]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/kexec_file.c
kexec_file: Allow arch-specific memory walking for kexec_add_buffer
[mirror_ubuntu-bionic-kernel.git] / kernel / kexec_file.c
1 /*
2 * kexec: kexec_file_load system call
3 *
4 * Copyright (C) 2014 Red Hat Inc.
5 * Authors:
6 * Vivek Goyal <vgoyal@redhat.com>
7 *
8 * This source code is licensed under the GNU General Public License,
9 * Version 2. See the file COPYING for more details.
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <crypto/hash.h>
23 #include <crypto/sha.h>
24 #include <linux/syscalls.h>
25 #include <linux/vmalloc.h>
26 #include "kexec_internal.h"
27
28 /*
29 * Declare these symbols weak so that if architecture provides a purgatory,
30 * these will be overridden.
31 */
32 char __weak kexec_purgatory[0];
33 size_t __weak kexec_purgatory_size = 0;
34
35 static int kexec_calculate_store_digests(struct kimage *image);
36
37 /* Architectures can provide this probe function */
38 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
39 unsigned long buf_len)
40 {
41 return -ENOEXEC;
42 }
43
44 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
45 {
46 return ERR_PTR(-ENOEXEC);
47 }
48
49 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
50 {
51 return -EINVAL;
52 }
53
54 #ifdef CONFIG_KEXEC_VERIFY_SIG
55 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
56 unsigned long buf_len)
57 {
58 return -EKEYREJECTED;
59 }
60 #endif
61
62 /* Apply relocations of type RELA */
63 int __weak
64 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
65 unsigned int relsec)
66 {
67 pr_err("RELA relocation unsupported.\n");
68 return -ENOEXEC;
69 }
70
71 /* Apply relocations of type REL */
72 int __weak
73 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
74 unsigned int relsec)
75 {
76 pr_err("REL relocation unsupported.\n");
77 return -ENOEXEC;
78 }
79
80 /*
81 * Free up memory used by kernel, initrd, and command line. This is temporary
82 * memory allocation which is not needed any more after these buffers have
83 * been loaded into separate segments and have been copied elsewhere.
84 */
85 void kimage_file_post_load_cleanup(struct kimage *image)
86 {
87 struct purgatory_info *pi = &image->purgatory_info;
88
89 vfree(image->kernel_buf);
90 image->kernel_buf = NULL;
91
92 vfree(image->initrd_buf);
93 image->initrd_buf = NULL;
94
95 kfree(image->cmdline_buf);
96 image->cmdline_buf = NULL;
97
98 vfree(pi->purgatory_buf);
99 pi->purgatory_buf = NULL;
100
101 vfree(pi->sechdrs);
102 pi->sechdrs = NULL;
103
104 /* See if architecture has anything to cleanup post load */
105 arch_kimage_file_post_load_cleanup(image);
106
107 /*
108 * Above call should have called into bootloader to free up
109 * any data stored in kimage->image_loader_data. It should
110 * be ok now to free it up.
111 */
112 kfree(image->image_loader_data);
113 image->image_loader_data = NULL;
114 }
115
116 /*
117 * In file mode list of segments is prepared by kernel. Copy relevant
118 * data from user space, do error checking, prepare segment list
119 */
120 static int
121 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
122 const char __user *cmdline_ptr,
123 unsigned long cmdline_len, unsigned flags)
124 {
125 int ret = 0;
126 void *ldata;
127 loff_t size;
128
129 ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
130 &size, INT_MAX, READING_KEXEC_IMAGE);
131 if (ret)
132 return ret;
133 image->kernel_buf_len = size;
134
135 /* Call arch image probe handlers */
136 ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
137 image->kernel_buf_len);
138 if (ret)
139 goto out;
140
141 #ifdef CONFIG_KEXEC_VERIFY_SIG
142 ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
143 image->kernel_buf_len);
144 if (ret) {
145 pr_debug("kernel signature verification failed.\n");
