]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - kernel/kmod.c
hwmon: (ibmpowernv) add a get_sensor_type() routine
[mirror_ubuntu-zesty-kernel.git] / kernel / kmod.c
1 /*
2 kmod, the new module loader (replaces kerneld)
3 Kirk Petersen
4
5 Reorganized not to be a daemon by Adam Richter, with guidance
6 from Greg Zornetzer.
7
8 Modified to avoid chroot and file sharing problems.
9 Mikael Pettersson
10
11 Limit the concurrent number of kmod modprobes to catch loops from
12 "modprobe needs a service that is in a module".
13 Keith Owens <kaos@ocs.com.au> December 1999
14
15 Unblock all signals when we exec a usermode process.
16 Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000
17
18 call_usermodehelper wait flag, and remove exec_usermodehelper.
19 Rusty Russell <rusty@rustcorp.com.au> Jan 2003
20 */
21 #include <linux/module.h>
22 #include <linux/sched.h>
23 #include <linux/syscalls.h>
24 #include <linux/unistd.h>
25 #include <linux/kmod.h>
26 #include <linux/slab.h>
27 #include <linux/completion.h>
28 #include <linux/cred.h>
29 #include <linux/file.h>
30 #include <linux/fdtable.h>
31 #include <linux/workqueue.h>
32 #include <linux/security.h>
33 #include <linux/mount.h>
34 #include <linux/kernel.h>
35 #include <linux/init.h>
36 #include <linux/resource.h>
37 #include <linux/notifier.h>
38 #include <linux/suspend.h>
39 #include <linux/rwsem.h>
40 #include <linux/ptrace.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43
44 #include <trace/events/module.h>
45
46 extern int max_threads;
47
48 static struct workqueue_struct *khelper_wq;
49
50 #define CAP_BSET (void *)1
51 #define CAP_PI (void *)2
52
53 static kernel_cap_t usermodehelper_bset = CAP_FULL_SET;
54 static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET;
55 static DEFINE_SPINLOCK(umh_sysctl_lock);
56 static DECLARE_RWSEM(umhelper_sem);
57
58 #ifdef CONFIG_MODULES
59
60 /*
61 modprobe_path is set via /proc/sys.
62 */
63 char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe";
64
65 static void free_modprobe_argv(struct subprocess_info *info)
66 {
67 kfree(info->argv[3]); /* check call_modprobe() */
68 kfree(info->argv);
69 }
70
71 static int call_modprobe(char *module_name, int wait)
72 {
73 struct subprocess_info *info;
74 static char *envp[] = {
75 "HOME=/",
76 "TERM=linux",
77 "PATH=/sbin:/usr/sbin:/bin:/usr/bin",
78 NULL
79 };
80
81 char **argv = kmalloc(sizeof(char *[5]), GFP_KERNEL);
82 if (!argv)
83 goto out;
84
85 module_name = kstrdup(module_name, GFP_KERNEL);
86 if (!module_name)
87 goto free_argv;
88
89 argv[0] = modprobe_path;
90 argv[1] = "-q";
91 argv[2] = "--";
92 argv[3] = module_name; /* check free_modprobe_argv() */
93 argv[4] = NULL;
94
95 info = call_usermodehelper_setup(modprobe_path, argv, envp, GFP_KERNEL,
96 NULL, free_modprobe_argv, NULL);
97 if (!info)
98 goto free_module_name;
99
100 return call_usermodehelper_exec(info, wait | UMH_KILLABLE);
101
102 free_module_name:
103 kfree(module_name);
104 free_argv:
105 kfree(argv);
106 out:
107 return -ENOMEM;
108 }
109
110 /**
111 * __request_module - try to load a kernel module
112 * @wait: wait (or not) for the operation to complete
113 * @fmt: printf style format string for the name of the module
114 * @...: arguments as specified in the format string
115 *
116 * Load a module using the user mode module loader. The function returns
117 * zero on success or a negative errno code on failure. Note that a
118 * successful module load does not mean the module did not then unload
119 * and exit on an error of its own. Callers must check that the service
120 * they requested is now available not blindly invoke it.
