]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - kernel/kgdb.c
Merge branch 'toshiba-bt' into release
[mirror_ubuntu-bionic-kernel.git] / kernel / kgdb.c
1 /*
2 * KGDB stub.
3 *
4 * Maintainer: Jason Wessel <jason.wessel@windriver.com>
5 *
6 * Copyright (C) 2000-2001 VERITAS Software Corporation.
7 * Copyright (C) 2002-2004 Timesys Corporation
8 * Copyright (C) 2003-2004 Amit S. Kale <amitkale@linsyssoft.com>
9 * Copyright (C) 2004 Pavel Machek <pavel@suse.cz>
10 * Copyright (C) 2004-2006 Tom Rini <trini@kernel.crashing.org>
11 * Copyright (C) 2004-2006 LinSysSoft Technologies Pvt. Ltd.
12 * Copyright (C) 2005-2008 Wind River Systems, Inc.
13 * Copyright (C) 2007 MontaVista Software, Inc.
14 * Copyright (C) 2008 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
15 *
16 * Contributors at various stages not listed above:
17 * Jason Wessel ( jason.wessel@windriver.com )
18 * George Anzinger <george@mvista.com>
19 * Anurekh Saxena (anurekh.saxena@timesys.com)
20 * Lake Stevens Instrument Division (Glenn Engel)
21 * Jim Kingdon, Cygnus Support.
22 *
23 * Original KGDB stub: David Grothe <dave@gcom.com>,
24 * Tigran Aivazian <tigran@sco.com>
25 *
26 * This file is licensed under the terms of the GNU General Public License
27 * version 2. This program is licensed "as is" without any warranty of any
28 * kind, whether express or implied.
29 */
30 #include <linux/pid_namespace.h>
31 #include <linux/clocksource.h>
32 #include <linux/interrupt.h>
33 #include <linux/spinlock.h>
34 #include <linux/console.h>
35 #include <linux/threads.h>
36 #include <linux/uaccess.h>
37 #include <linux/kernel.h>
38 #include <linux/module.h>
39 #include <linux/ptrace.h>
40 #include <linux/reboot.h>
41 #include <linux/string.h>
42 #include <linux/delay.h>
43 #include <linux/sched.h>
44 #include <linux/sysrq.h>
45 #include <linux/init.h>
46 #include <linux/kgdb.h>
47 #include <linux/pid.h>
48 #include <linux/smp.h>
49 #include <linux/mm.h>
50
51 #include <asm/cacheflush.h>
52 #include <asm/byteorder.h>
53 #include <asm/atomic.h>
54 #include <asm/system.h>
55 #include <asm/unaligned.h>
56
57 static int kgdb_break_asap;
58
59 #define KGDB_MAX_THREAD_QUERY 17
60 struct kgdb_state {
61 int ex_vector;
62 int signo;
63 int err_code;
64 int cpu;
65 int pass_exception;
66 unsigned long thr_query;
67 unsigned long threadid;
68 long kgdb_usethreadid;
69 struct pt_regs *linux_regs;
70 };
71
72 static struct debuggerinfo_struct {
73 void *debuggerinfo;
74 struct task_struct *task;
75 } kgdb_info[NR_CPUS];
76
77 /**
78 * kgdb_connected - Is a host GDB connected to us?
79 */
80 int kgdb_connected;
81 EXPORT_SYMBOL_GPL(kgdb_connected);
82
83 /* All the KGDB handlers are installed */
84 static int kgdb_io_module_registered;
85
86 /* Guard for recursive entry */
87 static int exception_level;
88
89 static struct kgdb_io *kgdb_io_ops;
90 static DEFINE_SPINLOCK(kgdb_registration_lock);
91
92 /* kgdb console driver is loaded */
93 static int kgdb_con_registered;
94 /* determine if kgdb console output should be used */
95 static int kgdb_use_con;
96
97 static int __init opt_kgdb_con(char *str)
98 {
99 kgdb_use_con = 1;
100 return 0;
101 }
102
103 early_param("kgdbcon", opt_kgdb_con);
104
105 module_param(kgdb_use_con, int, 0644);
106
107 /*
108 * Holds information about breakpoints in a kernel. These breakpoints are
109 * added and removed by gdb.
110 */
111 static struct kgdb_bkpt kgdb_break[KGDB_MAX_BREAKPOINTS] = {
112 [0 ... KGDB_MAX_BREAKPOINTS-1] = { .state = BP_UNDEFINED }
113 };
114
115 /*
116 * The CPU# of the active CPU, or -1 if none:
117 */
118 atomic_t kgdb_active = ATOMIC_INIT(-1);
119
120 /*
121 * We use NR_CPUs not PERCPU, in case kgdb is used to debug early
122 * bootup code (which might not have percpu set up yet):
123 */
124 static atomic_t passive_cpu_wait[NR_CPUS];
125 static atomic_t cpu_in_kgdb[NR_CPUS];
126 atomic_t kgdb_setting_breakpoint;
127
128 struct task_struct *kgdb_usethread;
129 struct task_struct *kgdb_contthread;
130
131 int kgdb_single_step;
132 pid_t kgdb_sstep_pid;
133
134 /* Our I/O buffers. */
135 static char remcom_in_buffer[BUFMAX];
136 static char remcom_out_buffer[BUFMAX];
137
138 /* Storage for the registers, in GDB format. */
139 static unsigned long gdb_regs[(NUMREGBYTES +
140 sizeof(unsigned long) - 1) /
141 sizeof(unsigned long)];
142
143 /* to keep track of the CPU which is doing the single stepping*/
144 atomic_t kgdb_cpu_doing_single_step = ATOMIC_INIT(-1);
145
146 /*
147 * If you are debugging a problem where roundup (the collection of
148 * all other CPUs) is a problem [this should be extremely rare],
149 * then use the nokgdbroundup option to avoid roundup. In that case
150 * the other CPUs might interfere with your debugging context, so
151 * use this with care:
152 */
153 static int kgdb_do_roundup = 1;
154
155 static int __init opt_nokgdbroundup(char *str)
156 {
157 kgdb_do_roundup = 0;
158
159 return 0;
160 }
161
162 early_param("nokgdbroundup", opt_nokgdbroundup);
163
164 /*
165 * Finally, some KGDB code :-)
166 */
167
168 /*
169 * Weak aliases for breakpoint management,
170 * can be overriden by architectures when needed:
171 */
172 int __weak kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
173 {
174 int err;
175
176 err = probe_kernel_read(saved_instr, (char *)addr, BREAK_INSTR_SIZE);
177 if (err)
178 return err;
179
180 return probe_kernel_write((char *)addr, arch_kgdb_ops.gdb_bpt_instr,
181 BREAK_INSTR_SIZE);
182 }
183
184 int __weak kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
185 {
186 return probe_kernel_write((char *)addr,
187 (char *)bundle, BREAK_INSTR_SIZE);
188 }
189
190 int __weak kgdb_validate_break_address(unsigned long addr)
191 {
192 char tmp_variable[BREAK_INSTR_SIZE];
193 int err;
194 /* Validate setting the breakpoint and then removing it. In the
195 * remove fails, the kernel needs to emit a bad message because we
196 * are deep trouble not being able to put things back the way we
197 * found them.