146 goto out;
147 }
148 pr_debug("kernel signature verification successful.\n");
149 #endif
150 /* It is possible that there no initramfs is being loaded */
151 if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
152 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
153 &size, INT_MAX,
154 READING_KEXEC_INITRAMFS);
155 if (ret)
156 goto out;
157 image->initrd_buf_len = size;
158 }
159
160 if (cmdline_len) {
161 image->cmdline_buf = kzalloc(cmdline_len, GFP_KERNEL);
162 if (!image->cmdline_buf) {
163 ret = -ENOMEM;
164 goto out;
165 }
166
167 ret = copy_from_user(image->cmdline_buf, cmdline_ptr,
168 cmdline_len);
169 if (ret) {
170 ret = -EFAULT;
171 goto out;
172 }
173
174 image->cmdline_buf_len = cmdline_len;
175
176 /* command line should be a string with last byte null */
177 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
178 ret = -EINVAL;
179 goto out;
180 }
181 }
182
183 /* Call arch image load handlers */
184 ldata = arch_kexec_kernel_image_load(image);
185
186 if (IS_ERR(ldata)) {
187 ret = PTR_ERR(ldata);
188 goto out;
189 }
190
191 image->image_loader_data = ldata;
192 out:
193 /* In case of error, free up all allocated memory in this function */
194 if (ret)
195 kimage_file_post_load_cleanup(image);
196 return ret;
197 }
198
199 static int
200 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
201 int initrd_fd, const char __user *cmdline_ptr,
202 unsigned long cmdline_len, unsigned long flags)
203 {
204 int ret;
205 struct kimage *image;
206 bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
207
208 image = do_kimage_alloc_init();
209 if (!image)
210 return -ENOMEM;
211
212 image->file_mode = 1;
213
214 if (kexec_on_panic) {
215 /* Enable special crash kernel control page alloc policy. */
216 image->control_page = crashk_res.start;
217 image->type = KEXEC_TYPE_CRASH;
218 }
219
220 ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
221 cmdline_ptr, cmdline_len, flags);
222 if (ret)
223 goto out_free_image;
224
225 ret = sanity_check_segment_list(image);
226 if (ret)
227 goto out_free_post_load_bufs;
228
229 ret = -ENOMEM;
230 image->control_code_page = kimage_alloc_control_pages(image,
231 get_order(KEXEC_CONTROL_PAGE_SIZE));
232 if (!image->control_code_page) {
233 pr_err("Could not allocate control_code_buffer\n");
234 goto out_free_post_load_bufs;
235 }
236
237 if (!kexec_on_panic) {
238 image->swap_page = kimage_alloc_control_pages(image, 0);
239 if (!image->swap_page) {
240 pr_err("Could not allocate swap buffer\n");
241 goto out_free_control_pages;
242 }
243 }
244
245 *rimage = image;
246 return 0;
247 out_free_control_pages:
248 kimage_free_page_list(&image->control_pages);
249 out_free_post_load_bufs:
250 kimage_file_post_load_cleanup(image);
251 out_free_image:
252 kfree(image);
253 return ret;
254 }
255
256 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
257 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
258 unsigned long, flags)
259 {
260 int ret = 0, i;
261 struct kimage **dest_image, *image;
262
263 /* We only trust the superuser with rebooting the system. */
264 if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
265 return -EPERM;
266
267 /* Make sure we have a legal set of flags */
268 if (flags != (flags & KEXEC_FILE_FLAGS))
269 return -EINVAL;
270
271 image = NULL;
272
273 if (!mutex_trylock(&kexec_mutex))
274 return -EBUSY;
275
276 dest_image = &kexec_image;
277 if (flags & KEXEC_FILE_ON_CRASH) {
278 dest_image = &kexec_crash_image;
279 if (kexec_crash_image)
280 arch_kexec_unprotect_crashkres();
281 }
282
283 if (flags & KEXEC_FILE_UNLOAD)
284 goto exchange;
285
286 /*
287 * In case of crash, new kernel gets loaded in reserved region. It is
288 * same memory where old crash kernel might be loaded. Free any
289 * current crash dump kernel before we corrupt it.
