 module_put(desc->owner);
1512 kfree(action->secondary);
1513 return action;
1514 }
1515
1516 /**
1517 * remove_irq - free an interrupt
1518 * @irq: Interrupt line to free
1519 * @act: irqaction for the interrupt
1520 *
1521 * Used to remove interrupts statically setup by the early boot process.
1522 */
1523 void remove_irq(unsigned int irq, struct irqaction *act)
1524 {
1525 struct irq_desc *desc = irq_to_desc(irq);
1526
1527 if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1528 __free_irq(irq, act->dev_id);
1529 }
1530 EXPORT_SYMBOL_GPL(remove_irq);
1531
1532 /**
1533 * free_irq - free an interrupt allocated with request_irq
1534 * @irq: Interrupt line to free
1535 * @dev_id: Device identity to free
1536 *
1537 * Remove an interrupt handler. The handler is removed and if the
1538 * interrupt line is no longer in use by any driver it is disabled.
1539 * On a shared IRQ the caller must ensure the interrupt is disabled
1540 * on the card it drives before calling this function. The function
1541 * does not return until any executing interrupts for this IRQ
1542 * have completed.
1543 *
1544 * This function must not be called from interrupt context.
1545 */
1546 void free_irq(unsigned int irq, void *dev_id)
1547 {
1548 struct irq_desc *desc = irq_to_desc(irq);
1549
1550 if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1551 return;
1552
1553 #ifdef CONFIG_SMP
1554 if (WARN_ON(desc->affinity_notify))
1555 desc->affinity_notify = NULL;
1556 #endif
1557
1558 kfree(__free_irq(irq, dev_id));
1559 }
1560 EXPORT_SYMBOL(free_irq);
1561
1562 /**
1563 * request_threaded_irq - allocate an interrupt line
1564 * @irq: Interrupt line to allocate
1565 * @handler: Function to be called when the IRQ occurs.
1566 * Primary handler for threaded interrupts
1567 * If NULL and thread_fn != NULL the default
1568 * primary handler is installed
1569 * @thread_fn: Function called from the irq handler thread
1570 * If NULL, no irq thread is created
1571 * @irqflags: Interrupt type flags
1572 * @devname: An ascii name for the claiming device
1573 * @dev_id: A cookie passed back to the handler function
1574 *
1575 * This call allocates interrupt resources and enables the
1576 * interrupt line and IRQ handling. From the point this
1577 * call is made your handler function may be invoked. Since
1578 * your handler function must clear any interrupt the board
1579 * raises, you must take care both to initialise your hardware
1580 * and to set up the interrupt handler in the right order.
1581 *
1582 * If you want to set up a threaded irq handler for your device
1583 * then you need to supply @handler and @thread_fn. @handler is
1584 * still called in hard interrupt context and has to check
1585 * whether the interrupt originates from the device. If yes it
1586 * needs to disable the interrupt on the device and return
1587 * IRQ_WAKE_THREAD which will wake up the handler thread and run
1588 * @thread_fn. This split handler design is necessary to support
1589 * shared interrupts.
1590 *
1591 * Dev_id must be globally unique. Normally the address of the
1592 * device data structure is used as the cookie. Since the handler
1593 * receives this value it makes sense to use it.
1594 *
1595 * If your interrupt is shared you must pass a non NULL dev_id
1596 * as this is required when freeing the interrupt.
1597 *
1598 * Flags:
1599 *
1600 * IRQF_SHARED Interrupt is shared
1601 * IRQF_TRIGGER_* Specify active edge(s) or level
1602 *
1603 */
1604 int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1605 irq_handler_t thread_fn, unsigned long irqflags,
1606 const char *devname, void *dev_id)
1607 {
1608 struct irqaction *action;
1609 struct irq_desc *desc;
1610 int retval;
1611
1612 /*
1613 * Sanity-check: shared interrupts must pass in a real dev-ID,
1614 * otherwise we'll have trouble later trying to figure out
1615 * which interrupt is which (messes up the interrupt freeing
1616 * logic etc).
1617 *
1618 * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1619 * it cannot be set along with IRQF_NO_SUSPEND.