198 */
199 err = kgdb_arch_set_breakpoint(addr, tmp_variable);
200 if (err)
201 return err;
202 err = kgdb_arch_remove_breakpoint(addr, tmp_variable);
203 if (err)
204 printk(KERN_ERR "KGDB: Critical breakpoint error, kernel "
205 "memory destroyed at: %lx", addr);
206 return err;
207 }
208
209 unsigned long __weak kgdb_arch_pc(int exception, struct pt_regs *regs)
210 {
211 return instruction_pointer(regs);
212 }
213
214 int __weak kgdb_arch_init(void)
215 {
216 return 0;
217 }
218
219 int __weak kgdb_skipexception(int exception, struct pt_regs *regs)
220 {
221 return 0;
222 }
223
224 void __weak
225 kgdb_post_primary_code(struct pt_regs *regs, int e_vector, int err_code)
226 {
227 return;
228 }
229
230 /**
231 * kgdb_disable_hw_debug - Disable hardware debugging while we in kgdb.
232 * @regs: Current &struct pt_regs.
233 *
234 * This function will be called if the particular architecture must
235 * disable hardware debugging while it is processing gdb packets or
236 * handling exception.
237 */
238 void __weak kgdb_disable_hw_debug(struct pt_regs *regs)
239 {
240 }
241
242 /*
243 * GDB remote protocol parser:
244 */
245
246 static int hex(char ch)
247 {
248 if ((ch >= 'a') && (ch <= 'f'))
249 return ch - 'a' + 10;
250 if ((ch >= '0') && (ch <= '9'))
251 return ch - '0';
252 if ((ch >= 'A') && (ch <= 'F'))
253 return ch - 'A' + 10;
254 return -1;
255 }
256
257 /* scan for the sequence $<data>#<checksum> */
258 static void get_packet(char *buffer)
259 {
260 unsigned char checksum;
261 unsigned char xmitcsum;
262 int count;
263 char ch;
264
265 do {
266 /*
267 * Spin and wait around for the start character, ignore all
268 * other characters:
269 */
270 while ((ch = (kgdb_io_ops->read_char())) != '$')
271 /* nothing */;
272
273 kgdb_connected = 1;
274 checksum = 0;
275 xmitcsum = -1;
276
277 count = 0;
278
279 /*
280 * now, read until a # or end of buffer is found:
281 */
282 while (count < (BUFMAX - 1)) {
283 ch = kgdb_io_ops->read_char();
284 if (ch == '#')
285 break;
286 checksum = checksum + ch;
287 buffer[count] = ch;
288 count = count + 1;
289 }
290 buffer[count] = 0;
291
292 if (ch == '#') {
293 xmitcsum = hex(kgdb_io_ops->read_char()) << 4;
294 xmitcsum += hex(kgdb_io_ops->read_char());
295
296 if (checksum != xmitcsum)
297 /* failed checksum */
298 kgdb_io_ops->write_char('-');
299 else
300 /* successful transfer */
301 kgdb_io_ops->write_char('+');
302 if (kgdb_io_ops->flush)
303 kgdb_io_ops->flush();
304 }
305 } while (checksum != xmitcsum);
306 }
307
308 /*
309 * Send the packet in buffer.
310 * Check for gdb connection if asked for.
311 */
312 static void put_packet(char *buffer)
313 {
314 unsigned char checksum;
315 int count;
316 char ch;
317
318 /*
319 * $<packet info>#<checksum>.
320 */
321 while (1) {
322 kgdb_io_ops->write_char('$');
323 checksum = 0;
324 count = 0;
325
326 while ((ch = buffer[count])) {
327 kgdb_io_ops->write_char(ch);
328 checksum += ch;
329 count++;
330 }
331
332 kgdb_io_ops->write_char('#');
333 kgdb_io_ops->write_char(hex_asc_hi(checksum));
334 kgdb_io_ops->write_char(hex_asc_lo(checksum));
335 if (kgdb_io_ops->flush)
336 kgdb_io_ops->flush();
337
338 /* Now see what we get in reply. */
339 ch = kgdb_io_ops->read_char();
340
341 if (ch == 3)
342 ch = kgdb_io_ops->read_char();
343
344 /* If we get an ACK, we are done. */
345 if (ch == '+')
346 return;
347
348 /*
349 * If we get the start of another packet, this means
350 * that GDB is attempting to reconnect. We will NAK
351 * the packet being sent, and stop trying to send this
352 * packet.
353 */
354 if (ch == '$') {
355 kgdb_io_ops->write_char('-');
356 if (kgdb_io_ops->flush)
357 kgdb_io_ops->flush();
358 return;
359 }
360 }
361 }
362
363 /*
364 * Convert the memory pointed to by mem into hex, placing result in buf.
365 * Return a pointer to the last char put in buf (null). May return an error.
366 */
367 int kgdb_mem2hex(char *mem, char *buf, int count)
368 {
369 char *tmp;
370 int err;
371
372 /*
373 * We use the upper half of buf as an intermediate buffer for the
374 * raw memory copy. Hex conversion will work against this one.
375 */
376 tmp = buf + count;
377
378 err = probe_kernel_read(tmp, mem, count);
379 if (!err) {
380 while (count > 0) {
381 buf = pack_hex_byte(buf, *tmp);
382 tmp++;
383 count--;
384 }
385
386 *buf = 0;
387 }
388
389 return err;
390 }
391
392 /*
393 * Copy the binary array pointed to by buf into mem. Fix $, #, and
394 * 0x7d escaped with 0x7d. Return a pointer to the character after
395 * the last byte written.
396 */
397 static int kgdb_ebin2mem(char *buf, char *mem, int count)
398 {
399 int err = 0;
400 char c;
401
402 while (count-- > 0) {
403 c = *buf++;
404 if (c == 0x7d)
405 c = *buf++ ^ 0x20;
406
407 err = probe_kernel_write(mem, &c, 1);
408 if (err)
409 break;
410
411 mem++;
412 }
413
414 return err;
415 }
416
417 /*
418 * Convert the hex array pointed to by buf into binary to be placed in mem.
419 * Return a pointer to the character AFTER the last byte written.
420 * May return an error.
421 */
422 int kgdb_hex2mem(char *buf, char *mem, int count)
423 {
424 char *tmp_raw;
425 char *tmp_hex;
426
427 /*
428 * We use the upper half of buf as an intermediate buffer for the
429 * raw memory that is converted from hex.
430 */
431 tmp_raw = buf + count * 2;
432
433 tmp_hex = tmp_raw - 1;
434 while (tmp_hex >= buf) {
435 tmp_raw--;
436 *tmp_raw = hex(*tmp_hex--);
437 *tmp_raw |= hex(*tmp_hex--) << 4;
438 }
439
440 return probe_kernel_write(mem, tmp_raw, count);
441 }
442
443 /*
444 * While we find nice hex chars, build a long_val.
445 * Return number of chars processed.