290 */
291 if (flags & KEXEC_FILE_ON_CRASH)
292 kimage_free(xchg(&kexec_crash_image, NULL));
293
294 ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
295 cmdline_len, flags);
296 if (ret)
297 goto out;
298
299 ret = machine_kexec_prepare(image);
300 if (ret)
301 goto out;
302
303 ret = kexec_calculate_store_digests(image);
304 if (ret)
305 goto out;
306
307 for (i = 0; i < image->nr_segments; i++) {
308 struct kexec_segment *ksegment;
309
310 ksegment = &image->segment[i];
311 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
312 i, ksegment->buf, ksegment->bufsz, ksegment->mem,
313 ksegment->memsz);
314
315 ret = kimage_load_segment(image, &image->segment[i]);
316 if (ret)
317 goto out;
318 }
319
320 kimage_terminate(image);
321
322 /*
323 * Free up any temporary buffers allocated which are not needed
324 * after image has been loaded
325 */
326 kimage_file_post_load_cleanup(image);
327 exchange:
328 image = xchg(dest_image, image);
329 out:
330 if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
331 arch_kexec_protect_crashkres();
332
333 mutex_unlock(&kexec_mutex);
334 kimage_free(image);
335 return ret;
336 }
337
338 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
339 struct kexec_buf *kbuf)
340 {
341 struct kimage *image = kbuf->image;
342 unsigned long temp_start, temp_end;
343
344 temp_end = min(end, kbuf->buf_max);
345 temp_start = temp_end - kbuf->memsz;
346
347 do {
348 /* align down start */
349 temp_start = temp_start & (~(kbuf->buf_align - 1));
350
351 if (temp_start < start || temp_start < kbuf->buf_min)
352 return 0;
353
354 temp_end = temp_start + kbuf->memsz - 1;
355
356 /*
357 * Make sure this does not conflict with any of existing
358 * segments
359 */
360 if (kimage_is_destination_range(image, temp_start, temp_end)) {
361 temp_start = temp_start - PAGE_SIZE;
362 continue;
363 }
364
365 /* We found a suitable memory range */
366 break;
367 } while (1);
368
369 /* If we are here, we found a suitable memory range */
370 kbuf->mem = temp_start;
371
372 /* Success, stop navigating through remaining System RAM ranges */
373 return 1;
374 }
375
376 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
377 struct kexec_buf *kbuf)
378 {
379 struct kimage *image = kbuf->image;
380 unsigned long temp_start, temp_end;
381
382 temp_start = max(start, kbuf->buf_min);
383
384 do {
385 temp_start = ALIGN(temp_start, kbuf->buf_align);
386 temp_end = temp_start + kbuf->memsz - 1;
387
388 if (temp_end > end || temp_end > kbuf->buf_max)
389 return 0;
390 /*
391 * Make sure this does not conflict with any of existing
392 * segments
393 */
394 if (kimage_is_destination_range(image, temp_start, temp_end)) {
395 temp_start = temp_start + PAGE_SIZE;
396 continue;
397 }
398
399 /* We found a suitable memory range */
400 break;
401 } while (1);
402
403 /* If we are here, we found a suitable memory range */
404 kbuf->mem = temp_start;
405
406 /* Success, stop navigating through remaining System RAM ranges */
407 return 1;
408 }
409
410 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
411 {
412 struct kexec_buf *kbuf = (struct kexec_buf *)arg;
413 unsigned long sz = end - start + 1;
414
415 /* Returning 0 will take to next memory range */
416 if (sz < kbuf->memsz)
417 return 0;
418
419 if (end < kbuf->buf_min || start > kbuf->buf_max)
420 return 0;
421
422 /*
423 * Allocate memory top down with-in ram range. Otherwise bottom up
424 * allocation.
425 */
426 if (kbuf->top_down)
427 return locate_mem_hole_top_down(start, end, kbuf);
428 return locate_mem_hole_bottom_up(start, end, kbuf);
429 }
430
431 /**
432 * arch_kexec_walk_mem - call func(data) on free memory regions
433 * @kbuf: Context info for the search. Also passed to @func.
434 * @func: Function to call for each memory region.
435 *
436 * Return: The memory walk will stop when func returns a non-zero value
437 * and that value will be returned. If all free regions are visited without
438 * func returning non-zero, then zero will be returned.
439 */
440 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
441 int (*func)(u64, u64, void *))
442 {
443 if (kbuf->image->type == KEXEC_TYPE_CRASH)
444 return walk_iomem_res_desc(crashk_res.desc,
445 IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
446 crashk_res.start, crashk_res.end,
447 kbuf, func);
448 else
449 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
450 }
451
452 /*
453 * Helper function for placing a buffer in a kexec segment. This assumes
454 * that kexec_mutex is held.
