]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/kgdb.c
Staging: merge staging patches into Linus's main branch
[mirror_ubuntu-zesty-kernel.git] / kernel / kgdb.c
1 /*
2 * KGDB stub.
3 *
4 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5 *
6 * Copyright (C) 2000-2001 VERITAS Software Corporation.
7 * Copyright (C) 2002-2004 Timesys Corporation
8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9 * Copyright (C) 2004 Pavel Machek <pavel@suse.cz>
10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12 * Copyright (C) 2005-2008 Wind River Systems, Inc.
13 * Copyright (C) 2007 MontaVista Software, Inc.
14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15 *
16 * Contributors at various stages not listed above:
17 * Jason Wessel ( jason.wessel@windriver.com )
18 * George Anzinger <george@mvista.com>
19 * Anurekh Saxena (anurekh.saxena@timesys.com)
20 * Lake Stevens Instrument Division (Glenn Engel)
21 * Jim Kingdon, Cygnus Support.
22 *
23 * Original KGDB stub: David Grothe <dave@gcom.com>,
24 * Tigran Aivazian <tigran@sco.com>
25 *
26 * This file is licensed under the terms of the GNU General Public License
27 * version 2. This program is licensed "as is" without any warranty of any
28 * kind, whether express or implied.
29 */
30 #include <linux/pid_namespace.h>
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/spinlock.h>
34 #include <linux/console.h>
35 #include <linux/threads.h>
36 #include <linux/uaccess.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/ptrace.h>
40 #include <linux/reboot.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/sched.h>
44 #include <linux/sysrq.h>
45 #include <linux/init.h>
46 #include <linux/kgdb.h>
47 #include <linux/pid.h>
48 #include <linux/smp.h>
49 #include <linux/mm.h>
50
51 #include <asm/cacheflush.h>
52 #include <asm/byteorder.h>
53 #include <asm/atomic.h>
54 #include <asm/system.h>
55 #include <asm/unaligned.h>
56
57 static int kgdb_break_asap;
58
59 #define KGDB_MAX_THREAD_QUERY 17
60 struct kgdb_state {
61 int ex_vector;
62 int signo;
63 int err_code;
64 int cpu;
65 int pass_exception;
66 unsigned long thr_query;
67 unsigned long threadid;
68 long kgdb_usethreadid;
69 struct pt_regs *linux_regs;
70 };
71
72 static struct debuggerinfo_struct {
73 void *debuggerinfo;
74 struct task_struct *task;
75 } kgdb_info[NR_CPUS];
76
77 /**
78 * kgdb_connected - Is a host GDB connected to us?
79 */
80 int kgdb_connected;
81 EXPORT_SYMBOL_GPL(kgdb_connected);
82
83 /* All the KGDB handlers are installed */
84 static int kgdb_io_module_registered;
85
86 /* Guard for recursive entry */
87 static int exception_level;
88
89 static struct kgdb_io *kgdb_io_ops;
90 static DEFINE_SPINLOCK(kgdb_registration_lock);
91
92 /* kgdb console driver is loaded */
93 static int kgdb_con_registered;
94 /* determine if kgdb console output should be used */
95 static int kgdb_use_con;
96
97 static int __init opt_kgdb_con(char *str)
98 {
99 kgdb_use_con = 1;
100 return 0;
101 }
102
103 early_param("kgdbcon", opt_kgdb_con);
104
105 module_param(kgdb_use_con, int, 0644);
106
107 /*
108 * Holds information about breakpoints in a kernel. These breakpoints are
109 * added and removed by gdb.
110 */
111 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
112 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
113 };
114
115 /*
116 * The CPU# of the active CPU, or -1 if none:
117 */
118 atomic_t kgdb_active = ATOMIC_INIT(-1);
119
120 /*
121 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
122 * bootup code (which might not have percpu set up yet):
123 */
124 static atomic_t passive_cpu_wait[NR_CPUS];
125 static atomic_t cpu_in_kgdb[NR_CPUS];
126 atomic_t kgdb_setting_breakpoint;
127
128 struct task_struct *kgdb_usethread;
129 struct task_struct *kgdb_contthread;
130
131 int kgdb_single_step;
132 pid_t kgdb_sstep_pid;
133
134 /* Our I/O buffers. */
135 static char remcom_in_buffer[BUFMAX];
136 static char remcom_out_buffer[BUFMAX];
137
138 /* Storage for the registers, in GDB format. */
139 static unsigned long gdb_regs[(NUMREGBYTES +
140 sizeof(unsigned long) - 1) /
141 sizeof(unsigned long)];
142
143 /* to keep track of the CPU which is doing the single stepping*/
144 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
145
146 /*
147 * If you are debugging a problem where roundup (the collection of
148 * all other CPUs) is a problem [this should be extremely rare],
149 * then use the nokgdbroundup option to avoid roundup. In that case
150 * the other CPUs might interfere with your debugging context, so
151 * use this with care:
152 */
153 static int kgdb_do_roundup = 1;
154
155 static int __init opt_nokgdbroundup(char *str)
156 {
157 kgdb_do_roundup = 0;
158
159 return 0;
160 }
161
162 early_param("nokgdbroundup", opt_nokgdbroundup);
163
164 /*
165 * Finally, some KGDB code :-)
166 */
167
168 /*
169 * Weak aliases for breakpoint management,
170 * can be overriden by architectures when needed:
171 */
172 int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
173 {
174 int err;
175
176 err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE);
177 if (err)
178 return err;
179
180 return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr,
181 BREAK_INSTR_SIZE);
182 }
183
184 int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
185 {
186 return probe_kernel_write((char *)addr,
187 (char *)bundle, BREAK_INSTR_SIZE);
188 }
189
190 int __weak kgdb_validate_break_address(unsigned long addr)
191 {
192 char tmp_variable[BREAK_INSTR_SIZE];
193 int err;
194 /* Validate setting the breakpoint and then removing it. In the
195 * remove fails, the kernel needs to emit a bad message because we
196 * are deep trouble not being able to put things back the way we
197 * found them.
198 */
199 err = kgdb_arch_set_breakpoint(addr, tmp_variable);
200 if (err)
201 return err;
202 err = kgdb_arch_remove_breakpoint(addr, tmp_variable);
203 if (err)
204 printk(KERN_ERR "KGDB: Critical breakpoint error, kernel "
205 "memory destroyed at: %lx", addr);
206 return err;
207 }
208
209 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
210 {
211 return instruction_pointer(regs);
212 }
213
214 int __weak kgdb_arch_init(void)
215 {
216 return 0;
217 }
218
219 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
220 {
221 return 0;
222 }
223
224 void __weak
225 kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
226 {
227 return;
228 }
229
230 /**
231 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
232 * @regs: Current &struct pt_regs.