446 */
447 int kgdb_hex2long(char **ptr, unsigned long *long_val)
448 {
449 int hex_val;
450 int num = 0;
451 int negate = 0;
452
453 *long_val = 0;
454
455 if (**ptr == '-') {
456 negate = 1;
457 (*ptr)++;
458 }
459 while (**ptr) {
460 hex_val = hex(**ptr);
461 if (hex_val < 0)
462 break;
463
464 *long_val = (*long_val << 4) | hex_val;
465 num++;
466 (*ptr)++;
467 }
468
469 if (negate)
470 *long_val = -*long_val;
471
472 return num;
473 }
474
475 /* Write memory due to an 'M' or 'X' packet. */
476 static int write_mem_msg(int binary)
477 {
478 char *ptr = &remcom_in_buffer[1];
479 unsigned long addr;
480 unsigned long length;
481 int err;
482
483 if (kgdb_hex2long(&ptr, &addr) > 0 && *(ptr++) == ',' &&
484 kgdb_hex2long(&ptr, &length) > 0 && *(ptr++) == ':') {
485 if (binary)
486 err = kgdb_ebin2mem(ptr, (char *)addr, length);
487 else
488 err = kgdb_hex2mem(ptr, (char *)addr, length);
489 if (err)
490 return err;
491 if (CACHE_FLUSH_IS_SAFE)
492 flush_icache_range(addr, addr + length);
493 return 0;
494 }
495
496 return -EINVAL;
497 }
498
499 static void error_packet(char *pkt, int error)
500 {
501 error = -error;
502 pkt[0] = 'E';
503 pkt[1] = hex_asc[(error / 10)];
504 pkt[2] = hex_asc[(error % 10)];
505 pkt[3] = '\0';
506 }
507
508 /*
509 * Thread ID accessors. We represent a flat TID space to GDB, where
510 * the per CPU idle threads (which under Linux all have PID 0) are
511 * remapped to negative TIDs.
512 */
513
514 #define BUF_THREAD_ID_SIZE 16
515
516 static char *pack_threadid(char *pkt, unsigned char *id)
517 {
518 char *limit;
519
520 limit = pkt + BUF_THREAD_ID_SIZE;
521 while (pkt < limit)
522 pkt = pack_hex_byte(pkt, *id++);
523
524 return pkt;
525 }
526
527 static void int_to_threadref(unsigned char *id, int value)
528 {
529 unsigned char *scan;
530 int i = 4;
531
532 scan = (unsigned char *)id;
533 while (i--)
534 *scan++ = 0;
535 put_unaligned_be32(value, scan);
536 }
537
538 static struct task_struct *getthread(struct pt_regs *regs, int tid)
539 {
540 /*
541 * Non-positive TIDs are remapped to the cpu shadow information
542 */
543 if (tid == 0 || tid == -1)
544 tid = -atomic_read(&kgdb_active) - 2;
545 if (tid < -1 && tid > -NR_CPUS - 2) {
546 if (kgdb_info[-tid - 2].task)
547 return kgdb_info[-tid - 2].task;
548 else
549 return idle_task(-tid - 2);
550 }
551 if (tid <= 0) {
552 printk(KERN_ERR "KGDB: Internal thread select error\n");
553 dump_stack();
554 return NULL;
555 }
556
557 /*
558 * find_task_by_pid_ns() does not take the tasklist lock anymore
559 * but is nicely RCU locked - hence is a pretty resilient
560 * thing to use:
561 */
562 return find_task_by_pid_ns(tid, &init_pid_ns);
563 }
564
565 /*
566 * CPU debug state control:
567 */
568
569 #ifdef CONFIG_SMP
570 static void kgdb_wait(struct pt_regs *regs)
571 {
572 unsigned long flags;
573 int cpu;
574
575 local_irq_save(flags);
576 cpu = raw_smp_processor_id();
577 kgdb_info[cpu].debuggerinfo = regs;
578 kgdb_info[cpu].task = current;
579 /*
580 * Make sure the above info reaches the primary CPU before
581 * our cpu_in_kgdb[] flag setting does:
582 */
583 smp_wmb();
584 atomic_set(&cpu_in_kgdb[cpu], 1);
585
586 /* Wait till primary CPU is done with debugging */
587 while (atomic_read(&passive_cpu_wait[cpu]))
588 cpu_relax();
589
590 kgdb_info[cpu].debuggerinfo = NULL;
591 kgdb_info[cpu].task = NULL;
592
593 /* fix up hardware debug registers on local cpu */
594 if (arch_kgdb_ops.correct_hw_break)
595 arch_kgdb_ops.correct_hw_break();
596
597 /* Signal the primary CPU that we are done: */
598 atomic_set(&cpu_in_kgdb[cpu], 0);
599 touch_softlockup_watchdog();
600 clocksource_touch_watchdog();
601 local_irq_restore(flags);
602 }
603 #endif
604
605 /*
606 * Some architectures need cache flushes when we set/clear a
607 * breakpoint:
608 */
609 static void kgdb_flush_swbreak_addr(unsigned long addr)
610 {
611 if (!CACHE_FLUSH_IS_SAFE)
612 return;
613
614 if (current->mm && current->mm->mmap_cache) {
615 flush_cache_range(current->mm->mmap_cache,
616 addr, addr + BREAK_INSTR_SIZE);
617 }
618 /* Force flush instruction cache if it was outside the mm */
619 flush_icache_range(addr, addr + BREAK_INSTR_SIZE);
620 }
621
622 /*
623 * SW breakpoint management:
624 */
625 static int kgdb_activate_sw_breakpoints(void)
626 {
627 unsigned long addr;
628 int error;
629 int ret = 0;
630 int i;
631
632 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
633 if (kgdb_break[i].state != BP_SET)
634 continue;
635
636 addr = kgdb_break[i].bpt_addr;
637 error = kgdb_arch_set_breakpoint(addr,
638 kgdb_break[i].saved_instr);
639 if (error) {
640 ret = error;
641 printk(KERN_INFO "KGDB: BP install failed: %lx", addr);
642 continue;
643 }
644
645 kgdb_flush_swbreak_addr(addr);
646 kgdb_break[i].state = BP_ACTIVE;
647 }
648 return ret;
649 }
650
651 static int kgdb_set_sw_break(unsigned long addr)
652 {
653 int err = kgdb_validate_break_address(addr);
654 int breakno = -1;
655 int i;
656
657 if (err)
658 return err;
659
660 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
661 if ((kgdb_break[i].state == BP_SET) &&
662 (kgdb_break[i].bpt_addr == addr))
663 return -EEXIST;
664 }
665 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
666 if (kgdb_break[i].state == BP_REMOVED &&
667 kgdb_break[i].bpt_addr == addr) {
668 breakno = i;
669 break;
670 }
671 }
672
673 if (breakno == -1) {
674 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