121 *
122 * If module auto-loading support is disabled then this function
123 * becomes a no-operation.
124 */
125 int __request_module(bool wait, const char *fmt, ...)
126 {
127 va_list args;
128 char module_name[MODULE_NAME_LEN];
129 unsigned int max_modprobes;
130 int ret;
131 static atomic_t kmod_concurrent = ATOMIC_INIT(0);
132 #define MAX_KMOD_CONCURRENT 50 /* Completely arbitrary value - KAO */
133 static int kmod_loop_msg;
134
135 /*
136 * We don't allow synchronous module loading from async. Module
137 * init may invoke async_synchronize_full() which will end up
138 * waiting for this task which already is waiting for the module
139 * loading to complete, leading to a deadlock.
140 */
141 WARN_ON_ONCE(wait && current_is_async());
142
143 if (!modprobe_path[0])
144 return 0;
145
146 va_start(args, fmt);
147 ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args);
148 va_end(args);
149 if (ret >= MODULE_NAME_LEN)
150 return -ENAMETOOLONG;
151
152 ret = security_kernel_module_request(module_name);
153 if (ret)
154 return ret;
155
156 /* If modprobe needs a service that is in a module, we get a recursive
157 * loop. Limit the number of running kmod threads to max_threads/2 or
158 * MAX_KMOD_CONCURRENT, whichever is the smaller. A cleaner method
159 * would be to run the parents of this process, counting how many times
160 * kmod was invoked. That would mean accessing the internals of the
161 * process tables to get the command line, proc_pid_cmdline is static
162 * and it is not worth changing the proc code just to handle this case.
163 * KAO.
164 *
165 * "trace the ppid" is simple, but will fail if someone's
166 * parent exits. I think this is as good as it gets. --RR
167 */
168 max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT);
169 atomic_inc(&kmod_concurrent);
170 if (atomic_read(&kmod_concurrent) > max_modprobes) {
171 /* We may be blaming an innocent here, but unlikely */
172 if (kmod_loop_msg < 5) {
173 printk(KERN_ERR
174 "request_module: runaway loop modprobe %s\n",
175 module_name);
176 kmod_loop_msg++;
177 }
178 atomic_dec(&kmod_concurrent);
179 return -ENOMEM;
180 }
181
182 trace_module_request(module_name, wait, _RET_IP_);
183
184 ret = call_modprobe(module_name, wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC);
185
186 atomic_dec(&kmod_concurrent);
187 return ret;
188 }
189 EXPORT_SYMBOL(__request_module);
190 #endif /* CONFIG_MODULES */
191
192 static void call_usermodehelper_freeinfo(struct subprocess_info *info)
193 {
194 if (info->cleanup)
195 (*info->cleanup)(info);
196 kfree(info);
197 }
198
199 static void umh_complete(struct subprocess_info *sub_info)
200 {
201 struct completion *comp = xchg(&sub_info->complete, NULL);
202 /*
203 * See call_usermodehelper_exec(). If xchg() returns NULL
204 * we own sub_info, the UMH_KILLABLE caller has gone away
205 * or the caller used UMH_NO_WAIT.
206 */
207 if (comp)
208 complete(comp);
209 else
210 call_usermodehelper_freeinfo(sub_info);
211 }
212
213 /*
214 * This is the task which runs the usermode application
215 */
216 static int ____call_usermodehelper(void *data)
217 {
218 struct subprocess_info *sub_info = data;
219 struct cred *new;
220 int retval;
221
222 spin_lock_irq(&current->sighand->siglock);
223 flush_signal_handlers(current, 1);
224 spin_unlock_irq(&current->sighand->siglock);
225
226 /* We can run anywhere, unlike our parent keventd(). */
227 set_cpus_allowed_ptr(current, cpu_all_mask);
228
229 /*
230 * Our parent is keventd, which runs with elevated scheduling priority.