233 *
234 * This function will be called if the particular architecture must
235 * disable hardware debugging while it is processing gdb packets or
236 * handling exception.
237 */
238 void __weak kgdb_disable_hw_debug(struct pt_regs *regs)
239 {
240 }
241
242 /*
243 * GDB remote protocol parser:
244 */
245
246 static int hex(char ch)
247 {
248 if ((ch >= 'a') && (ch <= 'f'))
249 return ch - 'a' + 10;
250 if ((ch >= '0') && (ch <= '9'))
251 return ch - '0';
252 if ((ch >= 'A') && (ch <= 'F'))
253 return ch - 'A' + 10;
254 return -1;
255 }
256
257 /* scan for the sequence $<data>#<checksum> */
258 static void get_packet(char *buffer)
259 {
260 unsigned char checksum;
261 unsigned char xmitcsum;
262 int count;
263 char ch;
264
265 do {
266 /*
267 * Spin and wait around for the start character, ignore all
268 * other characters:
269 */
270 while ((ch = (kgdb_io_ops->read_char())) != '$')
271 /* nothing */;
272
273 kgdb_connected = 1;
274 checksum = 0;
275 xmitcsum = -1;
276
277 count = 0;
278
279 /*
280 * now, read until a # or end of buffer is found:
281 */
282 while (count < (BUFMAX - 1)) {
283 ch = kgdb_io_ops->read_char();
284 if (ch == '#')
285 break;
286 checksum = checksum + ch;
287 buffer[count] = ch;
288 count = count + 1;
289 }
290 buffer[count] = 0;
291
292 if (ch == '#') {
293 xmitcsum = hex(kgdb_io_ops->read_char()) << 4;
294 xmitcsum += hex(kgdb_io_ops->read_char());
295
296 if (checksum != xmitcsum)
297 /* failed checksum */
298 kgdb_io_ops->write_char('-');
299 else
300 /* successful transfer */
301 kgdb_io_ops->write_char('+');
302 if (kgdb_io_ops->flush)
303 kgdb_io_ops->flush();
304 }
305 } while (checksum != xmitcsum);
306 }
307
308 /*
309 * Send the packet in buffer.
310 * Check for gdb connection if asked for.
311 */
312 static void put_packet(char *buffer)
313 {
314 unsigned char checksum;
315 int count;
316 char ch;
317
318 /*
319 * $<packet info>#<checksum>.
320 */
321 while (1) {
322 kgdb_io_ops->write_char('$');
323 checksum = 0;
324 count = 0;
325
326 while ((ch = buffer[count])) {
327 kgdb_io_ops->write_char(ch);
328 checksum += ch;
329 count++;
330 }
331
332 kgdb_io_ops->write_char('#');
333 kgdb_io_ops->write_char(hex_asc_hi(checksum));
334 kgdb_io_ops->write_char(hex_asc_lo(checksum));
335 if (kgdb_io_ops->flush)
336 kgdb_io_ops->flush();
337
338 /* Now see what we get in reply. */
339 ch = kgdb_io_ops->read_char();
340
341 if (ch == 3)
342 ch = kgdb_io_ops->read_char();
343
344 /* If we get an ACK, we are done. */
345 if (ch == '+')
346 return;
347
348 /*
349 * If we get the start of another packet, this means
350 * that GDB is attempting to reconnect. We will NAK
351 * the packet being sent, and stop trying to send this
352 * packet.
353 */
354 if (ch == '$') {
355 kgdb_io_ops->write_char('-');
356 if (kgdb_io_ops->flush)
357 kgdb_io_ops->flush();
358 return;
359 }
360 }
361 }
362
363 /*
364 * Convert the memory pointed to by mem into hex, placing result in buf.
365 * Return a pointer to the last char put in buf (null). May return an error.
366 */
367 int kgdb_mem2hex(char *mem, char *buf, int count)
368 {
369 char *tmp;
370 int err;
371
372 /*
373 * We use the upper half of buf as an intermediate buffer for the
374 * raw memory copy. Hex conversion will work against this one.
375 */
376 tmp = buf + count;
377
378 err = probe_kernel_read(tmp, mem, count);
379 if (!err) {
380 while (count > 0) {
381 buf = pack_hex_byte(buf, *tmp);
382 tmp++;
383 count--;
384 }
385
386 *buf = 0;
387 }
388
389 return err;
390 }
391
392 /*
393 * Copy the binary array pointed to by buf into mem. Fix $, #, and
394 * 0x7d escaped with 0x7d. Return a pointer to the character after
395 * the last byte written.
396 */
397 static int kgdb_ebin2mem(char *buf, char *mem, int count)
398 {
399 int err = 0;
400 char c;
401
402 while (count-- > 0) {
403 c = *buf++;
404 if (c == 0x7d)
405 c = *buf++ ^ 0x20;
406
407 err = probe_kernel_write(mem, &c, 1);
408 if (err)
409 break;
410
411 mem++;
412 }
413
414 return err;
415 }
416
417 /*
418 * Convert the hex array pointed to by buf into binary to be placed in mem.
419 * Return a pointer to the character AFTER the last byte written.
420 * May return an error.
421 */
422 int kgdb_hex2mem(char *buf, char *mem, int count)
423 {
424 char *tmp_raw;
425 char *tmp_hex;
426
427 /*
428 * We use the upper half of buf as an intermediate buffer for the
429 * raw memory that is converted from hex.
430 */
431 tmp_raw = buf + count * 2;
432
433 tmp_hex = tmp_raw - 1;
434 while (tmp_hex >= buf) {
435 tmp_raw--;
436 *tmp_raw = hex(*tmp_hex--);
437 *tmp_raw |= hex(*tmp_hex--) << 4;
438 }
439
440 return probe_kernel_write(mem, tmp_raw, count);
441 }
442
443 /*
444 * While we find nice hex chars, build a long_val.
445 * Return number of chars processed.