675 if (kgdb_break[i].state == BP_UNDEFINED) {
676 breakno = i;
677 break;
678 }
679 }
680 }
681
682 if (breakno == -1)
683 return -E2BIG;
684
685 kgdb_break[breakno].state = BP_SET;
686 kgdb_break[breakno].type = BP_BREAKPOINT;
687 kgdb_break[breakno].bpt_addr = addr;
688
689 return 0;
690 }
691
692 static int kgdb_deactivate_sw_breakpoints(void)
693 {
694 unsigned long addr;
695 int error;
696 int ret = 0;
697 int i;
698
699 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
700 if (kgdb_break[i].state != BP_ACTIVE)
701 continue;
702 addr = kgdb_break[i].bpt_addr;
703 error = kgdb_arch_remove_breakpoint(addr,
704 kgdb_break[i].saved_instr);
705 if (error) {
706 printk(KERN_INFO "KGDB: BP remove failed: %lx\n", addr);
707 ret = error;
708 }
709
710 kgdb_flush_swbreak_addr(addr);
711 kgdb_break[i].state = BP_SET;
712 }
713 return ret;
714 }
715
716 static int kgdb_remove_sw_break(unsigned long addr)
717 {
718 int i;
719
720 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
721 if ((kgdb_break[i].state == BP_SET) &&
722 (kgdb_break[i].bpt_addr == addr)) {
723 kgdb_break[i].state = BP_REMOVED;
724 return 0;
725 }
726 }
727 return -ENOENT;
728 }
729
730 int kgdb_isremovedbreak(unsigned long addr)
731 {
732 int i;
733
734 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
735 if ((kgdb_break[i].state == BP_REMOVED) &&
736 (kgdb_break[i].bpt_addr == addr))
737 return 1;
738 }
739 return 0;
740 }
741
742 static int remove_all_break(void)
743 {
744 unsigned long addr;
745 int error;
746 int i;
747
748 /* Clear memory breakpoints. */
749 for (i = 0; i < KGDB_MAX_BREAKPOINTS; i++) {
750 if (kgdb_break[i].state != BP_ACTIVE)
751 goto setundefined;
752 addr = kgdb_break[i].bpt_addr;
753 error = kgdb_arch_remove_breakpoint(addr,
754 kgdb_break[i].saved_instr);
755 if (error)
756 printk(KERN_ERR "KGDB: breakpoint remove failed: %lx\n",
757 addr);
758 setundefined:
759 kgdb_break[i].state = BP_UNDEFINED;
760 }
761
762 /* Clear hardware breakpoints. */
763 if (arch_kgdb_ops.remove_all_hw_break)
764 arch_kgdb_ops.remove_all_hw_break();
765
766 return 0;
767 }
768
769 /*
770 * Remap normal tasks to their real PID,
771 * CPU shadow threads are mapped to -CPU - 2
772 */
773 static inline int shadow_pid(int realpid)
774 {
775 if (realpid)
776 return realpid;
777
778 return -raw_smp_processor_id() - 2;
779 }
780
781 static char gdbmsgbuf[BUFMAX + 1];
782
783 static void kgdb_msg_write(const char *s, int len)
784 {
785 char *bufptr;
786 int wcount;
787 int i;
788
789 /* 'O'utput */
790 gdbmsgbuf[0] = 'O';
791
792 /* Fill and send buffers... */
793 while (len > 0) {
794 bufptr = gdbmsgbuf + 1;
795
796 /* Calculate how many this time */
797 if ((len << 1) > (BUFMAX - 2))
798 wcount = (BUFMAX - 2) >> 1;
799 else
800 wcount = len;
801
802 /* Pack in hex chars */
803 for (i = 0; i < wcount; i++)
804 bufptr = pack_hex_byte(bufptr, s[i]);
805 *bufptr = '\0';
806
807 /* Move up */
808 s += wcount;
809 len -= wcount;
810
811 /* Write packet */
812 put_packet(gdbmsgbuf);
813 }
814 }
815
816 /*
817 * Return true if there is a valid kgdb I/O module. Also if no
818 * debugger is attached a message can be printed to the console about
819 * waiting for the debugger to attach.
820 *
821 * The print_wait argument is only to be true when called from inside
822 * the core kgdb_handle_exception, because it will wait for the
823 * debugger to attach.
824 */
825 static int kgdb_io_ready(int print_wait)
826 {
827 if (!kgdb_io_ops)
828 return 0;
829 if (kgdb_connected)
830 return 1;
831 if (atomic_read(&kgdb_setting_breakpoint))
832 return 1;
833 if (print_wait)
834 printk(KERN_CRIT "KGDB: Waiting for remote debugger\n");
835 return 1;
836 }
837
838 /*
839 * All the functions that start with gdb_cmd are the various
840 * operations to implement the handlers for the gdbserial protocol
841 * where KGDB is communicating with an external debugger
842 */
843
844 /* Handle the '?' status packets */
845 static void gdb_cmd_status(struct kgdb_state *ks)
846 {
847 /*
848 * We know that this packet is only sent
849 * during initial connect. So to be safe,
850 * we clear out our breakpoints now in case
851 * GDB is reconnecting.
852 */
853 remove_all_break();
854
855 remcom_out_buffer[0] = 'S';
856 pack_hex_byte(&remcom_out_buffer[1], ks->signo);
857 }
858
859 /* Handle the 'g' get registers request */
860 static void gdb_cmd_getregs(struct kgdb_state *ks)
861 {
862 struct task_struct *thread;
863 void *local_debuggerinfo;
864 int i;
865
866 thread = kgdb_usethread;
867 if (!thread) {
868 thread = kgdb_info[ks->cpu].task;
869 local_debuggerinfo = kgdb_info[ks->cpu].debuggerinfo;
870 } else {
871 local_debuggerinfo = NULL;
872 for_each_online_cpu(i) {
873 /*
874 * Try to find the task on some other
875 * or possibly this node if we do not
876 * find the matching task then we try
877 * to approximate the results.
878 */
879 if (thread == kgdb_info[i].task)
880 local_debuggerinfo = kgdb_info[i].debuggerinfo;
881 }
882 }
883
884 /*
885 * All threads that don't have debuggerinfo should be
886 * in schedule() sleeping, since all other CPUs
887 * are in kgdb_wait, and thus have debuggerinfo.
888 */
889 if (local_debuggerinfo) {
890 pt_regs_to_gdb_regs(gdb_regs, local_debuggerinfo);
891 } else {
892 /*
893 * Pull stuff saved during switch_to; nothing
894 * else is accessible (or even particularly
895 * relevant).
896 *
897 * This should be enough for a stack trace.