455 */
456 int kexec_add_buffer(struct kimage *image, char *buffer, unsigned long bufsz,
457 unsigned long memsz, unsigned long buf_align,
458 unsigned long buf_min, unsigned long buf_max,
459 bool top_down, unsigned long *load_addr)
460 {
461
462 struct kexec_segment *ksegment;
463 struct kexec_buf buf, *kbuf;
464 int ret;
465
466 /* Currently adding segment this way is allowed only in file mode */
467 if (!image->file_mode)
468 return -EINVAL;
469
470 if (image->nr_segments >= KEXEC_SEGMENT_MAX)
471 return -EINVAL;
472
473 /*
474 * Make sure we are not trying to add buffer after allocating
475 * control pages. All segments need to be placed first before
476 * any control pages are allocated. As control page allocation
477 * logic goes through list of segments to make sure there are
478 * no destination overlaps.
479 */
480 if (!list_empty(&image->control_pages)) {
481 WARN_ON(1);
482 return -EINVAL;
483 }
484
485 memset(&buf, 0, sizeof(struct kexec_buf));
486 kbuf = &buf;
487 kbuf->image = image;
488 kbuf->buffer = buffer;
489 kbuf->bufsz = bufsz;
490
491 kbuf->memsz = ALIGN(memsz, PAGE_SIZE);
492 kbuf->buf_align = max(buf_align, PAGE_SIZE);
493 kbuf->buf_min = buf_min;
494 kbuf->buf_max = buf_max;
495 kbuf->top_down = top_down;
496
497 /* Walk the RAM ranges and allocate a suitable range for the buffer */
498 ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
499 if (ret != 1) {
500 /* A suitable memory range could not be found for buffer */
501 return -EADDRNOTAVAIL;
502 }
503
504 /* Found a suitable memory range */
505 ksegment = &image->segment[image->nr_segments];
506 ksegment->kbuf = kbuf->buffer;
507 ksegment->bufsz = kbuf->bufsz;
508 ksegment->mem = kbuf->mem;
509 ksegment->memsz = kbuf->memsz;
510 image->nr_segments++;
511 *load_addr = ksegment->mem;
512 return 0;
513 }
514
515 /* Calculate and store the digest of segments */
516 static int kexec_calculate_store_digests(struct kimage *image)
517 {
518 struct crypto_shash *tfm;
519 struct shash_desc *desc;
520 int ret = 0, i, j, zero_buf_sz, sha_region_sz;
521 size_t desc_size, nullsz;
522 char *digest;
523 void *zero_buf;
524 struct kexec_sha_region *sha_regions;
525 struct purgatory_info *pi = &image->purgatory_info;
526
527 zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
528 zero_buf_sz = PAGE_SIZE;
529
530 tfm = crypto_alloc_shash("sha256", 0, 0);
531 if (IS_ERR(tfm)) {
532 ret = PTR_ERR(tfm);
533 goto out;
534 }
535
536 desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
537 desc = kzalloc(desc_size, GFP_KERNEL);
538 if (!desc) {
539 ret = -ENOMEM;
540 goto out_free_tfm;
541 }
542
543 sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
544 sha_regions = vzalloc(sha_region_sz);
545 if (!sha_regions)
546 goto out_free_desc;
547
548 desc->tfm = tfm;
549 desc->flags = 0;
550
551 ret = crypto_shash_init(desc);
552 if (ret < 0)
553 goto out_free_sha_regions;
554
555 digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
556 if (!digest) {
557 ret = -ENOMEM;
558 goto out_free_sha_regions;
559 }
560
561 for (j = i = 0; i < image->nr_segments; i++) {
562 struct kexec_segment *ksegment;
563
564 ksegment = &image->segment[i];
565 /*
566 * Skip purgatory as it will be modified once we put digest
567 * info in purgatory.
568 */
569 if (ksegment->kbuf == pi->purgatory_buf)
570 continue;
571
572 ret = crypto_shash_update(desc, ksegment->kbuf,
573 ksegment->bufsz);
574 if (ret)
575 break;
576
577 /*
578 * Assume rest of the buffer is filled with zero and
579 * update digest accordingly.
