]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - kernel/kexec_core.c
net: caif: convert to use DRIVER_ATTR_RO
[mirror_ubuntu-artful-kernel.git] / kernel / kexec_core.c
1 /*
2 * kexec.c - kexec system call core code.
3 * Copyright (C) 2002-2004 Eric Biederman <ebiederm@xmission.com>
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/capability.h>
12 #include <linux/mm.h>
13 #include <linux/file.h>
14 #include <linux/slab.h>
15 #include <linux/fs.h>
16 #include <linux/kexec.h>
17 #include <linux/mutex.h>
18 #include <linux/list.h>
19 #include <linux/highmem.h>
20 #include <linux/syscalls.h>
21 #include <linux/reboot.h>
22 #include <linux/ioport.h>
23 #include <linux/hardirq.h>
24 #include <linux/elf.h>
25 #include <linux/elfcore.h>
26 #include <linux/utsname.h>
27 #include <linux/numa.h>
28 #include <linux/suspend.h>
29 #include <linux/device.h>
30 #include <linux/freezer.h>
31 #include <linux/pm.h>
32 #include <linux/cpu.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/console.h>
36 #include <linux/vmalloc.h>
37 #include <linux/swap.h>
38 #include <linux/syscore_ops.h>
39 #include <linux/compiler.h>
40 #include <linux/hugetlb.h>
41
42 #include <asm/page.h>
43 #include <asm/sections.h>
44
45 #include <crypto/hash.h>
46 #include <crypto/sha.h>
47 #include "kexec_internal.h"
48
49 DEFINE_MUTEX(kexec_mutex);
50
51 /* Per cpu memory for storing cpu states in case of system crash. */
52 note_buf_t __percpu *crash_notes;
53
54 /* Flag to indicate we are going to kexec a new kernel */
55 bool kexec_in_progress = false;
56
57
58 /* Location of the reserved area for the crash kernel */
59 struct resource crashk_res = {
60 .name = "Crash kernel",
61 .start = 0,
62 .end = 0,
63 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
64 .desc = IORES_DESC_CRASH_KERNEL
65 };
66 struct resource crashk_low_res = {
67 .name = "Crash kernel",
68 .start = 0,
69 .end = 0,
70 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM,
71 .desc = IORES_DESC_CRASH_KERNEL
72 };
73
74 int kexec_should_crash(struct task_struct *p)
75 {
76 /*
77 * If crash_kexec_post_notifiers is enabled, don't run
78 * crash_kexec() here yet, which must be run after panic
79 * notifiers in panic().
80 */
81 if (crash_kexec_post_notifiers)
82 return 0;
83 /*
84 * There are 4 panic() calls in do_exit() path, each of which
85 * corresponds to each of these 4 conditions.
86 */
87 if (in_interrupt() || !p->pid || is_global_init(p) || panic_on_oops)
88 return 1;
89 return 0;
90 }
91
92 int kexec_crash_loaded(void)
93 {
94 return !!kexec_crash_image;
95 }
96 EXPORT_SYMBOL_GPL(kexec_crash_loaded);
97
98 /*
99 * When kexec transitions to the new kernel there is a one-to-one
100 * mapping between physical and virtual addresses. On processors
101 * where you can disable the MMU this is trivial, and easy. For
102 * others it is still a simple predictable page table to setup.
103 *
104 * In that environment kexec copies the new kernel to its final
105 * resting place. This means I can only support memory whose
106 * physical address can fit in an unsigned long. In particular
107 * addresses where (pfn << PAGE_SHIFT) > ULONG_MAX cannot be handled.
108 * If the assembly stub has more restrictive requirements
109 * KEXEC_SOURCE_MEMORY_LIMIT and KEXEC_DEST_MEMORY_LIMIT can be
110 * defined more restrictively in <asm/kexec.h>.
111 *
112 * The code for the transition from the current kernel to the
113 * the new kernel is placed in the control_code_buffer, whose size
114 * is given by KEXEC_CONTROL_PAGE_SIZE. In the best case only a single
115 * page of memory is necessary, but some architectures require more.
116 * Because this memory must be identity mapped in the transition from
117 * virtual to physical addresses it must live in the range
118 * 0 - TASK_SIZE, as only the user space mappings are arbitrarily
119 * modifiable.
120 *
121 * The assembly stub in the control code buffer is passed a linked list
122 * of descriptor pages detailing the source pages of the new kernel,
123 * and the destination addresses of those source pages. As this data
124 * structure is not used in the context of the current OS, it must
125 * be self-contained.
126 *
127 * The code has been made to work with highmem pages and will use a
128 * destination page in its final resting place (if it happens
129 * to allocate it). The end product of this is that most of the
130 * physical address space, and most of RAM can be used.