898 */
899 sleeping_thread_to_gdb_regs(gdb_regs, thread);
900 }
901 kgdb_mem2hex((char *)gdb_regs, remcom_out_buffer, NUMREGBYTES);
902 }
903
904 /* Handle the 'G' set registers request */
905 static void gdb_cmd_setregs(struct kgdb_state *ks)
906 {
907 kgdb_hex2mem(&remcom_in_buffer[1], (char *)gdb_regs, NUMREGBYTES);
908
909 if (kgdb_usethread && kgdb_usethread != current) {
910 error_packet(remcom_out_buffer, -EINVAL);
911 } else {
912 gdb_regs_to_pt_regs(gdb_regs, ks->linux_regs);
913 strcpy(remcom_out_buffer, "OK");
914 }
915 }
916
917 /* Handle the 'm' memory read bytes */
918 static void gdb_cmd_memread(struct kgdb_state *ks)
919 {
920 char *ptr = &remcom_in_buffer[1];
921 unsigned long length;
922 unsigned long addr;
923 int err;
924
925 if (kgdb_hex2long(&ptr, &addr) > 0 && *ptr++ == ',' &&
926 kgdb_hex2long(&ptr, &length) > 0) {
927 err = kgdb_mem2hex((char *)addr, remcom_out_buffer, length);
928 if (err)
929 error_packet(remcom_out_buffer, err);
930 } else {
931 error_packet(remcom_out_buffer, -EINVAL);
932 }
933 }
934
935 /* Handle the 'M' memory write bytes */
936 static void gdb_cmd_memwrite(struct kgdb_state *ks)
937 {
938 int err = write_mem_msg(0);
939
940 if (err)
941 error_packet(remcom_out_buffer, err);
942 else
943 strcpy(remcom_out_buffer, "OK");
944 }
945
946 /* Handle the 'X' memory binary write bytes */
947 static void gdb_cmd_binwrite(struct kgdb_state *ks)
948 {
949 int err = write_mem_msg(1);
950
951 if (err)
952 error_packet(remcom_out_buffer, err);
953 else
954 strcpy(remcom_out_buffer, "OK");
955 }
956
957 /* Handle the 'D' or 'k', detach or kill packets */
958 static void gdb_cmd_detachkill(struct kgdb_state *ks)
959 {
960 int error;
961
962 /* The detach case */
963 if (remcom_in_buffer[0] == 'D') {
964 error = remove_all_break();
965 if (error < 0) {
966 error_packet(remcom_out_buffer, error);
967 } else {
968 strcpy(remcom_out_buffer, "OK");
969 kgdb_connected = 0;
970 }
971 put_packet(remcom_out_buffer);
972 } else {
973 /*
974 * Assume the kill case, with no exit code checking,
975 * trying to force detach the debugger:
976 */
977 remove_all_break();
978 kgdb_connected = 0;
979 }
980 }
981
982 /* Handle the 'R' reboot packets */
983 static int gdb_cmd_reboot(struct kgdb_state *ks)
984 {
985 /* For now, only honor R0 */
986 if (strcmp(remcom_in_buffer, "R0") == 0) {
987 printk(KERN_CRIT "Executing emergency reboot\n");
988 strcpy(remcom_out_buffer, "OK");
989 put_packet(remcom_out_buffer);
990
991 /*
992 * Execution should not return from
993 * machine_emergency_restart()
994 */
995 machine_emergency_restart();
996 kgdb_connected = 0;
997
998 return 1;
999 }
1000 return 0;
1001 }
1002
1003 /* Handle the 'q' query packets */
1004 static void gdb_cmd_query(struct kgdb_state *ks)
1005 {
1006 struct task_struct *g;
1007 struct task_struct *p;
1008 unsigned char thref[8];
1009 char *ptr;
1010 int i;
1011 int cpu;
1012 int finished = 0;
1013
1014 switch (remcom_in_buffer[1]) {
1015 case 's':
1016 case 'f':
1017 if (memcmp(remcom_in_buffer + 2, "ThreadInfo", 10)) {
1018 error_packet(remcom_out_buffer, -EINVAL);
1019 break;
1020 }
1021
1022 i = 0;
1023 remcom_out_buffer[0] = 'm';
1024 ptr = remcom_out_buffer + 1;
1025 if (remcom_in_buffer[1] == 'f') {
1026 /* Each cpu is a shadow thread */
1027 for_each_online_cpu(cpu) {
1028 ks->thr_query = 0;
1029 int_to_threadref(thref, -cpu - 2);
1030 pack_threadid(ptr, thref);
1031 ptr += BUF_THREAD_ID_SIZE;
1032 *(ptr++) = ',';
1033 i++;
1034 }
1035 }
1036
1037 do_each_thread(g, p) {
1038 if (i >= ks->thr_query && !finished) {
1039 int_to_threadref(thref, p->pid);
1040 pack_threadid(ptr, thref);
1041 ptr += BUF_THREAD_ID_SIZE;
1042 *(ptr++) = ',';
1043 ks->thr_query++;
1044 if (ks->thr_query % KGDB_MAX_THREAD_QUERY == 0)
1045 finished = 1;
1046 }
1047 i++;
1048 } while_each_thread(g, p);
1049
1050 *(--ptr) = '\0';
1051 break;
1052
1053 case 'C':
1054 /* Current thread id */
1055 strcpy(remcom_out_buffer, "QC");
1056 ks->threadid = shadow_pid(current->pid);
1057 int_to_threadref(thref, ks->threadid);
1058 pack_threadid(remcom_out_buffer + 2, thref);
1059 break;
1060 case 'T':
1061 if (memcmp(remcom_in_buffer + 1, "ThreadExtraInfo,", 16)) {
1062 error_packet(remcom_out_buffer, -EINVAL);
1063 break;
1064 }
1065 ks->threadid = 0;
1066 ptr = remcom_in_buffer + 17;
1067 kgdb_hex2long(&ptr, &ks->threadid);
1068 if (!getthread(ks->linux_regs, ks->threadid)) {
1069 error_packet(remcom_out_buffer, -EINVAL);
1070 break;
1071 }
1072 if ((int)ks->threadid > 0) {
1073 kgdb_mem2hex(getthread(ks->linux_regs,
1074 ks->threadid)->comm,
1075 remcom_out_buffer, 16);
1076 } else {
1077 static char tmpstr[23 + BUF_THREAD_ID_SIZE];
1078
1079 sprintf(tmpstr, "shadowCPU%d",
1080 (int)(-ks->threadid - 2));
1081 kgdb_mem2hex(tmpstr, remcom_out_buffer, strlen(tmpstr));
1082 }
1083 break;
1084 }
1085 }
1086
1087 /* Handle the 'H' task query packets */
1088 static void gdb_cmd_task(struct kgdb_state *ks)
1089 {
1090 struct task_struct *thread;
1091 char *ptr;
1092
1093 switch (remcom_in_buffer[1]) {
1094 case 'g':
1095 ptr = &remcom_in_buffer[2];
1096 kgdb_hex2long(&ptr, &ks->threadid);
1097 thread = getthread(ks->linux_regs, ks->threadid);
1098 if (!thread && ks->threadid > 0) {
1099 error_packet(remcom_out_buffer, -EINVAL);
1100 break;
1101 }
1102 kgdb_usethread = thread;
1103 ks->kgdb_usethreadid = ks->threadid;
1104 strcpy(remcom_out_buffer, "OK");
1105 break;
1106 case 'c':
1107 ptr = &remcom_in_buffer[2];
1108 kgdb_hex2long(&ptr, &ks->threadid);
1109 if (!ks->threadid) {
1110 kgdb_contthread = NULL;
1111 } else {
1112 thread = getthread(ks->linux_regs, ks->threadid);
1113 if (!thread && ks->threadid > 0) {
1114 error_packet(remcom_out_buffer, -EINVAL);
1115 break;
1116 }
1117 kgdb_contthread = thread;
1118 }
1119 strcpy(remcom_out_buffer, "OK");
1120 break;
1121 }
1122 }
1123
1124 /* Handle the 'T' thread query packets */
1125 static void gdb_cmd_thread(struct kgdb_state *ks)
1126 {
1127 char *ptr = &remcom_in_buffer[1];
1128 struct task_struct *thread;
1129
1130 kgdb_hex2long(&ptr, &ks->threadid);
1131 thread = getthread(ks->linux_regs, ks->threadid);
1132 if (thread)
1133 strcpy(remcom_out_buffer, "OK");
1134 else
1135 error_packet(remcom_out_buffer, -EINVAL);
1136 }
1137
1138 /* Handle the 'z' or 'Z' breakpoint remove or set packets */
1139 static void gdb_cmd_break(struct kgdb_state *ks)
1140 {
1141 /*
1142 * Since GDB-5.3, it's been drafted that '0' is a software
1143 * breakpoint, '1' is a hardware breakpoint, so let's do that.