1620 */
1621 if (((irqflags & IRQF_SHARED) && !dev_id) ||
1622 (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1623 ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1624 return -EINVAL;
1625
1626 desc = irq_to_desc(irq);
1627 if (!desc)
1628 return -EINVAL;
1629
1630 if (!irq_settings_can_request(desc) ||
1631 WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1632 return -EINVAL;
1633
1634 if (!handler) {
1635 if (!thread_fn)
1636 return -EINVAL;
1637 handler = irq_default_primary_handler;
1638 }
1639
1640 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1641 if (!action)
1642 return -ENOMEM;
1643
1644 action->handler = handler;
1645 action->thread_fn = thread_fn;
1646 action->flags = irqflags;
1647 action->name = devname;
1648 action->dev_id = dev_id;
1649
1650 chip_bus_lock(desc);
1651 retval = __setup_irq(irq, desc, action);
1652 chip_bus_sync_unlock(desc);
1653
1654 if (retval) {
1655 kfree(action->secondary);
1656 kfree(action);
1657 }
1658
1659 #ifdef CONFIG_DEBUG_SHIRQ_FIXME
1660 if (!retval && (irqflags & IRQF_SHARED)) {
1661 /*
1662 * It's a shared IRQ -- the driver ought to be prepared for it
1663 * to happen immediately, so let's make sure....
1664 * We disable the irq to make sure that a 'real' IRQ doesn't
1665 * run in parallel with our fake.
1666 */
1667 unsigned long flags;
1668
1669 disable_irq(irq);
1670 local_irq_save(flags);
1671
1672 handler(irq, dev_id);
1673
1674 local_irq_restore(flags);
1675 enable_irq(irq);
1676 }
1677 #endif
1678 return retval;
1679 }
1680 EXPORT_SYMBOL(request_threaded_irq);
1681
1682 /**
1683 * request_any_context_irq - allocate an interrupt line
1684 * @irq: Interrupt line to allocate
1685 * @handler: Function to be called when the IRQ occurs.
1686 * Threaded handler for threaded interrupts.
1687 * @flags: Interrupt type flags
1688 * @name: An ascii name for the claiming device
1689 * @dev_id: A cookie passed back to the handler function
1690 *
1691 * This call allocates interrupt resources and enables the
1692 * interrupt line and IRQ handling. It selects either a
1693 * hardirq or threaded handling method depending on the
1694 * context.
1695 *
1696 * On failure, it returns a negative value. On success,
1697 * it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1698 */
1699 int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1700 unsigned long flags, const char *name, void *dev_id)
1701 {
1702 struct irq_desc *desc = irq_to_desc(irq);
1703 int ret;
1704
1705 if (!desc)
1706 return -EINVAL;
1707
1708 if (irq_settings_is_nested_thread(desc)) {
1709 ret = request_threaded_irq(irq, NULL, handler,
1710 flags, name, dev_id);
1711 return !ret ? IRQC_IS_NESTED : ret;
1712 }
1713
1714 ret = request_irq(irq, handler, flags, name, dev_id);
1715 return !ret ? IRQC_IS_HARDIRQ : ret;
1716 }
1717 EXPORT_SYMBOL_GPL(request_any_context_irq);
1718
1719 void enable_percpu_irq(unsigned int irq, unsigned int type)
1720 {
1721 unsigned int cpu = smp_processor_id();
1722 unsigned long flags;
1723 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1724
1725 if (!desc)
1726 return;
1727
1728 type &= IRQ_TYPE_SENSE_MASK;
1729 if (type != IRQ_TYPE_NONE) {
1730 int ret;
1731
1732 ret = __irq_set_trigger(desc, type);
1733
1734 if (ret) {
1735 WARN(1, "failed to set type for IRQ%d\n", irq);
1736 goto out;
1737 }
1738 }
1739
1740 irq_percpu_enable(desc, cpu);
1741 out:
1742 irq_put_desc_unlock(desc, flags);
1743 }
1744 EXPORT_SYMBOL_GPL(enable_percpu_irq);
1745
1746 /**
1747 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1748 * @irq: Linux irq number to check for
1749 *
1750 * Must be called from a non migratable context. Returns the enable
1751 * state of a per cpu interrupt on the current cpu.