131 *
132 * Future directions include:
133 * - allocating a page table with the control code buffer identity
134 * mapped, to simplify machine_kexec and make kexec_on_panic more
135 * reliable.
136 */
137
138 /*
139 * KIMAGE_NO_DEST is an impossible destination address..., for
140 * allocating pages whose destination address we do not care about.
141 */
142 #define KIMAGE_NO_DEST (-1UL)
143 #define PAGE_COUNT(x) (((x) + PAGE_SIZE - 1) >> PAGE_SHIFT)
144
145 static struct page *kimage_alloc_page(struct kimage *image,
146 gfp_t gfp_mask,
147 unsigned long dest);
148
149 int sanity_check_segment_list(struct kimage *image)
150 {
151 int i;
152 unsigned long nr_segments = image->nr_segments;
153 unsigned long total_pages = 0;
154
155 /*
156 * Verify we have good destination addresses. The caller is
157 * responsible for making certain we don't attempt to load
158 * the new image into invalid or reserved areas of RAM. This
159 * just verifies it is an address we can use.
160 *
161 * Since the kernel does everything in page size chunks ensure
162 * the destination addresses are page aligned. Too many
163 * special cases crop of when we don't do this. The most
164 * insidious is getting overlapping destination addresses
165 * simply because addresses are changed to page size
166 * granularity.
167 */
168 for (i = 0; i < nr_segments; i++) {
169 unsigned long mstart, mend;
170
171 mstart = image->segment[i].mem;
172 mend = mstart + image->segment[i].memsz;
173 if (mstart > mend)
174 return -EADDRNOTAVAIL;
175 if ((mstart & ~PAGE_MASK) || (mend & ~PAGE_MASK))
176 return -EADDRNOTAVAIL;
177 if (mend >= KEXEC_DESTINATION_MEMORY_LIMIT)
178 return -EADDRNOTAVAIL;
179 }
180
181 /* Verify our destination addresses do not overlap.
182 * If we alloed overlapping destination addresses
183 * through very weird things can happen with no
184 * easy explanation as one segment stops on another.
185 */
186 for (i = 0; i < nr_segments; i++) {
187 unsigned long mstart, mend;
188 unsigned long j;
189
190 mstart = image->segment[i].mem;
191 mend = mstart + image->segment[i].memsz;
192 for (j = 0; j < i; j++) {
193 unsigned long pstart, pend;
194
195 pstart = image->segment[j].mem;
196 pend = pstart + image->segment[j].memsz;
197 /* Do the segments overlap ? */
198 if ((mend > pstart) && (mstart < pend))
199 return -EINVAL;
200 }
201 }
202
203 /* Ensure our buffer sizes are strictly less than
204 * our memory sizes. This should always be the case,
205 * and it is easier to check up front than to be surprised
206 * later on.
207 */
208 for (i = 0; i < nr_segments; i++) {
209 if (image->segment[i].bufsz > image->segment[i].memsz)
210 return -EINVAL;
211 }
212
213 /*
214 * Verify that no more than half of memory will be consumed. If the
215 * request from userspace is too large, a large amount of time will be
216 * wasted allocating pages, which can cause a soft lockup.
217 */
218 for (i = 0; i < nr_segments; i++) {
219 if (PAGE_COUNT(image->segment[i].memsz) > totalram_pages / 2)
220 return -EINVAL;
221
222 total_pages += PAGE_COUNT(image->segment[i].memsz);
223 }
224
225 if (total_pages > totalram_pages / 2)
226 return -EINVAL;
227
228 /*
229 * Verify we have good destination addresses. Normally
230 * the caller is responsible for making certain we don't
231 * attempt to load the new image into invalid or reserved
232 * areas of RAM. But crash kernels are preloaded into a
233 * reserved area of ram. We must ensure the addresses
234 * are in the reserved area otherwise preloading the
235 * kernel could corrupt things.