446 */
447 int kgdb_hex2long(char **ptr, unsigned long *long_val)
448 {
449 int hex_val;
450 int num = 0;
451 int negate = 0;
452
453 *long_val = 0;
454
455 if (**ptr == '-') {
456 negate = 1;
457 (*ptr)++;
458 }
459 while (**ptr) {
460 hex_val = hex(**ptr);
461 if (hex_val < 0)
462 break;
463
464 *long_val = (*long_val << 4) | hex_val;
465 num++;
466 (*ptr)++;
467 }
468
469 if (negate)
470 *long_val = -*long_val;
471
472 return num;
473 }
474
475 /* Write memory due to an 'M' or 'X' packet. */
476 static int write_mem_msg(int binary)
477 {
478 char *ptr = &remcom_in_buffer[1];
479 unsigned long addr;
480 unsigned long length;
481 int err;
482
483 if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' &&
484 kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') {
485 if (binary)
486 err = kgdb_ebin2mem(ptr, (char *)addr, length);
487 else
488 err = kgdb_hex2mem(ptr, (char *)addr, length);
489 if (err)
490 return err;
491 if (CACHE_FLUSH_IS_SAFE)
492 flush_icache_range(addr, addr + length);
493 return 0;
494 }
495
496 return -EINVAL;
497 }
498
499 static void error_packet(char *pkt, int error)
500 {
501 error = -error;
502 pkt[0] = 'E';
503 pkt[1] = hex_asc[(error / 10)];
504 pkt[2] = hex_asc[(error % 10)];
505 pkt[3] = '\0';
506 }
507
508 /*
509 * Thread ID accessors. We represent a flat TID space to GDB, where
510 * the per CPU idle threads (which under Linux all have PID 0) are
511 * remapped to negative TIDs.
512 */
513
514 #define BUF_THREAD_ID_SIZE 16
515
516 static char *pack_threadid(char *pkt, unsigned char *id)
517 {
518 char *limit;
519
520 limit = pkt + BUF_THREAD_ID_SIZE;
521 while (pkt < limit)
522 pkt = pack_hex_byte(pkt, *id++);
523
524 return pkt;
525 }
526
527 static void int_to_threadref(unsigned char *id, int value)
528 {
529 unsigned char *scan;
530 int i = 4;
531
532 scan = (unsigned char *)id;
533 while (i--)
534 *scan++ = 0;
535 put_unaligned_be32(value, scan);
536 }
537
538 static struct task_struct *getthread(struct pt_regs *regs, int tid)
539 {
540 /*
541 * Non-positive TIDs are remapped to the cpu shadow information
542 */
543 if (tid == 0 || tid == -1)
544 tid = -atomic_read(&kgdb_active) - 2;
545 if (tid < -1 && tid > -NR_CPUS - 2) {
546 if (kgdb_info[-tid - 2].task)
547 return kgdb_info[-tid - 2].task;
548 else
549 return idle_task(-tid - 2);
550 }
551 if (tid <= 0) {
552 printk(KERN_ERR "KGDB: Internal thread select error\n");
553 dump_stack();
554 return NULL;
555 }
556
557 /*
558 * find_task_by_pid_ns() does not take the tasklist lock anymore
559 * but is nicely RCU locked - hence is a pretty resilient
560 * thing to use:
561 */
562 return find_task_by_pid_ns(tid, &init_pid_ns);
563 }
564
565 /*
566 * CPU debug state control:
567 */
568
569 #ifdef CONFIG_SMP
570 static void kgdb_wait(struct pt_regs *regs)
571 {
572 unsigned long flags;
573 int cpu;
574
575 local_irq_save(flags);
576 cpu = raw_smp_processor_id();
577 kgdb_info[cpu].debuggerinfo = regs;
578 kgdb_info[cpu].task = current;
579 /*
580 * Make sure the above info reaches the primary CPU before
581 * our cpu_in_kgdb[] flag setting does:
582 */
583 smp_wmb();
584 atomic_set(&cpu_in_kgdb[cpu], 1);
585
586 /* Disable any cpu specific hw breakpoints */
587 kgdb_disable_hw_debug(regs);
588
589 /* Wait till primary CPU is done with debugging */
590 while (atomic_read(&passive_cpu_wait[cpu]))
591 cpu_relax();
592
593 kgdb_info[cpu].debuggerinfo = NULL;
594 kgdb_info[cpu].task = NULL;
595
596 /* fix up hardware debug registers on local cpu */
597 if (arch_kgdb_ops.correct_hw_break)
598 arch_kgdb_ops.correct_hw_break();
599
600 /* Signal the primary CPU that we are done: */
601 atomic_set(&cpu_in_kgdb[cpu], 0);
602 touch_softlockup_watchdog_sync();
603 clocksource_touch_watchdog();
604 local_irq_restore(flags);
605 }
606 #endif
607
608 /*
609 * Some architectures need cache flushes when we set/clear a
610 * breakpoint:
611 */
612 static void kgdb_flush_swbreak_addr(unsigned long addr)
613 {
614 if (!CACHE_FLUSH_IS_SAFE)
615 return;
616
617 if (current->mm && current->mm->mmap_cache) {
618 flush_cache_range(current->mm->mmap_cache,
619 addr, addr + BREAK_INSTR_SIZE);
620 }
621 /* Force flush instruction cache if it was outside the mm */
622 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
623 }
624
625 /*
626 * SW breakpoint management:
627 */
628 static int kgdb_activate_sw_breakpoints(void)
629 {
630 unsigned long addr;
631 int error;
632 int ret = 0;
633 int i;
634
635 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
636 if (kgdb_break[i].state != BP_SET)
637 continue;
638
639 addr = kgdb_break[i].bpt_addr;
640 error = kgdb_arch_set_breakpoint(addr,
641 kgdb_break[i].saved_instr);
642 if (error) {
643 ret = error;
644 printk(KERN_INFO "KGDB: BP install failed: %lx", addr);
645 continue;
646 }
647
648 kgdb_flush_swbreak_addr(addr);
649 kgdb_break[i].state = BP_ACTIVE;
650 }
651 return ret;
652 }
653
654 static int kgdb_set_sw_break(unsigned long addr)
655 {
656 int err = kgdb_validate_break_address(addr);
657 int breakno = -1;
658 int i;
659
660 if (err)
661 return err;
662
663 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
664 if ((kgdb_break[i].state == BP_SET) &&
665 (kgdb_break[i].bpt_addr == addr))
666 return -EEXIST;
667 }
668 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
669 if (kgdb_break[i].state == BP_REMOVED &&
670 kgdb_break[i].bpt_addr == addr) {
671 breakno = i;
672 break;
673 }
674 }
675
676 if (breakno == -1) {