231 * Avoid propagating that into the userspace child.
232 */
233 set_user_nice(current, 0);
234
235 retval = -ENOMEM;
236 new = prepare_kernel_cred(current);
237 if (!new)
238 goto out;
239
240 spin_lock(&umh_sysctl_lock);
241 new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset);
242 new->cap_inheritable = cap_intersect(usermodehelper_inheritable,
243 new->cap_inheritable);
244 spin_unlock(&umh_sysctl_lock);
245
246 if (sub_info->init) {
247 retval = sub_info->init(sub_info, new);
248 if (retval) {
249 abort_creds(new);
250 goto out;
251 }
252 }
253
254 commit_creds(new);
255
256 retval = do_execve(getname_kernel(sub_info->path),
257 (const char __user *const __user *)sub_info->argv,
258 (const char __user *const __user *)sub_info->envp);
259 out:
260 sub_info->retval = retval;
261 /* wait_for_helper() will call umh_complete if UHM_WAIT_PROC. */
262 if (!(sub_info->wait & UMH_WAIT_PROC))
263 umh_complete(sub_info);
264 if (!retval)
265 return 0;
266 do_exit(0);
267 }
268
269 /* Keventd can't block, but this (a child) can. */
270 static int wait_for_helper(void *data)
271 {
272 struct subprocess_info *sub_info = data;
273 pid_t pid;
274
275 /* If SIGCLD is ignored sys_wait4 won't populate the status. */
276 kernel_sigaction(SIGCHLD, SIG_DFL);
277 pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD);
278 if (pid < 0) {
279 sub_info->retval = pid;
280 } else {
281 int ret = -ECHILD;
282 /*
283 * Normally it is bogus to call wait4() from in-kernel because
284 * wait4() wants to write the exit code to a userspace address.
285 * But wait_for_helper() always runs as keventd, and put_user()
286 * to a kernel address works OK for kernel threads, due to their
287 * having an mm_segment_t which spans the entire address space.
288 *
289 * Thus the __user pointer cast is valid here.
290 */
291 sys_wait4(pid, (int __user *)&ret, 0, NULL);
292
293 /*
294 * If ret is 0, either ____call_usermodehelper failed and the
295 * real error code is already in sub_info->retval or
296 * sub_info->retval is 0 anyway, so don't mess with it then.
297 */
298 if (ret)
299 sub_info->retval = ret;
300 }
301
302 umh_complete(sub_info);
303 do_exit(0);
304 }
305
306 /* This is run by khelper thread */
307 static void __call_usermodehelper(struct work_struct *work)
308 {
309 struct subprocess_info *sub_info =
310 container_of(work, struct subprocess_info, work);
311 pid_t pid;
312
313 if (sub_info->wait & UMH_WAIT_PROC)
314 pid = kernel_thread(wait_for_helper, sub_info,
315 CLONE_FS | CLONE_FILES | SIGCHLD);
316 else
317 pid = kernel_thread(____call_usermodehelper, sub_info,
318 SIGCHLD);
319
320 if (pid < 0) {
321 sub_info->retval = pid;
322 umh_complete(sub_info);
323 }
324 }
325
326 /*
327 * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY
328 * (used for preventing user land processes from being created after the user
329 * land has been frozen during a system-wide hibernation or suspend operation).
330 * Should always be manipulated under umhelper_sem acquired for write.
331 */
332 static enum umh_disable_depth usermodehelper_disabled = UMH_DISABLED;
333
334 /* Number of helpers running */
335 static atomic_t running_helpers = ATOMIC_INIT(0);
336
337 /*
338 * Wait queue head used by usermodehelper_disable() to wait for all running
339 * helpers to finish.