236 */
237
238 if (image->type == KEXEC_TYPE_CRASH) {
239 for (i = 0; i < nr_segments; i++) {
240 unsigned long mstart, mend;
241
242 mstart = image->segment[i].mem;
243 mend = mstart + image->segment[i].memsz - 1;
244 /* Ensure we are within the crash kernel limits */
245 if ((mstart < phys_to_boot_phys(crashk_res.start)) ||
246 (mend > phys_to_boot_phys(crashk_res.end)))
247 return -EADDRNOTAVAIL;
248 }
249 }
250
251 return 0;
252 }
253
254 struct kimage *do_kimage_alloc_init(void)
255 {
256 struct kimage *image;
257
258 /* Allocate a controlling structure */
259 image = kzalloc(sizeof(*image), GFP_KERNEL);
260 if (!image)
261 return NULL;
262
263 image->head = 0;
264 image->entry = &image->head;
265 image->last_entry = &image->head;
266 image->control_page = ~0; /* By default this does not apply */
267 image->type = KEXEC_TYPE_DEFAULT;
268
269 /* Initialize the list of control pages */
270 INIT_LIST_HEAD(&image->control_pages);
271
272 /* Initialize the list of destination pages */
273 INIT_LIST_HEAD(&image->dest_pages);
274
275 /* Initialize the list of unusable pages */
276 INIT_LIST_HEAD(&image->unusable_pages);
277
278 return image;
279 }
280
281 int kimage_is_destination_range(struct kimage *image,
282 unsigned long start,
283 unsigned long end)
284 {
285 unsigned long i;
286
287 for (i = 0; i < image->nr_segments; i++) {
288 unsigned long mstart, mend;
289
290 mstart = image->segment[i].mem;
291 mend = mstart + image->segment[i].memsz;
292 if ((end > mstart) && (start < mend))
293 return 1;
294 }
295
296 return 0;
297 }
298
299 static struct page *kimage_alloc_pages(gfp_t gfp_mask, unsigned int order)
300 {
301 struct page *pages;
302
303 pages = alloc_pages(gfp_mask, order);
304 if (pages) {
305 unsigned int count, i;
306
307 pages->mapping = NULL;
308 set_page_private(pages, order);
309 count = 1 << order;
310 for (i = 0; i < count; i++)
311 SetPageReserved(pages + i);
312 }
313
314 return pages;
315 }
316
317 static void kimage_free_pages(struct page *page)
318 {
319 unsigned int order, count, i;
320
321 order = page_private(page);
322 count = 1 << order;
323 for (i = 0; i < count; i++)
324 ClearPageReserved(page + i);
325 __free_pages(page, order);
326 }
327
328 void kimage_free_page_list(struct list_head *list)
329 {
330 struct page *page, *next;
331
332 list_for_each_entry_safe(page, next, list, lru) {
333 list_del(&page->lru);
334 kimage_free_pages(page);
335 }
336 }
337
338 static struct page *kimage_alloc_normal_control_pages(struct kimage *image,
339 unsigned int order)
340 {
341 /* Control pages are special, they are the intermediaries
342 * that are needed while we copy the rest of the pages
343 * to their final resting place. As such they must
344 * not conflict with either the destination addresses
345 * or memory the kernel is already using.
346 *
347 * The only case where we really need more than one of
348 * these are for architectures where we cannot disable
349 * the MMU and must instead generate an identity mapped
350 * page table for all of the memory.
351 *
352 * At worst this runs in O(N) of the image size.
353 */
354 struct list_head extra_pages;
355 struct page *pages;
356 unsigned int count;
357
358 count = 1 << order;
359 INIT_LIST_HEAD(&extra_pages);
360
361 /* Loop while I can allocate a page and the page allocated
362 * is a destination page.
363 */
364 do {
365 unsigned long pfn, epfn, addr, eaddr;
366
367 pages = kimage_alloc_pages(KEXEC_CONTROL_MEMORY_GFP, order);
368 if (!pages)
369 break;
370 pfn = page_to_boot_pfn(pages);
371 epfn = pfn + count;
372 addr = pfn << PAGE_SHIFT;
373 eaddr = epfn << PAGE_SHIFT;
374 if ((epfn >= (KEXEC_CONTROL_MEMORY_LIMIT >> PAGE_SHIFT)) ||
375 kimage_is_destination_range(image, addr, eaddr)) {
376 list_add(&pages->lru, &extra_pages);
377 pages = NULL;
378 }
379 } while (!pages);
380
381 if (pages) {
382 /* Remember the allocated page... */
383 list_add(&pages->lru, &image->control_pages);
384
385 /* Because the page is already in it's destination
386 * location we will never allocate another page at
387 * that address. Therefore kimage_alloc_pages
388 * will not return it (again) and we don't need
389 * to give it an entry in image->segment[].
390 */
391 }
392 /* Deal with the destination pages I have inadvertently allocated.
393 *
394 * Ideally I would convert multi-page allocations into single
395 * page allocations, and add everything to image->dest_pages.
396 *
397 * For now it is simpler to just free the pages.
398 */
399 kimage_free_page_list(&extra_pages);
400
401 return pages;
402 }
403
404 static struct page *kimage_alloc_crash_control_pages(struct kimage *image,
405 unsigned int order)
406 {
407 /* Control pages are special, they are the intermediaries
408 * that are needed while we copy the rest of the pages
409 * to their final resting place. As such they must
410 * not conflict with either the destination addresses
411 * or memory the kernel is already using.
412 *
413 * Control pages are also the only pags we must allocate
414 * when loading a crash kernel. All of the other pages
415 * are specified by the segments and we just memcpy
416 * into them directly.