580 */
581 nullsz = ksegment->memsz - ksegment->bufsz;
582 while (nullsz) {
583 unsigned long bytes = nullsz;
584
585 if (bytes > zero_buf_sz)
586 bytes = zero_buf_sz;
587 ret = crypto_shash_update(desc, zero_buf, bytes);
588 if (ret)
589 break;
590 nullsz -= bytes;
591 }
592
593 if (ret)
594 break;
595
596 sha_regions[j].start = ksegment->mem;
597 sha_regions[j].len = ksegment->memsz;
598 j++;
599 }
600
601 if (!ret) {
602 ret = crypto_shash_final(desc, digest);
603 if (ret)
604 goto out_free_digest;
605 ret = kexec_purgatory_get_set_symbol(image, "sha_regions",
606 sha_regions, sha_region_sz, 0);
607 if (ret)
608 goto out_free_digest;
609
610 ret = kexec_purgatory_get_set_symbol(image, "sha256_digest",
611 digest, SHA256_DIGEST_SIZE, 0);
612 if (ret)
613 goto out_free_digest;
614 }
615
616 out_free_digest:
617 kfree(digest);
618 out_free_sha_regions:
619 vfree(sha_regions);
620 out_free_desc:
621 kfree(desc);
622 out_free_tfm:
623 kfree(tfm);
624 out:
625 return ret;
626 }
627
628 /* Actually load purgatory. Lot of code taken from kexec-tools */
629 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
630 unsigned long max, int top_down)
631 {
632 struct purgatory_info *pi = &image->purgatory_info;
633 unsigned long align, buf_align, bss_align, buf_sz, bss_sz, bss_pad;
634 unsigned long memsz, entry, load_addr, curr_load_addr, bss_addr, offset;
635 unsigned char *buf_addr, *src;
636 int i, ret = 0, entry_sidx = -1;
637 const Elf_Shdr *sechdrs_c;
638 Elf_Shdr *sechdrs = NULL;
639 void *purgatory_buf = NULL;
640
641 /*
642 * sechdrs_c points to section headers in purgatory and are read
643 * only. No modifications allowed.
644 */
645 sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
646
647 /*
648 * We can not modify sechdrs_c[] and its fields. It is read only.
649 * Copy it over to a local copy where one can store some temporary
650 * data and free it at the end. We need to modify ->sh_addr and
651 * ->sh_offset fields to keep track of permanent and temporary
652 * locations of sections.
653 */
654 sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
655 if (!sechdrs)
656 return -ENOMEM;
657
658 memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
659
660 /*
661 * We seem to have multiple copies of sections. First copy is which
662 * is embedded in kernel in read only section. Some of these sections
663 * will be copied to a temporary buffer and relocated. And these
664 * sections will finally be copied to their final destination at
665 * segment load time.
666 *
667 * Use ->sh_offset to reflect section address in memory. It will
668 * point to original read only copy if section is not allocatable.
669 * Otherwise it will point to temporary copy which will be relocated.
670 *
671 * Use ->sh_addr to contain final address of the section where it
672 * will go during execution time.
673 */
674 for (i = 0; i < pi->ehdr->e_shnum; i++) {
675 if (sechdrs[i].sh_type == SHT_NOBITS)
676 continue;
677
678 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
679 sechdrs[i].sh_offset;
680 }
681
682 /*
683 * Identify entry point section and make entry relative to section
684 * start.
685 */
686 entry = pi->ehdr->e_entry;
687 for (i = 0; i < pi->ehdr->e_shnum; i++) {
688 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
689 continue;
690
691 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
692 continue;
693
694 /* Make entry section relative */
695 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
696 ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
697 pi->ehdr->e_entry)) {
698 entry_sidx = i;
699 entry -= sechdrs[i].sh_addr;
700 break;
701 }
702 }
703
704 /* Determine how much memory is needed to load relocatable object. */
705 buf_align = 1;
706 bss_align = 1;
707 buf_sz = 0;
708 bss_sz = 0;
709
710 for (i = 0; i < pi->ehdr->e_shnum; i++) {
711 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