340 */
341 static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq);
342
343 /*
344 * Used by usermodehelper_read_lock_wait() to wait for usermodehelper_disabled
345 * to become 'false'.
346 */
347 static DECLARE_WAIT_QUEUE_HEAD(usermodehelper_disabled_waitq);
348
349 /*
350 * Time to wait for running_helpers to become zero before the setting of
351 * usermodehelper_disabled in usermodehelper_disable() fails
352 */
353 #define RUNNING_HELPERS_TIMEOUT (5 * HZ)
354
355 int usermodehelper_read_trylock(void)
356 {
357 DEFINE_WAIT(wait);
358 int ret = 0;
359
360 down_read(&umhelper_sem);
361 for (;;) {
362 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
363 TASK_INTERRUPTIBLE);
364 if (!usermodehelper_disabled)
365 break;
366
367 if (usermodehelper_disabled == UMH_DISABLED)
368 ret = -EAGAIN;
369
370 up_read(&umhelper_sem);
371
372 if (ret)
373 break;
374
375 schedule();
376 try_to_freeze();
377
378 down_read(&umhelper_sem);
379 }
380 finish_wait(&usermodehelper_disabled_waitq, &wait);
381 return ret;
382 }
383 EXPORT_SYMBOL_GPL(usermodehelper_read_trylock);
384
385 long usermodehelper_read_lock_wait(long timeout)
386 {
387 DEFINE_WAIT(wait);
388
389 if (timeout < 0)
390 return -EINVAL;
391
392 down_read(&umhelper_sem);
393 for (;;) {
394 prepare_to_wait(&usermodehelper_disabled_waitq, &wait,
395 TASK_UNINTERRUPTIBLE);
396 if (!usermodehelper_disabled)
397 break;
398
399 up_read(&umhelper_sem);
400
401 timeout = schedule_timeout(timeout);
402 if (!timeout)
403 break;
404
405 down_read(&umhelper_sem);
406 }
407 finish_wait(&usermodehelper_disabled_waitq, &wait);
408 return timeout;
409 }
410 EXPORT_SYMBOL_GPL(usermodehelper_read_lock_wait);
411
412 void usermodehelper_read_unlock(void)
413 {
414 up_read(&umhelper_sem);
415 }
416 EXPORT_SYMBOL_GPL(usermodehelper_read_unlock);
417
418 /**
419 * __usermodehelper_set_disable_depth - Modify usermodehelper_disabled.
420 * @depth: New value to assign to usermodehelper_disabled.
421 *
422 * Change the value of usermodehelper_disabled (under umhelper_sem locked for
423 * writing) and wakeup tasks waiting for it to change.
424 */
425 void __usermodehelper_set_disable_depth(enum umh_disable_depth depth)
426 {
427 down_write(&umhelper_sem);
428 usermodehelper_disabled = depth;
429 wake_up(&usermodehelper_disabled_waitq);
430 up_write(&umhelper_sem);
431 }
432
433 /**
434 * __usermodehelper_disable - Prevent new helpers from being started.
435 * @depth: New value to assign to usermodehelper_disabled.
436 *
437 * Set usermodehelper_disabled to @depth and wait for running helpers to exit.
438 */
439 int __usermodehelper_disable(enum umh_disable_depth depth)
440 {
441 long retval;
442
443 if (!depth)
444 return -EINVAL;
445
446 down_write(&umhelper_sem);
447 usermodehelper_disabled = depth;
448 up_write(&umhelper_sem);
449
450 /*
451 * From now on call_usermodehelper_exec() won't start any new
452 * helpers, so it is sufficient if running_helpers turns out to
453 * be zero at one point (it may be increased later, but that
454 * doesn't matter).