677 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
678 if (kgdb_break[i].state == BP_UNDEFINED) {
679 breakno = i;
680 break;
681 }
682 }
683 }
684
685 if (breakno == -1)
686 return -E2BIG;
687
688 kgdb_break[breakno].state = BP_SET;
689 kgdb_break[breakno].type = BP_BREAKPOINT;
690 kgdb_break[breakno].bpt_addr = addr;
691
692 return 0;
693 }
694
695 static int kgdb_deactivate_sw_breakpoints(void)
696 {
697 unsigned long addr;
698 int error;
699 int ret = 0;
700 int i;
701
702 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
703 if (kgdb_break[i].state != BP_ACTIVE)
704 continue;
705 addr = kgdb_break[i].bpt_addr;
706 error = kgdb_arch_remove_breakpoint(addr,
707 kgdb_break[i].saved_instr);
708 if (error) {
709 printk(KERN_INFO "KGDB: BP remove failed: %lx\n", addr);
710 ret = error;
711 }
712
713 kgdb_flush_swbreak_addr(addr);
714 kgdb_break[i].state = BP_SET;
715 }
716 return ret;
717 }
718
719 static int kgdb_remove_sw_break(unsigned long addr)
720 {
721 int i;
722
723 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
724 if ((kgdb_break[i].state == BP_SET) &&
725 (kgdb_break[i].bpt_addr == addr)) {
726 kgdb_break[i].state = BP_REMOVED;
727 return 0;
728 }
729 }
730 return -ENOENT;
731 }
732
733 int kgdb_isremovedbreak(unsigned long addr)
734 {
735 int i;
736
737 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
738 if ((kgdb_break[i].state == BP_REMOVED) &&
739 (kgdb_break[i].bpt_addr == addr))
740 return 1;
741 }
742 return 0;
743 }
744
745 static int remove_all_break(void)
746 {
747 unsigned long addr;
748 int error;
749 int i;
750
751 /* Clear memory breakpoints. */
752 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
753 if (kgdb_break[i].state != BP_ACTIVE)
754 goto setundefined;
755 addr = kgdb_break[i].bpt_addr;
756 error = kgdb_arch_remove_breakpoint(addr,
757 kgdb_break[i].saved_instr);
758 if (error)
759 printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n",
760 addr);
761 setundefined:
762 kgdb_break[i].state = BP_UNDEFINED;
763 }
764
765 /* Clear hardware breakpoints. */
766 if (arch_kgdb_ops.remove_all_hw_break)
767 arch_kgdb_ops.remove_all_hw_break();
768
769 return 0;
770 }
771
772 /*
773 * Remap normal tasks to their real PID,
774 * CPU shadow threads are mapped to -CPU - 2
775 */
776 static inline int shadow_pid(int realpid)
777 {
778 if (realpid)
779 return realpid;
780
781 return -raw_smp_processor_id() - 2;
782 }
783
784 static char gdbmsgbuf[BUFMAX + 1];
785
786 static void kgdb_msg_write(const char *s, int len)
787 {
788 char *bufptr;
789 int wcount;
790 int i;
791
792 /* 'O'utput */
793 gdbmsgbuf[0] = 'O';
794
795 /* Fill and send buffers... */
796 while (len > 0) {
797 bufptr = gdbmsgbuf + 1;
798
799 /* Calculate how many this time */
800 if ((len << 1) > (BUFMAX - 2))
801 wcount = (BUFMAX - 2) >> 1;
802 else
803 wcount = len;
804
805 /* Pack in hex chars */
806 for (i = 0; i < wcount; i++)
807 bufptr = pack_hex_byte(bufptr, s[i]);
808 *bufptr = '\0';
809
810 /* Move up */
811 s += wcount;
812 len -= wcount;
813
814 /* Write packet */
815 put_packet(gdbmsgbuf);
816 }
817 }
818
819 /*
820 * Return true if there is a valid kgdb I/O module. Also if no
821 * debugger is attached a message can be printed to the console about
822 * waiting for the debugger to attach.
823 *
824 * The print_wait argument is only to be true when called from inside
825 * the core kgdb_handle_exception, because it will wait for the
826 * debugger to attach.
827 */
828 static int kgdb_io_ready(int print_wait)
829 {
830 if (!kgdb_io_ops)
831 return 0;
832 if (kgdb_connected)
833 return 1;
834 if (atomic_read(&kgdb_setting_breakpoint))
835 return 1;
836 if (print_wait)
837 printk(KERN_CRIT "KGDB: Waiting for remote debugger\n");
838 return 1;
839 }
840
841 /*
842 * All the functions that start with gdb_cmd are the various
843 * operations to implement the handlers for the gdbserial protocol
844 * where KGDB is communicating with an external debugger
845 */
846
847 /* Handle the '?' status packets */
848 static void gdb_cmd_status(struct kgdb_state *ks)
849 {
850 /*
851 * We know that this packet is only sent
852 * during initial connect. So to be safe,
853 * we clear out our breakpoints now in case
854 * GDB is reconnecting.
855 */
856 remove_all_break();
857
858 remcom_out_buffer[0] = 'S';
859 pack_hex_byte(&remcom_out_buffer[1], ks->signo);
860 }
861
862 /* Handle the 'g' get registers request */
863 static void gdb_cmd_getregs(struct kgdb_state *ks)
864 {
865 struct task_struct *thread;
866 void *local_debuggerinfo;
867 int i;
868
869 thread = kgdb_usethread;
870 if (!thread) {
871 thread = kgdb_info[ks->cpu].task;
872 local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo;
873 } else {
874 local_debuggerinfo = NULL;
875 for_each_online_cpu(i) {
876 /*
877 * Try to find the task on some other
878 * or possibly this node if we do not
879 * find the matching task then we try
880 * to approximate the results.
881 */
882 if (thread == kgdb_info[i].task)
883 local_debuggerinfo = kgdb_info[i].debuggerinfo;
884 }
885 }
886
887 /*
888 * All threads that don't have debuggerinfo should be
889 * in schedule() sleeping, since all other CPUs
890 * are in kgdb_wait, and thus have debuggerinfo.
891 */
892 if (local_debuggerinfo) {
893 pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo);
894 } else {
895 /*
896 * Pull stuff saved during switch_to; nothing
897 * else is accessible (or even particularly
898 * relevant).
899 *
900 * This should be enough for a stack trace.