712 continue;
713
714 align = sechdrs[i].sh_addralign;
715 if (sechdrs[i].sh_type != SHT_NOBITS) {
716 if (buf_align < align)
717 buf_align = align;
718 buf_sz = ALIGN(buf_sz, align);
719 buf_sz += sechdrs[i].sh_size;
720 } else {
721 /* bss section */
722 if (bss_align < align)
723 bss_align = align;
724 bss_sz = ALIGN(bss_sz, align);
725 bss_sz += sechdrs[i].sh_size;
726 }
727 }
728
729 /* Determine the bss padding required to align bss properly */
730 bss_pad = 0;
731 if (buf_sz & (bss_align - 1))
732 bss_pad = bss_align - (buf_sz & (bss_align - 1));
733
734 memsz = buf_sz + bss_pad + bss_sz;
735
736 /* Allocate buffer for purgatory */
737 purgatory_buf = vzalloc(buf_sz);
738 if (!purgatory_buf) {
739 ret = -ENOMEM;
740 goto out;
741 }
742
743 if (buf_align < bss_align)
744 buf_align = bss_align;
745
746 /* Add buffer to segment list */
747 ret = kexec_add_buffer(image, purgatory_buf, buf_sz, memsz,
748 buf_align, min, max, top_down,
749 &pi->purgatory_load_addr);
750 if (ret)
751 goto out;
752
753 /* Load SHF_ALLOC sections */
754 buf_addr = purgatory_buf;
755 load_addr = curr_load_addr = pi->purgatory_load_addr;
756 bss_addr = load_addr + buf_sz + bss_pad;
757
758 for (i = 0; i < pi->ehdr->e_shnum; i++) {
759 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
760 continue;
761
762 align = sechdrs[i].sh_addralign;
763 if (sechdrs[i].sh_type != SHT_NOBITS) {
764 curr_load_addr = ALIGN(curr_load_addr, align);
765 offset = curr_load_addr - load_addr;
766 /* We already modifed ->sh_offset to keep src addr */
767 src = (char *) sechdrs[i].sh_offset;
768 memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
769
770 /* Store load address and source address of section */
771 sechdrs[i].sh_addr = curr_load_addr;
772
773 /*
774 * This section got copied to temporary buffer. Update
775 * ->sh_offset accordingly.
776 */
777 sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
778
779 /* Advance to the next address */
780 curr_load_addr += sechdrs[i].sh_size;
781 } else {
782 bss_addr = ALIGN(bss_addr, align);
783 sechdrs[i].sh_addr = bss_addr;
784 bss_addr += sechdrs[i].sh_size;
785 }
786 }
787
788 /* Update entry point based on load address of text section */
789 if (entry_sidx >= 0)
790 entry += sechdrs[entry_sidx].sh_addr;
791
792 /* Make kernel jump to purgatory after shutdown */
793 image->start = entry;
794
795 /* Used later to get/set symbol values */
796 pi->sechdrs = sechdrs;
797
798 /*
799 * Used later to identify which section is purgatory and skip it
800 * from checksumming.
801 */
802 pi->purgatory_buf = purgatory_buf;
803 return ret;
804 out:
805 vfree(sechdrs);
806 vfree(purgatory_buf);
807 return ret;
808 }
809
810 static int kexec_apply_relocations(struct kimage *image)
811 {
812 int i, ret;
813 struct purgatory_info *pi = &image->purgatory_info;
814 Elf_Shdr *sechdrs = pi->sechdrs;
815
816 /* Apply relocations */
817 for (i = 0; i < pi->ehdr->e_shnum; i++) {
818 Elf_Shdr *section, *symtab;
819
820 if (sechdrs[i].sh_type != SHT_RELA &&
821 sechdrs[i].sh_type != SHT_REL)
822 continue;
823
824 /*
825 * For section of type SHT_RELA/SHT_REL,
826 * ->sh_link contains section header index of associated
827 * symbol table. And ->sh_info contains section header
828 * index of section to which relocations apply.
829 */
830 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
831 sechdrs[i].sh_link >= pi->ehdr->e_shnum)
832 return -ENOEXEC;
833
834 section = &sechdrs[sechdrs[i].sh_info];
835 symtab = &sechdrs[sechdrs[i].sh_link];
836
837 if (!(section->sh_flags & SHF_ALLOC))
838 continue;
839
840 /*
841 * symtab->sh_link contain section header index of associated
842 * string table.
843 */
844 if (symtab->sh_link >= pi->ehdr->e_shnum)
845 /* Invalid section number? */
846 continue;
847
848 /*
849 * Respective architecture needs to provide support for applying
850 * relocations of type SHT_RELA/SHT_REL.