455 */
456 retval = wait_event_timeout(running_helpers_waitq,
457 atomic_read(&running_helpers) == 0,
458 RUNNING_HELPERS_TIMEOUT);
459 if (retval)
460 return 0;
461
462 __usermodehelper_set_disable_depth(UMH_ENABLED);
463 return -EAGAIN;
464 }
465
466 static void helper_lock(void)
467 {
468 atomic_inc(&running_helpers);
469 smp_mb__after_atomic();
470 }
471
472 static void helper_unlock(void)
473 {
474 if (atomic_dec_and_test(&running_helpers))
475 wake_up(&running_helpers_waitq);
476 }
477
478 /**
479 * call_usermodehelper_setup - prepare to call a usermode helper
480 * @path: path to usermode executable
481 * @argv: arg vector for process
482 * @envp: environment for process
483 * @gfp_mask: gfp mask for memory allocation
484 * @cleanup: a cleanup function
485 * @init: an init function
486 * @data: arbitrary context sensitive data
487 *
488 * Returns either %NULL on allocation failure, or a subprocess_info
489 * structure. This should be passed to call_usermodehelper_exec to
490 * exec the process and free the structure.
491 *
492 * The init function is used to customize the helper process prior to
493 * exec. A non-zero return code causes the process to error out, exit,
494 * and return the failure to the calling process
495 *
496 * The cleanup function is just before ethe subprocess_info is about to
497 * be freed. This can be used for freeing the argv and envp. The
498 * Function must be runnable in either a process context or the
499 * context in which call_usermodehelper_exec is called.
500 */
501 struct subprocess_info *call_usermodehelper_setup(char *path, char **argv,
502 char **envp, gfp_t gfp_mask,
503 int (*init)(struct subprocess_info *info, struct cred *new),
504 void (*cleanup)(struct subprocess_info *info),
505 void *data)
506 {
507 struct subprocess_info *sub_info;
508 sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask);
509 if (!sub_info)
510 goto out;
511
512 INIT_WORK(&sub_info->work, __call_usermodehelper);
513 sub_info->path = path;
514 sub_info->argv = argv;
515 sub_info->envp = envp;
516
517 sub_info->cleanup = cleanup;
518 sub_info->init = init;
519 sub_info->data = data;
520 out:
521 return sub_info;
522 }
523 EXPORT_SYMBOL(call_usermodehelper_setup);
524
525 /**
526 * call_usermodehelper_exec - start a usermode application
527 * @sub_info: information about the subprocessa
528 * @wait: wait for the application to finish and return status.
529 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
530 * when the program couldn't be exec'ed. This makes it safe to call
531 * from interrupt context.
532 *
533 * Runs a user-space application. The application is started
534 * asynchronously if wait is not set, and runs as a child of keventd.
535 * (ie. it runs with full root capabilities).
536 */
537 int call_usermodehelper_exec(struct subprocess_info *sub_info, int wait)
538 {
539 DECLARE_COMPLETION_ONSTACK(done);
540 int retval = 0;
541
542 if (!sub_info->path) {
543 call_usermodehelper_freeinfo(sub_info);
544 return -EINVAL;
545 }
546 helper_lock();
547 if (!khelper_wq || usermodehelper_disabled) {
548 retval = -EBUSY;
549 goto out;
550 }
551 /*
552 * Set the completion pointer only if there is a waiter.
553 * This makes it possible to use umh_complete to free
554 * the data structure in case of UMH_NO_WAIT.
555 */
556 sub_info->complete = (wait == UMH_NO_WAIT) ? NULL : &done;
557 sub_info->wait = wait;
558
559 queue_work(khelper_wq, &sub_info->work);
560 if (wait == UMH_NO_WAIT) /* task has freed sub_info */
561 goto unlock;
562
563 if (wait & UMH_KILLABLE) {
564 retval = wait_for_completion_killable(&done);
565 if (!retval)
566 goto wait_done;
567
568 /* umh_complete() will see NULL and free sub_info */
569 if (xchg(&sub_info->complete, NULL))
570 goto unlock;
571 /* fallthrough, umh_complete() was already called */
572 }
573
574 wait_for_completion(&done);
575 wait_done:
576 retval = sub_info->retval;
577 out:
578 call_usermodehelper_freeinfo(sub_info);
579 unlock:
580 helper_unlock();
581 return retval;
582 }
583 EXPORT_SYMBOL(call_usermodehelper_exec);
584
585 /**
586 * call_usermodehelper() - prepare and start a usermode application
587 * @path: path to usermode executable
588 * @argv: arg vector for process
589 * @envp: environment for process
590 * @wait: wait for the application to finish and return status.