901 */
902 sleeping_thread_to_gdb_regs(gdb_regs, thread);
903 }
904 kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES);
905 }
906
907 /* Handle the 'G' set registers request */
908 static void gdb_cmd_setregs(struct kgdb_state *ks)
909 {
910 kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES);
911
912 if (kgdb_usethread && kgdb_usethread != current) {
913 error_packet(remcom_out_buffer, -EINVAL);
914 } else {
915 gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs);
916 strcpy(remcom_out_buffer, "OK");
917 }
918 }
919
920 /* Handle the 'm' memory read bytes */
921 static void gdb_cmd_memread(struct kgdb_state *ks)
922 {
923 char *ptr = &remcom_in_buffer[1];
924 unsigned long length;
925 unsigned long addr;
926 int err;
927
928 if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' &&
929 kgdb_hex2long(&ptr, &length) > 0) {
930 err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length);
931 if (err)
932 error_packet(remcom_out_buffer, err);
933 } else {
934 error_packet(remcom_out_buffer, -EINVAL);
935 }
936 }
937
938 /* Handle the 'M' memory write bytes */
939 static void gdb_cmd_memwrite(struct kgdb_state *ks)
940 {
941 int err = write_mem_msg(0);
942
943 if (err)
944 error_packet(remcom_out_buffer, err);
945 else
946 strcpy(remcom_out_buffer, "OK");
947 }
948
949 /* Handle the 'X' memory binary write bytes */
950 static void gdb_cmd_binwrite(struct kgdb_state *ks)
951 {
952 int err = write_mem_msg(1);
953
954 if (err)
955 error_packet(remcom_out_buffer, err);
956 else
957 strcpy(remcom_out_buffer, "OK");
958 }
959
960 /* Handle the 'D' or 'k', detach or kill packets */
961 static void gdb_cmd_detachkill(struct kgdb_state *ks)
962 {
963 int error;
964
965 /* The detach case */
966 if (remcom_in_buffer[0] == 'D') {
967 error = remove_all_break();
968 if (error < 0) {
969 error_packet(remcom_out_buffer, error);
970 } else {
971 strcpy(remcom_out_buffer, "OK");
972 kgdb_connected = 0;
973 }
974 put_packet(remcom_out_buffer);
975 } else {
976 /*
977 * Assume the kill case, with no exit code checking,
978 * trying to force detach the debugger:
979 */
980 remove_all_break();
981 kgdb_connected = 0;
982 }
983 }
984
985 /* Handle the 'R' reboot packets */
986 static int gdb_cmd_reboot(struct kgdb_state *ks)
987 {
988 /* For now, only honor R0 */
989 if (strcmp(remcom_in_buffer, "R0") == 0) {
990 printk(KERN_CRIT "Executing emergency reboot\n");
991 strcpy(remcom_out_buffer, "OK");
992 put_packet(remcom_out_buffer);
993
994 /*
995 * Execution should not return from
996 * machine_emergency_restart()
997 */
998 machine_emergency_restart();
999 kgdb_connected = 0;
1000
1001 return 1;
1002 }
1003 return 0;
1004 }
1005
1006 /* Handle the 'q' query packets */
1007 static void gdb_cmd_query(struct kgdb_state *ks)
1008 {
1009 struct task_struct *g;
1010 struct task_struct *p;
1011 unsigned char thref[8];
1012 char *ptr;
1013 int i;
1014 int cpu;
1015 int finished = 0;
1016
1017 switch (remcom_in_buffer[1]) {
1018 case 's':
1019 case 'f':
1020 if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) {
1021 error_packet(remcom_out_buffer, -EINVAL);
1022 break;
1023 }
1024
1025 i = 0;
1026 remcom_out_buffer[0] = 'm';
1027 ptr = remcom_out_buffer + 1;
1028 if (remcom_in_buffer[1] == 'f') {
1029 /* Each cpu is a shadow thread */
1030 for_each_online_cpu(cpu) {
1031 ks->thr_query = 0;
1032 int_to_threadref(thref, -cpu - 2);
1033 pack_threadid(ptr, thref);
1034 ptr += BUF_THREAD_ID_SIZE;
1035 *(ptr++) = ',';
1036 i++;
1037 }
1038 }
1039
1040 do_each_thread(g, p) {
1041 if (i >= ks->thr_query && !finished) {
1042 int_to_threadref(thref, p->pid);
1043 pack_threadid(ptr, thref);
1044 ptr += BUF_THREAD_ID_SIZE;
1045 *(ptr++) = ',';
1046 ks->thr_query++;
1047 if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0)
1048 finished = 1;
1049 }
1050 i++;
1051 } while_each_thread(g, p);
1052
1053 *(--ptr) = '\0';
1054 break;
1055
1056 case 'C':
1057 /* Current thread id */
1058 strcpy(remcom_out_buffer, "QC");
1059 ks->threadid = shadow_pid(current->pid);
1060 int_to_threadref(thref, ks->threadid);
1061 pack_threadid(remcom_out_buffer + 2, thref);
1062 break;
1063 case 'T':
1064 if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) {
1065 error_packet(remcom_out_buffer, -EINVAL);
1066 break;
1067 }
1068 ks->threadid = 0;
1069 ptr = remcom_in_buffer + 17;
1070 kgdb_hex2long(&ptr, &ks->threadid);
1071 if (!getthread(ks->linux_regs, ks->threadid)) {
1072 error_packet(remcom_out_buffer, -EINVAL);
1073 break;
1074 }
1075 if ((int)ks->threadid > 0) {
1076 kgdb_mem2hex(getthread(ks->linux_regs,
1077 ks->threadid)->comm,
1078 remcom_out_buffer, 16);
1079 } else {
1080 static char tmpstr[23 + BUF_THREAD_ID_SIZE];
1081
1082 sprintf(tmpstr, "shadowCPU%d",
1083 (int)(-ks->threadid - 2));
1084 kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr));
1085 }
1086 break;
1087 }
1088 }
1089
1090 /* Handle the 'H' task query packets */
1091 static void gdb_cmd_task(struct kgdb_state *ks)
1092 {
1093 struct task_struct *thread;
1094 char *ptr;
1095
1096 switch (remcom_in_buffer[1]) {
1097 case 'g':
1098 ptr = &remcom_in_buffer[2];
1099 kgdb_hex2long(&ptr, &ks->threadid);
1100 thread = getthread(ks->linux_regs, ks->threadid);
1101 if (!thread && ks->threadid > 0) {
1102 error_packet(remcom_out_buffer, -EINVAL);
1103 break;
1104 }
1105 kgdb_usethread = thread;
1106 ks->kgdb_usethreadid = ks->threadid;
1107 strcpy(remcom_out_buffer, "OK");
1108 break;
1109 case 'c':
1110 ptr = &remcom_in_buffer[2];
1111 kgdb_hex2long(&ptr, &ks->threadid);
1112 if (!ks->threadid) {
1113 kgdb_contthread = NULL;
1114 } else {
1115 thread = getthread(ks->linux_regs, ks->threadid);
1116 if (!thread && ks->threadid > 0) {
1117 error_packet(remcom_out_buffer, -EINVAL);
1118 break;
1119 }
1120 kgdb_contthread = thread;
1121 }
1122 strcpy(remcom_out_buffer, "OK");
1123 break;
1124 }
1125 }
1126
1127 /* Handle the 'T' thread query packets */
1128 static void gdb_cmd_thread(struct kgdb_state *ks)
1129 {
1130 char *ptr = &remcom_in_buffer[1];
1131 struct task_struct *thread;
1132
1133 kgdb_hex2long(&ptr, &ks->threadid);
1134 thread = getthread(ks->linux_regs, ks->threadid);
1135 if (thread)
1136 strcpy(remcom_out_buffer, "OK");
1137 else
1138 error_packet(remcom_out_buffer, -EINVAL);
1139 }
1140
1141 /* Handle the 'z' or 'Z' breakpoint remove or set packets */
1142 static void gdb_cmd_break(struct kgdb_state *ks)
1143 {
1144 /*
1145 * Since GDB-5.3, it's been drafted that '0' is a software
1146 * breakpoint, '1' is a hardware breakpoint, so let's do that.