417 *
418 * The only case where we really need more than one of
419 * these are for architectures where we cannot disable
420 * the MMU and must instead generate an identity mapped
421 * page table for all of the memory.
422 *
423 * Given the low demand this implements a very simple
424 * allocator that finds the first hole of the appropriate
425 * size in the reserved memory region, and allocates all
426 * of the memory up to and including the hole.
427 */
428 unsigned long hole_start, hole_end, size;
429 struct page *pages;
430
431 pages = NULL;
432 size = (1 << order) << PAGE_SHIFT;
433 hole_start = (image->control_page + (size - 1)) & ~(size - 1);
434 hole_end = hole_start + size - 1;
435 while (hole_end <= crashk_res.end) {
436 unsigned long i;
437
438 cond_resched();
439
440 if (hole_end > KEXEC_CRASH_CONTROL_MEMORY_LIMIT)
441 break;
442 /* See if I overlap any of the segments */
443 for (i = 0; i < image->nr_segments; i++) {
444 unsigned long mstart, mend;
445
446 mstart = image->segment[i].mem;
447 mend = mstart + image->segment[i].memsz - 1;
448 if ((hole_end >= mstart) && (hole_start <= mend)) {
449 /* Advance the hole to the end of the segment */
450 hole_start = (mend + (size - 1)) & ~(size - 1);
451 hole_end = hole_start + size - 1;
452 break;
453 }
454 }
455 /* If I don't overlap any segments I have found my hole! */
456 if (i == image->nr_segments) {
457 pages = pfn_to_page(hole_start >> PAGE_SHIFT);
458 image->control_page = hole_end;
459 break;
460 }
461 }
462
463 return pages;
464 }
465
466
467 struct page *kimage_alloc_control_pages(struct kimage *image,
468 unsigned int order)
469 {
470 struct page *pages = NULL;
471
472 switch (image->type) {
473 case KEXEC_TYPE_DEFAULT:
474 pages = kimage_alloc_normal_control_pages(image, order);
475 break;
476 case KEXEC_TYPE_CRASH:
477 pages = kimage_alloc_crash_control_pages(image, order);
478 break;
479 }
480
481 return pages;
482 }
483
484 static int kimage_add_entry(struct kimage *image, kimage_entry_t entry)
485 {
486 if (*image->entry != 0)
487 image->entry++;
488
489 if (image->entry == image->last_entry) {
490 kimage_entry_t *ind_page;
491 struct page *page;
492
493 page = kimage_alloc_page(image, GFP_KERNEL, KIMAGE_NO_DEST);
494 if (!page)
495 return -ENOMEM;
496
497 ind_page = page_address(page);
498 *image->entry = virt_to_boot_phys(ind_page) | IND_INDIRECTION;
499 image->entry = ind_page;
500 image->last_entry = ind_page +
501 ((PAGE_SIZE/sizeof(kimage_entry_t)) - 1);
502 }
503 *image->entry = entry;
504 image->entry++;
505 *image->entry = 0;
506
507 return 0;
508 }
509
510 static int kimage_set_destination(struct kimage *image,
511 unsigned long destination)
512 {
513 int result;
514
515 destination &= PAGE_MASK;
516 result = kimage_add_entry(image, destination | IND_DESTINATION);
517
518 return result;
519 }
520
521
522 static int kimage_add_page(struct kimage *image, unsigned long page)
523 {
524 int result;
525
526 page &= PAGE_MASK;
527 result = kimage_add_entry(image, page | IND_SOURCE);
528
529 return result;
530 }
531
532
533 static void kimage_free_extra_pages(struct kimage *image)
534 {
535 /* Walk through and free any extra destination pages I may have */
536 kimage_free_page_list(&image->dest_pages);
537
538 /* Walk through and free any unusable pages I have cached */
539 kimage_free_page_list(&image->unusable_pages);
540
541 }
542 void kimage_terminate(struct kimage *image)
543 {
544 if (*image->entry != 0)
545 image->entry++;
546
547 *image->entry = IND_DONE;
548 }
549
550 #define for_each_kimage_entry(image, ptr, entry) \
551 for (ptr = &image->head; (entry = *ptr) && !(entry & IND_DONE); \
552 ptr = (entry & IND_INDIRECTION) ? \
553 boot_phys_to_virt((entry & PAGE_MASK)) : ptr + 1)
554
555 static void kimage_free_entry(kimage_entry_t entry)
556 {
557 struct page *page;
558
559 page = boot_pfn_to_page(entry >> PAGE_SHIFT);
560 kimage_free_pages(page);
561 }
562
563 void kimage_free(struct kimage *image)
564 {
565 kimage_entry_t *ptr, entry;
566 kimage_entry_t ind = 0;
567
568 if (!image)
569 return;
570
571 kimage_free_extra_pages(image);
572 for_each_kimage_entry(image, ptr, entry) {
573 if (entry & IND_INDIRECTION) {
574 /* Free the previous indirection page */
575 if (ind & IND_INDIRECTION)
576 kimage_free_entry(ind);
577 /* Save this indirection page until we are
578 * done with it.