1144 */
1145 char *bpt_type = &remcom_in_buffer[1];
1146 char *ptr = &remcom_in_buffer[2];
1147 unsigned long addr;
1148 unsigned long length;
1149 int error = 0;
1150
1151 if (arch_kgdb_ops.set_hw_breakpoint && *bpt_type >= '1') {
1152 /* Unsupported */
1153 if (*bpt_type > '4')
1154 return;
1155 } else {
1156 if (*bpt_type != '0' && *bpt_type != '1')
1157 /* Unsupported. */
1158 return;
1159 }
1160
1161 /*
1162 * Test if this is a hardware breakpoint, and
1163 * if we support it:
1164 */
1165 if (*bpt_type == '1' && !(arch_kgdb_ops.flags & KGDB_HW_BREAKPOINT))
1166 /* Unsupported. */
1167 return;
1168
1169 if (*(ptr++) != ',') {
1170 error_packet(remcom_out_buffer, -EINVAL);
1171 return;
1172 }
1173 if (!kgdb_hex2long(&ptr, &addr)) {
1174 error_packet(remcom_out_buffer, -EINVAL);
1175 return;
1176 }
1177 if (*(ptr++) != ',' ||
1178 !kgdb_hex2long(&ptr, &length)) {
1179 error_packet(remcom_out_buffer, -EINVAL);
1180 return;
1181 }
1182
1183 if (remcom_in_buffer[0] == 'Z' && *bpt_type == '0')
1184 error = kgdb_set_sw_break(addr);
1185 else if (remcom_in_buffer[0] == 'z' && *bpt_type == '0')
1186 error = kgdb_remove_sw_break(addr);
1187 else if (remcom_in_buffer[0] == 'Z')
1188 error = arch_kgdb_ops.set_hw_breakpoint(addr,
1189 (int)length, *bpt_type - '0');
1190 else if (remcom_in_buffer[0] == 'z')
1191 error = arch_kgdb_ops.remove_hw_breakpoint(addr,
1192 (int) length, *bpt_type - '0');
1193
1194 if (error == 0)
1195 strcpy(remcom_out_buffer, "OK");
1196 else
1197 error_packet(remcom_out_buffer, error);
1198 }
1199
1200 /* Handle the 'C' signal / exception passing packets */
1201 static int gdb_cmd_exception_pass(struct kgdb_state *ks)
1202 {
1203 /* C09 == pass exception
1204 * C15 == detach kgdb, pass exception
1205 */
1206 if (remcom_in_buffer[1] == '0' && remcom_in_buffer[2] == '9') {
1207
1208 ks->pass_exception = 1;
1209 remcom_in_buffer[0] = 'c';
1210
1211 } else if (remcom_in_buffer[1] == '1' && remcom_in_buffer[2] == '5') {
1212
1213 ks->pass_exception = 1;
1214 remcom_in_buffer[0] = 'D';
1215 remove_all_break();
1216 kgdb_connected = 0;
1217 return 1;
1218
1219 } else {
1220 kgdb_msg_write("KGDB only knows signal 9 (pass)"
1221 " and 15 (pass and disconnect)\n"
1222 "Executing a continue without signal passing\n", 0);
1223 remcom_in_buffer[0] = 'c';
1224 }
1225
1226 /* Indicate fall through */
1227 return -1;
1228 }
1229
1230 /*
1231 * This function performs all gdbserial command procesing
1232 */
1233 static int gdb_serial_stub(struct kgdb_state *ks)
1234 {
1235 int error = 0;
1236 int tmp;
1237
1238 /* Clear the out buffer. */
1239 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1240
1241 if (kgdb_connected) {
1242 unsigned char thref[8];
1243 char *ptr;
1244
1245 /* Reply to host that an exception has occurred */
1246 ptr = remcom_out_buffer;
1247 *ptr++ = 'T';
1248 ptr = pack_hex_byte(ptr, ks->signo);
1249 ptr += strlen(strcpy(ptr, "thread:"));
1250 int_to_threadref(thref, shadow_pid(current->pid));
1251 ptr = pack_threadid(ptr, thref);
1252 *ptr++ = ';';
1253 put_packet(remcom_out_buffer);
1254 }
1255
1256 kgdb_usethread = kgdb_info[ks->cpu].task;
1257 ks->kgdb_usethreadid = shadow_pid(kgdb_info[ks->cpu].task->pid);
1258 ks->pass_exception = 0;
1259
1260 while (1) {
1261 error = 0;
1262
1263 /* Clear the out buffer. */
1264 memset(remcom_out_buffer, 0, sizeof(remcom_out_buffer));
1265
1266 get_packet(remcom_in_buffer);
1267
1268 switch (remcom_in_buffer[0]) {
1269 case '?': /* gdbserial status */
1270 gdb_cmd_status(ks);
1271 break;
1272 case 'g': /* return the value of the CPU registers */
1273 gdb_cmd_getregs(ks);
1274 break;
1275 case 'G': /* set the value of the CPU registers - return OK */
1276 gdb_cmd_setregs(ks);
1277 break;
1278 case 'm': /* mAA..AA,LLLL Read LLLL bytes at address AA..AA */
1279 gdb_cmd_memread(ks);
1280 break;
1281 case 'M': /* MAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1282 gdb_cmd_memwrite(ks);
1283 break;
1284 case 'X': /* XAA..AA,LLLL: Write LLLL bytes at address AA..AA */
1285 gdb_cmd_binwrite(ks);
1286 break;
1287 /* kill or detach. KGDB should treat this like a
1288 * continue.
1289 */
1290 case 'D': /* Debugger detach */
1291 case 'k': /* Debugger detach via kill */
1292 gdb_cmd_detachkill(ks);
1293 goto default_handle;
1294 case 'R': /* Reboot */
1295 if (gdb_cmd_reboot(ks))
1296 goto default_handle;
1297 break;
1298 case 'q': /* query command */
1299 gdb_cmd_query(ks);
1300 break;
1301 case 'H': /* task related */
1302 gdb_cmd_task(ks);
1303 break;
1304 case 'T': /* Query thread status */
1305 gdb_cmd_thread(ks);
1306 break;
1307 case 'z': /* Break point remove */
1308 case 'Z': /* Break point set */
1309 gdb_cmd_break(ks);
1310 break;
1311 case 'C': /* Exception passing */
1312 tmp = gdb_cmd_exception_pass(ks);
1313 if (tmp > 0)
1314 goto default_handle;
1315 if (tmp == 0)
1316 break;
1317 /* Fall through on tmp < 0 */
1318 case 'c': /* Continue packet */
1319 case 's': /* Single step packet */
1320 if (kgdb_contthread && kgdb_contthread != current) {
1321 /* Can't switch threads in kgdb */
1322 error_packet(remcom_out_buffer, -EINVAL);
1323 break;
1324 }
1325 kgdb_activate_sw_breakpoints();
1326 /* Fall through to default processing */
1327 default:
1328 default_handle:
1329 error = kgdb_arch_handle_exception(ks->ex_vector,
1330 ks->signo,
1331 ks->err_code,
1332 remcom_in_buffer,
1333 remcom_out_buffer,
1334 ks->linux_regs);
1335 /*
1336 * Leave cmd processing on error, detach,
1337 * kill, continue, or single step.