1752 */
1753 bool irq_percpu_is_enabled(unsigned int irq)
1754 {
1755 unsigned int cpu = smp_processor_id();
1756 struct irq_desc *desc;
1757 unsigned long flags;
1758 bool is_enabled;
1759
1760 desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1761 if (!desc)
1762 return false;
1763
1764 is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1765 irq_put_desc_unlock(desc, flags);
1766
1767 return is_enabled;
1768 }
1769 EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1770
1771 void disable_percpu_irq(unsigned int irq)
1772 {
1773 unsigned int cpu = smp_processor_id();
1774 unsigned long flags;
1775 struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1776
1777 if (!desc)
1778 return;
1779
1780 irq_percpu_disable(desc, cpu);
1781 irq_put_desc_unlock(desc, flags);
1782 }
1783 EXPORT_SYMBOL_GPL(disable_percpu_irq);
1784
1785 /*
1786 * Internal function to unregister a percpu irqaction.
1787 */
1788 static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1789 {
1790 struct irq_desc *desc = irq_to_desc(irq);
1791 struct irqaction *action;
1792 unsigned long flags;
1793
1794 WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1795
1796 if (!desc)
1797 return NULL;
1798
1799 raw_spin_lock_irqsave(&desc->lock, flags);
1800
1801 action = desc->action;
1802 if (!action || action->percpu_dev_id != dev_id) {
1803 WARN(1, "Trying to free already-free IRQ %d\n", irq);
1804 goto bad;
1805 }
1806
1807 if (!cpumask_empty(desc->percpu_enabled)) {
1808 WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
1809 irq, cpumask_first(desc->percpu_enabled));
1810 goto bad;
1811 }
1812
1813 /* Found it - now remove it from the list of entries: */
1814 desc->action = NULL;
1815
1816 raw_spin_unlock_irqrestore(&desc->lock, flags);
1817
1818 unregister_handler_proc(irq, action);
1819
1820 module_put(desc->owner);
1821 return action;
1822
1823 bad:
1824 raw_spin_unlock_irqrestore(&desc->lock, flags);
1825 return NULL;
1826 }
1827
1828 /**
1829 * remove_percpu_irq - free a per-cpu interrupt
1830 * @irq: Interrupt line to free
1831 * @act: irqaction for the interrupt
1832 *
1833 * Used to remove interrupts statically setup by the early boot process.
1834 */
1835 void remove_percpu_irq(unsigned int irq, struct irqaction *act)
1836 {
1837 struct irq_desc *desc = irq_to_desc(irq);
1838
1839 if (desc && irq_settings_is_per_cpu_devid(desc))
1840 __free_percpu_irq(irq, act->percpu_dev_id);
1841 }
1842
1843 /**
1844 * free_percpu_irq - free an interrupt allocated with request_percpu_irq
1845 * @irq: Interrupt line to free
1846 * @dev_id: Device identity to free
1847 *
1848 * Remove a percpu interrupt handler. The handler is removed, but
1849 * the interrupt line is not disabled. This must be done on each
1850 * CPU before calling this function. The function does not return
1851 * until any executing interrupts for this IRQ have completed.
1852 *
1853 * This function must not be called from interrupt context.
1854 */
1855 void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1856 {
1857 struct irq_desc *desc = irq_to_desc(irq);
1858
1859 if (!desc || !irq_settings_is_per_cpu_devid(desc))
1860 return;
1861
1862 chip_bus_lock(desc);
1863 kfree(__free_percpu_irq(irq, dev_id));
1864 chip_bus_sync_unlock(desc);
1865 }
1866 EXPORT_SYMBOL_GPL(free_percpu_irq);
1867
1868 /**
1869 * setup_percpu_irq - setup a per-cpu interrupt
1870 * @irq: Interrupt line to setup
1871 * @act: irqaction for the interrupt
1872 *
1873 * Used to statically setup per-cpu interrupts in the early boot process.
1874 */
1875 int setup_percpu_irq(unsigned int irq, struct irqaction *act)
1876 {
1877 struct irq_desc *desc = irq_to_desc(irq);
1878 int retval;
1879
1880 if (!desc || !irq_settings_is_per_cpu_devid(desc))
1881 return -EINVAL;
1882 chip_bus_lock(desc);
1883 retval = __setup_irq(irq, desc, act);
1884 chip_bus_sync_unlock(desc);
1885
1886 return retval;
1887 }
1888
1889 /**
1890 * request_percpu_irq - allocate a percpu interrupt line
1891 * @irq: Interrupt line to allocate
1892 * @handler: Function to be called when the IRQ occurs.
1893 * @devname: An ascii name for the claiming device
1894 * @dev_id: A percpu cookie passed back to the handler function
1895 *
1896 * This call allocates interrupt resources and enables the
1897 * interrupt on the local CPU. If the interrupt is supposed to be
1898 * enabled on other CPUs, it has to be done on each CPU using
1899 * enable_percpu_irq().