579 */
580 ind = entry;
581 } else if (entry & IND_SOURCE)
582 kimage_free_entry(entry);
583 }
584 /* Free the final indirection page */
585 if (ind & IND_INDIRECTION)
586 kimage_free_entry(ind);
587
588 /* Handle any machine specific cleanup */
589 machine_kexec_cleanup(image);
590
591 /* Free the kexec control pages... */
592 kimage_free_page_list(&image->control_pages);
593
594 /*
595 * Free up any temporary buffers allocated. This might hit if
596 * error occurred much later after buffer allocation.
597 */
598 if (image->file_mode)
599 kimage_file_post_load_cleanup(image);
600
601 kfree(image);
602 }
603
604 static kimage_entry_t *kimage_dst_used(struct kimage *image,
605 unsigned long page)
606 {
607 kimage_entry_t *ptr, entry;
608 unsigned long destination = 0;
609
610 for_each_kimage_entry(image, ptr, entry) {
611 if (entry & IND_DESTINATION)
612 destination = entry & PAGE_MASK;
613 else if (entry & IND_SOURCE) {
614 if (page == destination)
615 return ptr;
616 destination += PAGE_SIZE;
617 }
618 }
619
620 return NULL;
621 }
622
623 static struct page *kimage_alloc_page(struct kimage *image,
624 gfp_t gfp_mask,
625 unsigned long destination)
626 {
627 /*
628 * Here we implement safeguards to ensure that a source page
629 * is not copied to its destination page before the data on
630 * the destination page is no longer useful.
631 *
632 * To do this we maintain the invariant that a source page is
633 * either its own destination page, or it is not a
634 * destination page at all.
635 *
636 * That is slightly stronger than required, but the proof
637 * that no problems will not occur is trivial, and the
638 * implementation is simply to verify.
639 *
640 * When allocating all pages normally this algorithm will run
641 * in O(N) time, but in the worst case it will run in O(N^2)
642 * time. If the runtime is a problem the data structures can
643 * be fixed.
644 */
645 struct page *page;
646 unsigned long addr;
647
648 /*
649 * Walk through the list of destination pages, and see if I
650 * have a match.
651 */
652 list_for_each_entry(page, &image->dest_pages, lru) {
653 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
654 if (addr == destination) {
655 list_del(&page->lru);
656 return page;
657 }
658 }
659 page = NULL;
660 while (1) {
661 kimage_entry_t *old;
662
663 /* Allocate a page, if we run out of memory give up */
664 page = kimage_alloc_pages(gfp_mask, 0);
665 if (!page)
666 return NULL;
667 /* If the page cannot be used file it away */
668 if (page_to_boot_pfn(page) >
669 (KEXEC_SOURCE_MEMORY_LIMIT >> PAGE_SHIFT)) {
670 list_add(&page->lru, &image->unusable_pages);
671 continue;
672 }
673 addr = page_to_boot_pfn(page) << PAGE_SHIFT;
674
675 /* If it is the destination page we want use it */
676 if (addr == destination)
677 break;
678
679 /* If the page is not a destination page use it */
680 if (!kimage_is_destination_range(image, addr,
681 addr + PAGE_SIZE))
682 break;
683
684 /*
685 * I know that the page is someones destination page.
686 * See if there is already a source page for this
687 * destination page. And if so swap the source pages.
688 */
689 old = kimage_dst_used(image, addr);
690 if (old) {
691 /* If so move it */
692 unsigned long old_addr;
693 struct page *old_page;
694
695 old_addr = *old & PAGE_MASK;
696 old_page = boot_pfn_to_page(old_addr >> PAGE_SHIFT);
697 copy_highpage(page, old_page);
698 *old = addr | (*old & ~PAGE_MASK);
699
700 /* The old page I have found cannot be a
701 * destination page, so return it if it's
702 * gfp_flags honor the ones passed in.