1147 */
1148 char *bpt_type = &remcom_in_buffer[1];
1149 char *ptr = &remcom_in_buffer[2];
1150 unsigned long addr;
1151 unsigned long length;
1152 int error = 0;
1153
1154 if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') {
1155 /* Unsupported */
1156 if (*bpt_type > '4')
1157 return;
1158 } else {
1159 if (*bpt_type != '0' && *bpt_type != '1')
1160 /* Unsupported. */
1161 return;
1162 }
1163
1164 /*
1165 * Test if this is a hardware breakpoint, and
1166 * if we support it:
1167 */
1168 if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT))
1169 /* Unsupported. */
1170 return;
1171
1172 if (*(ptr++) != ',') {
1173 error_packet(remcom_out_buffer, -EINVAL);
1174 return;
1175 }
1176 if (!kgdb_hex2long(&ptr, &addr)) {
1177 error_packet(remcom_out_buffer, -EINVAL);
1178 return;
1179 }
1180 if (*(ptr++) != ',' ||
1181 !kgdb_hex2long(&ptr, &length)) {
1182 error_packet(remcom_out_buffer, -EINVAL);
1183 return;
1184 }
1185
1186 if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0')
1187 error = kgdb_set_sw_break(addr);
1188 else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0')
1189 error = kgdb_remove_sw_break(addr);
1190 else if (remcom_in_buffer[0] == 'Z')
1191 error = arch_kgdb_ops.set_hw_breakpoint(addr,
1192 (int)length, *bpt_type - '0');
1193 else if (remcom_in_buffer[0] == 'z')
1194 error = arch_kgdb_ops.remove_hw_breakpoint(addr,
1195 (int) length, *bpt_type - '0');
1196
1197 if (error == 0)
1198 strcpy(remcom_out_buffer, "OK");
1199 else
1200 error_packet(remcom_out_buffer, error);
1201 }
1202
1203 /* Handle the 'C' signal / exception passing packets */
1204 static int gdb_cmd_exception_pass(struct kgdb_state *ks)
1205 {
1206 /* C09 == pass exception
1207 * C15 == detach kgdb, pass exception
1208 */
1209 if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') {
1210
1211 ks->pass_exception = 1;
1212 remcom_in_buffer[0] = 'c';
1213
1214 } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') {
1215
1216 ks->pass_exception = 1;
1217 remcom_in_buffer[0] = 'D';
1218 remove_all_break();
1219 kgdb_connected = 0;
1220 return 1;
1221
1222 } else {
1223 kgdb_msg_write("KGDB only knows signal 9 (pass)"
1224 " and 15 (pass and disconnect)\n"
1225 "Executing a continue without signal passing\n", 0);
1226 remcom_in_buffer[0] = 'c';
1227 }
1228
1229 /* Indicate fall through */
1230 return -1;
1231 }
1232
1233 /*
1234 * This function performs all gdbserial command procesing
1235 */
1236 static int gdb_serial_stub(struct kgdb_state *ks)
1237 {
1238 int error = 0;
1239 int tmp;
1240
1241 /* Clear the out buffer. */
1242 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1243
1244 if (kgdb_connected) {
1245 unsigned char thref[8];
1246 char *ptr;
1247
1248 /* Reply to host that an exception has occurred */
1249 ptr = remcom_out_buffer;
1250 *ptr++ = 'T';
1251 ptr = pack_hex_byte(ptr, ks->signo);
1252 ptr += strlen(strcpy(ptr, "thread:"));
1253 int_to_threadref(thref, shadow_pid(current->pid));
1254 ptr = pack_threadid(ptr, thref);
1255 *ptr++ = ';';
1256 put_packet(remcom_out_buffer);
1257 }
1258
1259 kgdb_usethread = kgdb_info[ks->cpu].task;
1260 ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid);
1261 ks->pass_exception = 0;
1262
1263 while (1) {
1264 error = 0;
1265
1266 /* Clear the out buffer. */
1267 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1268
1269 get_packet(remcom_in_buffer);
1270
1271 switch (remcom_in_buffer[0]) {
1272 case '?': /* gdbserial status */
1273 gdb_cmd_status(ks);
1274 break;
1275 case 'g': /* return the value of the CPU registers */
1276 gdb_cmd_getregs(ks);
1277 break;
1278 case 'G': /* set the value of the CPU registers - return OK */
1279 gdb_cmd_setregs(ks);
1280 break;
1281 case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
1282 gdb_cmd_memread(ks);
1283 break;
1284 case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1285 gdb_cmd_memwrite(ks);
1286 break;
1287 case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1288 gdb_cmd_binwrite(ks);
1289 break;
1290 /* kill or detach. KGDB should treat this like a
1291 * continue.
1292 */
1293 case 'D': /* Debugger detach */
1294 case 'k': /* Debugger detach via kill */
1295 gdb_cmd_detachkill(ks);
1296 goto default_handle;
1297 case 'R': /* Reboot */
1298 if (gdb_cmd_reboot(ks))
1299 goto default_handle;
1300 break;
1301 case 'q': /* query command */
1302 gdb_cmd_query(ks);
1303 break;
1304 case 'H': /* task related */
1305 gdb_cmd_task(ks);
1306 break;
1307 case 'T': /* Query thread status */
1308 gdb_cmd_thread(ks);
1309 break;
1310 case 'z': /* Break point remove */
1311 case 'Z': /* Break point set */
1312 gdb_cmd_break(ks);
1313 break;
1314 case 'C': /* Exception passing */
1315 tmp = gdb_cmd_exception_pass(ks);
1316 if (tmp > 0)
1317 goto default_handle;
1318 if (tmp == 0)
1319 break;
1320 /* Fall through on tmp < 0 */
1321 case 'c': /* Continue packet */
1322 case 's': /* Single step packet */
1323 if (kgdb_contthread && kgdb_contthread != current) {
1324 /* Can't switch threads in kgdb */
1325 error_packet(remcom_out_buffer, -EINVAL);
1326 break;
1327 }
1328 kgdb_activate_sw_breakpoints();
1329 /* Fall through to default processing */
1330 default:
1331 default_handle:
1332 error = kgdb_arch_handle_exception(ks->ex_vector,
1333 ks->signo,
1334 ks->err_code,
1335 remcom_in_buffer,
1336 remcom_out_buffer,
1337 ks->linux_regs);
1338 /*
1339 * Leave cmd processing on error, detach,
1340 * kill, continue, or single step.