1338 */
1339 if (error >= 0 || remcom_in_buffer[0] == 'D' ||
1340 remcom_in_buffer[0] == 'k') {
1341 error = 0;
1342 goto kgdb_exit;
1343 }
1344
1345 }
1346
1347 /* reply to the request */
1348 put_packet(remcom_out_buffer);
1349 }
1350
1351 kgdb_exit:
1352 if (ks->pass_exception)
1353 error = 1;
1354 return error;
1355 }
1356
1357 static int kgdb_reenter_check(struct kgdb_state *ks)
1358 {
1359 unsigned long addr;
1360
1361 if (atomic_read(&kgdb_active) != raw_smp_processor_id())
1362 return 0;
1363
1364 /* Panic on recursive debugger calls: */
1365 exception_level++;
1366 addr = kgdb_arch_pc(ks->ex_vector, ks->linux_regs);
1367 kgdb_deactivate_sw_breakpoints();
1368
1369 /*
1370 * If the break point removed ok at the place exception
1371 * occurred, try to recover and print a warning to the end
1372 * user because the user planted a breakpoint in a place that
1373 * KGDB needs in order to function.
1374 */
1375 if (kgdb_remove_sw_break(addr) == 0) {
1376 exception_level = 0;
1377 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1378 kgdb_activate_sw_breakpoints();
1379 printk(KERN_CRIT "KGDB: re-enter error: breakpoint removed %lx\n",
1380 addr);
1381 WARN_ON_ONCE(1);
1382
1383 return 1;
1384 }
1385 remove_all_break();
1386 kgdb_skipexception(ks->ex_vector, ks->linux_regs);
1387
1388 if (exception_level > 1) {
1389 dump_stack();
1390 panic("Recursive entry to debugger");
1391 }
1392
1393 printk(KERN_CRIT "KGDB: re-enter exception: ALL breakpoints killed\n");
1394 dump_stack();
1395 panic("Recursive entry to debugger");
1396
1397 return 1;
1398 }
1399
1400 /*
1401 * kgdb_handle_exception() - main entry point from a kernel exception
1402 *
1403 * Locking hierarchy:
1404 * interface locks, if any (begin_session)
1405 * kgdb lock (kgdb_active)
1406 */
1407 int
1408 kgdb_handle_exception(int evector, int signo, int ecode, struct pt_regs *regs)
1409 {
1410 struct kgdb_state kgdb_var;
1411 struct kgdb_state *ks = &kgdb_var;
1412 unsigned long flags;
1413 int sstep_tries = 100;
1414 int error = 0;
1415 int i, cpu;
1416
1417 ks->cpu = raw_smp_processor_id();
1418 ks->ex_vector = evector;
1419 ks->signo = signo;
1420 ks->ex_vector = evector;
1421 ks->err_code = ecode;
1422 ks->kgdb_usethreadid = 0;
1423 ks->linux_regs = regs;
1424
1425 if (kgdb_reenter_check(ks))
1426 return 0; /* Ouch, double exception ! */
1427
1428 acquirelock:
1429 /*
1430 * Interrupts will be restored by the 'trap return' code, except when
1431 * single stepping.
1432 */
1433 local_irq_save(flags);
1434
1435 cpu = raw_smp_processor_id();
1436
1437 /*
1438 * Acquire the kgdb_active lock:
1439 */
1440 while (atomic_cmpxchg(&kgdb_active, -1, cpu) != -1)
1441 cpu_relax();
1442
1443 /*
1444 * For single stepping, try to only enter on the processor
1445 * that was single stepping. To gaurd against a deadlock, the
1446 * kernel will only try for the value of sstep_tries before
1447 * giving up and continuing on.
1448 */
1449 if (atomic_read(&kgdb_cpu_doing_single_step) != -1 &&
1450 (kgdb_info[cpu].task &&
1451 kgdb_info[cpu].task->pid != kgdb_sstep_pid) && --sstep_tries) {
1452 atomic_set(&kgdb_active, -1);
1453 touch_softlockup_watchdog();
1454 clocksource_touch_watchdog();
1455 local_irq_restore(flags);
1456
1457 goto acquirelock;
1458 }
1459
1460 if (!kgdb_io_ready(1)) {
1461 error = 1;
1462 goto kgdb_restore; /* No I/O connection, so resume the system */
1463 }
1464
1465 /*
1466 * Don't enter if we have hit a removed breakpoint.
1467 */
1468 if (kgdb_skipexception(ks->ex_vector, ks->linux_regs))
1469 goto kgdb_restore;
1470
1471 /* Call the I/O driver's pre_exception routine */
1472 if (kgdb_io_ops->pre_exception)
1473 kgdb_io_ops->pre_exception();
1474
1475 kgdb_info[ks->cpu].debuggerinfo = ks->linux_regs;
1476 kgdb_info[ks->cpu].task = current;
1477
1478 kgdb_disable_hw_debug(ks->linux_regs);
1479
1480 /*
1481 * Get the passive CPU lock which will hold all the non-primary
1482 * CPU in a spin state while the debugger is active
1483 */
1484 if (!kgdb_single_step) {
1485 for (i = 0; i < NR_CPUS; i++)
1486 atomic_set(&passive_cpu_wait[i], 1);
1487 }
1488
1489 /*
1490 * spin_lock code is good enough as a barrier so we don't
1491 * need one here:
1492 */
1493 atomic_set(&cpu_in_kgdb[ks->cpu], 1);
1494
1495 #ifdef CONFIG_SMP
1496 /* Signal the other CPUs to enter kgdb_wait() */
1497 if ((!kgdb_single_step) && kgdb_do_roundup)
1498 kgdb_roundup_cpus(flags);
1499 #endif
1500
1501 /*
1502 * Wait for the other CPUs to be notified and be waiting for us:
1503 */
1504 for_each_online_cpu(i) {
1505 while (!atomic_read(&cpu_in_kgdb[i]))
1506 cpu_relax();
1507 }
1508
1509 /*
1510 * At this point the primary processor is completely
1511 * in the debugger and all secondary CPUs are quiescent
1512 */
1513 kgdb_post_primary_code(ks->linux_regs, ks->ex_vector, ks->err_code);
1514 kgdb_deactivate_sw_breakpoints();
1515 kgdb_single_step = 0;
1516 kgdb_contthread = current;
1517 exception_level = 0;
1518
1519 /* Talk to debugger with gdbserial protocol */
1520 error = gdb_serial_stub(ks);
1521
1522 /* Call the I/O driver's post_exception routine */
1523 if (kgdb_io_ops->post_exception)
1524 kgdb_io_ops->post_exception();
1525
1526 kgdb_info[ks->cpu].debuggerinfo = NULL;
1527 kgdb_info[ks->cpu].task = NULL;
1528 atomic_set(&cpu_in_kgdb[ks->cpu], 0);
1529
1530 if (!kgdb_single_step) {
1531 for (i = NR_CPUS-1; i >= 0; i--)
1532 atomic_set(&passive_cpu_wait[i], 0);
1533 /*
1534 * Wait till all the CPUs have quit
1535 * from the debugger.