703 */
704 if (!(gfp_mask & __GFP_HIGHMEM) &&
705 PageHighMem(old_page)) {
706 kimage_free_pages(old_page);
707 continue;
708 }
709 addr = old_addr;
710 page = old_page;
711 break;
712 }
713 /* Place the page on the destination list, to be used later */
714 list_add(&page->lru, &image->dest_pages);
715 }
716
717 return page;
718 }
719
720 static int kimage_load_normal_segment(struct kimage *image,
721 struct kexec_segment *segment)
722 {
723 unsigned long maddr;
724 size_t ubytes, mbytes;
725 int result;
726 unsigned char __user *buf = NULL;
727 unsigned char *kbuf = NULL;
728
729 result = 0;
730 if (image->file_mode)
731 kbuf = segment->kbuf;
732 else
733 buf = segment->buf;
734 ubytes = segment->bufsz;
735 mbytes = segment->memsz;
736 maddr = segment->mem;
737
738 result = kimage_set_destination(image, maddr);
739 if (result < 0)
740 goto out;
741
742 while (mbytes) {
743 struct page *page;
744 char *ptr;
745 size_t uchunk, mchunk;
746
747 page = kimage_alloc_page(image, GFP_HIGHUSER, maddr);
748 if (!page) {
749 result = -ENOMEM;
750 goto out;
751 }
752 result = kimage_add_page(image, page_to_boot_pfn(page)
753 << PAGE_SHIFT);
754 if (result < 0)
755 goto out;
756
757 ptr = kmap(page);
758 /* Start with a clear page */
759 clear_page(ptr);
760 ptr += maddr & ~PAGE_MASK;
761 mchunk = min_t(size_t, mbytes,
762 PAGE_SIZE - (maddr & ~PAGE_MASK));
763 uchunk = min(ubytes, mchunk);
764
765 /* For file based kexec, source pages are in kernel memory */
766 if (image->file_mode)
767 memcpy(ptr, kbuf, uchunk);
768 else
769 result = copy_from_user(ptr, buf, uchunk);
770 kunmap(page);
771 if (result) {
772 result = -EFAULT;
773 goto out;
774 }
775 ubytes -= uchunk;
776 maddr += mchunk;
777 if (image->file_mode)
778 kbuf += mchunk;
779 else
780 buf += mchunk;
781 mbytes -= mchunk;
782 }
783 out:
784 return result;
785 }
786
787 static int kimage_load_crash_segment(struct kimage *image,
788 struct kexec_segment *segment)
789 {
790 /* For crash dumps kernels we simply copy the data from
791 * user space to it's destination.
792 * We do things a page at a time for the sake of kmap.
793 */
794 unsigned long maddr;
795 size_t ubytes, mbytes;
796 int result;
797 unsigned char __user *buf = NULL;
798 unsigned char *kbuf = NULL;
799
800 result = 0;
801 if (image->file_mode)
802 kbuf = segment->kbuf;
803 else
804 buf = segment->buf;
805 ubytes = segment->bufsz;
806 mbytes = segment->memsz;
807 maddr = segment->mem;
808 while (mbytes) {
809 struct page *page;
810 char *ptr;
811 size_t uchunk, mchunk;
812
813 page = boot_pfn_to_page(maddr >> PAGE_SHIFT);
814 if (!page) {
815 result = -ENOMEM;
816 goto out;
817 }
818 ptr = kmap(page);
819 ptr += maddr & ~PAGE_MASK;
820 mchunk = min_t(size_t, mbytes,
821 PAGE_SIZE - (maddr & ~PAGE_MASK));
822 uchunk = min(ubytes, mchunk);
823 if (mchunk > uchunk) {
824 /* Zero the trailing part of the page */
825 memset(ptr + uchunk, 0, mchunk - uchunk);
826 }
827
828 /* For file based kexec, source pages are in kernel memory */
829 if (image->file_mode)
830 memcpy(ptr, kbuf, uchunk);
831 else
832 result = copy_from_user(ptr, buf, uchunk);
833 kexec_flush_icache_page(page);
834 kunmap(page);
835 if (result) {
836 result = -EFAULT;
837 goto out;
838 }
839 ubytes -= uchunk;
840 maddr += mchunk;
841 if (image->file_mode)
842 kbuf += mchunk;
843 else
844 buf += mchunk;
845 mbytes -= mchunk;
846 }
847 out:
848 return result;
849 }
850
851 int kimage_load_segment(struct kimage *image,
852 struct kexec_segment *segment)
853 {
854 int result = -ENOMEM;
855
856 switch (image->type) {
857 case KEXEC_TYPE_DEFAULT:
858 result = kimage_load_normal_segment(image, segment);
859 break;
860 case KEXEC_TYPE_CRASH:
861 result = kimage_load_crash_segment(image, segment);
862 break;
863 }
864
865 return result;
866 }
867
868 struct kimage *kexec_image;
869 struct kimage *kexec_crash_image;
870 int kexec_load_disabled;
871
872 /*
873 * No panic_cpu check version of crash_kexec(). This function is called
874 * only when panic_cpu holds the current CPU number; this is the only CPU
875 * which processes crash_kexec routines.
876 */
877 void __crash_kexec(struct pt_regs *regs)
878 {
879 /* Take the kexec_mutex here to prevent sys_kexec_load
880 * running on one cpu from replacing the crash kernel
881 * we are using after a panic on a different cpu.