1341 */
1342 if (error >= 0 || remcom_in_buffer[0] == 'D' ||
1343 remcom_in_buffer[0] == 'k') {
1344 error = 0;
1345 goto kgdb_exit;
1346 }
1347
1348 }
1349
1350 /* reply to the request */
1351 put_packet(remcom_out_buffer);
1352 }
1353
1354 kgdb_exit:
1355 if (ks->pass_exception)
1356 error = 1;
1357 return error;
1358 }
1359
1360 static int kgdb_reenter_check(struct kgdb_state *ks)
1361 {
1362 unsigned long addr;
1363
1364 if (atomic_read(&kgdb_active) != raw_smp_processor_id())
1365 return 0;
1366
1367 /* Panic on recursive debugger calls: */
1368 exception_level++;
1369 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
1370 kgdb_deactivate_sw_breakpoints();
1371
1372 /*
1373 * If the break point removed ok at the place exception
1374 * occurred, try to recover and print a warning to the end
1375 * user because the user planted a breakpoint in a place that
1376 * KGDB needs in order to function.
1377 */
1378 if (kgdb_remove_sw_break(addr) == 0) {
1379 exception_level = 0;
1380 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1381 kgdb_activate_sw_breakpoints();
1382 printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n",
1383 addr);
1384 WARN_ON_ONCE(1);
1385
1386 return 1;
1387 }
1388 remove_all_break();
1389 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1390
1391 if (exception_level > 1) {
1392 dump_stack();
1393 panic("Recursive entry to debugger");
1394 }
1395
1396 printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n");
1397 dump_stack();
1398 panic("Recursive entry to debugger");
1399
1400 return 1;
1401 }
1402
1403 /*
1404 * kgdb_handle_exception() - main entry point from a kernel exception
1405 *
1406 * Locking hierarchy:
1407 * interface locks, if any (begin_session)
1408 * kgdb lock (kgdb_active)
1409 */
1410 int
1411 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
1412 {
1413 struct kgdb_state kgdb_var;
1414 struct kgdb_state *ks = &kgdb_var;
1415 unsigned long flags;
1416 int sstep_tries = 100;
1417 int error = 0;
1418 int i, cpu;
1419
1420 ks->cpu = raw_smp_processor_id();
1421 ks->ex_vector = evector;
1422 ks->signo = signo;
1423 ks->ex_vector = evector;
1424 ks->err_code = ecode;
1425 ks->kgdb_usethreadid = 0;
1426 ks->linux_regs = regs;
1427
1428 if (kgdb_reenter_check(ks))
1429 return 0; /* Ouch, double exception ! */
1430
1431 acquirelock:
1432 /*
1433 * Interrupts will be restored by the 'trap return' code, except when
1434 * single stepping.
1435 */
1436 local_irq_save(flags);
1437
1438 cpu = raw_smp_processor_id();
1439
1440 /*
1441 * Acquire the kgdb_active lock:
1442 */
1443 while (atomic_cmpxchg(&kgdb_active, -1, cpu) != -1)
1444 cpu_relax();
1445
1446 /*
1447 * For single stepping, try to only enter on the processor
1448 * that was single stepping. To gaurd against a deadlock, the
1449 * kernel will only try for the value of sstep_tries before
1450 * giving up and continuing on.
1451 */
1452 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
1453 (kgdb_info[cpu].task &&
1454 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
1455 atomic_set(&kgdb_active, -1);
1456 touch_softlockup_watchdog_sync();
1457 clocksource_touch_watchdog();
1458 local_irq_restore(flags);
1459
1460 goto acquirelock;
1461 }
1462
1463 if (!kgdb_io_ready(1)) {
1464 error = 1;
1465 goto kgdb_restore; /* No I/O connection, so resume the system */
1466 }
1467
1468 /*
1469 * Don't enter if we have hit a removed breakpoint.
1470 */
1471 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
1472 goto kgdb_restore;
1473
1474 /* Call the I/O driver's pre_exception routine */
1475 if (kgdb_io_ops->pre_exception)
1476 kgdb_io_ops->pre_exception();
1477
1478 kgdb_info[ks->cpu].debuggerinfo = ks->linux_regs;
1479 kgdb_info[ks->cpu].task = current;
1480
1481 kgdb_disable_hw_debug(ks->linux_regs);
1482
1483 /*
1484 * Get the passive CPU lock which will hold all the non-primary
1485 * CPU in a spin state while the debugger is active
1486 */
1487 if (!kgdb_single_step) {
1488 for (i = 0; i < NR_CPUS; i++)
1489 atomic_set(&passive_cpu_wait[i], 1);
1490 }
1491
1492 /*
1493 * spin_lock code is good enough as a barrier so we don't
1494 * need one here:
1495 */
1496 atomic_set(&cpu_in_kgdb[ks->cpu], 1);
1497
1498 #ifdef CONFIG_SMP
1499 /* Signal the other CPUs to enter kgdb_wait() */
1500 if ((!kgdb_single_step) && kgdb_do_roundup)
1501 kgdb_roundup_cpus(flags);
1502 #endif
1503
1504 /*
1505 * Wait for the other CPUs to be notified and be waiting for us:
1506 */
1507 for_each_online_cpu(i) {
1508 while (!atomic_read(&cpu_in_kgdb[i]))
1509 cpu_relax();
1510 }
1511
1512 /*
1513 * At this point the primary processor is completely
1514 * in the debugger and all secondary CPUs are quiescent
1515 */
1516 kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code);
1517 kgdb_deactivate_sw_breakpoints();
1518 kgdb_single_step = 0;
1519 kgdb_contthread = current;
1520 exception_level = 0;
1521
1522 /* Talk to debugger with gdbserial protocol */
1523 error = gdb_serial_stub(ks);
1524
1525 /* Call the I/O driver's post_exception routine */
1526 if (kgdb_io_ops->post_exception)
1527 kgdb_io_ops->post_exception();
1528
1529 kgdb_info[ks->cpu].debuggerinfo = NULL;
1530 kgdb_info[ks->cpu].task = NULL;
1531 atomic_set(&cpu_in_kgdb[ks->cpu], 0);
1532
1533 if (!kgdb_single_step) {
1534 for (i = NR_CPUS-1; i >= 0; i--)
1535 atomic_set(&passive_cpu_wait[i], 0);
1536 /*
1537 * Wait till all the CPUs have quit
1538 * from the debugger.