591 * when UMH_NO_WAIT don't wait at all, but you get no useful error back
592 * when the program couldn't be exec'ed. This makes it safe to call
593 * from interrupt context.
594 *
595 * This function is the equivalent to use call_usermodehelper_setup() and
596 * call_usermodehelper_exec().
597 */
598 int call_usermodehelper(char *path, char **argv, char **envp, int wait)
599 {
600 struct subprocess_info *info;
601 gfp_t gfp_mask = (wait == UMH_NO_WAIT) ? GFP_ATOMIC : GFP_KERNEL;
602
603 info = call_usermodehelper_setup(path, argv, envp, gfp_mask,
604 NULL, NULL, NULL);
605 if (info == NULL)
606 return -ENOMEM;
607
608 return call_usermodehelper_exec(info, wait);
609 }
610 EXPORT_SYMBOL(call_usermodehelper);
611
612 static int proc_cap_handler(struct ctl_table *table, int write,
613 void __user *buffer, size_t *lenp, loff_t *ppos)
614 {
615 struct ctl_table t;
616 unsigned long cap_array[_KERNEL_CAPABILITY_U32S];
617 kernel_cap_t new_cap;
618 int err, i;
619
620 if (write && (!capable(CAP_SETPCAP) ||
621 !capable(CAP_SYS_MODULE)))
622 return -EPERM;
623
624 /*
625 * convert from the global kernel_cap_t to the ulong array to print to
626 * userspace if this is a read.
627 */
628 spin_lock(&umh_sysctl_lock);
629 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) {
630 if (table->data == CAP_BSET)
631 cap_array[i] = usermodehelper_bset.cap[i];
632 else if (table->data == CAP_PI)
633 cap_array[i] = usermodehelper_inheritable.cap[i];
634 else
635 BUG();
636 }
637 spin_unlock(&umh_sysctl_lock);
638
639 t = *table;
640 t.data = &cap_array;
641
642 /*
643 * actually read or write and array of ulongs from userspace. Remember
644 * these are least significant 32 bits first
645 */
646 err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos);
647 if (err < 0)
648 return err;
649
650 /*
651 * convert from the sysctl array of ulongs to the kernel_cap_t
652 * internal representation
653 */
654 for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)
655 new_cap.cap[i] = cap_array[i];
656
657 /*
658 * Drop everything not in the new_cap (but don't add things)
659 */
660 spin_lock(&umh_sysctl_lock);
661 if (write) {
662 if (table->data == CAP_BSET)
663 usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap);
664 if (table->data == CAP_PI)
665 usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap);
666 }
667 spin_unlock(&umh_sysctl_lock);
668
669 return 0;
670 }
671
672 struct ctl_table usermodehelper_table[] = {
673 {
674 .procname = "bset",
675 .data = CAP_BSET,
676 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
677 .mode = 0600,
678 .proc_handler = proc_cap_handler,
679 },
680 {
681 .procname = "inheritable",
682 .data = CAP_PI,
683 .maxlen = _KERNEL_CAPABILITY_U32S * sizeof(unsigned long),
684 .mode = 0600,
685 .proc_handler = proc_cap_handler,
686 },
687 { }
688 };
689
690 void __init usermodehelper_init(void)
691 {
692 khelper_wq = create_singlethread_workqueue("khelper");
693 BUG_ON(!khelper_wq);
694 }