882 *
883 * If the crash kernel was not located in a fixed area
884 * of memory the xchg(&kexec_crash_image) would be
885 * sufficient. But since I reuse the memory...
886 */
887 if (mutex_trylock(&kexec_mutex)) {
888 if (kexec_crash_image) {
889 struct pt_regs fixed_regs;
890
891 crash_setup_regs(&fixed_regs, regs);
892 crash_save_vmcoreinfo();
893 machine_crash_shutdown(&fixed_regs);
894 machine_kexec(kexec_crash_image);
895 }
896 mutex_unlock(&kexec_mutex);
897 }
898 }
899
900 void crash_kexec(struct pt_regs *regs)
901 {
902 int old_cpu, this_cpu;
903
904 /*
905 * Only one CPU is allowed to execute the crash_kexec() code as with
906 * panic(). Otherwise parallel calls of panic() and crash_kexec()
907 * may stop each other. To exclude them, we use panic_cpu here too.
908 */
909 this_cpu = raw_smp_processor_id();
910 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu);
911 if (old_cpu == PANIC_CPU_INVALID) {
912 /* This is the 1st CPU which comes here, so go ahead. */
913 printk_safe_flush_on_panic();
914 __crash_kexec(regs);
915
916 /*
917 * Reset panic_cpu to allow another panic()/crash_kexec()
918 * call.
919 */
920 atomic_set(&panic_cpu, PANIC_CPU_INVALID);
921 }
922 }
923
924 size_t crash_get_memory_size(void)
925 {
926 size_t size = 0;
927
928 mutex_lock(&kexec_mutex);
929 if (crashk_res.end != crashk_res.start)
930 size = resource_size(&crashk_res);
931 mutex_unlock(&kexec_mutex);
932 return size;
933 }
934
935 void __weak crash_free_reserved_phys_range(unsigned long begin,
936 unsigned long end)
937 {
938 unsigned long addr;
939
940 for (addr = begin; addr < end; addr += PAGE_SIZE)
941 free_reserved_page(boot_pfn_to_page(addr >> PAGE_SHIFT));
942 }
943
944 int crash_shrink_memory(unsigned long new_size)
945 {
946 int ret = 0;
947 unsigned long start, end;
948 unsigned long old_size;
949 struct resource *ram_res;
950
951 mutex_lock(&kexec_mutex);
952
953 if (kexec_crash_image) {
954 ret = -ENOENT;
955 goto unlock;
956 }
957 start = crashk_res.start;
958 end = crashk_res.end;
959 old_size = (end == 0) ? 0 : end - start + 1;
960 if (new_size >= old_size) {
961 ret = (new_size == old_size) ? 0 : -EINVAL;
962 goto unlock;
963 }
964
965 ram_res = kzalloc(sizeof(*ram_res), GFP_KERNEL);
966 if (!ram_res) {
967 ret = -ENOMEM;
968 goto unlock;
969 }
970
971 start = roundup(start, KEXEC_CRASH_MEM_ALIGN);
972 end = roundup(start + new_size, KEXEC_CRASH_MEM_ALIGN);
973
974 crash_free_reserved_phys_range(end, crashk_res.end);
975
976 if ((start == end) && (crashk_res.parent != NULL))
977 release_resource(&crashk_res);
978
979 ram_res->start = end;
980 ram_res->end = crashk_res.end;
981 ram_res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
982 ram_res->name = "System RAM";
983
984 crashk_res.end = end - 1;
985
986 insert_resource(&iomem_resource, ram_res);
987
988 unlock:
989 mutex_unlock(&kexec_mutex);
990 return ret;
991 }
992
993 void crash_save_cpu(struct pt_regs *regs, int cpu)
994 {
995 struct elf_prstatus prstatus;
996 u32 *buf;
997
998 if ((cpu < 0) || (cpu >= nr_cpu_ids))
999 return;
1000
1001 /* Using ELF notes here is opportunistic.
1002 * I need a well defined structure format
1003 * for the data I pass, and I need tags
1004 * on the data to indicate what information I have
1005 * squirrelled away. ELF notes happen to provide
1006 * all of that, so there is no need to invent something new.
1007 */
1008 buf = (u32 *)per_cpu_ptr(crash_notes, cpu);
1009 if (!buf)
1010 return;
1011 memset(&prstatus, 0, sizeof(prstatus));
1012 prstatus.pr_pid = current->pid;
1013 elf_core_copy_kernel_regs(&prstatus.pr_reg, regs);
1014 buf = append_elf_note(buf, KEXEC_CORE_NOTE_NAME, NT_PRSTATUS,
1015 &prstatus, sizeof(prstatus));
1016 final_note(buf);
1017 }
1018
1019 static int __init crash_notes_memory_init(void)
1020 {
1021 /* Allocate memory for saving cpu registers. */
1022 size_t size, align;
1023
1024 /*
1025 * crash_notes could be allocated across 2 vmalloc pages when percpu
1026 * is vmalloc based . vmalloc doesn't guarantee 2 continuous vmalloc
1027 * pages are also on 2 continuous physical pages. In this case the
1028 * 2nd part of crash_notes in 2nd page could be lost since only the
1029 * starting address and size of crash_notes are exported through sysfs.