1900 *
1901 * Dev_id must be globally unique. It is a per-cpu variable, and
1902 * the handler gets called with the interrupted CPU's instance of
1903 * that variable.
1904 */
1905 int request_percpu_irq(unsigned int irq, irq_handler_t handler,
1906 const char *devname, void __percpu *dev_id)
1907 {
1908 struct irqaction *action;
1909 struct irq_desc *desc;
1910 int retval;
1911
1912 if (!dev_id)
1913 return -EINVAL;
1914
1915 desc = irq_to_desc(irq);
1916 if (!desc || !irq_settings_can_request(desc) ||
1917 !irq_settings_is_per_cpu_devid(desc))
1918 return -EINVAL;
1919
1920 action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1921 if (!action)
1922 return -ENOMEM;
1923
1924 action->handler = handler;
1925 action->flags = IRQF_PERCPU | IRQF_NO_SUSPEND;
1926 action->name = devname;
1927 action->percpu_dev_id = dev_id;
1928
1929 chip_bus_lock(desc);
1930 retval = __setup_irq(irq, desc, action);
1931 chip_bus_sync_unlock(desc);
1932
1933 if (retval)
1934 kfree(action);
1935
1936 return retval;
1937 }
1938 EXPORT_SYMBOL_GPL(request_percpu_irq);
1939
1940 /**
1941 * irq_get_irqchip_state - returns the irqchip state of a interrupt.
1942 * @irq: Interrupt line that is forwarded to a VM
1943 * @which: One of IRQCHIP_STATE_* the caller wants to know about
1944 * @state: a pointer to a boolean where the state is to be storeed
1945 *
1946 * This call snapshots the internal irqchip state of an
1947 * interrupt, returning into @state the bit corresponding to
1948 * stage @which
1949 *
1950 * This function should be called with preemption disabled if the
1951 * interrupt controller has per-cpu registers.
1952 */
1953 int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
1954 bool *state)
1955 {
1956 struct irq_desc *desc;
1957 struct irq_data *data;
1958 struct irq_chip *chip;
1959 unsigned long flags;
1960 int err = -EINVAL;
1961
1962 desc = irq_get_desc_buslock(irq, &flags, 0);
1963 if (!desc)
1964 return err;
1965
1966 data = irq_desc_get_irq_data(desc);
1967
1968 do {
1969 chip = irq_data_get_irq_chip(data);
1970 if (chip->irq_get_irqchip_state)
1971 break;
1972 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
1973 data = data->parent_data;
1974 #else
1975 data = NULL;
1976 #endif
1977 } while (data);
1978
1979 if (data)
1980 err = chip->irq_get_irqchip_state(data, which, state);
1981
1982 irq_put_desc_busunlock(desc, flags);
1983 return err;
1984 }
1985 EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
1986
1987 /**
1988 * irq_set_irqchip_state - set the state of a forwarded interrupt.
1989 * @irq: Interrupt line that is forwarded to a VM
1990 * @which: State to be restored (one of IRQCHIP_STATE_*)
1991 * @val: Value corresponding to @which
1992 *
1993 * This call sets the internal irqchip state of an interrupt,
1994 * depending on the value of @which.
1995 *
1996 * This function should be called with preemption disabled if the
1997 * interrupt controller has per-cpu registers.
1998 */
1999 int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2000 bool val)
2001 {
2002 struct irq_desc *desc;
2003 struct irq_data *data;
2004 struct irq_chip *chip;
2005 unsigned long flags;
2006 int err = -EINVAL;
2007
2008 desc = irq_get_desc_buslock(irq, &flags, 0);
2009 if (!desc)
2010 return err;
2011
2012 data = irq_desc_get_irq_data(desc);
2013
2014 do {
2015 chip = irq_data_get_irq_chip(data);
2016 if (chip->irq_set_irqchip_state)
2017 break;
2018 #ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2019 data = data->parent_data;
2020 #else
2021 data = NULL;
2022 #endif
2023 } while (data);
2024
2025 if (data)
2026 err = chip->irq_set_irqchip_state(data, which, val);
2027
2028 irq_put_desc_busunlock(desc, flags);
2029 return err;
2030 }
2031 EXPORT_SYMBOL_GPL(irq_set_irqchip_state);