851 */
852 if (sechdrs[i].sh_type == SHT_RELA)
853 ret = arch_kexec_apply_relocations_add(pi->ehdr,
854 sechdrs, i);
855 else if (sechdrs[i].sh_type == SHT_REL)
856 ret = arch_kexec_apply_relocations(pi->ehdr,
857 sechdrs, i);
858 if (ret)
859 return ret;
860 }
861
862 return 0;
863 }
864
865 /* Load relocatable purgatory object and relocate it appropriately */
866 int kexec_load_purgatory(struct kimage *image, unsigned long min,
867 unsigned long max, int top_down,
868 unsigned long *load_addr)
869 {
870 struct purgatory_info *pi = &image->purgatory_info;
871 int ret;
872
873 if (kexec_purgatory_size <= 0)
874 return -EINVAL;
875
876 if (kexec_purgatory_size < sizeof(Elf_Ehdr))
877 return -ENOEXEC;
878
879 pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
880
881 if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
882 || pi->ehdr->e_type != ET_REL
883 || !elf_check_arch(pi->ehdr)
884 || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
885 return -ENOEXEC;
886
887 if (pi->ehdr->e_shoff >= kexec_purgatory_size
888 || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
889 kexec_purgatory_size - pi->ehdr->e_shoff))
890 return -ENOEXEC;
891
892 ret = __kexec_load_purgatory(image, min, max, top_down);
893 if (ret)
894 return ret;
895
896 ret = kexec_apply_relocations(image);
897 if (ret)
898 goto out;
899
900 *load_addr = pi->purgatory_load_addr;
901 return 0;
902 out:
903 vfree(pi->sechdrs);
904 pi->sechdrs = NULL;
905
906 vfree(pi->purgatory_buf);
907 pi->purgatory_buf = NULL;
908 return ret;
909 }
910
911 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
912 const char *name)
913 {
914 Elf_Sym *syms;
915 Elf_Shdr *sechdrs;
916 Elf_Ehdr *ehdr;
917 int i, k;
918 const char *strtab;
919
920 if (!pi->sechdrs || !pi->ehdr)
921 return NULL;
922
923 sechdrs = pi->sechdrs;
924 ehdr = pi->ehdr;
925
926 for (i = 0; i < ehdr->e_shnum; i++) {
927 if (sechdrs[i].sh_type != SHT_SYMTAB)
928 continue;
929
930 if (sechdrs[i].sh_link >= ehdr->e_shnum)
931 /* Invalid strtab section number */
932 continue;
933 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
934 syms = (Elf_Sym *)sechdrs[i].sh_offset;
935
936 /* Go through symbols for a match */
937 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
938 if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
939 continue;
940
941 if (strcmp(strtab + syms[k].st_name, name) != 0)
942 continue;
943
944 if (syms[k].st_shndx == SHN_UNDEF ||
945 syms[k].st_shndx >= ehdr->e_shnum) {
946 pr_debug("Symbol: %s has bad section index %d.\n",
947 name, syms[k].st_shndx);
948 return NULL;
949 }
950
951 /* Found the symbol we are looking for */
952 return &syms[k];
953 }
954 }
955
956 return NULL;
957 }
958
959 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
960 {
961 struct purgatory_info *pi = &image->purgatory_info;
962 Elf_Sym *sym;
963 Elf_Shdr *sechdr;
964
965 sym = kexec_purgatory_find_symbol(pi, name);
966 if (!sym)
967 return ERR_PTR(-EINVAL);
968
969 sechdr = &pi->sechdrs[sym->st_shndx];
970
971 /*
972 * Returns the address where symbol will finally be loaded after
973 * kexec_load_segment()
974 */
975 return (void *)(sechdr->sh_addr + sym->st_value);
976 }
977
978 /*
979 * Get or set value of a symbol. If "get_value" is true, symbol value is
980 * returned in buf otherwise symbol value is set based on value in buf.
981 */
982 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
983 void *buf, unsigned int size, bool get_value)
984 {
985 Elf_Sym *sym;
986 Elf_Shdr *sechdrs;
987 struct purgatory_info *pi = &image->purgatory_info;
988 char *sym_buf;
989
990 sym = kexec_purgatory_find_symbol(pi, name);
991 if (!sym)
992 return -EINVAL;
993
994 if (sym->st_size != size) {
995 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
996 name, (unsigned long)sym->st_size, size);
997 return -EINVAL;
998 }
999
1000 sechdrs = pi->sechdrs;
1001
1002 if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1003 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1004 get_value ? "get" : "set");
1005 return -EINVAL;
1006 }
1007
1008 sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1009 sym->st_value;
1010
1011 if (get_value)
1012 memcpy((void *)buf, sym_buf, size);
1013 else
1014 memcpy((void *)sym_buf, buf, size);
1015
1016 return 0;
1017 }