1030 * Here round up the size of crash_notes to the nearest power of two
1031 * and pass it to __alloc_percpu as align value. This can make sure
1032 * crash_notes is allocated inside one physical page.
1033 */
1034 size = sizeof(note_buf_t);
1035 align = min(roundup_pow_of_two(sizeof(note_buf_t)), PAGE_SIZE);
1036
1037 /*
1038 * Break compile if size is bigger than PAGE_SIZE since crash_notes
1039 * definitely will be in 2 pages with that.
1040 */
1041 BUILD_BUG_ON(size > PAGE_SIZE);
1042
1043 crash_notes = __alloc_percpu(size, align);
1044 if (!crash_notes) {
1045 pr_warn("Memory allocation for saving cpu register states failed\n");
1046 return -ENOMEM;
1047 }
1048 return 0;
1049 }
1050 subsys_initcall(crash_notes_memory_init);
1051
1052
1053 /*
1054 * Move into place and start executing a preloaded standalone
1055 * executable. If nothing was preloaded return an error.
1056 */
1057 int kernel_kexec(void)
1058 {
1059 int error = 0;
1060
1061 if (!mutex_trylock(&kexec_mutex))
1062 return -EBUSY;
1063 if (!kexec_image) {
1064 error = -EINVAL;
1065 goto Unlock;
1066 }
1067
1068 #ifdef CONFIG_KEXEC_JUMP
1069 if (kexec_image->preserve_context) {
1070 lock_system_sleep();
1071 pm_prepare_console();
1072 error = freeze_processes();
1073 if (error) {
1074 error = -EBUSY;
1075 goto Restore_console;
1076 }
1077 suspend_console();
1078 error = dpm_suspend_start(PMSG_FREEZE);
1079 if (error)
1080 goto Resume_console;
1081 /* At this point, dpm_suspend_start() has been called,
1082 * but *not* dpm_suspend_end(). We *must* call
1083 * dpm_suspend_end() now. Otherwise, drivers for
1084 * some devices (e.g. interrupt controllers) become
1085 * desynchronized with the actual state of the
1086 * hardware at resume time, and evil weirdness ensues.
1087 */
1088 error = dpm_suspend_end(PMSG_FREEZE);
1089 if (error)
1090 goto Resume_devices;
1091 error = disable_nonboot_cpus();
1092 if (error)
1093 goto Enable_cpus;
1094 local_irq_disable();
1095 error = syscore_suspend();
1096 if (error)
1097 goto Enable_irqs;
1098 } else
1099 #endif
1100 {
1101 kexec_in_progress = true;
1102 kernel_restart_prepare(NULL);
1103 migrate_to_reboot_cpu();
1104
1105 /*
1106 * migrate_to_reboot_cpu() disables CPU hotplug assuming that
1107 * no further code needs to use CPU hotplug (which is true in
1108 * the reboot case). However, the kexec path depends on using
1109 * CPU hotplug again; so re-enable it here.
1110 */
1111 cpu_hotplug_enable();
1112 pr_emerg("Starting new kernel\n");
1113 machine_shutdown();
1114 }
1115
1116 machine_kexec(kexec_image);
1117
1118 #ifdef CONFIG_KEXEC_JUMP
1119 if (kexec_image->preserve_context) {
1120 syscore_resume();
1121 Enable_irqs:
1122 local_irq_enable();
1123 Enable_cpus:
1124 enable_nonboot_cpus();
1125 dpm_resume_start(PMSG_RESTORE);
1126 Resume_devices:
1127 dpm_resume_end(PMSG_RESTORE);
1128 Resume_console:
1129 resume_console();
1130 thaw_processes();
1131 Restore_console:
1132 pm_restore_console();
1133 unlock_system_sleep();
1134 }
1135 #endif
1136
1137 Unlock:
1138 mutex_unlock(&kexec_mutex);
1139 return error;
1140 }
1141
1142 /*
1143 * Protection mechanism for crashkernel reserved memory after
1144 * the kdump kernel is loaded.
1145 *
1146 * Provide an empty default implementation here -- architecture
1147 * code may override this
1148 */
1149 void __weak arch_kexec_protect_crashkres(void)
1150 {}
1151
1152 void __weak arch_kexec_unprotect_crashkres(void)
1153 {}