1539 */
1540 for_each_online_cpu(i) {
1541 while (atomic_read(&cpu_in_kgdb[i]))
1542 cpu_relax();
1543 }
1544 }
1545
1546 kgdb_restore:
1547 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
1548 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
1549 if (kgdb_info[sstep_cpu].task)
1550 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
1551 else
1552 kgdb_sstep_pid = 0;
1553 }
1554 /* Free kgdb_active */
1555 atomic_set(&kgdb_active, -1);
1556 touch_softlockup_watchdog_sync();
1557 clocksource_touch_watchdog();
1558 local_irq_restore(flags);
1559
1560 return error;
1561 }
1562
1563 int kgdb_nmicallback(int cpu, void *regs)
1564 {
1565 #ifdef CONFIG_SMP
1566 if (!atomic_read(&cpu_in_kgdb[cpu]) &&
1567 atomic_read(&kgdb_active) != cpu &&
1568 atomic_read(&cpu_in_kgdb[atomic_read(&kgdb_active)])) {
1569 kgdb_wait((struct pt_regs *)regs);
1570 return 0;
1571 }
1572 #endif
1573 return 1;
1574 }
1575
1576 static void kgdb_console_write(struct console *co, const char *s,
1577 unsigned count)
1578 {
1579 unsigned long flags;
1580
1581 /* If we're debugging, or KGDB has not connected, don't try
1582 * and print. */
1583 if (!kgdb_connected || atomic_read(&kgdb_active) != -1)
1584 return;
1585
1586 local_irq_save(flags);
1587 kgdb_msg_write(s, count);
1588 local_irq_restore(flags);
1589 }
1590
1591 static struct console kgdbcons = {
1592 .name = "kgdb",
1593 .write = kgdb_console_write,
1594 .flags = CON_PRINTBUFFER | CON_ENABLED,
1595 .index = -1,
1596 };
1597
1598 #ifdef CONFIG_MAGIC_SYSRQ
1599 static void sysrq_handle_gdb(int key, struct tty_struct *tty)
1600 {
1601 if (!kgdb_io_ops) {
1602 printk(KERN_CRIT "ERROR: No KGDB I/O module available\n");
1603 return;
1604 }
1605 if (!kgdb_connected)
1606 printk(KERN_CRIT "Entering KGDB\n");
1607
1608 kgdb_breakpoint();
1609 }
1610
1611 static struct sysrq_key_op sysrq_gdb_op = {
1612 .handler = sysrq_handle_gdb,
1613 .help_msg = "debug(G)",
1614 .action_msg = "DEBUG",
1615 };
1616 #endif
1617
1618 static void kgdb_register_callbacks(void)
1619 {
1620 if (!kgdb_io_module_registered) {
1621 kgdb_io_module_registered = 1;
1622 kgdb_arch_init();
1623 #ifdef CONFIG_MAGIC_SYSRQ
1624 register_sysrq_key('g', &sysrq_gdb_op);
1625 #endif
1626 if (kgdb_use_con && !kgdb_con_registered) {
1627 register_console(&kgdbcons);
1628 kgdb_con_registered = 1;
1629 }
1630 }
1631 }
1632
1633 static void kgdb_unregister_callbacks(void)
1634 {
1635 /*
1636 * When this routine is called KGDB should unregister from the
1637 * panic handler and clean up, making sure it is not handling any
1638 * break exceptions at the time.
1639 */
1640 if (kgdb_io_module_registered) {
1641 kgdb_io_module_registered = 0;
1642 kgdb_arch_exit();
1643 #ifdef CONFIG_MAGIC_SYSRQ
1644 unregister_sysrq_key('g', &sysrq_gdb_op);
1645 #endif
1646 if (kgdb_con_registered) {
1647 unregister_console(&kgdbcons);
1648 kgdb_con_registered = 0;
1649 }
1650 }
1651 }
1652
1653 static void kgdb_initial_breakpoint(void)
1654 {
1655 kgdb_break_asap = 0;
1656
1657 printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n");
1658 kgdb_breakpoint();
1659 }
1660
1661 /**
1662 * kgdb_register_io_module - register KGDB IO module
1663 * @new_kgdb_io_ops: the io ops vector
1664 *
1665 * Register it with the KGDB core.
1666 */
1667 int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops)
1668 {
1669 int err;
1670
1671 spin_lock(&kgdb_registration_lock);
1672
1673 if (kgdb_io_ops) {
1674 spin_unlock(&kgdb_registration_lock);
1675
1676 printk(KERN_ERR "kgdb: Another I/O driver is already "
1677 "registered with KGDB.\n");
1678 return -EBUSY;
1679 }
1680
1681 if (new_kgdb_io_ops->init) {
1682 err = new_kgdb_io_ops->init();
1683 if (err) {
1684 spin_unlock(&kgdb_registration_lock);
1685 return err;
1686 }
1687 }
1688
1689 kgdb_io_ops = new_kgdb_io_ops;
1690
1691 spin_unlock(&kgdb_registration_lock);
1692
1693 printk(KERN_INFO "kgdb: Registered I/O driver %s.\n",
1694 new_kgdb_io_ops->name);
1695
1696 /* Arm KGDB now. */
1697 kgdb_register_callbacks();
1698
1699 if (kgdb_break_asap)
1700 kgdb_initial_breakpoint();
1701
1702 return 0;
1703 }
1704 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1705
1706 /**
1707 * kkgdb_unregister_io_module - unregister KGDB IO module
1708 * @old_kgdb_io_ops: the io ops vector
1709 *
1710 * Unregister it with the KGDB core.
1711 */
1712 void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops)
1713 {
1714 BUG_ON(kgdb_connected);
1715
1716 /*
1717 * KGDB is no longer able to communicate out, so
1718 * unregister our callbacks and reset state.
1719 */
1720 kgdb_unregister_callbacks();
1721
1722 spin_lock(&kgdb_registration_lock);
1723
1724 WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops);
1725 kgdb_io_ops = NULL;
1726
1727 spin_unlock(&kgdb_registration_lock);
1728
1729 printk(KERN_INFO
1730 "kgdb: Unregistered I/O driver %s, debugger disabled.\n",
1731 old_kgdb_io_ops->name);
1732 }
1733 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1734
1735 /**
1736 * kgdb_breakpoint - generate breakpoint exception
1737 *
1738 * This function will generate a breakpoint exception. It is used at the
1739 * beginning of a program to sync up with a debugger and can be used
1740 * otherwise as a quick means to stop program execution and "break" into
1741 * the debugger.
1742 */
1743 void kgdb_breakpoint(void)
1744 {
1745 atomic_set(&kgdb_setting_breakpoint, 1);
1746 wmb(); /* Sync point before breakpoint */
1747 arch_kgdb_breakpoint();
1748 wmb(); /* Sync point after breakpoint */
1749 atomic_set(&kgdb_setting_breakpoint, 0);
1750 }
1751 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1752
1753 static int __init opt_kgdb_wait(char *str)
1754 {
1755 kgdb_break_asap = 1;
1756
1757 if (kgdb_io_module_registered)
1758 kgdb_initial_breakpoint();
1759
1760 return 0;
1761 }
1762
1763 early_param("kgdbwait", opt_kgdb_wait);