1536 */
1537 for_each_online_cpu(i) {
1538 while (atomic_read(&cpu_in_kgdb[i]))
1539 cpu_relax();
1540 }
1541 }
1542
1543 kgdb_restore:
1544 if (atomic_read(&kgdb_cpu_doing_single_step) != -1) {
1545 int sstep_cpu = atomic_read(&kgdb_cpu_doing_single_step);
1546 if (kgdb_info[sstep_cpu].task)
1547 kgdb_sstep_pid = kgdb_info[sstep_cpu].task->pid;
1548 else
1549 kgdb_sstep_pid = 0;
1550 }
1551 /* Free kgdb_active */
1552 atomic_set(&kgdb_active, -1);
1553 touch_softlockup_watchdog();
1554 clocksource_touch_watchdog();
1555 local_irq_restore(flags);
1556
1557 return error;
1558 }
1559
1560 int kgdb_nmicallback(int cpu, void *regs)
1561 {
1562 #ifdef CONFIG_SMP
1563 if (!atomic_read(&cpu_in_kgdb[cpu]) &&
1564 atomic_read(&kgdb_active) != cpu &&
1565 atomic_read(&cpu_in_kgdb[atomic_read(&kgdb_active)])) {
1566 kgdb_wait((struct pt_regs *)regs);
1567 return 0;
1568 }
1569 #endif
1570 return 1;
1571 }
1572
1573 static void kgdb_console_write(struct console *co, const char *s,
1574 unsigned count)
1575 {
1576 unsigned long flags;
1577
1578 /* If we're debugging, or KGDB has not connected, don't try
1579 * and print. */
1580 if (!kgdb_connected || atomic_read(&kgdb_active) != -1)
1581 return;
1582
1583 local_irq_save(flags);
1584 kgdb_msg_write(s, count);
1585 local_irq_restore(flags);
1586 }
1587
1588 static struct console kgdbcons = {
1589 .name = "kgdb",
1590 .write = kgdb_console_write,
1591 .flags = CON_PRINTBUFFER | CON_ENABLED,
1592 .index = -1,
1593 };
1594
1595 #ifdef CONFIG_MAGIC_SYSRQ
1596 static void sysrq_handle_gdb(int key, struct tty_struct *tty)
1597 {
1598 if (!kgdb_io_ops) {
1599 printk(KERN_CRIT "ERROR: No KGDB I/O module available\n");
1600 return;
1601 }
1602 if (!kgdb_connected)
1603 printk(KERN_CRIT "Entering KGDB\n");
1604
1605 kgdb_breakpoint();
1606 }
1607
1608 static struct sysrq_key_op sysrq_gdb_op = {
1609 .handler = sysrq_handle_gdb,
1610 .help_msg = "debug(G)",
1611 .action_msg = "DEBUG",
1612 };
1613 #endif
1614
1615 static void kgdb_register_callbacks(void)
1616 {
1617 if (!kgdb_io_module_registered) {
1618 kgdb_io_module_registered = 1;
1619 kgdb_arch_init();
1620 #ifdef CONFIG_MAGIC_SYSRQ
1621 register_sysrq_key('g', &sysrq_gdb_op);
1622 #endif
1623 if (kgdb_use_con && !kgdb_con_registered) {
1624 register_console(&kgdbcons);
1625 kgdb_con_registered = 1;
1626 }
1627 }
1628 }
1629
1630 static void kgdb_unregister_callbacks(void)
1631 {
1632 /*
1633 * When this routine is called KGDB should unregister from the
1634 * panic handler and clean up, making sure it is not handling any
1635 * break exceptions at the time.
1636 */
1637 if (kgdb_io_module_registered) {
1638 kgdb_io_module_registered = 0;
1639 kgdb_arch_exit();
1640 #ifdef CONFIG_MAGIC_SYSRQ
1641 unregister_sysrq_key('g', &sysrq_gdb_op);
1642 #endif
1643 if (kgdb_con_registered) {
1644 unregister_console(&kgdbcons);
1645 kgdb_con_registered = 0;
1646 }
1647 }
1648 }
1649
1650 static void kgdb_initial_breakpoint(void)
1651 {
1652 kgdb_break_asap = 0;
1653
1654 printk(KERN_CRIT "kgdb: Waiting for connection from remote gdb...\n");
1655 kgdb_breakpoint();
1656 }
1657
1658 /**
1659 * kgdb_register_io_module - register KGDB IO module
1660 * @new_kgdb_io_ops: the io ops vector
1661 *
1662 * Register it with the KGDB core.
1663 */
1664 int kgdb_register_io_module(struct kgdb_io *new_kgdb_io_ops)
1665 {
1666 int err;
1667
1668 spin_lock(&kgdb_registration_lock);
1669
1670 if (kgdb_io_ops) {
1671 spin_unlock(&kgdb_registration_lock);
1672
1673 printk(KERN_ERR "kgdb: Another I/O driver is already "
1674 "registered with KGDB.\n");
1675 return -EBUSY;
1676 }
1677
1678 if (new_kgdb_io_ops->init) {
1679 err = new_kgdb_io_ops->init();
1680 if (err) {
1681 spin_unlock(&kgdb_registration_lock);
1682 return err;
1683 }
1684 }
1685
1686 kgdb_io_ops = new_kgdb_io_ops;
1687
1688 spin_unlock(&kgdb_registration_lock);
1689
1690 printk(KERN_INFO "kgdb: Registered I/O driver %s.\n",
1691 new_kgdb_io_ops->name);
1692
1693 /* Arm KGDB now. */
1694 kgdb_register_callbacks();
1695
1696 if (kgdb_break_asap)
1697 kgdb_initial_breakpoint();
1698
1699 return 0;
1700 }
1701 EXPORT_SYMBOL_GPL(kgdb_register_io_module);
1702
1703 /**
1704 * kkgdb_unregister_io_module - unregister KGDB IO module
1705 * @old_kgdb_io_ops: the io ops vector
1706 *
1707 * Unregister it with the KGDB core.
1708 */
1709 void kgdb_unregister_io_module(struct kgdb_io *old_kgdb_io_ops)
1710 {
1711 BUG_ON(kgdb_connected);
1712
1713 /*
1714 * KGDB is no longer able to communicate out, so
1715 * unregister our callbacks and reset state.
1716 */
1717 kgdb_unregister_callbacks();
1718
1719 spin_lock(&kgdb_registration_lock);
1720
1721 WARN_ON_ONCE(kgdb_io_ops != old_kgdb_io_ops);
1722 kgdb_io_ops = NULL;
1723
1724 spin_unlock(&kgdb_registration_lock);
1725
1726 printk(KERN_INFO
1727 "kgdb: Unregistered I/O driver %s, debugger disabled.\n",
1728 old_kgdb_io_ops->name);
1729 }
1730 EXPORT_SYMBOL_GPL(kgdb_unregister_io_module);
1731
1732 /**
1733 * kgdb_breakpoint - generate breakpoint exception
1734 *
1735 * This function will generate a breakpoint exception. It is used at the
1736 * beginning of a program to sync up with a debugger and can be used
1737 * otherwise as a quick means to stop program execution and "break" into
1738 * the debugger.
1739 */
1740 void kgdb_breakpoint(void)
1741 {
1742 atomic_set(&kgdb_setting_breakpoint, 1);
1743 wmb(); /* Sync point before breakpoint */
1744 arch_kgdb_breakpoint();
1745 wmb(); /* Sync point after breakpoint */
1746 atomic_set(&kgdb_setting_breakpoint, 0);
1747 }
1748 EXPORT_SYMBOL_GPL(kgdb_breakpoint);
1749
1750 static int __init opt_kgdb_wait(char *str)
1751 {
1752 kgdb_break_asap = 1;
1753
1754 if (kgdb_io_module_registered)
1755 kgdb_initial_breakpoint();
1756
1757 return 0;
1758 }
1759
1760 early_param("kgdbwait", opt_kgdb_wait);